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Abstract. Template methods have opened up a new way of building C++ libraries. These methods allow the libraries to combine

the seemingly contradictory qualities of ease of use and uncompromising efficiency. However, libraries that use these methods

are notoriously difficult to develop. This article examines the benefits reaped and the difficulties encountered in using these

methods to create a friendly, high performance, tensor library. We find that template methods mostly deliver on this promise,

though requiring moderate compromises in usability and efficiency.

1. Introduction

Tensors are used in a number of scientific fields, such
as geology, mechanical engineering, and astronomy.

They can be thought of as generalizations of vectors
and matrices. Consider the rather prosaic task of mul-

tiplying a vector P by a matrix T , yielding a vector
Q





Qx

Qy

Qz



 =





Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz









Px

Py

Pz



 .

If we write out the equations explicitly then

Qx = TxxPx + TxyPy + TxzPz ,

Qy = TyxPx + TyyPy + TyzPz,

Qz = TzxPx + TzyPy + TzzPz.

Alternatively, we can write it as

Qx =
∑

j=x,y,z

TxjPj

Qy =
∑

j=x,y,z

TyjPj

Qz =
∑

j=x,y,z

TzjPj

or even more simply as

Qi =
∑

j=x,y,z

TijPj ,

where the index i is understood to stand for x, y, and

z in turn. In this example, Pj and Qi are vectors, but
could also be called rank 1 tensors (because they have

one index). Tij is a matrix, or a rank 2 tensor. The more
indices, the higher the rank. So the Riemann tensor

in General Relativity, Rijkl, is a rank 4 tensor, but can
also be envisioned as a matrix of matrices. There are

more subtleties involved in what defines a tensor, but
it is sufficient for our discussion to think of them as

generalizations of vectors and matrices.
Einstein introduced the convention that if an index

appears in two tensors that multiply each other, then

that index is implicitly summed. This mostly removes
the need to write the summation symbol

∑

j=x,y,z .

Using this Einstein summation notation, the matrix-
vector multiplication becomes simply

Qi = TijPj .

Of course, now that the notation has become so nice
and compact, it becomes easy to write much more com-
plicated formulas such as the definition of the Riemann

tensor

Ri
jkl = dGi

jkl − dGi
lkj + Gm

jkGi
ml − Gm

lkGi
mj .

There are some subtle differences between tensors
with indices that are upstairs (like T i), and tensors with
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indices that are downstairs (like Ti), but for our pur-
poses we can treat them the same. Now consider eval-
uating this equation on an array with N points, where
N is much larger than the cache size of the processor.
We could use multidimensional arrays and start writing
lots of loops

for(int n=0;n<N;++n)
for(int i=0;i<3;++i)

for(int j=0;j<3;++j)

for(int k=0;k<3;++k)

for(int l=0;l<3;++l)

{

R[i][j][k][l][n]=dG[i][j][k][l][n]

- dG[i][l][k][j][n];

for(int m=0;m<3;++m)
R[i][j][k][l][n]+=G[m][j][k][n]

* G[i][m][l][n]

- G[m][l][k][n]

* G[i][m][j][n];

}

This is a dull, mechanical, error-prone task, exactly the
sort of thing we want computers to do for us. This style
of programming is often referred to as C-tran, since it
is programming in C++ but with all of the limitations
of Fortran 77. We would like to write something like

R(i,j,k,l)=dG(i,j,k,l) - dG(i,l,k,j)

+ G(m,j,k)*G(i,m,l) - G (m,l,k)

* G(i,m,j);

and have the computer do all of the summing and iter-
ating over the grid automatically.

There are a number of libraries with varying amounts
of tensor support [1–3,8–11]. With one exception,
they are all either difficult to use (primarily, not pro-
viding implicit summation), or they are not efficient.
GRPP [8] solves this conundrum with a proprietary
mini-language, making it difficult to customize and ex-
tend.

We have written a program to simulate neutron star
collisions in General Relativity. It uses tensors exten-
sively, so we have developed a library to simplify their
use. In this paper, we start by describing our first, sim-
ple design for a tensor class within C++. We pro-
gressively refine the overall design to improve the per-
formance, while keeping most of the usability intact.
Then we describe the details of implementing natural
notation for tensor arithmetic within this final design.
We follow with a survey of different compilers, testing
how proficient they are at compiling and optimizing the
library. We end with a look at a more generic version
of the library and how it affects performance.

2. Design choices for tensor libraries

There are a few different ways that a tensor library
can be constructed. Ideally, we want a solution that is
easy to implement, easy to use, and efficient.

2.1. Simple classes

The most straightforward way to proceed is to make

a set of classes (Tensor1, Tensor2, Tensor3, etc.) which

simply contains arrays of doubles of size N. Then we

overload the operators +,− and * to perform the proper

calculation and return a tensor as a result. The well

known problem with this is that it is slow and a memory

hog. For example, the expression

Ai = Bi + Ci (DjEj) ,

will generate code equivalent to

double *temp1=new double [N];

for(int n=0;n<N;++n)

for(int i=0;i<3;++i)

temp1[n]=D[i][n]*E[i][n];

double *temp2[3]

temp2[0]=new double[N];

temp2[1]=new double[N];

temp2[2]=new double[N];

for(int n=0;n<N;++n)

for(int i=0;i<3;++i)

temp2[i][n]=C[i][n]*temp1[n];

double *temp3[3]

temp3[0]=new double[N];

temp3[1]=new double[N];

temp3[2]=new double[N];

for(int n=0;n<N;++n)

for(int i=0;i<3;++i)

temp3[i][n]=B[i][n]+temp2[i][n];

for(int n=0;n<N;++n)

for(int i=0;i<3;++i)

A[i][n]=temp3[i][n];

delete[] temp1;

delete[] temp2[0];

delete[] temp2[1];

delete[] temp2[2];

delete[] temp3[0];

delete[] temp3[1];

delete[] temp3[2];

This required three temporaries (temp1 = DjEj),
(temp2i = Ci ∗ temp1), (temp3i = Bi + temp2i))
requiring 7 N doubles of storage. None of these tem-

poraries disappear until the whole expression finishes.

For expressions with higher rank tensors, even more

temporary space is needed. Moreover, these tempo-

raries are too large to fit entirely into the cache, where

they can be quickly accessed. The temporaries have to

be moved to main memory as they are computed, even

though they will be needed for the next calculation.

With current architectures, the time required to move

all of this data back and forth between main memory

and the processor is much longer than the time required

to do all of the computations.
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2.2. Expression templates

This is the sort of problem for which template meth-

ods are well-suited. Using expression templates [13],

we can write

A(i)=B(i)+C(i)*(D(j)*E(j));

and have the compiler transform it into something like

for(int n=0;n<N;++n)

for(int i=0;i<3;++i)

{

A[i][n]=B[i][n];

for(int j=0;j<3;++j)

A[i][n]+=C[i][n]*(D[j][n]*E[j][n]);

}

The important difference here is that there is only a

single loop over the N points. The large temporaries are

no longer required, and the intermediate results (like

D[j][n]*E[j][n]) can stay in the cache. This is

a specific instance of a more general code optimiza-

tion technique called loop-fusion. It keeps variables

that are needed for multiple computations in the cache,

which has much faster access to the processor than main

memory.

