
This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or

licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the

article (e.g. in Word or Tex form) to their personal website or

institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are

encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Implementing a hardware-embedded reactive agents platform based
on a service-oriented architecture over heterogeneous wireless sensor
networks

Ricardo S. Alonso ⇑, Dante I. Tapia, Javier Bajo, Óscar García, Juan F. de Paz, Juan M. Corchado
Department of Computer Science and Automation, University of Salamanca, Plaza de la Merced s/n, 37008 Salamanca, Spain

a r t i c l e i n f o

Article history:

Received 6 November 2011
Received in revised form 27 March 2012
Accepted 29 April 2012
Available online 30 May 2012

Keywords:

Distributed architectures
Multi-agent systems
Heterogeneous wireless sensor networks
Embedded agents
Case-Based Planning

a b s t r a c t

Wireless Sensor Networks (WSNs) represent a key technology for collecting important
information from different sources in context-aware environments. Unfortunately, inte-
grating devices from different architectures or wireless technologies into a single sensor
network is not an easy task for designers and developers. In this sense, distributed archi-
tectures, such as service-oriented architectures and multi-agent systems, can facilitate
the integration of heterogeneous sensor networks. In addition, the sensors’ capabilities
can be expanded by means of intelligent agents that change their behavior dynamically.
This paper presents the Hardware-Embedded Reactive Agents (HERA) platform. HERA is
based on Services laYers over Light PHysical devices (SYLPH), a distributed platform which
integrates a service-oriented approach into heterogeneous WSNs. As SYLPH, HERA can be
executed over multiple devices independently of their wireless technology, their architec-
ture or the programming language they use. However, HERA goes one step ahead of SYLPH
and adds reactive agents to the platform and also a reasoning mechanism that provides
HERA Agents with Case-Based Planning features that allow solving problems considering
past experiences. Unlike other approaches, HERA allows developing applications where
reactive agents are directly embedded into heterogeneous wireless sensor nodes with
reduced computational resources.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, there is a wide range of devices for gathering
context information about both the environment and the
users [1]. In this sense, Wireless Sensor Networks (WSNs)
are used for collecting the information needed by intelligent
environments, whether in home automation, industrial
applications or even farming, amongmany others [2]. There
are plenty of technologies for implementing WSNs, such as
ZigBee, Wi-Fi or Bluetooth. Nonetheless, it is not easy to

integrate devices from different technologies into a single
network [1]. The lack of a common architecture may lead
to additional costs due to the necessity of deploying non-
transparent interconnection elements among the different
networks [3]. Moreover, the developed elements can be
dependent on the application to which they belong, thus
complicating their reutilization.

Therefore, it is necessary to develop innovative solu-
tions that integrate different approaches to create flexible
and adaptable systems. In this sense, the deployment of
distributed architectures is presented as a solution to such
problems [4]. One of the most prevalent alternatives in dis-
tributed architectures is Multi-Agent Systems (MASs) [5]. A
distributed agent-based architecture provides more
flexible ways to move functions to where actions are
needed, thus obtaining better responses at execution time,

1570-8705/$ - see front matter � 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.adhoc.2012.04.013

⇑ Corresponding author. Tel.: +34 923 294400x1525; fax: +34 923
294514.

E-mail addresses: ralorin@usal.es (R.S. Alonso), dantetapia@usal.es
(D.I. Tapia), jbajope@usal.es (J. Bajo), oscgar@usal.es (Ó. García), fcofds@
usal.es (J.F. de Paz), corchado@usal.es (J.M. Corchado).

Ad Hoc Networks 11 (2013) 151–166

Contents lists available at SciVerse ScienceDirect

Ad Hoc Networks

journal homepage: www.elsevier .com/locate /adhoc



Author's personal copy

autonomy, services continuity and superior levels of flexi-
bility and scalability than centralized architectures [6].
Furthermore, the sensors’ capabilities can be enhanced by
means of intelligent agents, changing dynamically their
behavior and personalizing their reactions [7].

Themain objective of thework presented in this paper is
to design and build a new platform that allows developers
to take advantage of the use of intelligent agents directly
embedded into nodes belonging to heterogeneous wireless
sensor networks. In this sense, this paper describes the
Hardware-Embedded Reactive Agents (HERA) platform.
HERA is an evolution of the Services laYers over Light PHysi-

cal devices (SYLPH) platform [8–10], which allows develop-
ers to use dynamic and self-adaptable heterogeneous
wireless sensor networks following a Service-Oriented
Architecture (SOA) approach [4]. Unlike other approaches,
SYLPH allows the interconnection of wireless sensor net-
works based on different radio and link technologies [10].
As SYLPH, HERA focuses specially on heterogeneous devices
with reduced resources to save CPU time, memory size and
power consumption. However, HERA goes one step ahead
of SYLPH and adds reactive agents [11] and a reasoning
mechanism to the platform, extending its context-aware
features. In HERA, unlike other approaches, agents are di-
rectly embedded into the WSN nodes and their services
can be invoked from other nodes in the sameWSN or other
WSN connected to the former one, nomatter the radio tech-
nology they use. Furthermore, HERA incorporates a reason-
ing mechanism based on the Case-Bases Planning model
[29] that allow solving problems by using solutions to sim-
ilar past problems. Solutions are stored into a case memory,
which the mechanism can consult to find better solutions
for new problems. HERA Agents use this mechanism to
learn from past experiences and to adapt their behavior
according to the context information.

The remainder of the paper is organized as follows. In
Section 2 we present the problem description that essen-
tially motivated the development of SYLPH and HERA. In
Section 3 the main characteristics and components of
SYLPH are briefly depicted, while Section 4 presents the
principal features that HERA adds over the SYLPH platform,
including the HERA Agents and the Case-Based Planning
mechanism. After that, some experiments aimed at testing
the HERA performance are described in Section 5, includ-
ing the implementation of HERA in a real scenario. Finally,
the conclusions and the future lines of work are presented
in Section 6.

2. Problem description and related work

Smart environments must take into account the infor-
mation about the context, which can be collected by sensor
networks [12]. This context information may consist of
many different parameters about the people and their envi-
ronment, such as the users’ location, their heart rhythm, or
the ambient temperature, amongmany others. In a real sce-
nario, all these sensors can belong to wireless sensor nodes
from different architectures or wireless technologies, form-
ing together which is usually known as a heterogeneous
wireless sensor network. In a centralized heterogeneous

WSN architecture, most of the intelligence is located in a
central node. That is, the central node is responsible for
managing most of the features and knowing the existence
of all nodes in each WSN in the system. That means that a
node belonging to a certain WSN does not know about
the existence of another node forming part of a different
WSN, even though this WSN is also part of the system.

Nonetheless, this model can be improved using a com-
mon distributed architecture where all nodes in the system
can know about the existence of any other node in the
same system regardless of the technology or interface they
use or the sub-network to which they belong. Distributed
architectures such as Service-Oriented Architectures
(SOAs) [13] or Multi-Agent Systems (MASs) [5] improve
the distribution of the available resources, facilitate the
reutilization of functionalities and optimize the compati-
bility among different platforms. In this sense, the SYLPH
platform [9,10,14] was designed to address these chal-
lenges as an innovative platform for integrating heteroge-
neous WSNs in Ambient Intelligence (AmI) systems [15],
implementing an approach based on service-oriented
architectures [4,13,16,17].

Once SYLPH solves the problem of distributing resources
over heterogeneous wireless sensor networks, the next
challenge is to embed intelligent agents into the same het-
erogeneous wireless sensor nodes. At this point, it is worth
mentioning again that SYLPH does not include by itself the
support of agents or reasoning mechanisms. An agent can
be defined as a computational system situated in an envi-
ronment and able to act autonomously in this environment
to achieve its design goals [5]. Expanding this definition, an
agent is anything with the ability to perceive its environ-
ment through sensors, and to respond in the same environ-
ment through actuators, assuming that each agent may
perceive its own actions and learn from the experience
[18]. There are several agent frameworks and platforms
[19–21] that provide a wide range of tools for developing
distributed multi-agent systems. The development of
agents is an essential component in the analysis of data from
distributed sensors, and gives those sensors the ability to
work together and analyze complex situations, thus achiev-
ing high levels of interactionwith humans [22–27]. Further-
more, agents can use reasoning mechanisms and methods
in order to learn from past experiences and to adapt their
behavior according to the context, such as Case-Based Rea-
soning (CBR) and Case-Based Planning (CBP) [28,29]. CBR
and CBPmechanisms solve new problems by adapting solu-
tions that have been used to solve similar problems in the
past, and learn from each new experience [28, 29]. In CBP,
the proposed solution for solving a given problem is a plan,
which is generated by taking into account the plans applied
for solving similar past problems [29].

