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Abstract 

The Monte Carlo EM (MCEM) algorithm is a modification of the EM algorithm 

where the expectation in the E-step is computed numerically through Monte Carlo 

simulations. The most flexible and generally applicable approach to obtaining a Monte 

Carlo sample in each iteration of an MCEM algorithm is through Markov chain Monte 

Carlo (MCMC) routines such as the Gibbs and Metropolis-Hastings samplers. While 

MCMC estimation presents a tractable solution to problems where the E-step is not 

available in closed form, two issues arise when implementing this MCEM routine: 1) 

how do we minimize the computational cost in obtaining an MCMC sample? and 2) 

how do we choose the Monte Carlo sample size? We address the first question through 

an application of importance sampling whereby samples drawn during previous EM 

iterations are recycled, rather than running an MCMC sampler each MCEM iteration. 

The second question is addressed through an application of regenerative simulation. We 

obtain approximate independent and identical samples by subsampling the generated 

MCMC sample during different renewal periods. Standard Central Limit Theorems 

may thus be used to gauge Monte Carlo error. In particular, we apply an automated 

rule for increasing the Monte Carlo sample size when the Monte Carlo error overwhelms 

the EM estimate at any given iteration. We illustrate our MCEM algorithm through 

analyses of three data sets fit by either generalized linear mixed models or survival 

models in the presence of censoring. As a part of these applications, we demonstrate 

the improvement in computational cost and efficiency of our routine over alternative 

MCEM strategies. 

Keywords: Gibbs sampler, Metropolis-Hastings algorithm, importance sampling, Markov 

chain Monte Carlo, regenerative simulation, renewal theory, generalized linear mixed models, 

survival models. 
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1 Introduction 

The EM algorithm provides a tool for obtaining maximum likelihood estimates under models 

that yield analytically formidable likelihood equations. The EM algorithm is an iterative 

routine requiring two primary calculations each iteration: Computation of a particular con

ditional Expectation of the log-likelihood (E-step) and Maximization of this expectation over 

the relevant parameters (M-step). The Monte Carlo EM (MCEM), introduced by Wei and 

Tanner (1990) is a modification of the EM algorithm where the expectation in the E-step is 

computed numerically through Monte Carlo simulations. While the Monte Carlo estimate 

presents a tractable solution to problems where the E-step is not available in closed form, 

we must account for the additional Monte Carlo (MC) error inherent in the approach and 

try to minimize the increased computational cost in obtaining the MC sample. 

Booth and Hobert (1999) present a method for gauging Monte Carlo error in the MCEM 

algorithm through an automated routine to increase the number of MC samples as the 

algorithm converges. Their routine relies on MC estimation in the E-step via either inde

pendent samples from the distribution of interest or importance weighted random samples 

from a candidate distribution "close" to that distribution. Independent samples allow for 

computationally inexpensive and straightforward assessment of Monte Carlo error through 

the Central Limit Theorem. However, such sampling routines are often not available due 

either to the complexity of the target distribution or lack of a reasonable importance density 

(under which a large number of samples are needed to attain a good estimator). 

Alternatively, McCulloch (1994, 1997) suggests obtaining a sample via Markov chain 

Monte Carlo techniques, in particular the Gibbs sampler and Metropolis-Hastings algo

rithm. Though the random variates are dependent in such a scenario, the E-step estimator 

is still unbiased and approaches the true value as the sample size increases. Furthermore, 

MCMC techniques are applicable to a wider range of distributions than approaches based 

on independent samples. 

The greater flexibility introduced by MCMC sampling, however, is countered by greater 

computational cost and difficulties in assessing Monte Carlo error. Application of, say, a 
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Metropolis-Hastings algorithm each iteration of the EM algorithm to evaluate the E-step 

is significantly more expensive than comparable independent samplers, if such are available 

(Booth and Hobert, 1999). In situations where MCMC is the only alternative, the computa

tional cost could be quite restrictive in that estimation of the E-step to a satisfactory number 

of significant digits requires an inordinate amount of time (McCulloch, 1997). Furthermore, 

validating Central Limit Theorems under Markov chain sampling could be a mathematically 

and computationally complex task. 

In this paper we overcome the computational burdens of MCMC sampling in the MCEM 

algorithm by applying results from importance sampling and renewal theory. First, we show 

how to recycle variates generated from previous iterations of the EM algorithm through 

importance weighting. Hence, the MCEM algorithm generates only one sample for evaluation 

of subsequent E-steps, rather than obtaining an MCMC sample for each iteration of the EM 

algorithm. Second, we construct a Central Limit Theorem based on renewals of the Markov 

chain. Markov chains often exhibit regeneration times during which the chain essentially 

restarts. Excursions between these renewal times are hence independent and identically 

distributed (see Mykland, Tierney, and Yu, 1995). Here, we implement a method of Robert 

et al. (1998) to identify samples in each of these excursions. Consequently, we are able to 

collect an iid sample, being a subsample of our original MCMC sample. We may then apply 

a Central Limit Theorem based on these iid observations as in Booth and Hobert (1999) to 

assess MC error. 