This will have both nice notation and efficiency for

this expression. What about a group of expressions?

For example, consider inverting a symmetric, 3 × 3
matrix (rank 2 tensor) A. Because it is small, a fairly

good method is to do it directly

det=A(0,0)*A(1,1)*A(2,2) + A(1,0)*A(2,1)*A(0,2)

+ A(2,0)*A(0,1)*A(1,2) - A(0,0)*A(2,1)*A(1,2)
- A(1,0)*A(0,1)*A(2,2) - A(2,0)*A(1,1)*A(0,2);

I(0,0)= (A(1,1)*A(2,2) - A(1,2)*A(1,2))/det;

I(0,1)= (A(0,2)*A(1,2) - A(0,1)*A(2,2))/det;

I(0,2)= (A(0,1)*A(1,2) - A(0,2)*A(1,1))/det;

I(1,1)= (A(0,0)*A(2,2) - A(0,2)*A(0,2))/det;

I(1,2)= (A(0,2)*A(0,1) - A(0,0)*A(1,2))/det;

I(2,2)= (A(1,1)*A(0,0) - A(1,0)*A(1,0))/det;

Through the magic of expression templates, this will

then get transformed into something like

for(int n=0;n<N;++n)

det[n]=A[0][0][n]*A[1][1][n]

* A[2][2][n]

+ A[1][0][n]*A[2][1][n]

* A[0][2][n]

+ A[2][0][n]*A[0][1][n]

* A[1][2][n]

- A[0][0][n]*A[2][1][n]

* A[1][2][n]

- A[1][0][n]*A[0][1][n]

* A[2][2][n]

- A[2][0][n]*A[1][1][n]

* A[0][2][n];

for(int n=0;n<N;++n)

I[0][0][n]= (A[1][1][n]*A[2][2][n]

- A[1][2][n]*A[1][2][n])

/ det[n];

for(int n=0;n<N;++n)

I[0][1][n]= (A[0][2][n]*A[1][2][n]

- A[0][1][n]*A[2][2][n])
/ det[n];

for(int n=0;n<N;++n)

I[0][2][n]= (A[0][1][n]*A[1][2][n]

- A[0][2][n]*A[1][1][n])

/ det[n];

for(int n=0;n<N;++n)

I[1][1][n]= (A[0][0][n]*A[2][2][n]

- A[0][2][n]*A[0][2][n])
/ det[n];

for(int n=0;n<N;++n)

I[1][2][n]= (A[0][2][n]*A[0][1][n]

- A[0][0][n]*A[1][2][n])

/ det[n];

for(int n=0;n<N;++n)

I[2][2][n]= (A[1][1][n]*A[0][0][n]

- A[1][0][n]*A[1][0][n])
/ det[n];

Once again, we have multiple loops over the grid of

N points. We also have a temporary, det, which will

be moved between the processor and memory multiple

times and can not be saved in the cache. In addition,

each of the elements ofAwill get transferred four times.

If we instead manually fuse the loops together

for(int n=0;n<N;++n)

{

double det=A[0][0][n]*A[1][1][n]

* A[2][2][n]

+ A[1][0][n]*A[2][1][n]

* A[0][2][n]

+ A[2][0][n]*A[0][1][n]

* A[1][2][n]

- A[0][0][n]*A[2][1][n]

* A[1][2][n]

- A[1][0][n]*A[0][1][n]

* A[2][2][n]

- A[2][0][n]*A[1][1][n]

* A[0][2][n];

I[0][0][n]=(A[1][1][n]*A[2][2][n]

- A[1][2][n]*A[1][2][n])/det;

// and so on for the other

indices.

.

.

.

}

then det and the elements of A at a particular n can fit

in the cache while computing all six elements of I. Af-

ter that, they won’t be needed again. For N = 100, 000
this code takes anywhere from 10% to 50% less time

(depending on architecture) while using less memory.

This is not an isolated case. In General Relativity
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codes, there can be over 100 named temporaries like

det. Unless the compiler is omniscient, it will have

a hard time fusing all of the loops between statements

and removing extraneous temporaries. It becomes even

more difficult if there is an additional loop on the out-

side which loops over multiple grids, as is common

when writing codes that deal with multiple processors

or adaptive grids.

As an aside, the Blitz library [11] uses this approach.

On the benchmark page for the Origin 2000/SGI

C++ [12], there are results for a number of loop ker-

nels. For many of them, Blitz compares quite favorably

with the Fortran versions. However, whenever there is

more than one expression with terms common to both

expressions (as in loop tests #12–14, 16, 23–24) there

are dramatic slow downs. It even mentions explicitly

(after loop test #14) “The lack of loop fusion really

hurts the C++ versions.”

The POOMA library [9] uses an approach which

should solve some of these problems. It splits up calcu-

lations into chunks that fit neatly into the cache. Then,

multiple loops are no longer a problem, because all of

the variables in each loop fit into the cache. Doing this

correctly is quite difficult, because the library writer

must be able to deduce how many different variables

are involved in each execution block. In addition, it

still requires storage for named temporaries.

Does all this mean that we have to go back to C-tran

for performance?

2.3. Expression templates + manual loop fusion

The flaw in the previous method is that it tried to do

two things at once: implicitly sum indices and iterate

over the grid. Iterating over the grid while inside the

expression necessarily meant excluding other expres-

sions from that iteration. It also required temporaries

to be defined over the entire grid. To fix this, we need

to manually fuse all of the loops, and provide for tem-

poraries that won’t be defined over the entire grid. We

do this by making two kinds of tensors. One of them

just holds the elements (so a Tensor1 would have three

doubles, and a Tensor2 has 9 doubles). This is used

for the local named temporaries. The other kind holds

pointers to arrays of the elements. To iterate over the

array, we overload operator++. A rough sketch of

this tensor iterator class is

class Tensor1_iter

{

mutable double *x, *y, *z;

public:

void operator++()

{

++x;

++y;

++z;

\

\\Indexing, assignment, initia-lization

operators etc.

}

Making it a simple double * allows us to use any
sort of contiguous storage format for the actual data.
The data may be managed by other libraries, giving us
access to a pointer that may change. In that sense, the
Tensor is not the only owner of the data, and all copies
of the Tensor have equal rights to access and modify
the data.

We make the pointers mutable so that we can
iterate over const Tensor1 iter’s. The index-
ing operators for const Tensor1 iter returns a
double, not double * or double &, so the actual
data can’t be changed. This is different from how it-
erators in the Standard Template Library work. This
keeps the data logically const, while allowing us to
look at all of the points on the grid for that const
Tensor1 iter.