Unfortunately, the fusion of the multi-agent technology
and wireless sensor networks is not easy due to the diffi-
culty in developing, debugging and testing distributed
applications for devices with limited resources [30]. The
interfaces developed for these distributed applications
are either too simple or, in some cases, do not even exist,
which even further complicates their maintenance. Even
so, there are other works that try to integrate multi-agent
systems and wireless sensor networks [31–33].

152 R.S. Alonso et al. / Ad Hoc Networks 11 (2013) 151–166



Author's personal copy

ActorNet [31] is a study that describes a mobile agent
platform for WSNs. ActorNet provides an abstract environ-
ment for mobile code oriented to light objects over WSNs.
ActorNet platform defines as its top layer an actor language
interpreter. Likewise, the platform provides services such
as virtual memory management and blocking input–out-
put operations. Thus, ActorNet allows a wide range of dy-
namic applications, including customized queries and
aggregation functions, in the sensor network platform.

Baker et al. [32] present the integration of an agent-
based WSN within an existing MAS focused on condition
monitoring. In this research, it is used SubSense, a multi-
agent middleware platform developed to allow condition
monitoring agents to be deployed onto a WSN. The archi-
tecture of the SubSense platform is based on the model de-
fined by FIPA (Foundation for Intelligent Physical Agents),
but customized so that agents are embedded into sensor
nodes. SubSense platform is implemented over 512 KB
RAM SunSPOT sensor nodes using the Java Mobile Edition
(J2ME).

Other works that relate multi-agent systems and WSNs
talk about Mobile Agents based on WSN (MAWSN). Zboril
et al. [33] proposes WSageNt, a platform that is imple-
mented through mobile agents running on wireless sensor
nodes. One key feature of this platform is a module for an
agent control language interpretation. This language is pre-
sented as an original low-level control language known as
Agent Low Level Language (ALLL). This research poses that
in WSN-based agent platforms the resources limitations of
sensor motes do not allow affording its development as an
ordinary agent platform that should accomplish the FIPA
specifications.

However, these studies [31–33] have not been designed
to work with heterogeneous wireless sensor networks.
These approaches do not take into account the use of such
heterogeneous WSNs and they are focused on working
with sensor nodes that use just an only radio technology.
Because HERA is based on SYLPH, it allows devices from
different radio and networks technologies to coexist in
the same distributed network. In addition, HERA platform
can run on lightweight sensor nodes with just 8 KB RAM,
while other approaches as SubSense [32] require nodes
with 512 KB RAM. Besides, in the design of HERA, it has
been mainly aimed to address context-awareness and
ubiquitous computing, while other existing approaches
are not specially centered on dealing with these require-
ments. Furthermore, HERA includes a Case-Based Planning
(CBP) mechanism which allows the agents to make use of
past experiences to create better plans and achieve their
goals, while SYLPH does not, as it is not based on agents,
but only services.

In the next section, the main components and the basic
operation of the SYLPH platform, on which HERA is based,
is briefly described. After that, Section 4 presents the nov-
elties that HERA offers with regard to SYLPH.

3. The SYLPH platform

HERA is an evolution of Services laYers over Light PHysi-
cal devices (SYLPH) [9]. In this section, the SYLPH platform

is only briefly depicted, as the objective of this paper is to
describe the HERA platform. For a more extended descrip-
tion of the SYLPH platform, please consult previous publi-
cations [9,10,14]. The SYLPH platform follows a SOA model
[4] for integrating heterogeneous WSNs in AmI-based sys-
tems. SYLPH focuses specifically on devices with small re-
sources in order to save CPU time, memory size and energy
consumption. There have been other attempts to integrate
WSNs and a SOA approach [34]. In SYLPH, services are di-
rectly offered by the wireless sensor nodes that are part
of the platform. In the same way, any node in the platform
can directly invoke a SYLPH service offered by other node
in the platform, no matter if both nodes are in the same
physical wireless network or not. SYLPH provides the pos-
sibility of connecting wireless sensor networks based on
different radio and link technologies, whereas other ap-
proaches do not. Thus, a node designed over a specific
technology can be connected to a node from a different
technology. In this case, both WSNs are interconnected
by a set of intermediate devices, called SYLPH Gateways
and described in Section 3.4, which are simultaneously
connected to several wireless interfaces.

3.1. Main components of the SYLPH platform

SYLPH implements an organization based on a stack of
layers [2]. Each layer in one node communicates with its
peer in another node through an established protocol. In
addition, each layer offers specific functionalities to the
immediately upper layer in the stack. The SYLPH layers
are added over the existent application layer of each
WSN stack, allowing the platform to be reutilized over dif-
ferent technologies. Fig. 1 shows the different layers of
SYLPH and the different protocols that communicate each
layer on two different ZigBee nodes (homogeneous WSN),
as well as over a ZigBee node and a Bluetooth node by
means of a SYLPH Gateway (heterogeneous WSN). The
structure of SYLPH will now be briefly described.

– SYLPH Message Layer (SML). The SML offers the upper
layers the possibility of sending asynchronous mes-
sages between two nodes through the SYLPH Services
Protocol (SSP). These messages specify the source and
destination nodes and the service invocation in a SYLPH
Services Definition Language (SSDL) format.

– SYLPH Application Layer (SAL). The SAL allows different
nodes to directly communicate with each other using
SSDL requests and responses that will be delivered in
encapsulated SML messages following the SYLPH Ser-
vice Protocol. The SAL implements the service code
(i.e., firmware) from within each node, allowing each
one to communicate with the SYLPH platform and
invoke services located in other nodes.

– SYLPH Services Protocol (SSP). The SSP is the internet-
working protocol of the SYLPH platform. SSP allows
sending packets of data from one node to another node
regardless of the WSN to which each one belongs.

– SYLPH Services Definition Language (SSDL). The SSDL is
the IDL (Interface Definition Language) used by SYLPH.
Nodes can request the SSDS for the location of services
and their specifications using SSDL.

R.S. Alonso et al. / Ad Hoc Networks 11 (2013) 151–166 153



Author's personal copy

– SYLPH Services Directory Sub-layer (SSDS). The SSDS cre-
ates dynamic services tables to locate and register ser-
vices in the network. A node that stores and maintains
services tables is called SYLPH Directory Node (SDN).
A node in the network can make a request to the SDN
to know the location (i.e., network address) of a certain
service.

3.2. SYLPH basic operation and SYLPH Directory Nodes (SDNs)

The behavior of SYLPH is essentially similar to that of
any other service oriented architecture. First, a service reg-
isters itself on the SDN and informs the network of its loca-
tion, the parameters it requires, and the type of returned
value after its execution. In order to do this, the service
uses SSDL, described in Section 3.3. Once the service has
been registered in the SDN, it can be invoked by any appli-
cation using SYLPH. Any node in the network (or other sub-

system connected to the WSN) cannot only offer or invoke
SYLPH services, but also include SDN functionalities to pro-
vide services descriptions to other network nodes.

The UML sequence diagram depicted in Fig. 2 shows an
example of the basic operation of SYLPH platform when
registering and discovering services using the SYLPH Direc-
tory Nodes. For example, SYLPH node #1, belonging to
WSN ‘‘A’’ registers itself in the SYLPH platform. For this,
it sends a broadcast message searching for existing SDNs
in the network. At this moment, only SDN #0 is active, so
after receiving the broadcast message it sends a message
to node #1 informing of its SSP address and its setup
parameters. After this, node #1 is able to communicate
with SDN #0 to obtain information about the possible ser-
vices existing in the network. Later, node #2 registers itself
on the platform. It belongs to a different WSN, called WSN
‘‘B’’ and perhaps uses a radio technology different than that
used byWSN ‘‘A’’. As node #2 has SDN functionalities, it in-

Fig. 1. Layers and protocols of the SYLPH platform.

Fig. 2. Basic operation of SYLPH platform and SYLPH Directory Nodes.

154 R.S. Alonso et al. / Ad Hoc Networks 11 (2013) 151–166



Author's personal copy

forms the rest of the nodes with a broadcast message. SDN
#1 stores this information on its SSDS entry list and in-
forms node #2 about its role as SDN.

3.3. The SYLPH Services Definition Language (SSDL)

SSDL has been specifically designed to work with lim-
ited computational resource nodes [10,14]. Unlike other
IDLs such as WSDL (Web Services Definition Language)
[16], SSDL does not use as many intermediate separating
tags, and the order of its elements is fixed. The reason for
these constraints is to reduce processing in the devices
microcontrollers. Consequently, using a simple IDL makes
it possible to use nodes with fewer resources, less power
consumption and at a lower cost.