The paper unfolds as follows. In Section 2 we formalize the MCEM routine and present 

the importance sampling modification. We also discuss the application of regenerative sim

ulation for assessing MC error. We conclude the section with an outline of our MCEM 

algorithm. In Section 3 we apply our MCEM to fitting three models: the logit-normal 

model of McCulloch (1997) fit to simulated data, the lifetime distribution model of Fan et 

al. (1998) fit to the Australian twin data of Duffy et al. (1990), and the probit-normal model 

of McCulloch (1994) fit to the salamander data of McCullagh and Neider (1989). As part 

of these applications, we compare our model with the performance of other MCEM routines 

utilizing MCMC for evaluating the E-step . 
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2 Monte Carlo EM 

Let y = (yl, ... 'Yn)' denote observed data with distribution f(y I w) characterized by the 

s-vector of parameters lJ1. Here ' denotes vector transpose. The EM algorithm is an iterative 

routine for computing the maximum likelihood estimate of lJ1, denoted ~. The driving force 

behind the EM algorithm is that the MLE is simpler to compute on the data y augmented 

by a set of latent variables u = (u1 , ... . uq)'. For example, we may think of the latent 

variables as unknown random effects in a generalized linear model or missing observations 

from individuals with censored survival times. 

The EM algorithm thus works on the augmented log-likelihood lnf(y, u I w) to obtain 

the MLE of lJ1 over the distribution f(y I w) where it is assumed that f(y I w) = f f(y, u I 

w) du. More specifically, the EM algorithm iterates between a calculation of the expected 

complete-data likelihood 

(1) 

and the maximization of Q(w I '4t(r)) over '1J1, where the maximum value of lJ1 is denoted 

by '4t(r+l) and ~(r) denotes the maximum of 'IJ1 at the rth iteration. Wu (1984) shows show 
A (r) A 

that under regularity conditions, the sequence of values { 'IJ1 } converges to the MLE lJ1. 

In situations where the E-step is analytically troublesome, we may estimate the quantity 

(1) from Monte Carlo simulations. Note the expectation in (1) is over the latent variable u. 

In particular, 

I A (r) 
E '4t(r) {ln f(y, u I w) I y} = ln f(y, u I 'IJ!) g(u I y, w ) du 

where g(u I y, w) is the conditional distribution of the latent variables given the observed 

data and w. If we obtain a sample u~r), ... , u~> from the the distribution g(u I y, ~(r)), this 

expectation may be estimated by the Monte Carlo sum 

(2) 

where the subscript m denotes the dependence of this estimator on the MC sample size. By 

the law of large numbers, the estimator in (2) converges to the theoretical expectation in 
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• (1). The EM algorithm can thus be modified into an MCEMwhereby the E-step is replaced 

by the estimated quantity from (2). The M-step maximizes then the sum (2) over w. See 

Chan and Ledolter (1995) for more details. 

In this paper we focus solely on the problem of an intractable E-step. While the M

step may also require sophisticated numerical routines, our applications in Section 3 yield 

straightforward maximizations in the M-step. Implementation of the MCEM algorithm 

then presents two important issues for us: how do we obtain a random sample from the 

distribution g(u I y, w) and how do we choose m? We will discuss these issues in the 

following two subsections. The third subsection summarizes our MCEM algorithm. 

2.1 Importance sampling 

We consider the situation where the sample of latent variables U1, ... , Urn in the E-step is 

obtained from a Markov chain Monte Carlo routine such as the Gibbs sampler or Metropolis

Hastings algorithm with stationary distribution g(u I y, w). As mentioned in Section 1, 

• drawing an MCMC sample each iteration of the EM algorithm could be prohibitively costly 

particularly for large m. 

• 

The computational expense of the MCMC based MCEM algorithm can be substantially 

improved through an application of importance sampling. We initialize the algorithm with 

a sample u 1 , ... , Urn from the distribution g(u I y, -q,(o)) where q,(o) is the initial value of the 

parameter w at the start of the EM algorithm. At each iteration r, rather than obtaining a 
A(r) A(r) 

new sample from g(u I y, w ) with the most recent iterate w , we can importance weight 

the original sample through the updated distribution g(u I y, ~(r)). That is, 

A (r) rn I rn 
Qrn(W I w ) = ~Wtlnf(y, UtI w) ~Wt, (3) 

where the original sample is corrected for the new information we have at iteration r through 

the weights 

(See Robert and Casella, 1999, Chapter 3 for a discussion of importance sampling.) 
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The cost in obtaining the weights Wt is less than obtaining a new sample. The reason 

for this expense saving is that the weights are not dependent on the unknown likelihood 

L(iJ! I y). Note that 

L(~(r) I lit, y)/ L(~(r) I y) 

Wt = L(iJ!(O) I lit, y)/L(iJ!(O) I y). 

Hence the likelihood L(iJ! I y) cancels in the formul0tion (3) so that 

where 

Qm('I! I q,(r)) = I.:~ 1 w~ln!(y:lit I 'I!) 
Lt=l Wt 

1 L(~(r) I lit, y) 
w - _.:..--;:~---'-

t - L(w(o) 1 ut. y) 

The importance sampling estimator may, alternatively, be calculated as 

A (r) 1 ~ 
Q m ( W I W ) = - L_., Wt ln f (y, lit I W) 

m t=l 

(4) 

where I.:~ 1 Wt is replaced by m in the denominator. This choice will not affect the EM 

algorithm since the unknown normalizing constant 

L(w(o) 1 y) 

L(~(r) I Y) 

( ) 
A (r) 

depends only on the known values w 0 and iJ! and not the unknown value of iJ!. This 

constant does not then come into play in the maximization step. However, we choose the 

estimator (3) in order to avoid calculation of this normalizing constant in the routine de

scribed in the next subsection for choosing m. The estimator (3) may be further rationalized 

by the fact that E[w] = 1 where the expectation is taken with respect to g(li I y, q,(o)). Fur

thermore, the estimator (3) often has smaller mean squared error than (4); see Liu (1996) 

and Casella and Robert (1996). 

