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ABSTRACT Internet evolution produced a connectedworldwith amassive amount of data. This connectivity

advantage came with the price of more complex and advanced attacks. Intrusion Detection System (IDS) is

an essential component for security in modern networks. The IDS methodology is either signature-based

detection or anomaly behavior detection. Recently, researchers adopted Deep Learning (DL) because it has

a better performance than traditional machine learning algorithms. The use of DL to produce a model for

the IDS may take a long time because of computation complexity and a large number of hyperparameters.

Different DL models for IDS on Apache Spark have been implemented in this article. This article uses the

famous Network Security Lab - Knowledge Discovery and Data Mining (NSL-KDD) dataset and presents a

computation delay comparison between Apache Spark and regular implementation. Moreover, an enhanced

model is used to improve attack detection accuracy.

INDEX TERMS Intrusion detection, bigdata, Hadoop, apache spark, deep learning.

I. INTRODUCTION

Computer networks have proliferated over the years, adding

to social and economic growth. The Internet Security Threat

Report (ISTR) states that 1 in 13 Web requests is malware.

The spam rate in e-mails had increased to 55%, ransomware

had risen to 46 %, and other Internet threats [1]. Cybercrime

and threat actions have grown and have become a critical

threat. This growth promoted an increase in network security

importance. By analyzing packets captured from the network,

IDS helps to detect threats [2].

There are many threats like Denial of Service (DoS), which

denies or prevents legitimate user’s resources on a network

by introducing undesired traffic. Also, malware is malicious

software that uses a vulnerability in the computer network

machines to gain some advantage [2]. IDS developed to

counter these attacks.

The conventional IDS suffered from false detection,

which is categorized into positive or negative. These false

detections are a burden on the network administrator.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

This burden made the researchers try to develop an IDS

that has a high accuracy of detection and low false detec-

tion rate [3]. Signature-based IDS identifies only the known

attacks, which makes signature-based IDS unable to detect

unknown attacks. Anomaly-based IDS trains on regular traf-

fic and abnormal traffic dataset to identify an attack. Diverse

machine learning models have been presented to operate the

IDS functions but produced numerous imperfections viz low

throughput and high false detection rates.

Machine learning model training has issues that slow down

the process, such as the size of the dataset and the opti-

mization parameters to build the most fitting model. These

difficulties made the researchers look for a more appropriate

approach. A possible solution to these problems is the use

of the Apache Spark tool, which is one of the fastest cluster

computing frameworks, and it is an open-source distributed

programming tool for clusters. Also, Spark executes the oper-

ations in memory [4].

The development in computational capabilities expedited

Deep Learning (DL) for various applications in many areas

such as image processing, natural language processing, com-

puter vision, and the focus of this article, the IDS [5].
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The article workflow will follow these steps:

1) NSL-KDD dataset has been investigated rigorously.

Two features need treatment before it enters the model

training.

2) Also, the NSL-KDD dataset suffers from a class imbal-

ance problem, and a hybrid solution is presented for it.

3) This article presents the use of Apache Spark in the IDS

implementation process.

4) For the sake of comparison, this article implements tra-

ditional machine learning algorithms, which are Deci-

sion Tree classifier, K-Neighbor classifier, and Support

Vector Machine (SVM).

5) Three Apache Spark cluster configuration is used in the

implementation to study the reduction in the computa-

tional delay.

6) IDS have been implemented on Apache Spark using

three DL models, which are Multilayer percep-

tron(MLP), Recurrent Neural Network(RNN), and

Long-Short Term Memory(LSTM).

7) This article presents different arrangements for each

network type.

8) The performance of the selected model with the high-

est detection accuracy outperformed many proposed

schemes in terms of accuracy and time.

The main contributions of this article can be summarized

as follows.

1) Propose a Deep learning-based Intrusion detection sys-

tem with high accuracy compared with previously

developed systems.

2) Use Spark Cluster configuration to reduce the training

process while implementing the IDS with different

hyperparameters.

3) Solve problems related to the selected dataset, NSL-

KDD, such as class imbalance.

The paper is organized as follows; the next section

provides a brief of IDS previously developed algorithms.

Section 3 gives the details of the system model for this

article. Section 4 describes the experimental setup. The pro-

posedmodel performance analyses are presented in Section 5.

Finally, Section 6 concludes the paper.

II. RELATED WORK

Many papers proposed the use of Machine Learning (ML) in

IDS, and there are twomethods. The first one is the traditional

machine learning algorithms, and the second method is Deep

Learning algorithms. For the first method, the authors in [6]

presented a K-nearest neighbor(KNN) to build an IDS for

Wireless Sensor Network(WSN). The training dataset was

not provided, but the primary function of that IDS was to

prevent flooding attacks. The use of the Random-Forest (RF)

classifier for IDS is introduced in [7] to implement an IDS.