The next example defines a simple service called
getLuminosity to show the use of SSDL to define a SYLPH
service. The following text represents the SSDL syntax used
by developers to define this service in the node’s firmware,
not the version actually transmitted:

service getLuminosity {
input {};
output {
status_t status;
string units;
uint16_t luminosity;};};

After specifying the service by means of SSDL human-
readable syntax, developers translate definitions to specific
code for the target language (e.g., C or nesC) and the micro-
controller where the service will run. When the node reg-
isters its service in a SDN, SYLPH layers do not transmit the
human-readable SSDL message, but a more compact array
of bytes that describe the service and how to invoke it from
other nodes. Fig. 3 shows the SSDL frames involved in the
getLuminosity service definition (a), invocation (b) and
response (c) when transmitted over SSP. When a node asks

a SDN for the service definition, the SDN answers with a
frame as shown in Fig. 3a. This frame describes the service
identification, the address of the node that stores the ser-
vice and the definition of the input and output parameters.
There aremarks to denote the input and the output param-
eters. Once the invoker node knows the service definition,
it can make a request to the service by sending a SSP frame
to the node that stores the service (Fig. 3b). Finally, re-
sponse frame (Fig. 3c) does not need marks to separate
the parameters because the output parameters must fol-
low a specific order. However, a string end mark must be
used to know where the string-type data ends.

3.4. Operation of SYLPH over heterogeneous WSNs using

SYLPH gateways

As previously mentioned, with SYLPH, a node in a spe-
cific type of WSN (e.g., ZigBee) can directly communicate
with a node in another type of WSN (e.g., Bluetooth).
Therefore, several heterogeneous WSNs can be intercon-
nected through a SYLPH Gateway. A SYLPH Gateway is a
device with several hardware network interfaces (e.g., a
Wi-Fi network card), each of which is connected to a dis-
tinct WSN. A SYLPH Gateway does not need to implement
the layers over the SML. This fact can be seen in Fig. 1. The
SYLPH Gateway stores routing tables for forwarding SSP
packets among the different WSNs with which it is inter-
connected. When the source node invokes the service in
the destination node, the SYLPH Gateway forwards the call
message to the destination node through its hardware
interface connected to the WSN where the destination
node is located.

4. The HERA platform

HERA (Hardware-Embedded Reactive Agents) facilitates
communication amongst agents, applications and services
through the use of dynamic and self-adaptable heteroge-
neous WSNs. Unlike other approaches [31–33], the agents

Fig. 3. Examples of SYLPH’s SSDL frames over SSP.

R.S. Alonso et al. / Ad Hoc Networks 11 (2013) 151–166 155



Author's personal copy

in HERA are directly embedded on the WSN nodes and, as a
result of SYLPH, HERA provides the possibility of connect-
ing wireless sensor networks based on different radio and
link technologies, whereas other approaches do not. That
is, HERA allows the agents embedded into nodes to work
in a distributed way and does not depend on the lower
stack layers related to the WSN formation (i.e., network
layer) or the radio transmission among the nodes that form
part of the network (i.e., data link and physical layers).
Likewise, HERA can be executed over multiple wireless de-
vices independently of their microcontroller or the pro-
gramming language they use.

Therefore, the main contributions of HERA over SYLPH
are that HERA incorporates a new layer of reactive agents
over the existing layers provided by SYLPH, as well as a
Case-Based Planning mechanism that provides reasoning
features to HERA Agents. These two main additions allow
HERA to be a more powerful platform than SYLPH. One
the one hand, HERA takes advantage of the main SYLPH
features, that is, the distribution of functionalities over
nodes with reduced computational and memory resources
and using different wireless technologies. On the other
hand, the HERA Agents and the HERA Case-Based Planning
mechanism allow HERA to execute reactive agents that can
make use of reasoning features, while SYLPH does not.

This way, developers can deploy intelligent context-
aware applications by implementing HERA Agents embed-
ded in each node. For example, a developer can design a
home automation application in which is needed to collect
context information from the environment using sensor
nodes coming from different wireless technologies (e.g.,
ZigBee and Wi-Fi). In order to do this, it is necessary to
have the SYLPH and HERA layers implemented for the tar-
get microcontroller and transceiver of each wireless sensor
node. This way, it is easy to implement SYLPH Gateways
that interconnect two or more wireless technologies
through SYLPH layers for forwarding SML messages among
the distinct WSNs. However, these previous developments
must be done only once for each target microcontroller and
transceiver, and then developers have only to implement
the code of each HERA Agent they need in each node for
accessing a certain set of sensors (e.g., luminosity, pres-
ence, temperature, smoke) and actuators (e.g., alarms,
blinds, locks). Finally, developers can deploy a HERA Plan-

ning Agent in a central node so that HERA Agents can make
use of the planning mechanisms, thus building powerful
context-aware applications that learn from past experi-
ences and adapt dynamically to new situations.

4.1. Adding the components of the HERA platform over SYLPH

The HERA agent platform adds its own agent layer over
the SYLPH stack of layers, as shown in Fig. 4. This figure
shows the schema of SYLPH and HERA over a ZigBee and
a Bluetooth network through a SYLPH Gateway. As can
be seen, HERA Agents on nodes from different radio tech-
nologies communicate each other in a transparent way
thanks to SYLPH. As the HERA platform is based on the
existing layers of SYLPH platform, HERA agents running
onWSNs with different radio technology can communicate
among themselves through one or more SYLPH Gateways,
as explained in Section 4.4. Therefore, the main compo-
nents added by HERA to the SYLPH’s stack of layers are:

– HERA Agents Layer (or just HERA). HERA agents are spe-
cifically intended to run on devices with reduced
resources, precisely what SYLPH was designed for. To
communicate with each other, HERA agents use HERA-
CLES, the agent communication language designed for
being used under the HERA platform. Each HERA agent
is an intelligent piece of code running over the SYLPH
Application Layer. As explained in Section 4.2, there
must be at least one facilitator agent in every agent plat-
form. This agent is the first created in the platform and
acts as a directory for searching agents. In HERA, the
equivalent of these agents is the HERA-SDN (HERA
Spanned Directory Node).

– HERA Communication Language Emphasized to Simplicity

(HERACLES). The HERACLES language is directly based
on the SSDL language. As with SSDL, HERACLES does
not use intermediate tags and the order of its elements
is fixed to constrain the resource necessities of the
nodes. This makes its human-readable representation,
used by developers for coding, very similar to SSDL.
When HERACLES is translated to HERACLES frames,
the actual data transmitted among nodes, they are
encapsulated into simple SSDL frames using ‘‘HERA’’
as their service id field.

Fig. 4. Layers and protocols of the HERA platform.

156 R.S. Alonso et al. / Ad Hoc Networks 11 (2013) 151–166



Author's personal copy

4.2. HERA basic operation and HERA Spanned Directory Nodes

(HERA-SDNs)

Every agent platform needs some kind of facilitator

agent that needs to be created before other agents are
instantiated in the platform [19–21]. Facilitator agents
act as agent directories. This way, every time an agent is
created, it is registered on one of the existing facilitator
agents. This allows other agents to request one of the facil-
itator agents in order to know where an agent with certain
functionalities is and how to invoke such functionalities.
As HERA is intended to run on machines that are not more
complex than sensor nodes themselves are, it was neces-
sary to design some hardware facilitator agents that do
not need more CPU complexity and memory size than
what a regular sensor node has. In order to do this, HERA’s
facilitator agents, called HERA Spanned Directory Nodes

(HERA-SDNs) are based on the SYLPH Directory Nodes
(SDNs), described above. This way, any HERA node can per-
form as a HERA-SDN, just as SDNs do in the SYLPH plat-
form. However, a HERA-SDN does not also have to be a
SDN. HERA-SDN instances itself and starts the HERA plat-
form by registering a special SYLPH service called ‘‘HERA’’

on a SDN stored on any node of the SYLPH network. When
a new HERA Agent wants to instantiate itself through a
HERA-SDN, it looks for the ‘‘HERA’’ service on the SYLPH
network, using a primitive service of the SSDL/SSP layers.
When a HERA Agent is correctly instantiated, the HERA
layer also registers a ‘‘HERA’’ service for the agent in a
SDN. In this way HERA Agents can send HERACLES mes-
sages to each other over SYLPH, referring to the service of
each node with HERA Agents, including HERA-SDNs, as
‘‘HERA’’.

The UML sequence diagram in Fig. 5 shows an example
of the basic operation of SYLPH and HERA platforms when
registering services or agents on the HERA Spanned Direc-
tory Nodes. In order to start the HERA platform, an initial
HERA-SDN must be created. This will be HERA-SDN #0
running on SDN #0. At that moment, other SYLPH nodes
with HERA running on them can instantiate more HERA
agents or even more HERA-SDNs. Because HERA is de-
signed to run on devices with low resources that are usu-
ally connected wirelessly, it is very important that the
platform does not have to depend on only one HERA-SDN
(i.e., one facilitator agent). This way, if the HERA-SDN
crashes (e.g., power failure or problems with radio trans-

Fig. 5. Basic operation of HERA platform and HERA Spanned Directory Nodes.