Importance sampling estimators are not without drawbacks. Most notably, if the impor

tance density g(ut I y, ~(r)) is not close enough to g(ut I y, q,(o)), the weights Wt will vary 

widely giving many samples little weight and allowing for a few variates to be overinfiuential. 

Consequently, the estimator (3) will be imprecise (Robert and Casella, 1999, Section 3.3.2; 

also see Geyer, 1991). In our setting, if the initial values q,(o) are poor, the importance 
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sampling estimator will take a long time to converge. We alleviate this problem by initiating 

a burn-in whereby for the first few iterations, a new sample is obtained from g(ut I y, q,Cr)) 

rather than importance weighting. McCulloch (1997) shows that such an algorithm reaches 

the neighborhood of the MLE quickly. Following the burn-in, the target density should be 

close enough to the distribution g(ut I y, 4') based on the MLE 4' to ensure well-behaved 

weights; i.e. weights with small variance. 

The burn-in idea is further rationalized by the choice of m. Tanner (1993; Section 4.5) 

suggests increasing m as the EM algorithm progresses. Hence, the first few iterations are 

implemented with a relatively small MC sample size, perhaps as small as m = 10 as we 

will see in Section 3. Generating a sample of size ten each iteration is a computationally 

inexpensive task. In later iterations, when m is of the order of a thousand to tens of 

thousands, the cost of generating a sample is too much to perform each iteration. Importance 

sampling thus becomes particularly crucial for feasible running of the MCEM under MCMC 

sampling at these later stages . 

2.2 Central limit theorem 

The choice of Monte Carlo sample size m is equally important to the sampling method 

chosen for the MCEM algorithm. We do not want to start with a large value of m when 
A (r) A 

the iterates W are far from the MLE W. The tradeoff between improving accuracy and 

the computational cost in obtaining more samples favors starting the algorithm with small 

MC samples. However, as the EM algorithm progresses, we may wish to increase mas the 

approximation 4'(r) approaches the true MLE (Tanner, 1993; Section 4.5). 

Up until recently, the choice of m was purely ad hoc; that is, one would arbitrarily 

increase m at predetermined iterations of the EM algorithm. Booth and Hobert (1999) 

present an automated routine where the MC sample size is chosen through considerations 

of the Monte Carlo error inherent in the Monte Carlo sum (2). In particular, since the 

random variates u1, ... , Um are generated independently, the Central Limit Theorem (CLT) 

h d. · 1 h · t .-r,(r) th t "t t .-r,(r+l) · · 1 ensures t at, con 1t10na on t e 1tera e ~ , e curren 1 era e ~ IS approximate y 
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normally distributed. Thus we may estimate Monte Carlo error via the normal distribution . 

I . 1 "f h 1 ,.y.,(r) 1· · · fid · 1 b ,.y.,(r+l) n part1cu ar, 1 t e past va ue '£' 1es m an approximate con ence mterva a out "±' , 

then the Monte Carlo error is said to swamp the EM step and the number of simulations, 

m, is increased (see Booth and Hobert, 1999 for more details). 

This idea may be generalized to dependent samples u1, ... , Um generated by MCMC 

routines. The difficulty, of course, is obtaining an 'appropriate CLT and then estimating 

the corresponding Monte Carlo variance for the requisite confidence interval. The MCMC 

literature presents a number of CLTs depending on the induced Markov chain (see for ex

ample, Kipnis and Varadhan, 1986; Tierney, 1994; Robert, 1995a; and Robert and Casella, 

1999 to name a few). Based on this work, application of a CLT appears feasible in the 

MCMC setting upon checking the appropriate regularity conditions. However, computation 

of the variance of the asymptotic distribution is particularly difficult under these CLTs. The 

dependency between MC samples forces a variance estimation equivalent to estimating the 

spectral density function at frequency zero (see Geyer, 1992 and Tierney, 1994). 

As an alternative approach, renewal theory and regenerative simulation presents methods 

• 

for extracting independent subsets of the Markov chain under which the classical CLT may • 

be applied (see Robert, 1995a and Mykland et al., 1995). We will apply ideas of Robert et 

al. (1998) along these lines. 

Recall we have a sample u 1, ... , Um taken from the distribution g(u I y, w) under sta

tionarity of the Markov chain. We will assess Monte Carlo error in our MCEM algorithm 

through a confidence interval about some function h(u) as defined later. The confidence 

interval will require three pieces: a CLT to ensure normal critical values, and estimates of 

both E9 [h(u)] and V AR9 [h(u)]. We can estimate the expectation with 

A 2::~ 1 Wt h(ut) 
f.Lm = m 

Lt:=l Wt 
(5) 

and the variance by 

(6) 

where the weights Wt are as defined in Section 2.1. Implementation of a Central Limit 

Theorem, however, is complicated by the correlation between sample points from the Markov 
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chain . 