They used the NSL-KDD dataset to evaluate their model and

presented the detection accuracy on the training dataset, but

their evaluation did not contain any test data. A hybrid system

was introduced in [8]. The model had two classifiers; the

first is the Support Vector Machine(SVM), and the second is

a Decision Tree. The hybrid system offered better detection

accuracy.

The work in [9] summarizes the IDSML algorithms’ accu-

racy of the traditional methods. They presented the intrusion

detection accuracy of six algorithms. The list of intrusion

detection accuracies was as follows; ( 1) 74.6% for J48 which

is an open-source Java implementation of the C4.5 algorithm

of a decision tree, (2) 74.40% for Naive Bayes, (3) 75.40% for

the C5.0 algorithm of a decision tree, (4) 74.00% for Random

Forest, and (5) 74.00% for SVM. Another IDS ML method

is proposed in [10], which is called an ensemble because

many weak learners build it. Weak learners are classifiers

that have poor detection accuracy. The weak learners used

in the paper were J48, C5.0, Naïve Bayes, and Rule-Based

classifiers (PART). The accuracy reached by this algorithm is

78.14%.

The second method, which is DL, has shown that its

accuracy effectively exceeds traditional approaches [11]. In

[12], the authors use self-taught learning (STL) on the NSL-

KDD dataset for anomaly detection, and the accuracy of the

outcome was 79%. A Restricted Boltzmann(RBM) model

had been proposed in [13], and this model had feature selec-

tion using one Hidden Layer and utilized the KDD Cup

’99 dataset. An artificial neural network (ANN), consists of

two hidden layers, each with one hundred neurons, is pro-

posed in [14]. The IDS accuracy for this system was 78.51%.

The authors in [15] aspired a Deep Neural Network (DNN)

with 100 hidden units. They used a GPU to enhance the

performance and used the KDD 99’ dataset. The authors

suggested that both Recurrent Neural Network (RNN) and

Long Short Term Memory (LSTM) models are better for

improving detection accuracy.

The authors in [16] presented a convolutional neural net-

work (CNN). The model has two convolutional layers, two

pooling layers, and two fully connected MLP layers. The

paper tested their model against KDD 99’ dataset, and the

accuracy was 99.84%.

Then CNN is also implemented on the NSL-KDD dataset

in [17]. The CNN needs an additional step than any other DL

models. Since CNN’s primary purpose is image recognition,

it has a stage that is converting the 41 features into matrices

that can be dealt with as an image. CNN reached a detection

accuracy of 79.48%. On the other hand, RNN is introduced

in [9] to create an IDS. A regular processor is used, which

increased the training time, so they suggested the use of GPU

and Tensorflow to reduce the training time. This model had a

good accuracy of 81.29%.

A deep learning method, which is a self-taught learning-

based IDS that combines a sparse autoencoder and an SVM,

is presented in [18]. The primary function of the sparse

autoencoder(SAE) is to reduce the features of the NSL-KDD

before it is classified. The SVM classifies the output of the

SAE. The accuracy achieved with this method was 80.48%.

The authors in [19]presented a model based on autoen-

coder, followed by Multilayer Perceptron (MLP). The model
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is structured as one input layer, five hidden layers, and one

output layer; the input layer has 122 neurons, while the output

is five neurons. The output layer uses the softmax function.

The model accuracy is 79.74%.

A hybrid model introduced using RNN and LSTM is given

in [20]. The dataset used for evaluation was the KDD 99’

dataset. The authors did not mention the duration of the

training time, but a long time is expected for this model.

Another approach presented for LSTM is hierarchical

LSTM[21]. The authors produced a three layers’ network,

which contains two layers of LSTM and one Layer of a fully

connected layer. This network reached an accuracy of 83.5%

for the NSL-KDD test dataset and 69.73% for KDD-test-21.

The main drawback of using DL is that the training dura-

tion to get the best model takes a long time[9]. The authors

in [22]and [23] used the Spark as a platform for machine

learning. They showed that Spark reduces the execution delay

of the training process for Machine learning, but they did not

use it for DL. The authors in [24] used Spark for MLP imple-

mentation and presented substantial work. They considered

that the implementation process is confidential, so it was not

given. They tested many datasets, including NSL-KDD. The

detection accuracy for NSL-KDD reached 78.5%.