R.S. Alonso et al. / Ad Hoc Networks 11 (2013) 151–166 157



Author's personal copy

mission), the HERA platform will not fail and will not need
to be started again. After the creation of the HERA-SDN #0,
the SYLPH node #1 uses the HERA-SDN #0 to instantiate a
new HERA-SDN, the HERA-SDN #1, thus increasing the
redundancy of the HERA-SDNs and the robustness of the
platform. The SYLPH node #1 also instantiates the HERA
Agent #2, this time through the HERA-SDN #1. SYLPH node
#3, in the other WSN, instantiates HERA Agent #3 through
the HERA-SDN #0, even if they are in distinct WSNs. With
SYLPH, this is no longer a problem. At a specific moment,
SDN #0 is powered off. After that, SYLPH node #3 looks
for HERA-SDN #0. As HERA-SDN #0 does not reply, SYLPH
node #3 sends a broadcast call-for-proposal HERACLES
frame in order to find a live HERA-SDN. As HERA-SDN #1
replies, HERA Agent #4 is created through HERA-SDN #1.
As shown in Fig. 5, there can be several HERA Agents in a
single SYLPH node. Moreover, there can be SYLPH nodes
with no HERA implementation. A SYLPH Gateway is a clear
example of this, as explained below. If, at a certain mo-
ment, HERA Agent #2 wants to look for an agent, but
HERA-SDN #0 is not alive again, then HERA Agent #2 also
has to look for an existing HERA-SDN in the platform, thus
storing entries for the two HERA-SDNs. When HERA-SDN
#0 is alive again, it will be useful for HERA Agent #2 to
have this redundancy on HERA-SDNs entries.

4.3. The HERA Communication Language Emphasized to

Simplicity (HERACLES)

In HERA, the hardware agents communicate with each
other through the HERA Communication Language Empha-

sized to Simplicity (HERACLES). This language is an exten-
sion of the SSDL used in SYLPH. As explained above, SSDL
has two distinct representations [9]: one that is human-
readable, similar to C language and used for services devel-
opment proposals, and one embedded on frames that
SYLPH nodes understand. This is done in this way because
in nodes with reduced resources (memory and CPU time) it
is not convenient to overload the microcontroller and the
memory space with a heavy parsing method. When devel-
oping a program, programmers use the human-readable
representation to define agents’ functionalities, similar to
that shown as follows.

request {
sender agent1;
receiver agent2;
content {
action(agent2) {
inform-if {
sender agent1;
receiver agent2;

content {
message {
state result;};};

language HERACLES;
ontology HERA_ONTOLOGY;};};};

LANGUAGE HERACLES;
ontology HERA_ONTOLOGY;};

inform {
sender agent2;

receiver agent1;
content {
message {
state result;};};

language HERACLES;
ontology HERA_ONTOLOGY;};

However, similar to SYLPH, HERA agents transmit the
more compact representation of HERACLES as frames.
The compact frames corresponding to the previous exam-
ple are also represented in Fig. 6. These kinds of compact
frames are what HERA agents transmit in a heterogeneous
WSN based on HERA-SYLPH over the SSDL/SSP protocols.
Fig. 6a shows the frame corresponding to the HERACLES re-
quest, whereas Fig. 6b depicts the frame corresponding to
the HERACLES inform of the previous example.

4.4. Operation of HERA over heterogeneous WSNs using SYLPH

gateways

Because of HERA is implemented over SYLPH through
the addition of new layers and protocols (HERA Agents
and HERACLES), it can be used over several heterogeneous
WSNs in a transparent way. HERA Agents are implemented

Fig. 6. Examples of HERA’s HERACLES frames over SSP/SSDL.

158 R.S. Alonso et al. / Ad Hoc Networks 11 (2013) 151–166



Author's personal copy

over the SAL layer, so HERA does not mind how many
intermediate SYLPH Gateways and different WSNs there
are between the location of one HERA Agent and another.
This is demonstrated in Fig. 4. Both HERA Agents and
HERA-SDNs communicate with each other directly through
HERACLES. HERA Agents use SAL’s service points to deliver
HERACLES frames between agents. Since HERACLES frames
are transported as other SSDL frames over SSP between
SYLPH nodes, HERA Agents do not need to know which
nodes other HERA Agents are stored on, or if such nodes
are in remote WSNs.

4.5. HERA Case-Based Planning mechanism

As previously mentioned, some agents in HERA inte-
grate a Case-Based Planning (CBP) mechanism. The CBP
mechanism provides the agents with greater adaptation
capabilities. As it is a complex and resources demanding
task, the CBP mechanism has been modeled as a service
provided by a special HERA Agent, known as HERA Planning

Agent, which runs on a central node (i.e., a computer or a
wireless device with moderate computational resources).
The main characteristics of this mechanism are described
in the remainder of this section.

CBP comes from CBR, but is specially designed to gener-
ate plans (sequence of actions) [29]. The problems and
their corresponding plans are stored in a plans memory.
The reasoning mechanism generates plans using past
experiences and planning strategies, which is how the con-
cept of Case-Based Planning is obtained [29]. CBP consists
of four sequential stages similar to CBR stages: retrieve, re-
use, revise and retain. Problem description (initial state)
and solution (situation when final state is achieved) are
represented as beliefs, the final state as a goal (or set of
goals), and the sequences of actions as plans. The CBP cycle
is implemented through goals and plans. When the goal
corresponding to one of the stages is triggered, different
plans (algorithms) can be executed concurrently to achieve
the goal or objective. Each plan can trigger new sub-goals
and, consequently, cause the execution of new plans.

The HERA CBP mechanism needs a set of HERA Agents
running on a set of nodes (i.e., wireless devices). Each of
the nodes is connected physically to different sensors and
actuators. This way, each node in the system can transmit
commands to the actuators according to the sensors mea-
surements. Each device di is defined by the sensors and
actuators to which it has access, as expressed in the follow-
ing equation:

di ¼ ðSi;AiÞ ð1Þ

where Si is the set of sensors and Ai is the set of actua-
tors.According to the values read from the sensors, each
HERA Agent running in the devices makes use of the actu-
ators in order to achieve the required goal (e.g., stop a hea-
ter when a target temperature has been achieved). Thus,
the behavior of the HERA CBP mechanism is established
by a database generated from the information of the sen-
sors and actuators. This way, when some event produces
an interaction with the sensors in the devices (e.g., a user
action or a variation in the environment), these devices for-
ward the values from the sensors and actuators to a central

node that runs a special HERA Agent that stores this infor-
mation. This agent is known as HERA Planning Agent.
Depending on the size of the whole system (i.e., the num-
ber of nodes in the network, as well as the number of sen-
sors and actuators associated to them), this central node
can be implemented as a computer with a database stored
in a physical disk or as a wireless sensor node with a smal-
ler database stored in an EEPROM or Flash memory. Each
device dj has its own cases memory. Each case of the device
dj follows the structure indicated in the following equation.

c
dj
i ¼ V

Sj
i ;V

Aj

i

� �

ð2Þ

where V
Sj
i is the set of values from the sensors associated

with the device j, and V
Aj
i the values associated to the

actuators.
The reactive behavior of the HERA Agents is defined as a

set of rules that determine the relation among the sensors
and the actuators. The rules are generated by the HERA CBP
mechanism. There are two kinds of rules: static rules and
dynamic rules. Static rules are pre-defined rules that have
priority over dynamic rules. Static rules determine the de-
fault behavior of each node and act also as a backup of
these behaviors (i.e., they are stored directly in the nodes).
Dynamic rules are automatically generated from the de-
fined cases for each of the devices. The dynamic rules are
periodically updated on every run of the HERA Agents
(i.e., each time they are requested to execute a task).
Fig. 7 shows the functioning of the HERA CBP mechanism
when a device must execute a new task.

Both static and dynamic rules are defined using a de-
fined grammar that facilitates the error detection and also
the generation of native code that is actually running in the
HERA Agents. One the one hand, static rules are stored in
the database by the HERA Planning Agent following this
grammar. This way, rules are formed by sensors, literals,
comparison and logical operators, as well as the final ac-
tion to be performed by the actuator. On the other hand,
dynamic rules are defined by the CBP mechanism by
means of the information of the cases shown in Eq. (2).
During the recovery stage the CBP mechanism recovers
the information with the sensors and actuators associated
to a certain device. During the reutilization stage, auto-
matic rules are generated from this information. For the
generation of automatic rules, different algorithms based
on decision rules and decision trees can be used. An exam-
ple of algorithm based on decision rules is M5 [35], while
J48 [36] is based on decision trees.