We utilize a subsampling scheme from Robert et al. (1998) to overcome Markov chain cor

relation issues. Specifically, choose the sequence xl, ... XN such that xk- 1 rv Poisson(vk) 

where vk = vkd for some v ~ 1 and d > 0 as in Robert et al. (1998). The sums 

tk = x 1 + ... + Xk are used as the subsampling points; that is we consider Ut1 , ••• , UtN 

where N = sup{ k : tk ~ m} is the number of subsarriples taken from the m random variates. 

In the applications of Section 3, v = 1 and d = 0.5. 

Let 
1 N 

Sm = ~ L [h(utk) - ftm] 
Vm k=l 

(7) 

for j = 1, ... , s. Recall that a Markov chain u 1, ... Um is strongly mixing or a-mixing if 

a(t) =sup IP(ut E A, no E B)- P(ut E A)P(uo E B) I 
A,B 

approaches zero as t goes to infinity and u 0 ,..._, g(u I y, 'W). If a(t) ~ Cr./ for some constant 

C ~ 0 and"/ E (0, 1), then the mixing coefficients are geometrically decaying. We then have 

the following central limit theorem . 

Theorem 1 (Robert et al., 1998) If the Markov chain { uk} is ergodic and strongly mix

ing with geometrically decaying mixing coefficients, and 

for some 6 > 0, then the normalized sum Sm converges weakly to the standard normal 

distribution. 

We choose s functions hi(u) = a:Cj) ln f(u, y I 'W), j = 1, ... , s, to study MC error in 

estimation of each of the s components of 'W. Let h(u) = (h1 (u), ... , hs(u))'. Under this 

choice, the expectation is 

E9[h(u)] = Q(l) (w 1 w') = oQ(w lw'). 
()lJ! 

Theorem 1 will be used to choose the Monte Carlo sample size m each iteration. For direct 

application of the theorem, we assume the components of the s-vector h(u) are independent . 
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In particular, we will construct a (1- a) confidence region around Q(1)(w I q,(r)), namely, 

the set of intervals for each j = 1, ... , s, 

(8) 

Here z1_a denotes the (1- a) critical value of the standard normal distribution and flm;j and 

Vm;j are the estimators of the expectation and variance of hj ( u) from ( 5) and ( 6) respectively. 

Note these estimators for the mean and variance are computed by substituting the most 

~ (r+l) 
recent MLE update W . 

We will increase m following iteration (r + 1) if for any j = 1, ... , s the value from the 

previous iteration, 

Q~?j(q,(r) I q,(r-l)) = fwtka:( .) lnf(utk,y I '11)/fwtkl ~ (r)' 
k=l J t=l W=W 

based on the subsample, lies in the confidence interval (8). The rationale is that if the 

confidence interval covers the rth value, then the Monte Carlo error swamps the current 

. ~ (r+l) . . 
MLE estimate w . Consequently, more ::VIonte Carlo samples are reqmred to attam 

reasonable precision at the next iteration. We choose to increase m to m + m/ c where c is a 

positive constant, as suggested by Booth and Hobert (1999). In the application of Section 3, 

c = 3 and a = 0.25. 

A number of remarks are in order. 

1. Most Markov chains induced by MCMC routines such as the Metropolis-Hastings algo

rithm and the Gibbs sampler applied in practice are ergodic (for example, see Robert 

and Casella, 1999; Chapters 6 and 7). 

2. The a-mixing criterion of Theorem 1 may seem foreboding. However, every positive re

current aperiodic Markov chain is a-mixing (Robert, 1994). Additionally, relationships 

exist between a-mixing and other types of mixing as well as minorization conditions 

(for example see Tierney, 1994). 

3. The presumed independence between components of h(u) may be lifted through an 
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application of the Cramer-Wold device (Robert et al., 1998); but for simplicity we 

restrict ourselves to the rectangular confidence region in (8). 

4. Note Q~l(w*(r+l) I ~(r)) = 0 for the true MLE w*(r+l) at iteration (r + 1). Therefore 

( ) 
A (r+l) A (r) . . . 

the mean value Q~ (w I w ) ~ 0. We may thus reduce computatwns shghtly by 

constructing the confidence interval (8) to be ~ymmetric around zero. 

2.3 Algorithm 

1. Initialize m, W(O). 

2. Generate ul, ... Um rv g(u I y, w(O)) via a Metropolis-Hastings algorithm. 

At iteration r + 1 

3. Compute the importance weights 

A (r) 
4. E-step: Estimate Q(w I w ) by 

A (r) A (r+l) 
5. M-step: Maximize Qm('ll I W ) to obtain W . 

6. MC error estimation: 

a. Compute for each j = 1, ... , s 

b. Compute for each j = 1, ... , s 

11 



c. Obtain for eachj = 1, ... , sa (1-a) confidence interval about Qj1l(w I q,(r)) 

where z1-a;2 is the (1 - a/2) cutoff of the standard normal distribution. 

7. Obtain subsampling instants tk = Xl + ... +·xk where Xk - 1 rv Poisson(vk), k = 

1, ... ,Nand N = sup{n: tn ~ m}. 