We would then write the matrix inversion example
as

for(int n=0;n<N;++n)

{

double det=A(0,0)*A(1,1)*A(2,2) + A(1,0)
* A(2,1)*A(0,2)

+ A(2,0)*A(0,1)*A(1,2) - A(0,0)

* A(2,1)*A(1,2)

- A(1,0)*A(0,1)*A(2,2) - A(2,0)

* A(1,1)*A(0,2);

I(0,0)= (A(1,1)*A(2,2) - A(1,2)*A(1,2))/det;

I(0,1)= (A(0,2)*A(1,2) - A(0,1)*A(2,2))/det;
I(0,2)= (A(0,1)*A(1,2) - A(0,2)*A(1,1))/det;

I(1,1)= (A(0,0)*A(2,2) - A(0,2)*A(0,2))/det;

I(1,2)= (A(0,2)*A(0,1) - A(0,0)*A(1,2))/det;

I(2,2)= (A(1,1)*A(0,0) - A(1,0)*A(1,0))/det;

++I;

++A;

}

This solution is not ideal and has a few hidden traps,
but is certainly better than C-tran. It requires a manually
created loop over the grid, and all relevant variables
have to be incremented. Care must also be taken not
to iterate through a grid twice. For example, following
the above code fragment with

for(int n=0;n<N;++n)

{

Trace=A(0,0)+A(1,1)+A(2,2);

++A;

++Trace;

}
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will iterate off of the end of A, because the internal

pointer for A has not been reset.

For our specific application (Numerical General Rel-

ativity), these were not serious problems, because most

of the logic of our program is in the manipulation of

local named variables. Only a few variables (the input

and output) need to be explicitly iterated.

However, this may not be the right kind of solution

for generic arrays. They correspond to rank 0 tensors

(tensors without any indices). It is a win for higher

rank tensors because most of the complexity is in the

indices. But for generic arrays, there are no indices. A

solution like this would look almost identical to C-tran.

3. Implementing natural notation efficiently

The previous section described the design choices

required for efficiency. In this section, we describe

how we achieve a natural tensor notation with minimal

overhead.

3.1. Basic classes

To illustrate our basic design, we start with rank 1

tensors. The code is slightly more clear forTensor1’s

than for Tensor1 iter’s, so we will concentrate on

them. However, the techniques are the same, and al-

most all of the code is used by both types.

We define a class Tensor1 with three elements

corresponding to the x,y, and z components. We define

operator()(int) to return these elements, so if we

have a Tensor1 named A, A(0) gives the x element,

A(1) gives the y element, and A(2) gives the z element.

The outline of this class so far is

class Tensor1

{

double data0, data1, data2;

public:

double & operator(int N)

{

return (N==0 ? data0 : (N==1 ? data1 :

data2));

}

.

.

.

Note that there is no range check on the index, so

A(1221) will return the same result as A(2). We also

have a checked version selected at compile time with

#ifdef DEBUG macros, but we omit it for clarity.

We want to support the notation A(i) = B(i), where
i is implicitly summed over 0, 1, and 2. To do this, we
use expression templates [13], because they transpar-
ently provide high performance. We define two aux-
iliary classes, Index and Tensor1 Expr. Index

is used to tell the compiler what the index of the
Tensor1 is. It uses a template parameter to store this
information, so it is otherwise empty. The definition of
Index is thus rather simple

template<char i>

class Index {};

On the other hand, Tensor1 Expr is designed to
hold any kind of expression that eventually simplifies
to a rank 1 tensor. For example, the expressions A(i)
and B(j)*T(j,i) (which has an implicit summation
over j) both simplify to a tensor with one index. To
accomplish this, Tensor1 Expr has two template
parameters that tell it 1) what kind of object it contains,
and 2) what its index is. This class is analogous to the
DExpr class in the original expression templates paper
[13]. The definition for Tensor1 Expr is then

template<class A, char i>

class Tensor1_Expr

{

A iter;

public:

Tensor1_Expr(A &a): iter(a) {}

double operator()(const int N) const

{

return iter(N);

}

};

Here, the template parameter class A is the ob-
ject contained in the expression, and char i is
the tensor index. We overload the member func-
tion Tensor1::operator()(Index) to return a
Tensor1 Expr.

template<char i>

Tensor1_Expr<Tensor1,i> operator() (Index<i>
index)

{

return Tensor1_Expr<Tensor1,i>(*this);

}

An example of its use is

Index<‘i’> i;

Tensor1 A;

A(i);

Here, the statement A(i); creates a Tensor1 Ex

pr<Tensor1,‘i’>. This just illustrates the sim-
plest case, where aTensor1 Exprholds aTensor1.
To assign one tensor to another, we create a partial
specialization of Tensor1 Expr for the case when it
contains a Tensor1
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template<char i>

class Tensor1_Expr<Tensor1, i>

{

Tensor1 &iter;

public:

Tensor1_Expr(Tensor1 &a): iter(a) {}

double & operator()(const int N)
{

return iter(N);

}

template<class B>

const Tensor1_Expr<Tensor1,i> &

operator=(const Tensor1_Expr<B,i>&result)

{

iter(0)=result(0);
iter(1)=result(1);

iter(2)=result(2);

return *this;

}

const Tensor1_Expr<Tensor1,i> &

operator=(const Tensor1_Expr

<Tensor1,i> &result)

{

return operator=<Tensor1>(result);

}

};

This is almost the same as the general Tensor1 Ex

pr. The only differences are that it defines the equals
operator, and it takes a reference to the object that
it contains (Tensor1 &iter), instead of a copy (A
iter). The second change is needed in order for
assignment to work. Our example now becomes

Index<‘i’> i;

Tensor1 A, B;

A(i)=B(i);

The last statement creates two Tensor1 Expr<Ten

sor1,‘i’>’s, one for A and one for B. It then assigns
the elements of B to the elements of A. If we had tried
something like

Index<‘i’> i;

Index<‘j’> j;

Tensor1 A, B;

A(i)=B(j);

then the compiler would not have found a suitable
operator=(). The second Tensor1 Expr<> tem-
plate parameter (char), which was obtained from
Tensor1::operator()(Index<i> index), wo
uld not match. This provides strong compile-time
checking of tensor expressions.

Generalizing this to higher rank tensors is fairly
straightforward. We define the appropriate TensorN
class to hold more elements (3N ). We overload
operator()(int,int,. . . ) and operator()(Ind
ex,Index,. . . ). We define a TensorN Expr<>

class and overload its operator()(int,int,. . . ).
We partially specialize it for TensorN’s and define an
equal’s operator.