In HERA, the J48 algorithm is used for the generation of
rules [36]. The inputs of the classifier are the value of the
sensors, and the output belonging to the actuator. Using
this configuration the J48 is trained, thus obtaining a deci-
sion tree that represents the behaviors of the actuators. In
this sense, the different actuators are chosen as leaf nodes
in the decision trees, while the sensor values are placed in
the intermediate nodes. There is a decision tree according
to the sensors situated in the device for each actuator.
The devices can select a value of the actuators according
to the value of the sensors through the decision tree, and
the system only has to follow the conditions in the inter-
mediate nodes until it arrives at a leaf node.

R.S. Alonso et al. / Ad Hoc Networks 11 (2013) 151–166 159



Author's personal copy

The final schema of the decision trees would be similar
to that shown in Fig. 8, and rules would be generated as
indicated in the schema. The generated rules follow the
grammar indicated above. The decision tree generated
contains all the necessary information to generate the rules
according to the grammar. The system only has to select
each leaf node and move up toward the root node, intro-
ducing a new condition for each movement throughout
the tree.

During the revision and learning stages, the system only
stores the values of the actuators and sensors when the
actuators are established manually by the users. The auto-
matic decision of the agents are not stored in the system.
The system only stores the interactions of the users as it
tries to adapt to their behaviors. The system does not store

generated cases as it is able to predict the behaviors, and
only stores a new case when a user modifies the automatic
configuration.

For the development of the rules generator system the
Weka libraries are used for the implementation of J48 algo-
rithm. JFlex and Cup are used as lexical and syntactic ana-
lyzers. By means of Cup it is generated the native code that
is then transferred and executed on chips.

5. Experiments and results

This section describes distinct experiments performed
to test the HERA platform. On the one hand, Section 5.1 de-
scribes a test battery performed to evaluate the instantia-
tion of HERA Agents and transmission of HERACLES

Fig. 7. Functioning of the HERA CBP mechanism.

Fig. 8. Example of decision tree for the dynamic rules.

160 R.S. Alonso et al. / Ad Hoc Networks 11 (2013) 151–166



Author's personal copy

frames about them, both in homogeneous and in heteroge-
neous HERA WSNs. On the other hand, Section 5.2 de-
scribes an implementation of the HERA platform in order
to develop some context-aware applications in a real
scenario.

5.1. HERA performance tests

Several experiments were carried out to evaluate the
performance of the HERA platform, mainly to test how it
handled the instances of HERA-SDNs and HERA Agents
and the exchange of HERACLES frames, both in homoge-
neous and heterogeneous HERA WSNs. In this sense, we
deployed two distributed WSN infrastructures with HERA
running over it, the first one formed by only ZigBee nodes
and the second one by both ZigBee and Bluetooth nodes.

We have also developed an application for monitoring
the state and operation of the HERA network. This applica-
tion is based on a previous one we had developed for mon-
itoring SYLPH networks [14]. As with the previous one, this
application monitors all the traffic (i.e., service invocations,
responses, registrations or searches) in the SYLPH network.
It is necessary for the nodes to operate in debug mode, so
that every time a node invokes a service it also invokes a
monitoring service on a node connected to a computer
(e.g., via a USB port). The node gathers all the invocations
and forwards them to the monitoring application running
on the computer. The same process is done for service re-
sponses, searches and registrations. The monitoring appli-
cation makes it possible to observe when a node is
searching for a certain service in the network, the services
offered by the nodes, and the contents of the SSDS entry ta-
bles stored in the SDNs. In addition, with the newly devel-
oped application it is possible to monitor the HERA agent
instances in the HERA-SDNs of the HERA platform and also
the HERACLES request, inform and other frames.

The first sensor infrastructure consisted of a ZigBee net-
work with 50 devices, one acting as coordinator and the
rest as routers. The sensor infrastructure was formed by
n-Core Sirius A devices belonging to the novel n-Core
platform (http://www.n-core.info). Each n-Core Sirius A
2.4 GHz device includes an ATmega1281 microcontroller
with 8 KB RAM, 128 KB Flash memory, an AT86RF231
transceiver and several communication ports (GPIO, ADC,
I2C and USB/RS-232 UART) to connect to a wide range of
sensors and actuators [37]. ZigBee is based on the IEEE
802.15.4 standard and operates in the 868/915 MHz and
2.4 GHz unlicensed bands [38,39]. Unlike Wi-Fi or Blue-
tooth, ZigBee is designed to work with low-power nodes
and allows up to 65,534 nodes to be connected in a star,
tree or mesh topology network. The ZigBee nodes were dis-
tributed in a short-range simple mesh, with less than 10 m
between any router and the coordinator. Each time the Zig-
Bee network was formed, the nodes were powered on dif-
ferent random times, so that the mesh topology was
different each time. However, they were some constraints:
the maximum depth of the network (i.e., the maximum
number of hops between the coordinator and any node
in the network) was 5, the maximum number of neighbors
of any node was 8 and the maximum number of children of
any node in the network was also 8.

The experiments consisted of trying to start a platform
with HERA over the ZigBee network. In the network, the
ZigBee coordinator and a ZigBee router acted as SDNs
and the other 48 ZigBee routers acted as SYLPH nodes.
After the entire network was correctly created, the SDN
in the coordinator tried to instance a HERA-SDN. The
HERA-SDN instanced itself and started the HERA platform
registering a special service called ‘‘HERA’’ on the SDN
stored on the same ZigBee coordinator node. Then, 10
nodes tried to instance one HERA Agent in the HERA plat-
form. Once the HERA-SDN and the 10 HERA Agents were
successfully instantiated, the HERA-SDN started to ‘‘ping’’
every of the ten HERA Agents with a request HERACLES
frame including an inform-if command and waiting for an
inform frame as a ‘‘pong’’ response. Each HERA Agent was
pinged by the HERA-SDN one time every 5 s during 1 h
(7200 total pings tried). The experiment was run until both
the platform and the agents were successfully started/
instantiated 50 times. When the network could not be cor-
rectly created the run was discarded and not taken into ac-
count in the 50 runs. Furthermore, if the HERA platform
could not be completely started and created (i.e., all 10
HERA Agents correctly instantiated), these runs were also
discarded and not taken into account as forming part of
the 50 runs. If any HERA agent crashed it was immediately
restarted. HERACLES messages were registered to measure
when a ping-pong failed and if a HERA agent had to be re-
started. The results are shown in Table 1. As can be seen, it
is necessary to try to create 56 times the SYLPH and HERA
platforms to get 50 runs of the experiment with the 10
HERA Agents successfully instantiated in the HERA plat-
form. This is because the SYLPH platform was not success-
fully created 3 times, as some of the registrations of the
SYLPH nodes failed (the 0.17% of the total 2800). Likewise,
the HERA platform was not successfully created (with the
10 HERA Agents correctly instantiated) 3 times, as some
of the instantiations of the HERA Agents failed (the 0.56%
of the total 530). This indicates that it is necessary to
improve both the SYLPH network creation and the instan-
tiation of HERA Agents. These fails are caused by the trans-
mission fails in the ZigBee network. That is, 50 nodes in a
ZigBee network trying to transmit their registrations and
instantiations in the same time window provoke frame
collisions and retransmissions. When the total number of
retransmissions in the different layers of ZigBee and the
SYLPH/HERA platforms are exhausted, nodes must finally
give up. This also motivates the number of ping-pongs that
failed (the 0.19% of the total 7200). A better Automatic Re-
peat Request (ARQ) mechanism could increase SSP-over-
WSN transmissions. In addition, the robustness of the
HERA Agents should be improved by introducing a mecha-
nism to ping and keep running the HERA Agents and the
HERA-SDNs.