8. If Q~)(q,(r) I w(r-l)) lies in the confidence region from step 6, then 

a. Set mo = m 

b. Set m = m 0 + Lma/cJ for some c > 0. 

c. Obtain Umo+ll ... 'Um rv g(u I y, w(O)) via a Metropolis-Hastings algorithm. 

9. Compute for each j = 1, ... , s 

10. Repeat steps three through nine until convergence. 

As mentioned in Section 2.1, the importance weights are sensitive to the "distance" 

between the target and candidate distribution, namely, at iteration r, g(u I y, q,(r)) and 

g(u I y, w<0)). We can include the following burn-in in step one to alleviate this problem. 

1. Initialize m, W(o), and run burn-in 

a. Set importance weights Wt = 1 for all t = 1, ... , m. 

At iteration b 

b. Generate ul, ... Um rv g(u I y, w(b)) via a Metropolis-Hastings algorithm. 

c. Run E and M steps above with r = b. 

d. Repeat steps (1b) and (1c) forB burn-in iterations. 
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e. Re-initialize q,(o) = q,(B) . 

In the application of Section 3, we run the burn-in for one minute. Note that m is 

not changed during the burn-in process. This burn-in is essentially the McCulloch (1997) 

MCEM where random variates are generated each iteration. 

3 Applications 

We apply the algorithm in Section 2.3 to fit a simple logit-normal model from McCulloch 

(1997), a survival model from Fan et al. (1998) under censored data, and the salamander 

data of McCullagh and Neider (1989). 

3.1 Logit-Normal model 

Suppose fori= 1, 2, ... , q and j = 1, 2, ... , n 

(9) 

conditionally independent. Furthermore, 

(10) 

independent and identically distributed over i. The logit link function relates Y to u in that 

(11) 

Thus the latent variables here are the random effects u. McCulloch (1997) simulates data 

from this single random effects model with q = 10, n = 15, {3 = 5, cr2 = 0.5, and Xij = i/15. 

We use the data generated by Booth and Hobert (1999) presented in Table 1. The exact 

MLE computed from numerical integration for this data is~= 6.132 and fJ2 = 1.766. 

Figures 1 and 2 display output from our algorithm with and without importance sam

pling. The algorithms are run on a 533 MHz DEC alpha with 128MB RAM under initial 

values q,(o) = ({3(0), crC0l) = (2, 1) and m = 100. Each iteration of the sample u1r), ... u~> 

13 



ifj 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 0 0 0 0 1 1 0 1 1 1 1 1 1 1 

2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

3 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 

4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

5 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 

6 0 0 0 1 0 1 1 1 0 1 1 1 1 1 1 

7 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 

8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

9 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 

10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Table 1: Simulated data from Booth and Hobert (1999) for the logit-normal model. 

is generated from a Metropolis-Hastings algorithm with _V(O, a 2 ) candidate distribution. 

McCulloch (1997) presents the relevant likelihoods and acceptance probabilities. 

Both MCEM approaches converge to a reasonable neighborhood around the true MLEs, 

but continue to show variation. As stated by McCulloch (1997), the number of replications 

required to obtain the MLE within three or four decimal places of accuracy would be very 

large. As expected, the importance sampling algorithm is faster performing 108 iterations 

including 16 burn-in in sixty minutes as opposed to 58 iterations run by MCEM without 

importance sampling. Generation of an MCMC sample each iteration of the algorithm is 

quite expensive. 

The Markov chain induced by the Metropolis-Hastings algorithm with normal candidate 

distribution is strongly mixing with geometrically decaying mixing rates (see the Appendix). 

We may thus monitor the Monte Carlo sample size through the Central Limit Theorem of 

Theorem 1. The sample size m increases from 100 to 4197. Figure 3 displays the iterations 

at which the sample size is increased and by how much. Also included in Figure 3 is 

McCulloch's (1997) predetermined choice for increasing m. For comparison purposes, we 
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• excluded the burn-in from the iteration count as m is not increased during the burn-in 

process. Note the predetermined choices of m proposed by McCulloch (1997) for running 

MCEM without importance sampling follows the sample size for MCEM under importance 

for the first 40 iterations. Following iteration 40, the predetermined m's take a large jump 

to 5000, overshooting the sample size for MCEM without importance sampling. Thus, at 

early stages of the algorithm the McCulloch (1997) MCEM does not increase the MC sample 

size quickly enough. At later stages, the McCulloch (1997) MCEM runs at an unnecessarily 

high computational cost by generating more MCMC variates than are needed. 

Our stopping rule at this point is based purely on time, namely stop after sixty minutes. 

We can apply the stopping rules suggested by Booth and Hobert (1999) used to diagnose 

convergence. A temporal stopping rule is used to allow for easy cost comparisons between 

the various MCEM algorithms. 

3.2 Survival analysis 

• The MCEM algorithm provides a mechanism for fitting survival functions in the presence 

of censored data. For example, Wei and Tanner (1990) introduce the MCEM algorithm via 

an application to regression analysis with censored data and Sinha et al. (1994) analyze 

grouped survival data via the MCElvi algorithm. 