From the above, it can be concluded that Apache Spark

can reduce the training time process, and the DL algorithms

improved intrusion detection accuracy. RNN and LSTMalgo-

rithms perform better than other algorithms, and the NSL-

KDD dataset is well known to test the newmodels. Therefore,

we build our model on Apache Spark with the aim to solve

dataset problems and to achieve better accuracy.

III. SYSTEM MODEL

This article proposes an IDS system based on deep learning

algorithms for the attacks included in the NSL-KDD dataset.

The training process will be implemented on Apache Spark.

For short, we refer to this model as DLS-IDS (Deep Learning

Spark Intrusion Detection System). The DLS-IDS solves the

NSL-KDD dataset related problems, defines the best model

arrangement and model elements to produce a high intrusion

detection accuracy, as well as determines the best Apache

Spark cluster configurations to reduce the implementation

process time.

The DLS-IDS workflow consists of four main blocks; the

first block is to choose and explore the dataset, and the second

block is dataset preprocessing. The third block is the class

imbalance solution, and the last block is model training using

Apache Spark, as shown in Figure 1. The model training will

be on three different networks MLP, RNN, and LSTM.

The last block in Figure 1 is the Apache Spark cluster.

Figure 2 illustrates the architecture and the workflow within

the Spark cluster that is used in the DLS-IDS.

Spark architecture contains three main parts; the driver,

the cluster manager, and the worker. The driver includes the

Spark context, the cluster manager distributes the workload

between the worker nodes, and the worker node performs the

tasks as shown in Figure 2. The Spark cluster components

FIGURE 1. The DLS-IDS model block diagram.

workflow goes as follows. The user sends the code with

the data and the number of workers. The Spark context

receives the task from the user. It uses the cluster manager

to distribute the workload between the workers, then sends

the data, the model arrangement, and initiates parameters

for each worker. Also, it sends the number of Resilient Dis-

tributed Datasets (RDD). The worker performs feedforward

then computes the gradients to update the parameters. After

completing the training process, the worker generates the

partial model, which the Spark driver will receive. The Spark

driver uses all partial models from the workers to average the

parameters of the model to obtain the deep model.

The next subsections will illustrate the DLS-IDS model

workflow in details.

A. DATASET EXPLORATION

The first block in the DLS-IDS, shown in Figure 1, is the

training dataset. This block has two steps, which choose the

dataset, and explore it.

As stated before, there are two well-known datasets KDD-

Cup and NSL-KDD. The KDD-Cup99 has a tremendous

amount of redundant data points. The NSL-KDD was built

by reducing these repetitive points of the KDD-Cup99 dataset

[25],[26]. Therefore, we use NSL-KDD dataset for training

and testing.

The second step in the first block is data exploration of

the chosen training dataset. The NSL-KDD dataset includes

four files, two of them for training the model, and the other
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FIGURE 2. Spark model for deep learning.

two for testing the model. These four files are the primary

training dataset KDDTrain+, the smaller training dataset

KDDTrain+_20%, the primary testing dataset KDDTest+,

and KDDTest-21, which is a smaller testing dataset[27].

The attacks that exist in NSL-KDD dataset are one of the

following four types:

• Denial of Service Attack (DoS), which is an attack that

targets service availability by consuming computing and

memory resources.

• User to Root Attack (U2R), which is an attack that

begins with access as a legitimate user on the network

and then endeavors to exploit a vulnerability to obtain

root access.

• Remote to Local Attack (R2L), which is an attack in

which a user signs in as a remote user, then try to detect

the system vulnerabilities and exploit the privileges as if

it is a local user.

• Probe Attack (Probe), which is a trial to collect data

about computer networks to use these data in later

attacks.

In the NSL-KDD dataset, each data point is composed

of 41 features and a label that is maybe normal or an attack

[27]. Table 1 shows the NSL-KDD dataset features.

The dataset exploration process resulted in three discov-

eries. The first is that feature number 15 ‘‘su_attempted’’,

which is an attempt to log in as a superuser, has three

values (0,1,2). The value 2 is not possible because this

feature is binary, so the user is either tried to log in as

a superuser or not. The second is that feature number 20

"num_outbound_cmds", which is the number of outbound

commands in a File Transfer Protocol (FTP) session, has only

one value, which is 0. Figure 3 shows the third problem,

which is the class imbalance problem because the U2R attack

TABLE 1. NSL-KDD features.

has only 52 elements, and the R2L attack has 995 while

normal is 67343 for Normal.

B. DATA PREPROCESSING

The second block in Figure 1 is the preprocessing, which con-

tains two steps; the first is feature preparing, and the second

is the feature scaling.
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FIGURE 3. Dataset points indicate a class imbalance.