The same experiments were repeated using the second
infrastructure, which consisted of a heterogeneous sensor
network made up of one 25-node ZigBee network and an-
other 25-node Bluetooth scatternet [40], both of them inter-
connected through a SYLPH Gateway, in this case a
computer. Bluetooth operates also in the ISM 2.4 GHz band.
It allows creating star topology networks called piconets of
up to eight devices in which one of them acts as master and

R.S. Alonso et al. / Ad Hoc Networks 11 (2013) 151–166 161



Author's personal copy

the rest as slaves. Several Bluetooth piconets can be inter-
connected by means of Bluetooth devices that belong
simultaneously to two ormore piconets, thus creatingmore
extensive networks (known as scatternets) [40]. The Blue-
tooth nodes used in these experiments had a CSR BlueCore4
chip that included a RISC microcontroller with 48 KB of
RAM. The 25-node ZigBee network had similar network
characteristics as in the first experiment: 10 m as maxi-
mum between adjacent nodes (being all of them ZigBee
routers except for the coordinator), five hops maximum
depth network, eight neighbors maximum for any node
and eight children maximum for any node. This way, the
ZigBee network topology was different each time it was
formed as in the first experiment. In the other hand, the
Bluetooth network had a static topology formed by five
Bluetooth piconets. Specifically, one of these piconets acted
as the main piconet. The master of the main piconet (i.e.,
the main Bluetooth master) was also the node that inter-
connected the Bluetooth scatternet with the ZigBee net-
work through the computer acting as SYLPH Gateway.
Moreover, the four slave nodes in the main piconet were
also slave nodes each of them in one of the other four Blue-
tooth piconets. These other piconets had each of them six
nodes: a master node, a slave node being also slave in the
main piconet and four more slave nodes. There were also
two SDNs in this experiment, one in each WSN (i.e., a SDN
in the ZigBee network and another one in the Bluetooth
network). Similarly to the experiments made on the first
infrastructure, the SDN in the ZigBee coordinator node tried
to instance a HERA-SDN. The HERA-SDN instanced itself

and started the HERA platform registering a special service
called ‘‘HERA’’ on the SDN stored on the same ZigBee coor-
dinator node. Then, five nodes in the ZigBee network and
five nodes in the Bluetooth network tried to instance one
HERA Agent in the HERA platform. Once the HERA-SDN
and the 10 HERA Agents were successfully instantiated,
the similar ping-pong process performed in the experiments
with the first infrastructure was carried out. The results of
these experiments are also shown in Table 1. As can be
seen, it is necessary to try to create 58 times the SYLPH
and HERA platforms to get 50 runs of the experiment with
the 10 HERA Agents successfully instantiated in the HERA
platform, a little more than in the homogeneous network.
The SYLPH platform was not successfully created 5 times,
as the 0.24% of the 2900 registrations of the SYLPH nodes
failed. The HERA platform was not successfully created 3
times, as the 1.13% of the 530 instantiations of the HERA
Agents failed. The number of ping-pongs that failed was
the 0.37% of the total 7200. These results demonstrate that
the inclusion of the SYLPH Gatewaymakes the formation of
the whole SYLPH network a little harder. Moreover, once
the network is successfully formed, there is no difference
of in the service registration mechanism. However, the
transmission of HERACLES frames and the robustness of
HERA Agents seem to be a little more unstable in the heter-
ogeneous HERA network. On the one hand, in a 25-node
ZigBee network the number of frame retransmissions de-
creases with respect to a 50-node network as in the exper-
iments made in the first infrastructure. On the other hand,
the implementation of the HERA platform over the Blue-
tooth nodes needs to be debugged, as it is a newer develop-
ment compared with the more stable HERA over ZigBee.

5.2. Implementation of HERA in a real scenario

In order to demonstrate the feasibility of the HERA plat-
form for developing context-aware applications in a real
scenario, two ZigBee networks based on the described n-
Core Sirius devices [37] have been deployed in a laboratory
belonging to the Bioinformatics, Intelligent Systems and
Educational Technology (BISITE) Research Group (http://bi-
site.usal.es) of the University of Salamanca (Spain). The first
ZigBee network is intended for sensing and automation
purposes, while the second network is aimed at indoor
locating. Both sensing and locating are key aspects when
building a context-aware system in order to gather context
information about the users and the environment. Both
networks are formed by n-Core Sirius nodes. In addition
to the n-Core Sirius A nodes, described in Section 5.1, two
more kinds of nodes are used: n-Core Sirius B and n-Core
Sirius D devices. These devices are smaller than n-Core Sir-
ius A devices, even though they include almost the same
internal communication ports (i.e., GPIO, I2C, USB) to be
connected to sensors or actuators. On the one hand, n-Core
Sirius B devices are intended to be used with an internal
battery and include two general-purpose buttons. On the
other hand, n-Core Sirius D devices are aimed at being used
as fixed ZigBee routers using the main power supply
through a USB adaptor. These devices can be seen in
Fig. 9, which also shows a plan of the laboratory where
the ZigBee networks are deployed. Fig. 9a shows a Sirius

Table 1
Results of the HERA experiments comparing a homogeneous HERA WSN
and a heterogeneous HERA WSN.

Only-ZigBee HERA experiments

Total runs 56
SYLPH nodes not registered correctly (% of all tries in

total runs)
5
(0.17%)

SYLPH platform not created correctly (% of total runs) 3
(5.36%)

HERA Agents not instantiated correctly (% of all tries in
total runs)

3
(0.56%)

HERA platform not started correctly (% of SYLPH
correctly created)

3
(5.66%)

All 10 HERA Agents correctly instantiated 50
Total pings tried 7200
Ping-pongs not completed (% of total tried) 14

(0.19%)
Total restarted HERA Agents in an hour 9

ZigBee + Bluetooth HERA experiments

Total runs 58
SYLPH nodes not registered correctly (% of all tries in

total runs)
7
(0.24%)

SYLPH platform not created correctly (% of total runs) 5
(8.62%)

HERA Agents not instantiated correctly (% of all tries in
total runs)

6
(1.13%)

HERA platform not started correctly (% of SYLPH
correctly created)

3
(5.66%)

All 10 HERA Agents correctly instantiated 50
Total pings tried 7200
Ping-pongs not completed (% of total tried) 27

(0.37%)
Total restarted HERA Agents in an hour 12

162 R.S. Alonso et al. / Ad Hoc Networks 11 (2013) 151–166



Author's personal copy

A deployed in the laboratory, while Fig. 9b shows an elec-
tromagnetic latch and Fig. 9c shows an opto-acoustic siren.

In a first stage of the development, the distinct layers of
the SYLPH platform were implemented as C static link li-
braries. These SYLPH libraries can be further statically
linked by code that is implemented as firmware that can
be loaded into the Flash memory of the microcontrollers
in the ZigBee devices. This firmware is usually loaded
through a JTAG (Joint Test Action Group, common name
for IEEE 1149.1 standard) programmer interface or a USB
port using a bootloader application. The implementation
of the SML layer and the SSP protocol are dependent of
API provided by manufacturers to access microcontroller,
communication ports and ZigBee features. However, the
implementation of the SSDS and SAL layers, as well as
the SSDL protocol, is independent of the ZigBee infrastruc-
ture and only depends on the microcontroller features. In a
similar way, the implementation of the HERA layer, as well
as the proper HERA Agents themselves and the HERACLES
protocol, are also independent of the radio transmission
protocol and are built over the SAL layer. Finally, both
SYLPH and HERA layers are also implemented as dynamic
link libraries over Windows operating system to be used
by applications intended to access to SYLPH/HERA WSNs.
These applications include monitoring applications, SDNs,
HERA-SDNs, as well as HERA CBP Agents running on per-

sonal computers that are connected to one or more
SYLPH/HERA WSNs through different communication
ports (e.g., USB or RS-232).

Therefore, each of the nodes in the two ZigBee networks
are loaded with firmware linked to SYLPH/HERA libraries.
This way, all the functionalities of these devices are pro-
vided by HERA Agents. Each HERA Agent in the ZigBee
nodes is intended to control one or more sensors or actua-
tors. A monitoring application based on SYLPH/HERA runs
on a PC to register and manage data gathered from distinct
nodes in the networks. This PC is connected to the two Zig-
Bee networks through two USB ports, each of them con-
nected to the ZigBee coordinator of each network. Each
of the ZigBee coordinators acts also as SDN and HERA-
SDN. The HERA Agents running on the ZigBee nodes can
communicate with HERA Agents running on the PC and
with HERA Agents running on other ZigBee nodes to re-
quest data from sensors or send commands to actuators.
Furthermore, a HERA Planning Agent runs on the PC for
expanding the possibilities of the system.

Table 2 shows the description of the role for each node
in the two ZigBee networks, as well as the sensors and
actuators that are controlled locally or remotely through
HERA Agents. The sensing and automation network allows
gathering data from different sensors in the wireless
nodes: temperature, humidity, magnetometer, accelerom-

Fig. 9. Deployment of the ZigBee nodes in the implementation of HERA in a real scenario.

R.S. Alonso et al. / Ad Hoc Networks 11 (2013) 151–166 163



Author's personal copy

eter, joystick and buttons, luminosity, presence and door
sensors. In addition, this network allows controlling differ-
ent actuators (i.e., electromagnetic latch, lamp and siren)
from the PC or from other ZigBee nodes. All sensors and
actuators are controlled by HERA Agents running on the
ZigBee nodes. For instance, a HERA Agent running on the
PC can send a request HERACLES frame to a HERA Agent
running on the node #1 (a n-Core Sirius D device) to ask
for a temperature value, that will be delivered in a inform

HERACLES frame to the first HERA Agent. Likewise, a HERA
Agent running on node #4 can read itself the ambient
luminosity for controlling a lamp in the node #20, which
is managed by other HERA Agent. The first HERA Agent
communicates with the later using request HERACLES
frames for stating a certain value for the dimmer. Further-
more, HERA Agents running on the ZigBee nodes send peri-
odically their sensor values to the HERA Planning Agent
running on the PC using HERACLES frames. This way, the
HERA CBP mechanism updates the dynamic rules from
the initial static rules provided by users, as described in
Section 4.5 and HERA Agents can consult the HERA Plan-
ning Agent to retrieve plans and consequently control the
different actuators in the system.