• 

In this section, we consider an application of our MCEM algorithm to the twin data 

set (Duffy et al., 1990). This data consists of responses to a survey of twins in Australia 

concerning their past history of a number of diseases and operations. One of the operations 

of interest is appendectomy, in particular, the genetics of acute appendicitis. Of course, not 

all twins in the study had an appendectomy at the time of the survey. Hence, the data are 

censored in that for some subjects we know only the appendectomy has not occurred before 

some given time. 

The censored data can be viewed as incomplete or missing data. Let T 2: 0 denote 

a random variable representing the age at which the subject undergoes an appendectomy. 

Denote the probability of event occurrence or "survival" probability by G(t; '1!) = P(T 2: 

15 



t), characterized by some unknown parameter vector w, with associated density g(t; w) . 

Assume the study consists of n uncensored individuals and k censored subjects, combined 

in the (n + k)-vector T = (Tb ... , Tn, Tn+b ... Tn+k)'. Note the variables (Tn+l, ... , Tn+k) 

are not observable. Instead we observe the k censoring times c1, ... , ck. 

The log-likelihood, l(w; T) consists of a contribution from the uncensored and censored 

subjects, 
n k 

l(w; T) = L ln[g(Tu; w)] + L ln[G(£;; w)] (12) 
u=l i=l 

assuming independent subjects (Cox and Oakes, 1984: Chapter 3). However, the log

likelihood l0 (0; T) of the complete data T that would be observable in the absence of cen

soring may have a simpler form as it depends solely on the survival density g(t; 0) 

n+k 
lo('ll; T) = L ln[g(7i; w)]. 

i=l 

The EM algorithm utilizes the complete data likelihood by maximizing at iteration r the 

expectation 
A(r) A(r) 

Q(w I w ) = E[lo(W ; T) I Tl, ... 'Tn, v; w] 

where v is an (n + k)-vector containing the censoring status of each subject. Here, the un

known observations for the censored subjects, u = (Tn+l, ... , Tn+k)' are the latent variables. 

In many instances, the E-step is more difficult to compute in closed form, than numerical 

maximization in theM-step (Cox and Oakes, 1984; Chapter 11). Consequently, the MCEM 

algorithm suggests itself as a useful algorithm in the survival function estimation setting. 

For purposes of illustration and comparison of the MCEM algorithms presented in Sec

tion 2, we fit the survival function on a subset of the twin data set: one of the twins from 

each of the 327 pairs, 50 of which did not have an appendectomy at the time of the survey 

(15% censoring). We will fit the survival function 

(13) 

introduced by Fan et al. (1998). This distribution models the occurrence of shocks to the 

system as well as aging. In particular, the occurrence of acute appendicitis is a consequence of 
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• stresses to the human body. As the subject ages, the body is increasingly more susceptible to 

damage by these stresses. The function (13) models these processes through a Poisson shock 

process under exponential aging with shock process rate A > 0, shock damage ~ E (0, 1), 

aging parameter 6 > 0, and initial age a 2: 0 (for more details and derivation, see Fan et al., 

• 

• 

1998). 

Assume the initial age of the subject is zero (birth) and shock damage~ = 1. The survival 

model is characterized by two parameters. The MLE computed via numerical maximization 

from the likelihood function (12) is ..\ = 0.11, and J = 0.038. Figures 4 and 5 display 

convergence of the MCEM algorithm with and without importance sampling under initial 

values of (,A.(O), J"(0)) = (0.3, 0.5) and m =50. The final values are 5. = 0.11 and J = 0.037. 

At each iteration, the sample u~r), ... u~) is generated from a Metropolis-Hastings algo

rithm with truncated normal instrumental distribution (truncated at the observed censoring 

times). The mean and standard deviation of the candidate are taken as the numerically 

approximated mean and standard deviation of the timeT given q,(r). 

A truncated normal candidate distribution is suggested from the density g(t; w). In 

particular, expanding the exponential terms of the density in a Taylor series and setting 

~ = 1 produces 

( -.A.M2) g(t; w) ex .A.bt(1- ot) · exp - 2- · I(t >c) 

where cis the censoring time and I(A) is the indicator function over the set A. The truncated 

normal distribution provides a candidate with heavier tails than this density, allowing for 

acceptance rates greater than 60%. 

The exponential distribution also suggests itself as a potential instrumental distribution. 

In particular, the survival function (13) is motivated as an extension of the exponential 

survival function in the presence of aging (Fan et al., 1998). However, an exponential 

candidate exhibits a lighter tail resulting in prohibitively slow convergence of the Metropolis

Hastings chain. Nonetheless, the exponential form of the survival function motivated the 

implementation of a Metropolis-Hastings scheme to obtain a sample from this complicated 

distribution . 
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Both algorithms, with and without importance sampling, perform admirably, quickly 

oscillating in a small neighborhood of the MLE. In fact, the Matlab maximization routines 

involve an equal amount of computation time to attain the numerical MLE 'l1 as the MCEM. 

The MCEM routine with importance sampling performed 58 iterations including 29 burn-in, 

comparable to the 22 iterations run by MCEM without importance sampling. 