1) FEATURE PREPARING

The first step is to change the values of ‘‘su_attempted’’

to be only (0,1) by converting the value 2 to 0. The

‘‘num_outbound_cmds’’ feature will be dropped as it does

not affect the model. There are 37 numeric features and three

nominal features in the NSL-KDD dataset. The input value

of any model should be numeric. Nominal features, such as

‘‘protocol_type’’, service, and flag, must be converted into a

numeric form. The feature ‘‘protocol_type’’ has three types

of attributes, TCP, UDP, and ICMP. This feature will change

to binary vectors [1 0 0], [0 1 0], and [0 0 1]. Furthermore,

the service feature has 67 classes of attributes, and the flag

feature has 11 types of attributes. So, the 40 features will

become 118 features after conversion, which is less than

122 features like the model in [9].

2) FEATURES SCALING

If the features have significant variance and values, the model

will be biased to these features. These features must be

scaled. Three features have a notable deviation in their values,

which are duration, source bytes (src_bytes), and destina-

tion bytes (dst_bytes). Min-Max normalization will be used

to scale all features. Min-Max normalization is given by

equation 1.

xi,j =
xi,j − Min

Max − Min
(1)

where xi,j is the feature j value of sample i, Min is the lowest

feature value in all samples, and Max is the highest feature

value of all samples.

C. CLASS IMBALANCE

The third block, in Figure 1, is the proposed class imbalance

solution for the NSL-KDD dataset.

The NSL-KDD dataset suffers from class imbalance distri-

butions. Some researchers use oversampling, which is dupli-

cating the minority class points, but this method has the

disadvantage of overfitting on these points.

Others use undersampling, which is removing some points

from the majority class. The problem with this methodology

is that some removed points may be critical to represent the

class. There is a Hybrid solution that duplicatesminority class

FIGURE 4. Oversampling problem.

FIGURE 5. Data points after applying SMOTE technique.

points and removes some majority class points. This method

will enhance the model but will inherit the problems of the

two procedures.

A new technique was introduced [28], called Synthetic

Minority Over-Sampling Technique(SMOTE). This tech-

nique is a combination of oversampling and undersampling.

Still, the oversampling is done by creating new points of

the minority class rather than duplicating, which reduces the

effect of overfitting, as shown in Figure 4.

The NSL-KDD data points of all categories (normal and

attacks) are equal after applying the SMOTE, as shown in

Figure 5.

D. SPARK MODEL

The last block in Figure 1 is the use of a Spark cluster to train

the Deep Learning (DL) models.

The model training process has three main steps. The first

is to input the training data point to the feedforward network

to produce a predicted output, then use the predicted output

against the actual output to compute the loss, and use it to

optimize the weights of the feedforward network, then repeat

the process.

1) FEEDFORWARD NETWORKS

DL has many network models. It has been proven that the

CNN model has low detection accuracy [17], so in this work,

we will test three different architectures; MLP, RNN, and

LSTM. These architectures will be described in the following

subsections.
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a: MULTILAYER PERCEPTRON

MLP is a set of feedforward artificial neural network.

An MLP is constructed by the input stage, the output stage,

and the hidden stage[29]. The hidden stagemay contain many

layers or at least one. All nodes in the hidden stage are a

neuron that sums all inputs with weights and then applies a

nonlinear activation function as in equation (2).

ak = Relu

(

n
∑

i=1

Wxh.xi + bk

)

(2)

where ak is the activation function,Wxh is the weight between

the input and the hidden layer, bk is the bias value of the cur-

rent layer, and Relu is the activation function of the neuron.

Relu has been used lately in DL training because it reduces

the vanishing and error gradient. Moreover, Relu faster than

other activation functions[24]. Relu can be evaluated using

equation (3).

f (x) = max(0, x) (3)

The output stage will be used for all three feedforward tech-

niques in the DLS-IDSmodel. The next equation explains the

output stage operation.

yk = f

(

n
∑

i=1

Why.ak−1 + bk

)

(4)

where yk is the predicted output, Why is the weight between

the hidden layer and the output layer, ak−1 is the output of

the previous layer, and f is the activation function, which

could be sigmoid or Softmax. The activation function for the

binary classification is sigmoid, and multiclass classification

is Softmax. Both functions are given by equations (5) and (6).

sigmoid =
1

1 + e−x
(5)

softmax (xi) =
exi

M
∑

j=1

exj

(6)

where i represents the sample, and j represents the class, and

M is the number of classes.

b: RECURRENT NEURAL Network(RNN)

It is called recurrent because each node depends on the pre-

vious computation. RNN treats the input as a time series[30].