3.2. Arithmetic operators

Now we want to do something really useful. We
want to add two Tensor1’s together. This is where
expression templates really come into play. We do this

by creating a helper class Tensor1 plus Tensor1.
In the original expression templates paper[13], there
was a generalized DBinOpExpr class. However, the
action of * is very different from + and −, and / is not
well defined for tensors of rank 1 or higher, so there

is no real advantage to a generalized BinOpExpr class.
The helper class is defined as

template<class A, class B, char i>

class Tensor1_plus_Tensor1

{

const Tensor1_Expr<A,i> iterA;

const Tensor1_Expr<B,i> iterB;

public:

double operator()(const int N) const

{

return iterA(N)+iterB(N);

}

Tensor1_plus_Tensor1(const Tensor1_Expr<A,i>

&a,

const Tensor1_Expr<B,i>

&b): iterA(a),

iterB(b) {}

};

This helper class contains the two objects that are

being added. When we use operator()(int) to
ask for an element, it returns the sum of the two
objects. This class is used in the definition of
operator+(Tensor1 Expr,Tensor1 Expr)

template<class A, class B, char i>

inline Tensor1_Expr<const Tensor1_plus_Tensor1

<const Tensor1_Expr<A,i>,const

Tensor1_Expr<B,i>,i>,i>

operator+(const Tensor1_Expr<A,i>&a,

const Tensor1_Expr<B,i>&b)

{

typedef const Tensor1_plus_Tensor1

<const Tensor1_Expr<A,i>,

const Tensor1_Expr<B,i>,i>TensorExpr;

return Tensor1_Expr<TensorExpr,i>

(TensorExpr(a,b));

}

Note that the indices of the two Tensor1 Expr’s

have to match up, or they won’t have the same char
template parameter. This is another example of strict
compile-time checking for validity of tensor expres-
sions.

To make more sense of this, let’s consider an example

Index<‘i’> i;

Tensor1 A, B, C;

A(i)=B(i)+C(i);
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The individual expressions A(i), B(i) and C(i)
all create a Tensor1 Expr<Tensor1,‘i’>. The
plus operator creates a Tensor1 Expr<Tensor1 p

lus Tensor1<Tensor1,Tensor1,‘i’>,

‘i’>. The equals operator then asks for operator()
(0), operator()(1), and operator()(2) from this
compound object. The Tensor1 Expr<> ob-
ject passes these calls to it’s contained object, the
Tensor1 plus Tensor1. TheTensor1 plus T

ensor1 object returns the sum of the calls to the
two objects (Tensor1 Expr’s) it contains. The
Tensor1 Expr’s pass the call to the Tensor1 it
contains, and we finally get the results.

The code for subtraction is exactly the same with +
replaced with − and plus replaced with minus .
The * operator has a very different meaning which de-
pends on what the indices are. For example,A(i)*B(i)
contracts the two tensors together, implicitly summing
the indices, yielding a double, while A(i)*B(j) cre-
ates a new Tensor2 with indices of i and j. Im-
plicit summation is described in the next section, but
the solution to the latter is quite similar to the addition
operator described before. We first need a helper class

template<class A, class B, char i, char j>

class Tensor1_times_Tensor1

{

const Tensor1_Expr<A,i> iterA;

const Tensor1_Expr<B,j> iterB;

public:

Tensor1_times_Tensor1(const Tensor1_Expr<A,

i> &a,

const Tensor1_Expr

<B,j> &b)

: iterA(a), iterB(b) {}

double operator()(const int N1,const int N2)
const

{

return iterA(N1)*iterB(N2);

}

};

and then we overload operator*(Tensor1 E

xpr,Tensor1 Expr)

template<class A, class B, char i,

char j> inline

Tensor2_Expr<const Tensor1_times_Tensor1

<const Tensor1_Expr<A,i>,

const Tensor1_Expr<B,j>,i,j>,

i,j>

operator*(const Tensor1_Expr<A,i> &a,

const Tensor1_Expr<B,j> &b)

{

typedef const Tensor1_times_Tensor1

<const Tensor1_Expr<A,i>,

const Tensor1_Expr<B,j>,i,j> TensorExpr;

return Tensor2_Expr<TensorExpr,i,j>

(TensorExpr(a,b));
}

3.3. Implicit summation

The preceding work is not really that interesting.
Blitz [11] already implements something almost like
this. What really distinguishes this library from others
is its natural notation for implicit summation, or con-
traction. There are two kinds of contraction: external
and internal.

3.3.1. External contraction

External contraction is when the index of one tensor
contracts with the index of another tensor. This is the
most common case. Consider the simple contraction
of two rank 1 tensors

Index<‘i’> i;

Tensor1 A,B;

double result=A(i)*B(i);

To accomplish this, we specializeoperator*(Ten
sor1 Expr,Tensor1 Expr)

template<class A, class B, char i>

inline double operator*(const Tensor1_Expr

<A,i> &a,

const Tensor1_Expr<B,

i>&b)

{

return a(0)*b(0) + a(1)*b(1) + a(2)*b(2);

}

Because the function is typed on the template pa-
rameter i, which comes from the Index when the
Tensor1 Expr is created, it will only be called for
operands that have the same index (i.e. A(i)*B(i), not
A(i)*B(j)).

We also want to contract tensors together that result
in a tensor expression, such as a Tensor1 contracted
with a Tensor2 (A(i)*T(i,j)). As with the addition
and subtraction operators, we use a helper class

template<class A, class B, char i,char j>

class Tensor2_times_Tensor1_0

{

const Tensor2_Expr<A,j,i> iterA;

const Tensor1_Expr<B,j> iterB;

public:

Tensor2_times_Tensor1_0(const Tensor2_Expr

<A,j,i> &a,

const Tensor1_Expr

<B,j> &b)

: iterA(a), iterB(b) {}

double operator()(const int N1) const

{

return iterA(0,N1)*iterB(0)

+ iterA(1,N1)*iterB(1)

+ iterA(2,N1)*iterB

(2);

}

};
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The 0 appended to the end of the class is a simple

way of naming the classes, since we will need a sim-

ilar class for the case of A(i)*T(j,i) (as opposed to

A(i)*T(i,j), which we have here). Then we special-

ize operator*(Tensor1 Expr,Tensor2 Ex-

pr)

template<class A, class B, char i, char j>

inline

Tensor1_Expr<const Tensor2_times_Tensor1_1

<const Tensor2_Expr<A,i,j>,

const Tensor1_Expr<B,j>,i,

j>,i>

operator*(const Tensor1_Expr<B,j> &b,

const Tensor2_Expr<A,i,j> &a)

{

typedef const Tensor2_times_Tensor1_1

<const Tensor2_Expr<A,i,j>,

const Tensor1_Expr<B,j>,i,j> TensorExpr;

return Tensor1_Expr<TensorExpr,i>

(TensorExpr(a,b));

}

3.3.2. Internal contraction

Contraction can also occur within a single tensor.