The Markov chain induced by the Metropolis-Hastings algorithm with truncated normal 

candidate distribution is strongly mixing with geometrically decaying mixing coefficients (see 

the Appendix). Thus we utilize Theorem 1 to adjust the Monte Carlo sample size in both 

algorithms. Figure 6 displays the change in m over the MCEM algorithms. The MCEM 

sample size increases from 50 to 6704 under importance sampling and from 50 to 2828 when 

drawing a Metropolis-Hastings sample each iteration. The Metropolis-Hastings algorithm 

is increasingly computer intensive as the number of censored subjects k increases. Hence, 

importance sampling may be particularly useful in such circumstances. 

3.3 Salamander data 

As a final illustration of the MCEM algorithm developed in this paper, we consider the 

salamander data of McCullagh and Nelder (1989), Section 14.5. The data consists of mating 

success between two species of salamanders, rough-butt (R) and whiteside (W). Twenty 

males and twenty females, ten of each of the two species were mated resulting in four types 

of crosses. The design we follow is from Table 14.3 of McCullagh and Nelder (1989) consisting 

of n = 120 matings from the first of three experiments. The observed outcome is binary 

denoted by Wi taking a value one if the ith mating is successful and zero otherwise. 

We apply the MCEM algorithm to perform a hierarchical probit regression. The al

gorithm utilizes the Gibbs sampler to estimate the expectation in the E-step. The model 

fitting is thus analogous to the work of McCulloch (1994), Chan and Kuk (1997), and van 

Dyk (1998). 

The probit-normal model is a threshold model, assuming the underlying response is an 

unobserved continuous random n-vector Y which governs mating success. The observed Wi 
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• states whether }i exceeds the threshold of zero or not. The effect of each salamander on the 

outcome is assumed random while the effect of the species cross is assumed fix. In this way, 

the mixed model is written 

• 

• 

Y X/3 + Z f U f + Zm U m + E (14) 

Ut "' N2o(O,o"JI) 

Um "' N2o(O, a~I) 

where U f and Um are normal random q-vectors denoting the effect of the female and male 

salamanders respectively, f3 = (f3nR, f3nw, f3wR, f3ww )T denotes the fixed effects of each of 

the four species crossings, X is the design matrix for the type of cross, Z f and Zm denotes the 

design matrix for the female and male salamanders respectively, and I denotes an identity 

matrix of the appropriate size, 0 denotes a vector of zeros of the appropriate dimension, and 

T denotes vector transpose. The random effects are assumed independent of each other and 

mutually independent of the normal random errors E. Let the parameter vector be denoted 

by '11 = (f3r, a], a~)T. 

Under model (14), the complete data is (Y, U1, Um), as the latent variable Y is unob

served in addition to the random effects. However, through results about the multivariate 

normal density, we can show, at iteration r of the EM algorithm, calculation of Q('l! I q,(r)) 

is dependent solely on Y (see McCulloch, 1994 for details). Thus the MC estimation in the 

E-step requires a sample from the latent variables Y. 

Recall the observations are binary responses W = (W1 , ... , Wnf· Thus the distribu

tion from which we must sample is the truncated multivariate normal conditional distri

bution of Y given W truncated at zero. Note the full conditional distributions of }i I 

Yr, ... , Yi-b li+1, ... , Yn for i = 1, ... , n is univariate truncated normal distributions, trun

cated at zero. As the univariate truncated normal is easy to sample, a Gibbs sampler may 

be implemented to obtain a sample y(I), ... , y(m) from the truncated multivariate normal 

distribution of interest (Robert, 1995b). McCulloch (1994) presents the Gibbs routine for 

sampling from the truncated multivariate normal distribution in detail. 
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At iteration i of the Gibbs sampler, Yi is generated from the truncated univariate normal 

distribution given the most recent value of the other n - 1 components. Thus, at each iter

ation of the Gibbs chain, we must compute n conditional expectations as well as generate a 

sample from the truncated normal distribution. This task is costly, particularly for later iter-

ations of the MCEM algorithm in which m may be of the order of tens of thousands. Hence 

we implement the MCEM algorithm with importance sampling as discussed in Section 2.3. 

The algorithm is initiated at w = (0, 0, 0, 0, 0.2, 0.2) and m = 10. 

Figure 7 displays convergence of the ML estimates for the parameter w. The algorithm 

was run for 60 minutes during which it performed 46 EM iterations including 16 burn-in. 

The final estimates are fiRR = 0.81, fiRw = 0.54, fiwR = -0.96, fiww = 0.73, a] = 0.62, 

a~ = 0.088, similar to the values found by McCulloch (1994). 

Robert (1995b) states the Gibbs sampler utilized to generate the truncated multivariate 

normal sample induces a geometrically ergodic Markov chain. Consequently, the chain is 

strongly mixing with geometrically decaying mixing rates (Chan and Geyer, 1994) putting 

Theorem 1 into use. The MC samples size m increases from 10 to 12857. The large increase 

• 

in MC sample size suggests the recommendation of Chan and Kuk (1997) to generate a • 

Gibbs sample of 1000 iterates each EM iteration is not appropriate. This fixed sampling 

routine oversamples at early iterations of the MCEM algorithm and does not draw enough 

samples in later iterations to obtain precise EM estimates. 