The following equations can evaluate the activation function

and output.

at = tanh (Whh.ht−1 +Wxh.xt) (7)

yt = Why.at (8)

whereWhh are the weights of hidden of previous computation

to present hidden layer, ht−1 is the output of the last calcula-

tion, xt is the input at time t, and yt is the output at time t.

Figure 6 shows the RNN architecture.

FIGURE 6. Recurrent Neural Network.

c: LONG SHORT TERM MEMORY

RNNmodel suffers from vanishing gradient descent problem,

which leads to creating LSTM. LSTM architecture is com-

posed of a cell (the memory part of the LSTM unit) and three

gates. The three entrances are the input gate, the output gate,

and the forget gate[31]. The forget gate function is to discard

inessential details, while the input gate function is to modify

the memory according to the input. Finally, the output gate

function is to determine the output based on the input and

memory gates.

ft = sigmoid(Wf . [ht−1, xt ] + bf ) (9)

it = sigmoid(Wi. [ht−1, xt ] + bi) (10)

c̃t = tanh(WC . [ht−1, xt ] + bC ) (11)

ct = ft ∗ ct−1 + it ∗ c̃t (12)

ot = sigmoid(WO. [ht−1, xt ] + bO) (13)

ht = ot ∗ tanh(ct ) (14)

where xt is the input vector to the LSTM unit, ft is the forget

gate’s activation vector, it is the input gate’s vector, c̃t is the

cell input activation vector, ct is the cell state vector ot is the

output gate’s activation vector, ht is the hidden state vector,

also known as output vector of the LSTM unit, W is the

weight matrices, and b is the bias vector parameters.

The following subsection will discuss the overfitting

problem.

d: OVERFITTING SOLUTION

The deep neural network tends to overfit the decision bound-

ary on the training dataset. In this work, we use two methods

to reduce the effect of overfitting; the first is the SMOTE

technique, which is described before in the class imbalance

section, and the second is network regularization.

One of the most effective techniques for neural network

regularization is the dropout layer [32]. The dropout layer

function is to generate a mask s that samples the output of

the previous layer. The sampling has a Bernoulli distribution

with a probability ‘p’:

sk ∼ Bernoulli (p) , sk ∈ s. (15)
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sk is the dropout probability in layer k . This mask will be

applied to the activation function:

at = sk ◦ f (W ∗ at−1 + bt ), (16)

where ‘◦’ denotes the Hadamard product.

All the mentioned network elements are the feedforward

propagation that will be used in the DLS-IDS model, and the

following sections describe the Backpropagation in the DLS-

IDS model.

2) LOSS COMPUTATION

After the feedforward, the predicted output is used to cal-

culate the loss. Then an update algorithm will be applied

to the weights to decrease the loss and eventually increase

the accuracy. Categorical cross-entropy and binary cross-

entropy are used in the DLS-IDSmodel to evaluate the loss in

the case of multiclass and binary classification, respectively,

as follows [33]:

L
(

y, ŷ
)

= −

M
∑

j=0

N
∑

i=0

(yij ∗ log(ŷij)) (17)

where L
(

y, ŷ
)

is the loss function, yij, ŷij represents the actual

and predicted output of sample i for class j, respectively. The

binary cross-entropy is given by

L
(

y, ŷ
)

= −
1

N

N
∑

i=0

(yi ∗ log
(

ŷi
)

+ (1 − yi) ∗ log(1 − ŷi))

(18)

3) ADAM OPTIMIZERS

The next step after calculating the loss is using an optimizer to

update the weights. The optimizer used in DLS-IDS is Adap-

tive moment estimation(Adam), which is an adaptive learn-

ing rate method [34]. Adam is a combination between the

RMSprop and Momentum algorithms. Adam stores the past

gradient descent mt , and the past squared gradient descent

vt , which are an exponential moving average of the first

and the second moment of the gradient, respectively. Adam

algorithm has six computations which are as follows:

gt = ∇J (Wt,i) (19)

where gt is the gradient, J is the loss function, and ∇ is the

gradient.

mt = β1mt−1 + (1 − β1)gt (20)

vt = β2vt−1 + (1 − β2)g
2
t (21)

where β1, β2 are decay terms for the first and second momen-

tum. The next step is to calculate a bias-corrected first

and second momentum estimates.

m̂t =
mt

1 − β t1
(22)

v̂t =
vt

1 − β t2
(23)

where v̂t , m̂t are the corrected bias estimates. The last step is

to update weight, which is given by equation 24.

wt = wt−1 − η
m̂t

√

v̂t + ǫ
(24)

IV. EXPERIMENTAL DESIGN

The training of the models was implemented on Google

Cloud Dataproc. Dataproc has Spark version 2.4.4 over a

Hadoop version 2.9. The training dataset will be divided into

the training dataset and the validation dataset. The validation

dataset is essential to make sure that the model will perform

well on the test dataset.