Similarly, in the indoor locating network, n-Core Sirius
B devices are used as tags, while n-Core Sirius D devices

are used as readers. This way, n-Core Sirius B devices are
carried by users and objects to be located, whereas n-Core
Sirius D devices are placed at ceilings and walls to detect
the tags. Each user or object to be located in the system
carries an n-Core Sirius B acting as tag. Each of these tags
runs a HERA Agent that broadcasts periodically an inform

HERACLES frame including, amongst other information,
its unique identifier in the SYLPH network. The rest of
the time these devices are in a sleep mode, so that the
power consumption is reduced. A set of n-Core Sirius D de-
vices is used as readers throughout the environment, being
placed on the ceiling and the walls. The broadcast HERA-
CLES frames sent by each tag are received by the readers
that are close to them. This way, HERA Agents running
on readers store in their memory a table with an entry
per each detected tag. Each entry contains the identifier
of the tag, as well as the RSSI (Received Signal Strength
Indication) and the LQI (Link Quality Indicator) gathered
from the broadcast frame reception. Periodically, each
HERA Agent running on each reader sends this table to
the HERA Planning Agent running on the computer. Using
these detection information tables, the HERA CBP mecha-
nism estimates the position of each tag in the environ-
ment, which is shown by a HERA Agent running on the
PC that acts as other actuator in the HERA platform, but
acting over a Graphical User Interface.

6. Conclusions and future work

The HERA platform (Hardware-Embedded Reactive

Agents) allows wireless devices from different technologies
to work together in a distributed way. HERA Agents can
communicate in a distributed way regardless of the tech-
nology or the programming language they use. Further-
more, HERA Agents are light enough to be run on WSN
nodes with limited resources. The HERA Agents are reac-
tive because they act on devices with critical response
times. HERA is a model that successfully solves the prob-
lems it sets out to resolve. HERA is a platform specially de-
signed to implement hardware agents. Because HERA is
based on SYLPH, it allows devices from different radio
and networks technologies to coexist in the same distrib-
uted network. However, HERA goes a step further than
SYLPH and adds reactive agents and a Case-Based Planning
mechanism to the platform, extending its context-aware
features. In HERA, unlike other approaches already dis-
cussed, agents are directly embedded on the sensor nodes.
HERA facilitates and speeds up the integration between
agents and sensors for reusing resources in the context.
This approach allows the development of multi-agent sys-
tems with increased scalability. It also expands the agents’
capabilities to obtain information about the context and to
automatically react over the environment. A totally distrib-
uted approach and the use of heterogeneous WSNs pro-
vides platform that is better capable of recovering from
errors, and more flexible to adjust its behavior in execution
time. Even though HERA is focused specially on sensor
nodes with small resources, it can be implemented on al-
most any kind of device. HERA adds intelligence to sensors
by means of light reactive agents, improving the experi-

Table 2
Description of the nodes of the context-aware real scenario with HERA
running on it.

SYLPH
node id

Description of role and sensors/actuators

Sensing and automation network

0 ZigBee coordinator, SDN, HERA-SDN
1 – Accelerometer (I2C), sends data to PC

– Temperature (I2C), sends data to PC
– 2 buttons (I2C), send data to PC
– Joystick (I2C), sends data to PC

3 – Magnetometer/compass (I2C), sends data to PC
4 – Temperature (I2C), sends data to PC

– Humidity (I2C), sends data to PC
– Luminosity (I2C), sends data to PC and controls
dimmer in node #20

11 – Luminosity (ADC), sends data to PC
– Presence (GPI), sends data to PC
– Opto-acoustic siren (GPO/relay #2)

12 – Power socket (GPO/relay #1)
13 – Door sensor (GPI), sends data to PC and activates

GPO/relay #1 in this node
– Presence sensor (GPI), deactivates GPO/relay #1 in
this node
– Electromagnetic latch (GPO/relay #1)
– Panic button (GPI), activates/deactivates GPO/relay
#2 in node #11

20 – Lamp DAC dimmer (I2C)
75 – Left button (IRQ #6), deactivates the GPO/relay #1 in

node #13
– Right button (IRQ #7), deactivates the GPO/relay #2
in node #11

99 PC (node id in sensing and automation SYLPH
network)

Description of role

Indoor locating network

100 ZigBee coordinator, SDN, HERA-SDN
101–115 Readers
175–177 Tags
199 PC (node id in indoor locating SYLPH network)

164 R.S. Alonso et al. / Ad Hoc Networks 11 (2013) 151–166



Author's personal copy

ence of developers and users in context-aware technolo-
gies. The HERA CBP mechanism facilitates the inclusion
of new sensors dynamically, without need of performing
offline training for each of the devices. In addition, the
CBP mechanism can determine automatically the influence
of the sensors to establish the final state of each of the
actuators, so it is not necessary to indicate the relation
among sensors and actuators.

Future work includes the improvement of the overall
performance of the HERA platform. This way, the underly-
ing SYLPH platform will be also improved, especially in the
network formation and the SYLPH Gateways. In this sense,
it will be evaluated other characteristics related to HERA/
SYLPH nodes such as agent execution time, sleep mode
intervals and power consumption. In addition, it will be
added a set of cross-layering services, so that HERA agents
can modify the network parameters of each specific radio
technology in a uniformway. Furthermore, we are working
in the design of an efficient mechanism that allows HERA
agents to move throughout different nodes, no matter
the WSN technology they use. This way, we will get, for
example, HERA agents to move from a ZigBee node to a
Bluetooth node.

Acknowledgments

This work was supported in part by the following Span-
ish Ministry of Science and Innovation Projects: TIN 2009-
13839-C03-03 and IPT-430000-2010-035.

References

[1] M. Marin-Perianu, N. Meratnia, P. Havinga, L. de Souza, J. Muller, P.
Spiess, S. Haller, T. Riedel, C. Decker, G. Stromberg, Decentralized
enterprise systems: a multiplatform wireless sensor network
approach, Wireless Communications, IEEE 14 (2007) 57–66.

[2] J. Sarangapani, Wireless Ad Hoc and Sensor Networks: Protocols,
Performance, and Control, first ed., CRC, 2007.

[3] S. Mukherjee, E. Aarts, R. Roovers, F. Widdershoven, M. Ouwerkerk,
Amiware: Hardware Technology Drivers of Ambient Intelligence,
illustrated ed., Springer, 2006.

[4] E. Cerami, Web Services Essentials: Distributed Applications with
XML-RPC, SOAP, UDDI & WSDL, first ed., O’Reilly Media, Inc., 2002.

[5] M. Wooldridge, An Introduction to MultiAgent Systems, second ed.,
Wiley, 2009.

[6] L.M. Camarinha-Matos, H. Afsarmanesh, A comprehensive modeling
framework for collaborative networked organizations, Journal of
Intelligent Manufacturing 18 (2007) 529–542.

[7] A.K. Dey, G.D. Abowd, D. Salber, A conceptual framework and a
toolkit for supporting the rapid prototyping of context-aware
applications, Human-Computer Interaction 16 (2001) 97–166.

[8] R.S. Alonso, O. García, C. Zato, O. Gil, F. De la Prieta, Intelligent agents
and wireless sensor networks: a healthcare telemonitoring system,
in: Y. Demazeau, F. Dignum, J.M. Corchado, J. Bajo, R. Corchuelo, E.
Corchado, et al. (Eds.), Trends in Practical Applications of Agents and
Multiagent Systems, Springer, Berlin/Heidelberg, 2010, pp. 429–436.

[9] J.M. Corchado, J. Bajo, D.I. Tapia, A. Abraham, Using Heterogeneous
Wireless Sensor Networks in a Telemonitoring System for
Healthcare, Information Technology in Biomedicine, IEEE
Transactions on Information Technology in Biomedicine 14 (2010)
234–240.

[10] D.I. Tapia, R.S. Alonso, F. De la Prieta, C. Zato, S. Rodriguez, E.
Corchado, et al., SYLPH: an ambient intelligence based platform for
integrating heterogeneous wireless sensor Networks, in: IEEE
International Conference on Fuzzy Systems (FUZZ), 2010, pp. 1–8.

[11] R.S. Alonso, J.F. de Paz, Ó. García, Ó. Gil, A. González, HERA: a new
platform for embedding agents in heterogeneous wireless sensor
networks, in: Hybrid Artificial Intelligence Systems, Springer, Berlin/
Heidelberg, 2010, pp. 111–118.