The amount by which the MC sample should be increased in our algorithm, of course, is 

flexible. Our algorithm tells the user when to increase the MC sample size, but the actual 

value taken by m each EM iteration is user determined. As van Dyk (1998) states, trial and 

error is necessary for choosing appropriate MC sample sizes. Nonetheless, a linear increase 

of m seems to be the preferred choice in the literature (see for example McCulloch, 1994 and 

van Dyk, 1998). Though our choice of increasing m by 4/3 appears to allow a reasonable 

tradeoff of computational cost with EM precision, users may choose to increase or decrease 

this value as deemed appropriate for the application of interest. 
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4 Appendix 

The Metropolis-Hastings algorithms utilized in Sections 3.1 and 3.2 are both independence 

chains in that the candidate distribution does not depend on the most recent sample point 

(see Robert and Casella, 1999, Chapter 6 for more details). We will use the following theorem 

concerning convergence of independent Metropolis-ijastings algorithms, a combination of a 

result from Chan and Geyer (1994) and Theorem 2.1 of 1\Iengersen and Tweedie (1996). 

Theorem 2 The Markov chain induced by the independent Metropolis-Hastings algorithm 

is a strongly mixing chain with geometrically decaying mixing coefficients if there exists some 

M > 0 such that for all u E supp('rr), q(u) > 0 and 

7r(u) < M 
q(u) -

where 7r is the stationary distribution of the chain and q is the candidate distribution. 

Mengersen and Tweedie (1996) actually show under the conditions of Theorem 2, the 

chain is uniformly ergodic, a much stronger conclusion than a-mixing. Chan and Geyer 

(1994) show uniformly ergodic chains are strongly mixing with geometrically decaying mixing 

rate. We will apply this theorem to the logit-normal and survival analysis examples in turn. 

Recall the candidate distribution q(u) in the logit-normal example of Section 3.1 is mul

tivariate normal N(O, a 21) where I is an s x s identity matrix with s = 10. Hence gener

ations from the candidate distribution are independent of variates generated earlier by the 

Metropolis-Hastings sampler. 

The invariant distribution 7r(u) of the Markov chain induced by the Metropolis-Hastings 

algorithm is the conditional density 

where the variables are all as defined in Section 3.1. 
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Theorem 2 is applicable as 

f(u I Y, /3, rY2 ) 

q(u) 

<X IT IT exp{yij (f3xij + Uj) . exp{ -u]: (2rY:)} / V2if(;2 

j=l i=l 1 + exp{yij(f3xij + Uj)} exp{I:j=l uj/(2rY2)} 

< (2:CY2) n 

where the proportionality constant in the first equation is 

(27rCY2)-q/2 

f(Y I /3, rY2). 

The Metropolis-Hastings algorithm in the lifetime distribution example of Section 3.2 

utilizes a truncated normal distribution with mean Jl, variance rY2 , and left truncation value 

being the censoring time for each individual. Thus 

where u is the k-vector of failure times for the k censored subjects, c is the k-vector of 

censoring times, 1> is the normal cumulative distribution function, and J(A) is the indicator 

• 

function over the set A. The mean, variance, and truncation time, at any iteration in the • 

algorithm, are independent of previous variates generated by the sampler. 

Recall the MCEM algorithm requires MC samples only for the censored individuals. The 

invariant distribution is then the conditional probability of survival given the subject has 

survived beyond the time of censoring. The associated density 1r(u) from (13) is then 

( I ) 11~= 1 .\(1- exp{ -oui}) · exp{ -.\ui + (.A/6)[1- exp( -oui)]} · I(ui 2:: Ci) 
g u c = 

-Aci + (.A/o)[1- exp( -oci)]} 

where all variables are as defined in Section 3.2. 

Note 

q(u) < K
1 
IT exp[-(u]- ~(Jl + ACY2)tj + Jl2)/(2rY2)] 

1r(u) j=l K2(J )(1 - exp -oci}) 

<X IT [exp[ -(uj- 11 - ArY2)2- (Jl + ArY2)2 + Jl2)/(2CY2)] 

j=l 1 - exp{ -oCi} 

< exp[-(1- (Jl + ArY2)2 + J12)/(2rY2)] 

1 - exp{ -oci} 
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where K1 = [V2?fo-(1- 4>( -J.L/o-))]-k and K2 (j) = exp{ -ACj + (>./6)[1- exp( -6ci)]}. Thus 

Theorem 2 holds and the independent Metropolis-Hastings chain is strongly mixing with 

geometrically decaying mixing coefficients. 
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Figure 1: MLE of f3 at each iteration of MCEM algorithms with importance sampling (D) 

and without importance sampling (6.). The iteration is measured in minutes. Dotted line 

specifies the true MLE f3 = 6.132. 
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Figure 2: MLE of a at each iteration of MCEM algorithms with importance sampling (D) 

and without importance sampling (6). The iteration is measured in minutes. Dotted line 

specifies the true MLE a = 1.329 . 
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Figure 3: Increases in Monte Carlo sample size m for three MCEM algorithms: MCEM with 

importance sampling (6), without importance sampling ( + ), and the predetermined values 

from McCulloch, 1997 ( *). 
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Figure 4: MLE of A at each iteration of MCEM algorithms with (D) and without importance 

sampling (6). Dotted line specifies the true MLE ~ = 0.11. 
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Figure 5: MLE of o at each iteration of MCEM algorithms with (D) and without importance 

sampling (6). Dotted line specifies the true MLE 8 = 0.038. The initial value of EJ(O) = 0.5 

is not plotted. 
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