A. SPARK CLUSTER CONFIGURATION

This article presents three different Spark cluster configura-

tion. The use of these configurations will illustrate the impact

of Spark in the DLS-IDSmodel to reduce the training process

time. The main advantage of using Spark is that the Spark

cluster can be made by commodity hardware. Although this

article uses the Google Cloud Dataproc, which gives the

ability to choose powerful machines, commodity hardware

configurations were chosen. The first configuration contains

one master node with two workers, and each node has two

processors with 7.5 GB memory. The second configuration

consists of one master node and two worker nodes, where

each node has four processors with 15 GB memory. The last

configuration is one master and four workers where each

node has two processors with 7.5 GB memory. All nodes are

within the same rack. TABLE 2 summarizes the Spark cluster

configurations.

TABLE 2. Spark Cluster Configuration Summary.

B. MODEL ARCHITECTURE SETTINGS

Nine different model settings on each Spark cluster config-

uration will be trained. The hyperparameters that will be

adjusted are the number of hidden layers and the network

type. As mentioned earlier in the feature preparing section,

the 41 features have been converted to 118 features. So,

the basic model arrangement has 118 nodes for the input

layer, 80 for the hidden layer, and 5 for the output layer. The

model settings differ in the neural network type and network

architecture. This experiment implements the three neural

network types mentioned earlier, i.e., MLP, RNN, and LSTM,

with three different arrangements. The network architecture

training runs for three values of the hidden layer; the first

only one hidden layer; the second two hidden layers; the last

is three hidden layers. TABLE 3 shows the different model

arrangements that will be used for the three types mentioned

earlier.
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TABLE 3. Different Model Arrangement.

C. STATISTICAL MEASURES

After Spark completes the training for each model, it eval-

uates the models using statistical measures. The model uses

the test dataset to compare the classification output with the

actual label. The output yields the following statistical values;

True Positive (TP), True Negative (TN), False Positive (FP),

and False Negative (FN).

These values are used in the model performance evaluation

metrics, which are defined and calculated below [24],[35].

1) Accuracy: It is the ratio of the correctly classified

packets (normal or attacks) to the total dataset. It can

be calculated as:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(25)

2) Precision: It is the ratio of correctly classified attacks

to the total number of identified attacks. It can be

calculated as:

Precision =
TP

TP+ FP
(26)

3) Recall: It is the ratio of accurately classified attacks to

the total number of attacks in the test dataset. It can be

calculated as:

Recall =
TP

TP+ FN
(27)

4) F1-Score: It is the average of the precision and the

Recall with a weight of 2. It can be calculated as:

F1 − Score = 2 ×
Precision × Recall

Precision + Recall
(28)

5) False Positive Rate (FPR) is the number of normal

connections that are recognized as an attack on the total

number of normal connections.

FPR =
FP

TN + FP
(29)

6) Receiver Operating Characteristics (ROC) curve is the

relation between the True Positive Rate(TPR) on the y-

axis, and the F(false) PR on the x-axis. Area Under the

ROC Curve (AUC) is the area under the ROC curve.

AUC =

∫ 1

0

TP

TP+ FN
d

FP

TN + FP
(30)

7) Sensitivity metric: it measures the detection accuracy

of the attacks. It is the number of detected attacks on

the total number of attacks in the dataset, which is the

same as Recall eq. 27.

8) Specificity: it is the detection accuracy of the normal

packets. It is the number of correctly classified normal

packets on the total number of packets in the dataset.

Specificity =
TN

FP+ TN
(31)

9) Geometric Mean (G-Mean) metric is the measure of

the balance between normal and attacks classification

accuracy. A low G-Mean means poor performance.

This measure is essential in the avoidance of overfitting

the normal packets and underfitting the attack packets.

G − Mean =
√

Specificity × Sensitivity (32)

V. RESULTS

This section presents and discusses the results of the exper-

iments. It is divided into two parts the DL algorithms on

Apache Spark results and rigorous analysis for the selected

model.

A. DEEP LEARNING ALGORITHM ON APACHE SPARK

The delay cost computation for the three configurations

mentioned earlier is investigated, along with model settings

accuracy. Each configuration trains nine different models for

one hundred epochs. At last, some failure implementation

scenarios are presented.