The only requirement is that there are two indices to

contract against each other. A simple example would

be

Index<‘i’> i;

Tensor2 T;

double result=T(i,i);

The last line is equivalent to

double result=T(0,0)+T(1,1)+T(2,2);

This internal contraction is simply implemented by spe-

cializing Tensor2::operator()(Index,Index)

template<char i>

double operator()(const Index<i> ind-ex1,

const Index<i> index2)

{

return data00 + data11 + data22;

}

There is also a more complicated case where there

is an internal contraction, but the result is still a tensor.

For example, a rank 3 tensor W contracting to a rank 1

W(i,j,j). For this, we define a helper class

template<class A, char i>

class Tensor3_contracted_12

{

const A iterA;

public:

double operator()(const int N) const

{

return iterA(N,0,0) + iterA(N,1,1) + iterA

(N,2,2);

}

Tensor3_contracted_12(const A &a): iterA(a)

{}

};

Then we define a specialization of operator()(In

dex,Index,Index) to create one of these objects

template<char i, char j> inline

Tensor1_Expr<const Tensor3_contracted_12

<Tensor3_dg,i>,i>

operator()(const Index<i> index1,

const Index<j> index2,

const Index<j> index3) const

{

typedef const Tensor3_contracted_12

<Tensor3_dg,i> TensorExpr;

return Tensor1_Expr<TensorExpr,i>

(TensorExpr(*this));

}

Now, if we ask for the x component of W(i,j,j),

the compiler will automatically sum over the second

and third indices, returning W(0,0,0)+W(0,1,1)+
W(0,2,2).

3.4. Reduced rank tensors

Expressions like A(i)=T(0,i) can sometimes pop

up. To handle this, we make a helper class

template<class A>

class Tensor2_numeral_0

{

A iterA;

const int N;

public:

double operator()(const int N1) const

{

return iterA(N,N1);

}

Tensor2_numeral_0(A &a, const intNN):iterA(a),

N(NN) {}

};

This class is instantiated when operator()(Ind

ex<>, int) is called on a Tensor2

template<char i>

Tensor1_Expr<const Tensor2_numeral_0<const

Tensor2>,i> operator()(constint int N,

{

typedef const Tensor2_numeral_0<const

Tensor2> TensorExpr;

return Tensor1_Expr<TensorExpr,i>

(TensorExpr(*this,N));

}

The end result of all of this is that when we write
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Index<‘i’> i;

Tensor1 A;

Tensor2 T;

A(i)=T(0,i);

we create aTensor1 Expr<Tensor2 numeral 0

<Tensor2>,‘i’> which then gets assigned to the

Tensor1 Expr<Tensor1,‘i’> created by A(i).

Unfortunately, a syntax like T(0,i) is inefficient,

because the value of the first index (0) is difficult, even

in simple cases, for compilers to deduce and apply at

compile time. To aid the compiler in the case where the

programmer does know at compile-time what the value

of the index is, we introduce a new auxiliary class

template<int N>

class Number

{

public:

Number() {};

operator int() const

{

return N;

}

};

Like Index, there is very little to the actual class.

Because of the conversion operator, it can be used any-

where an int can be used. For example

Number<1> N1;

Tensor1 A,B;

A(N1)=B(N1);

is equivalent to

Tensor1 A,B;

A(1)=B(1);

We also create another helper class

template<class A, char i, int N>

class Tensor2_number_0

{

const A &iterA;

public:

double & operator()(const int N1)

{

return iterA(N,N1);

}

double operator()(const int N1) const

{

return iterA(N,N1);

}

Tensor2_number_0(A &a): iterA(a) {}

};

As with int’s, this class is instantiated when

operator()(Number<>,Index<>) is called on a

Tensor2

template<char i, int N>

Tensor1_Expr<const Tensor2_number_0<const

Tensor2,i,N>,i>

operator()(const Number<N> n1, const Index<i>

index1) const

{

typedef const Tensor2_number_0<const

Tensor2,i,N> TensorExpr;

return Tensor1_Expr<TensorExpr,i>

(TensorExpr(*this));

}

An example of usage is

Number<0> N0;

Index<‘i’> i;

Tensor1 A;

Tensor2 T;

A(i)=T(N0,i);

Simple tests show that a good compiler can use the

template arguments to optimize this expression as well

as if it were written with simple arrays, while it can’t

optimize expressions with simple int’s as indices.

3.5. Symmetric/antisymmetric tensors

It is often the case that a tensor will have various sym-

metries or antisymmetries, such as S(i,j)=S(j,i),

or A(i,j)= −A(j,i). Taking advantage of these

symmetries can significantly reduce storage and com-

putation requirements. For example, a symmetric

rank 2 tensor S only has 6 truly independent elements

(S(0,0), S(0,1), S(0,2), S(1,1), S(1,2), S(2,2)),

instead of 9. The other three elements (S(1,0),

S(2,0), S(2,1)) are simply related to the previous el-

ements. An antisymmetric rank 2 tensor A only has

3 independent elements (A(0,1), A(0,2), A(1,2)).

Three of the other elements are simply related to

these three (A(1,0)= −A(0,1), A(2,0)= −A(0,2),

A(2,1)= −A(1,2)). The rest (A(0,0), A(1,1), and

A(2,2)) must be zero, since A(0,0)=-A(0,0) etc.

The effect becomes more dramatic with higher rank

tensors. The Riemann tensor mentioned before has

four indices, making a total of 81 possible elements,

but symmetries and antisymmetries reduce that number

to 6.

3.5.1. Symmetric tensors

It turns out that implementing a symmetric ten-

sor is quite simple. First, we define a class (e.g.

Tensor2 symmetric) with the minimum number

of elements. Then we write the indexing operators

(operator()(int,int,. . . )) so that, if an element

that is not available is requested, it uses the symme-
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try and returns the equivalent one. For example, for

a symmetric rank 2 tensor, we only define data00,

data01, data02, data11, data12, and data22.

Then, if element (2,1) is requested, we just return

data12.

Second, we simplify the equals operator so that it

only sets the elements we have. That is, for a normal

Tensor2, we would have

iter(0,0)=result(0,0);

iter(0,1)=result(0,1);

iter(0,2)=result(0,2);

iter(1,0)=result(1,0);

iter(1,1)=result(1,1);

iter(1,2)=result(1,2);

iter(2,0)=result(2,0);

iter(2,1)=result(2,1);
iter(2,2)=result(2,2);

while for a Tensor2 symmetric we only have

iter(0,0)=result(0,0);

iter(0,1)=result(0,1);
iter(0,2)=result(0,2);

iter(1,1)=result(1,1);

iter(1,2)=result(1,2);

iter(2,2)=result(2,2);

We also have to write all of the arithmetic and con-

traction operators that use Tensor2 symmetric’s,

but they are basically the same as the no-symmetry

case.