[12] G. Anastasi, M. Conti, M. Di Francesco, A. Passarella, Energy
conservation in wireless sensor networks: a survey, Ad Hoc
Networks 7 (2009) 537–568.

[13] L. Ardissono, G. Petrone, M. Segnan, A conversational approach to the
interaction with web services, Computational Intelligence 20 (2004)
693–709.

[14] R.S. Alonso, D.I. Tapia, J.M. Corchado, SYLPH: a platform for
integrating heterogeneous wireless sensor networks in ambient
intelligence systems, International Journal of Ambient Computing
and Intelligence (IJACI) 2 (2011) 1–15.

[15] D.I. Tapia, A. Abraham, J.M. Corchado, R.S. Alonso, Agents and
ambient intelligence: case studies, Journal of Ambient Intelligence
and Humanized Computing 1 (2010) 85–93.

[16] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, S. Weerawarana,
Unraveling the web services web: an introduction to SOAP, WSDL,
and UDDI, IEEE Internet Computing 6 (2002) 86–93.

[17] A. Pereira, N. Costa, C. Serôdio, Peer-to-peer Jini for truly service-
oriented WSNs, International Journal of Distributed Sensor
Networks 20 (11) (2011) 13, http://dx.doi.org/10.1155/2011/
616838 (Article ID 616838).

[18] S.J. Russell, P. Norvig, J.F. Canny, J. Malik, D.D. Edwards, Artificial
Intelligence: A Modern Approach, Prentice Hall Englewood Cliffs, NJ,
1995.

[19] F. Bellifemine, A. Poggi, G. Rimassa, Developing multi-agent systems
with a FIPA-compliant agent framework, Software: Practice and
Experience. 31 (2001) 103–128.

[20] D.L. Martin, A.J. Cheyer, D.B. Moran, The open agent architecture: a
framework for building distributed software systems, Applied
Artificial Intelligence 13 (1999) 91–128.

[21] K. Sycara, M. Paolucci, M. Van Velsen, J. Giampapa, The RETSINA MAS
infrastructure, Autonomous Agents and Multi-Agent Systems 7
(2003) 29–48.

[22] A.L. Bauer, C.A. Beauchemin, A.S. Perelson, Agent-based modeling of
host-pathogen systems: the successes and challenges, Information
Sciences 179 (2009) 1379–1389.

[23] C. Carrascosa, J. Bajo, V. Julian, J.M. Corchado, V. Botti, Hybrid multi-
agent architecture as a real-time problem-solving model, Expert
Systems with Applications 34 (2008) 2–17.

[24] F. Pecora, A. Cesta, DCOP for smart homes: a case study,
Computational Intelligence 23 (2007) 395–419.

[25] D.I. Tapia, J.M. Corchado, An ambient intelligence based multi-agent
system for Alzheimer health care, International Journal of Ambient
Computing and Intelligence (IJACI) 1 (2009) 15–26.

[26] M.L. Borrajo, J.M. Corchado, E.S. Corchado, M.A. Pellicer, J. Bajo,
Multi-agent neural business control system, Information Sciences
180 (2010) 911–927.

[27] D.I. Tapia, J. Bajo, J.M. Corchado, Distributing functionalities in a
SOA-based multi-agent architecture, in: 7th International
Conference on Practical Applications of Agents and Multi-Agent
Systems (PAAMS 2009), Springer Berlin/Heidelberg, 2009, pp.
20–29.

[28] B. Baruque, E. Corchado, A. Mata, J.M. Corchado, A forecasting
solution to the oil spill problem based on a hybrid intelligent system,
Information Sciences 180 (2010) 2029–2043.

[29] J.M. Corchado, J. Bajo, Y. de Paz, D.I. Tapia, Intelligent environment
for monitoring Alzheimer patients, agent technology for health care,
Decision Support Systems 44 (2008) 382–396.

[30] R. Tynan, G. O’Hare, A. Ruzzelli, Multi-agent system methodology for
wireless sensor networks, Multiagent and Grid Systems 2 (2006)
491–503.

[31] Y. Kwon, S. Sundresh, K. Mechitov, G. Agha, ActorNet: an actor
platform for wireless sensor networks, in: Proceedings of the Fifth
International Joint Conference on Autonomous Agents and
Multiagent Systems, ACM, Hakodate, Japan, 2006, pp. 1297–1300.

[32] P. Baker, V. Catterson, S. McArthur, Integrating an agent-based
wireless sensor network within an existing multi-agent condition
monitoring system, in: ISAP ‘09. 15th International Conference
on Intelligent System Applications to Power Systems, 2009, pp.
1–6.

[33] F. Zboril, J. Horacek, P. Spacil, Intelligent Agent Platform and Control
Language for Wireless Sensor Networks, in: EMS ‘09. Third UKSim
European Symposium on Computer Modeling and Simulation, 2009,
pp. 482–487.

[34] E.Y. Song, K.B. Lee, STWS: a unified web service for IEEE 1451 smart
transducers, IEEE Transactions on Instrumentation and
Measurement 57 (2008) 1749–1756.

[35] G. Holmes, M. Hall, E. Frank, Generating rule sets from model trees,
in: Proc. of the 12th Australian Joint Conf. on Artificial Intelligence,
pp. 1–12.

R.S. Alonso et al. / Ad Hoc Networks 11 (2013) 151–166 165



Author's personal copy

[36] S.L. Salzberg, C4.5: programs for machine learning by J. Ross Quinlan.
Morgan Kaufmann Publishers, Inc., 1993, Machine Learning 16
(1994) 235–240.

[37] n-Core�: A Faster and Easier Way to Create Wireless Sensor
Networks, 2011. <http://www.n-core.info/>.

[38] Y.-K. Huang, A.-C. Pang, A comprehensive study of low-power
operation in IEEE 802.15.4, in: Proceedings of the 10th ACM
Symposium on Modeling, Analysis, and Simulation of Wireless and
Mobile Systems, ACM, Chania, Crete Island, Greece, 2007, pp. 405–
408.

[39] P. Medagliani, M. Martalò, G. Ferrari, Clustered Zigbee networks with
data fusion: characterization and performance analysis, Ad Hoc
Networks 9 (2011) 1083–1103.

[40] M. Ilyas, R.C. Dorf, eds., The Handbook of Ad Hoc Wireless Networks,
CRC Press, Inc., 2003.

Ricardo S. Alonso is a doctoral candidate at
the Faculty of Sciences of the University of
Salamanca (Spain). His research interests
include wireless sensor networks, embedded
devices, distributed systems and AI tech-
niques. He received a M.Sc. in Intelligent
Systems from the University of Salamanca
(Spain) in 2009, and a graduate engineering
degree in Telecommunications from the Uni-
versity of Valladolid (Spain) in 2007.

Dante I. Tapia is a researcher at the BISITE
Research Group of the University of Salam-
anca, Spain. His research interests include
ubiquitous computing, wireless technologies,
distributed architectures and middleware
systems. He received a PhD in Computer Sci-
ence from the University of Salamanca (Spain)
in 2009.

Javier Bajo received a PhD in Computer Sci-
ence from the University of Salamanca (Spain)
in 2007. He is an Assistant Professor at the
University of Salamanca (Spain). He obtained
the Information Technology degree at the
University of Valladolid (Spain) in 2001 and
Engineering in Computer Sciences degree at
the Pontifical University of Salamanca (Spain)
in 2003. He has been a member of the orga-
nizing and scientific committee of several
international symposiums. He has also been
co-author of papers published in recognized

journal, workshops and symposiums.

Óscar García is a PhD student researching in
the area of e-learning and ambient intelli-
gence at the Faculty of Sciences of the Uni-
versity of Salamanca (Spain). His research
interests include ubiquitous communications,
wireless technologies and distributed sys-
tems. He received a graduate degree in Tele-
communications from the University of
Valladolid (Spain) in 2006.

Juan F. De Paz received a PhD in Computer
Science from the University of Salamanca
(Spain) in 2010. He is Assistant Professor at
the University of Salamanca and researcher at
the BISITE research group. He obtained a
Technical Engineering in Systems Computer
Sciences degree in 2003, an Engineering in
Computer Sciences degree in 2005 at the
University of Salamanca and Statistic degree
in 2007 in the same University. He has been
co-author of published papers in several
journals, workshops and symposiums.

Juan M. Corchado is Dean at the Faculty of
Sciences and leader of the BISITE Research
Group of the University of Salamanca, Spain.
His research interests include hybrid AI and
distributed systems. He received a PhD in
Computer Science from the University of Sal-
amanca (Spain) in 1998 and a PhD. in Artificial
Intelligence (AI) from the University of Pais-
ley, Glasgow (UK) in 2000.

166 R.S. Alonso et al. / Ad Hoc Networks 11 (2013) 151–166