1) MODEL SETTINGS ACCURACY

TABLE 4 shows the accuracy of each model settings.

The results show that for MLP, the accuracy is 78.305%,

80.292%, and 79.462%. The authors in [24] used a five-layer

MLP model, and the output accuracy was less than 78.6%.

The RNN accuracy is 81.88%, 81.371%, 80.897%. The

authors in [9] used a two-layer RNN model and found that

the best accuracy was 81.29%. The RNN determines the

input using the previous state and the input, and that is why

it has a better performance than MLP because there is a

relation between the attacks and different fields. For example,

the ping of death attack, which lay in the DoS category, has

a protocol type of ICMP and lengthy payload. This reason

drives the use of LSTM for intrusion detection. The LSTM

accuracy is 82.440%,83.57%, and 81.535%. LSTM has a

better performance than MLP and RNN.

Figure 8 illustrates the enhancement due to the use of the

SMOTE technique. A test has been made for LSTMwith two
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TABLE 4. Accuracy results for each model settings.

FIGURE 7. LSTM architecture.

FIGURE 8. DL accuracy for class imbalance and SMOTE.

hidden layers without applying SMOTE to get the effect, and

the accuracy result is 82.24%.

From the above, it can be concluded that The use of LSTM

with two hidden layers is the best model.

2) DELAY COST FOR EACH CLUSTER CONFIGURATION

TABLE 5 shows the training time in seconds for different

model settings on a three cluster configuration.

Each cluster treats the memory in all workers as memory

containers. The third configuration and the second configu-

ration have the same numbers of containers. The containers

in the second configuration on two workers while in the

TABLE 5. Training time for model settings on a different configuration.

third configuration, the containers on fourworkers, which add

communication overhead, that explains the difference in the

training time between the second and the third configuration.

The nine models are trained in a sequence manner with the

following order: RNN, LSTM, then MLP. After the training

for RNN and LSTM has been finished, a conversion process

is done from the RDD form to the pyspark, which is python

for Apache Spark, data frame form to be suitable for the MLP

input.

Since the first layer of RNN is the first to train, it takesmore

time than expected. This delay caused due to workers’ initial-

ization and setting the memory containers on each worker.

The authors in [9] trained their model in 11444 seconds,

while the delay cost for the DLS-IDS model to train nine

models is only 1758.21 seconds. Another platform that may

be considered to perform the training process is Hadoop.

However, it has been found that Spark is faster than Hadoop

by almost 100 times. This advantage is because Hadoop

executes the operations in the storage, and Spark executes

the operations in the memory, as stated by Apache. This

considerable difference demonstrates that the use of Spark is

better than conventional training techniques. The mentioned

reasons prove that Spark is the most suitable platform for the

training process in the DLS-IDS model.

Spark can train the data in three forms RDD, dataset,

or data frame. Spark has no built-in libraries for DL. Devel-

opers have made a library called Elephas, which enables the

use of Spark in DL. The library supports the MLP to train

the pyspark data frame, while RNN and LSTM failed to train

on the pyspark data frame since they must have an input in

a three-dimensional structure. RNN and LSTM use the RDD

form as input to satisfy the input structure requirement.

One of themain features of theDLS-IDS is the use of Spark

to speed the training process. The implementation code runs

all model arrangements in a sequence to present all the results

at once. Since Spark does the operations on the memory,

the first configuration failed to train all models in one run.

This failure happened due to the lack of memory, which was
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FIGURE 9. Binary classification accuracy for train and test dataset.

FIGURE 10. Receiver Operation Characteristic (ROC) for Binary
classification.

7.5 GB only, while other configurations were able to train all

the arrangements.

B. RIGOROUS ANALYSIS FOR THE SELECTED MODEL

We select the LSTMmodel with two hidden layers because it

has the highest accuracy among all models, and the analysis

will be for the binary test and the multiclass test. The model

determines if the packet is an attack or normal only in the

binary test. In the multiclass test, the model obtains the attack

belonging to which class. Then, this model is applied to

the KDDTest-21 dataset. Finally, a comparison between the

resulted model of the DLS-IDS approach and the previously

presented IDS attack detection accuracy is presented.

1) BINARY TEST ANALYSIS

Figure 10 illustrates the accuracy of binary classification on

the train and test dataset for one hundred epoch. The train-

ing accuracy reached 99.61%, and the test accuracy reached

85.44%.

The model output has been evaluated against the

KDDTest+ dataset. The output of the confusion matrix is

TP = 9846, TN = 9417, FN = 2987, and FP = 294. The

equations will determine The statistical evaluation of the

model is shown in TABLE 6.