3.5.2. Antisymmetric tensors

Implementing antisymmetric tensors is a bit more

tricky. The same kinds of changes are made

to the definitions of Tensor and Tensor Expr,

but it is not clear what should be returned when

an operator()(int,int,. . . ) asks for an ele-

ment that is identically zero (such as A(0,0)) or

is the negative of the value that we store (such as

A(1,0)). The imperfect solution that we have is

to rename T& operator()(int,int,. . . ) to T&

unsafe(int,int,. . . ). However, T operator()

(int,int,. . . ) const is still defined, and returns

the appropriate value. This allows a library user to

access the elements of the antisymmetric tensor using

the natural syntax, but assigning to it will be obviously

unsafe. However, if onlyIndex’s are used, then the li-

brary will automatically sum over the correct elements.

It uses unsafe internally, so most of the time, the li-

brary user will not even need to know about unsafe.

In those cases where the user does have to useunsafe,

debug builds should catch any illegal assignment during

runtime.

4. Implementation and testing

We have implemented the (inefficient) “Simple

Classes” method (Section 2.1) and the (efficient) “Ex-

pression Templates + Manual Loop Fusion” method

(Section 2.3). We did not attempt to implement “Ex-

pression Templates” (Section 2.2), because it was clear

that it could not be as efficient as the method with man-

ual loop fusion, while still being a difficult chore to

implement.

4.1. Compiler compatibility

Not all compilers support enough of the C++ stan-

dard to compile expression templates, while simple

classes work with almost any compiler. A compari-

son of twelve combinations of compiler and operating

system is shown in Table 1.

The template support of these compilers is actually

quite good. A year ago many of these compilers would

not have been able to compile the efficient library. We

tested a slightly out of date version of SGI’s compiler,

with the current version being 7.3.1.3. Even so, it’s only

problem is that it does not make <cmath> available, and

it is easy to work around that. IBM’s compiler seems

to be immature, with a remarkable number of cases of

Internal Compiler Errors (ICE’s). They are currently

in beta testing for version 6.0 which may rectify that.

The Sun compiler is the only one that was completely

unable to compile the efficient library. They have also

come out with a new version recently, which may fix

those problems.

The C++ standard specifies that compliant pro-

grams can only rely on 17 levels of template instan-

tiation. Otherwise, it would be difficult to detect and

prevent infinite recursion. However, the intermediate

types produced by template expression techniques can

exceed this limit. Most compilers allowed us to over-

ride the limit on the number of pending instantiations,

with the exception of the SGI, Portland Group, and

IBM compilers (although the Intel command line op-

tion, “-Qoption,cpp,–pending instantiations,N”, is not

documented). The SGI and Portland group compilers

would not compile any program with too many levels.

The IBM compiler did not honor the standard and hap-

pily compiled programs with more than 50 levels of

template instantiation.

This is not a complete list of C++ compilers.

Notably, it does not include the Microsoft, Borland,

Metrowerks, or HP compilers. The Microsoft com-

piler probably can not compile the efficient library since
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Table 1

Compilers comparison

Compiler/Operating System Compiles efficient library?

Comeau como 4.2.45.2 + libcomobeta14/Linux x86 [15] Yes

Compaq cxx 6.3/Tru64 [16]

GNU gcc 3.1/Linux x86, Solaris, AIX [17]

KAI KCC 4.0d/Linux x86, 3.4/AIX [18]

Intel icc 6.0-149/Linux x86 [21]
Portland Group pgCC 4.0-1/Linux x86 [22]

IBM xlC 5.0.0.1/AIX [19] Yes- with occasional ICE’s

SGI CC 7.3.1.1m/Irix [20] Somewhat-no <cmath> and

can’t override template

instantiation limit

Sun CC 6.2/Solaris Sparc [23] No, doesn’t support partial
specialization with non-type

template parameters

it does not implement partial specialization [24]. On

Linux, the Metrowerks compiler is actually the GNU

gcc 2.95.2 compiler with a fancy GUI. That version of

gcc will compile this library, but it can’t compile the

more general version that will be described in Section 5.

As for Metrowerks on other platforms, as well as the

Borland and HP compilers, it is impossible to say any-

thing without actually trying them out. This template

library tends to flush out obscure bugs in compilers that

claim full compliance. It is useful enough in that regard

to become part of the official release criteria for GNU

gcc [25], in addition to the POOMA [9] and Blitz [11]

template libraries.

4.2. Benchmarks

We have three tests to measure the efficiency of the

various methods relative to each other and to C-tran.

We have not attempted a direct comparison with other

tensor libraries, because most do not support implicit

summation and none of them support the wide range of

tensor types needed (ranks 1, 2, 3 and 4 with various

symmetries). This makes replicating the functionality

in the tests extremely time consuming.

4.2.1. Small loop kernel: Implementation test

To make sure that we didn’t make any gross errors

in implementing expression templates, we use a small

loop kernel to compare the efficient library against C-

tran style. The tensor version is simply

Tensor1 x(0,1,2), y(3,4,5), z(6,7,8);

for(int n=0;n<1000000;n++)

{

Index<‘i’> i;

x(i)+=y(i)+z(i);

+(y(i)+z(i))-(y(i)+z(i))

+(y(i)+z(i))-(y(i)+z(i))

+(y(i)+z(i))-(y(i)+z(i))

.

.

.

}

The complexity of the expression is determined by
how many (y(i)+z(i))−(y(i)+z(i)) terms there are
in the final expression. Note that since we’re adding
and subtracting the same amounts, the essential com-
putation has not changed. We also coded a version
of the code in C-tran style using ordinary arrays, and
compared the execution speeds of the two versions.

For large expressions, KCC was the only compiler
that could fully optimize away the overhead from the
expression templates, although we had to turn off ex-
ceptions. This is good evidence that we didn’t make
any serious optimization errors in implementation. For
the other compilers, the slowdown increased with the
number of expressions, becoming more than 100 times
slower than the C-tran version.

This benchmark may be deceiving, though. The C-
tran versions all run at the same speed regardless of how
many terms we added. An examination of the assem-
bler output shows that the compiler removes the identi-
cally zero subexpressions. This wouldn’t be possible in
most production codes, so the relative slowdown may
not be as great.

4.2.2. Small loop kernel: Compiler optimization test

To get a better handle on how well the compilers
optimize more realistic code, we wrote several versions
of a code to compute an infinite sum

a1i

∞
∑

n=0

0.1n + 2 · a2i

∞
∑

n=0

0.02n + 3
(

a1ja2j
)

a3i

∞
∑

n=0

0.006n + . . . .
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Fig. 1. Relative execution times of C-tran and Tensor1’s. Any points less than one mean that the Tensor code is slower than C-tran.

The simplest version computes the sum that only has

the (a1i) term, the second version has both the (a1 i) and

the (2 · a2i) terms, and so on. This gives the compiler

a more and more complicated expression to optimize.