2) MULTICLASS TEST ANALYSIS

Figure 12 illustrates the accuracy of binary classifica-

tion on the train and test dataset for one hundred epoch.

TABLE 6. Model evaluation metrics for binary classification.

FIGURE 11. Multiclass classification accuracy for train and test dataset.

FIGURE 12. Multiclass accuracy comparison for SMOTE and Class
imbalance.

TABLE 7. Confusion matrix for LSTM without SMOTE of KDDTest +.

The training accuracy reached 99.32%, and the test accuracy

reached 83.57%.

The confusion matrix is built for both class imbalance and

SMOTE applied shown in TABLE 7 and TABLE 8.

The confusion matrix is used to generate TP, TN, FN, and

FP. The equations will determine the statistical evaluation of

the model shown in TABLE 9.

The overall performance has increased with SMOTE.

However, it is evident that the detection of the major classes,

which are normal and DoS, accuracy is reduced because

SMOTE has added new points to the minority classes, which
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TABLE 8. Confusion matrix for LSTM with SMOTE of KDDTest+.

TABLE 9. Statistical evaluation for multiclass classification of the LSTM
model of KDDTest+.

FIGURE 13. Multiclass accuracy comparison for SMOTE and Class
imbalance.

affected the model bias toward the majority class. This reduc-

tion explains the increase in FPR. The difference of G-Mean

after using the SMOTE shows the reduction of the overfitting

of the model. A comparison of the accuracy of the multiclass

is presented in Figure 13. The comparison illustrates the

decrease in the accuracy in the dominant classes and the

enhancement in the minor classes.

The model has been tested on the KDDTest-21 dataset,

Figure 3 shows the dataset information, and the same analogy

will be used. The confusion matrix is built for both class

imbalance and SMOTE applied shown in TABLE 10 and

TABLE 11.

The confusion matrix is used to generate TP, TN, FN, and

FP. The equations will determine the statistical evaluation of

the model shown in Table 12.

Figure 14 presents a chart of the accuracy of the mul-

ticlass. The graph illustrates the decrease in the accuracy

in the dominant classes and the enhancement in the minor

classes.

FIGURE 14. Performance of the traditional machine learning models.

FIGURE 15. Performance of the proposed model and the other state of
the art Deep learning models.

TABLE 10. Confusion matrix for LSTM without SMOTE of KDDTest-21.

TABLE 11. Confusion matrix for LSTM with SMOTE of KDDTest-21.

3) COMPARISON BETWEEN DLS-IDS AND PREVIOUSLY

PRESENTED IDS

A comparison is listed below between the state of the art

Intrusion detection algorithms and the DLS-IDS model.

Figure 15 shows the traditional machine learning algorithms

accuracies against the KDDTest+ and KDDTest-21, while

Figure 16 shows the deep learning algorithms accuracies
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TABLE 12. Statistical evaluation for multiclass classification of the LSTM
model of KDDTest-21.

against the earlier mentioned datasets. In Figure 16, DNN and

Deep-MLP did not test their models against the KDDTest-21.

Figure 15 and Figure 16 show that the DLS-IDSmodel of this

article enhances the overall attack detection accuracy.

VI. CONCLUSION

This article presented a new intrusion detection system based

on deep learning. This system is called Deep Learning Spark

Intrusion Detection System or DLS-IDS for short. The DLS-

IDS model has four main building blocks, and we use the

NSL-KDD dataset for training and testing purposes. The

NSL-KDD dataset has a class imbalance problem. Therefore,

the four system blocks are to choose and explore, preprocess,

class imbalance solution, and the last block is training over

Apache Spark. This DLS-IDS proved that the use of Spark is

better than a regular implementation for DL. The Spark clus-

ter enables model training with different hyperparameters,

such as the model elements type and the number of hidden

layers. Since Spark uses memory to execute its operations,

then memory size must be taken into consideration of the

design process of new models to avoid the system halt. When

the Spark cluster contains many workers, there will be a

communication overhead delay, but this delay is less than the

overall computation delay. When dealing with a dataset that

contains class imbalance, it is better to use SyntheticMinority

Over-Sampling Technique (SMOTE) as a preprocessing step

to enhance the detection accuracy of the model and reduce

the overfitting effect of DL. The DLS-IDS found that the use

of LSTM with SMOTE improves the detection accuracy to

reach 83.57%. In future work, we consider the use of more

datasets to cover more types of attacks hence train the model

on these new attacks. Also, the use of the Kafka Hadoop tool

to test the proposed model in real-time configuration would

be considered in the future.
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