The code for the tensor version is then

Tensor1 y(0,1,2);

Tensor1 a1(2,3,4);

Tensor1 a2(5,6,7);

Tensor1 a3(8,9,10);

Tensor1 a4(11,12,13);

Tensor1 a5(14,15,16);
.

.

.

for(int n=0;n<1000000;++n)

{

const Index<‘i’> i;

const Index<‘j’> j;

const Index<‘k’> k;

const Index<‘l’> l;

const Index<‘m’> m;

y(i)+=a1(i)

+ 2*a2(i)

+ 3*a1(j)*a2(j)*a3(i)

+ 4*a1(j)*a3(j)*a2(k)*a2(k)*a4(i)

+ 5*a1(j)*a4(j)*a2(k)*a3(k)*a5(i)
.

.

.

a1(i)*=0.1;

a2(i)*=0.2;

a3(i)*=0.3;

a4(i)*=0.4;

a5(i)*=0.5;

.

.

.

}

with complexity determined by how much we fill in

the ellipses. After n gets to about fifteen, the sum con-

verges to machine precision, although current compil-

ers can not deduce that. We vary the number of it-

erations (1000000 here), so that the run finishes in a

reasonable time. We also laboriously coded a C-tran

version and compared the execution speed of the two.

Figure 1 plots the relative execution times of the the

Tensor1 and C-tran versions versus the number of op-

erators (+ and *) in the expressions.

The specific compiler options used to create this plot

are listed in the appendix. The performance of some

of the compilers may be a little overstated since they

don’t optimize the C-tran code as well as some other

compilers. On Linux x86, the fastest compiler for the

C-tran code was either the Intel or KAI compiler, and

on AIX, it was IBM’s xlC. So in Figs 2 and 3 we plot

the relative execution time of the fastest C-tran codes

versus the various Tensor codes for Linux and AIX.

These are busy plots, but the main thing to notice is

that sometimes the compilers can optimize the expres-

sions well, though often not. Some compilers do well

with small expressions, and some do better with larger
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Fig. 2. Relative execution times of fastest C-tran and Tensor’s on Linux x86.

expressions. However, even for the best compilers, the

Tensor1 class can run much slower than C-tran. In par-

ticular, the non-x86 compilers seem to fare worse than

their x86 cousins.

4.2.3. Complete application: Numerical relativity

To gauge how much the lack of optimization matters

in real codes, we used our application for simulating

neutron star collisions in General Relativity [5]. This

code has to compute many complicated formulas on

grids much too large to fit into processor caches. We

found that, when compiled with KAI’s KCC 4.0d com-

piler on an IBM SP2 running AIX, the “Expression

Templates+Manual Loop Fusion” library (Section 2.3)

runs about twice as fast and uses a third of the memory

of the “Simple Classes” library (Section 2.1). This was

after we attempted to optimize the “Simple Classes”

code by manually constructing expression trees to re-

duce temporaries [26]. Unfortunately, the expression

trees quickly became too numerous and varied to create

by hand.

When compiled with GNU gcc 2.95.2 or IBM’s xlC

5.0.1.0, the “Expression Templates+Manual Loop Fu-

sion” library code was 10–20% slower than when com-

piled with KCC. The logic was far too complicated to

create a C-tran version.

Because these tests were run with different compiler

versions on different machines than that used for the

loop kernels, we plot the results analogous to Fig. 3

in Fig. 4. KAI’s compiler does well with small ex-

pressions, which may imply that the application spends

more time in small tensor expressions. It is difficult to

tell for sure, because the compiler inlines almost every-

thing, making direct measurement tricky. But in that

case, the difference between KCC and gcc would be

much larger. This suggests that the differences lie else-

where, and the bottleneck is not expression templates.

It is impossible to say anything for sure.

5. Extending the library

An experienced reader may have looked at the rough

declaration of Tensor1 and thought that hard coding

it to be made up of double is rather short sighted. It

is not so difficult to envision the need for tensors made

up of int’s or complex<double>’s. It might also

be nice to use two or four dimensional tensors (so a

Tensor1 would have 2 or 4 elements, a Tensor2

would have 4 or 16 elements). The obvious answer is to

make the type and dimension into template parameters.

We can use arrays for the elements, in which case the

class becomes

template<class˜T, int Dim> class Ten

sor1 {

T data[Dim];
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Fig. 3. Relative execution times of fastest C-tran and Tensor’s on AIX.

Fig. 4. Relative execution times of fastest C-tran and Tensor1 on AIX for different compiler versions.

T & operator()(int N) {

return data[N];

}

.

.

.

};

There is a minor wrinkle if we want to use a simple

constructor syntax like

Tensor1<int,3> T1(1,2,3);

If we simply add in the constructors for two and

three dimensions, then an unwitting user might write
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something like

Tensor1<int,3> T1(1,2);

and thus not set all of the elements. Worse, they might

write

Tensor1<int,2> T1(1,2,3);

and write off of the end of the array. This could be a

source of subtle bugs. Since compile-time checks are

better than run-time checks, we solve this with a helper

class. For Tensor1, this class is

template<class T, int Dim> class Ten

sor1_constructor;

template<class T> class Tensor1_constructor

<T,2> {

public:

Tensor1_constructor(T data[], T d0, T d1) {

data[0]=d0;

data[1]=d1;

}

};

template<class T> class Tensor1_constructor

<T,3> {

public:

Tensor1_constructor(T data[], T d0, T d1, T

d2) {

data[0]=d0;

data[1]=d1;

data[2]=d2;

}

};

// And similarly for 4,5,6,... dimensions.

In the Tensor1 class, we define the constructors to

just call Tensor1 constructor’s constructor

Tensor1(T d0, T d1) {

Tensor1_constructor<T,Dim>(data,d0,d1);

}

Tensor1(T d0, T d1, T d2) {

Tensor1_constructor<T,Dim>(data,d0,d1,d2);

}

Now, if someone tries to give too many or

too few arguments to the constructor, the compiler

will not be able to find the correct constructor for

Tensor1 constructor. The partially specialized

versions of Tensor1 constructor only have con-

structors for the correct number of arguments.

Indexing is also much simpler when using ar-

rays, although symmetric and antisymmetric ten-

sors require some attention. A rank 2 symmet-

ric tensor in Dim dimensions has (Dim(Dim+1)/2)

independent elements, while an antisymmetric ten-

sor has (Dim(Dim-1)/2) independent elements. We

store them in a one-dimensional array and trans-

late between the tensor indices and the array in-

dex. For Tensor2 symmetric, this means that

operator()(int,int) becomes

T& operator()(const int N1, const int N2)

{

return N1>N2 ? data[N1+(N2*(2*Tensor_Dim

- N2-1))/2]:

data[N2+(N1*(2*Tensor_Dim

- N1-1))/2];

}

A similar technique works for antisymmetric tensors

T operator()(const int N1, const int N2) const

{

return N2<N3 ? data[N1][N3-1+(N2*(2*(Tensor

_Dim12-1)-N2-1))/2] :

(N2>N3 ? -data[N1][N2-1+(N3*(2*(Tensor

_Dim12-1)-N3-1))/2] :

0.0);

}

We also modify the TensorN Expr classes so that

they carry information about their dimension and type.

We can use traits [7] to automatically promote types

(e.g. from int to double, or from double to

complex<double>). We can also make the arith-

metic operators dimension agnostic with some template

meta-programming[14]. It turns out that the only place

where the dimension comes in is in assignment and in

implicit summation. For the case of assignment to a

Tensor1 Expr, the code becomes

template<class A, class B, class U, int Dim,

char i,

int Current_Dim> inline

void T1_equals_T1(A &iter,

const Tensor1_Expr

<B,U,Dim,i>result,

const Number<Current_Dim>

&N)

{

iter(Current_Dim-1)=result(Current_Dim-1);

T1_equals_T1(iter,result,Number

<Current_Dim-1>());
}

template<class A, class B, class U, int Dim,

char i> inline

void T1_equals_T1(A &iter, const

Tensor1_Expr<B,U,Dim,i> result,

const Number<1> &N)

{

iter(0)=result(0);

}

template<class A, class T, int Tensor_Dim,

int Dim, char i>

template<class B, class U> inline const

Tensor1_Expr<Tensor1<A,Tensor_Dim>,T,Dim,i> &

Tensor1_Expr<Tensor1<A,Tensor_Dim>,T,Dim,i>::
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Fig. 5. Relative execution time of C-tran and more general Tensor’s.

operator=(const Tensor1_Expr<B,U,Dim,i>

&result)

{

T1_equals_T1(iter,result,Number<Dim>());

return *this;

}

That is, we’ve used templates to do a simple loop

from Dim-1 to 0. Defining assignment operators for

higher rank tensors as well as the implicit summation

functions uses similar loops. Now, if we’re trying to

follow Buckaroo Banzai across the 8th dimension, we

only have to define the constructors for Tensor1,

Tensor2, Tensor3, etc. classes for eight dimen-

sions, and all of the Tensor Expr classes and arith-

metic operators are ready to use.

In this framework, we can also defineIndex to have

a dimension

template<char i, int Dim>

class Index{};

When creating a Tensor Expr, we can use the

dimension of the Index rather than the dimension

of the Tensor to determine Tensor Expr’s dimen-

sion. Then if we have a four-dimensional tensor, it be-

comes simple to manipulate only the lower three dimen-

sional parts by using only three dimensional Index’s.

There is a danger, though. What if we use a four-

dimensional Index in a three dimensional Tensor?

Range-checked builds should catch this kind of error.

We have implemented this generalization [6]. IB-

M’s xlC can not compile it, always aborting with an

Internal Compiler Error. Also, KCC can’t fully opti-

mize complicated expressions in the first benchmark as

it could with the simpler version of the library, leading

to code that runs hundreds of times slower. Interest-

ingly enough, the TinyVector classes in Blitz [11] are

also templated on type and dimension, and complicated

expressions can not be fully optimized in that kind of

benchmark as well.

However, the performance in the second benchmark

is not affected in the same way. Figure 5 shows the rela-

tive execution times for C-tran versus the more general

Tensor’s, and Fig. 6 directly compares the two versions

of the Tensor library.

The results are generally mixed, although the KAI,

Portland Group, and Intel compilers generally do better

while the Comeau compiler does worse. Once again,

the non-x86 compilers do not perform very well. How-

ever, the overall conclusions from the last section are

unchanged. This is nice, in the sense that using a more

general library doesn’t necessarily cause another hit in

performance.
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Fig. 6. Relative execution time of simple and more general Tensor’s.

6. Conclusion

We have described the design of a freely available,

high performance tensor library [6]. It uses a number of

modern C++ template tricks, supported by most, but

not all, compilers, to produce generic, flexible, and fast

code. These tricks include expression templates [13],

template metaprograms [14], and traits [7], mixed in

with a number of helper classes. They allow the library

to express indices, tensors, tensor expressions, binary

operators on these expressions, internal and external

contractions, reduced rank tensors, and tensor symme-

tries in an efficient, type-safe framework, generalized

for any dimension or type, using natural notation.

However, the original promise of expression tem-

plates as a way to get away from C-tran is not com-

pletely fulfilled. Although the syntax is much im-

proved, there are still cases where a programmer must

resort to at least some manual loops in order to get

maximum performance. Even with this work, there are

still performance penalties, sometimes severe, which

vary from problem to problem, although in some cases

making a library more general and using template tech-

niques in more places can improve performance. In

particular, non-x86 compilers seem to do a bad job of

optimizing complicated template expressions. This is

probably just a reflection of the relative efforts that has

been put into optimizing for the x86 platform.

Despite these caveats, for our General Relativity ap-
plication expression templates were a huge win. Com-
pared to simple tensor classes, template techniques en-
abled faster, smaller executables, though at the cost
of longer compilation times and stringent compiler re-
quirements. Even compared to C-tran, it is not clear
that there is a significant speed penalty. What is clear is
that the program would never have been finished with-
out the syntactic simplicity afforded by tensor classes
of some sort. Furthermore, compiler requirements have
become much less onerous as C++ compiler technol-
ogy has caught up with the ISO standard.
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Appendix: Compiler options

Comeau –Drestrict=

–O3

–remove unneeded entities

–pending instantiations=100

Compaq –std ansi

–model ansi
–nousing std

–noexceptions

–nortti

–Drestrict= restrict

–assume noptrs to globals

–assume whole program

–assume noaccuracy sensitive

–inline all
–fast

–O5

–non shared

–tune host

–pending instantiations 1000

–nocleanup

GNU –O3

–ffast-math
–finline-functions -finline-limit-1000

–funroll-loops

–ftemplate-depth-100

–Drestrict=

IBM –Drestrict=

–O3

Intel –restrict

–O3
–xi

–ipo

–Qoption,c,-ip ninl max stats=10000

KAI 3.4/ +K3

AIX –restrict

–no exceptions

–inline auto space time=750000000000000
–inline implicit space time=200000000000000

–inline generated space time=40000000000000.0

–inline auto space time=100000000000000.0

–max pending instantiations 100

–qmaxmem=100000

KAI 4.0d/ +K3

Linux –restrict

–no exceptions
–inline auto space time=750000000000000

–inline implicit space time=200000000000000

–inline generated space time=40000000000000.0

–inline auto space time=100000000000000.0

–max pending instantiations 100

Portland –Drestrict=

Group –fast

–Minline=levels:10
–no exceptions

SGI –LANG:std
–LANG:restrict=ON

–64

–O3

–LANG:exceptions=OFF

–IPA:space=1000000000

–IPA:plimit=1000000000

–OPT:unroll times max=100000

–OPT:unroll size=1000000
–INLINE=all

–IPA:alias=ON
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