Hindawi

Computational Intelligence and Neuroscience
Volume 2018, Article ID 3598284, 12 pages
https://doi.org/10.1155/2018/3598284

Research Article

Hindawi

Implementing a Parallel Image Edge Detection Algorithm Based
on the Otsu-Canny Operator on the Hadoop Platform

Jianfang Cao ©®,' Lichao Chen ®,> Min Wang,? and Yun Tian'

' Department of Computer Science and Technology, Xinzhou Teachers University, Xinzhou 034000, China
2College of Computer Science and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China

Correspondence should be addressed to Lichao Chen; chen_lichao@yeah.net

Received 15 November 2017; Revised 15 January 2018; Accepted 28 March 2018; Published 13 May 2018

Academic Editor: Pedro Antonio Gutierrez

Copyright © 2018 Jianfang Cao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The Canny operator is widely used to detect edges in images. However, as the size of the image dataset increases, the edge
detection performance of the Canny operator decreases and its runtime becomes excessive. To improve the runtime and edge
detection performance of the Canny operator, in this paper, we propose a parallel design and implementation for an Otsu-optimized
Canny operator using a MapReduce parallel programming model that runs on the Hadoop platform. The Otsu algorithm is used
to optimize the Canny operator’s dual threshold and improve the edge detection performance, while the MapReduce parallel
programming model facilitates parallel processing for the Canny operator to solve the processing speed and communication cost
problems that occur when the Canny edge detection algorithm is applied to big data. For the experiments, we constructed datasets
of different scales from the Pascal VOC2012 image database. The proposed parallel Otsu-Canny edge detection algorithm performs
better than other traditional edge detection algorithms. The parallel approach reduced the running time by approximately 67.2%
on a Hadoop cluster architecture consisting of 5 nodes with a dataset of 60,000 images. Overall, our approach system speeds up the
system by approximately 3.4 times when processing large-scale datasets, which demonstrates the obvious superiority of our method.

The proposed algorithm in this study demonstrates both better edge detection performance and improved time performance.

1. Introduction

Edges are a basic image feature and they are present between
a target and a background and between two targets, two
regions, or two primitives. Most of an image’s information is
carried in the edges. Usually, an image edge is a set of pixels
around which the gray-level values exhibit a step change.
Thus, edge detection technology is based on the discontinuity
or mutation of gray levels or textural characteristics between
an object and its background. Edge detection is an important
aspect of image processing and is the basis of many analyt-
ical methods in such fields as image segmentation, pattern
recognition, machine vision, and regional shape extraction.
In addition, edge detection is an important step in image
analysis and 3D reconstruction and is therefore also an
important feature in the field of digital image analysis. Image
edge detection algorithms have been widely studied [1]. The
basic idea is as follows. First, an edge enhancement operator
is used to highlight local edges in an image. Then, the edge

strength of the image is defined, and the edge points are
extracted by setting a threshold [2]. The performance of
the edge detection algorithm directly affects the precision of
extracted object contours and the performance of the system.
In 1959, Julesz [3] was the first to discuss edge detection;
later, in 1965, Roberts [4] began to systematically study edge
detection. After nearly 60 years of research, many different
edge detection methods have been designed, and each has its
own characteristics and limitations.

With the advent of the big data era, traditional edge
detection technologies are facing problem of poor edge
detection and long runtimes; thus, this technology needs to
be further analyzed and studied. The Canny operator is no
exception. Tang and Long [5] proposed a fast implementation
of the Canny operator based on a GPU+CPU combination
in which the GPU was used to parallelize the Canny edge
detection algorithm. Their results showed that the processing
time for 8-bit images at a resolution of 1024 x 1024 was
122 ms, as well as a speedup ratio of approximately 5.39

http://orcid.org/0000-0003-3687-3738
http://orcid.org/0000-0001-7111-2630
https://doi.org/10.1155/2018/3598284

times compared to the traditional Canny edge detection
algorithm. Such architectural improvements can improve the
performance of traditional image edge detection algorithms
under single-node architectures when processing massive
datasets. However, GPU-based parallel designs involve high
hardware costs and require developers who clearly under-
stand the target computer hardware systems; furthermore,
such implementations have difficulties due to the high cost
of communications among nodes [6].

In recent years, the MapReduce framework on the
Hadoop platform has attracted extensive attention from
scholars and researchers. MapReduce is a parallel computing
model that targets a distributed environment. It provides
developers with a complete programming interface that
makes a deep understanding of the underlying computer
system unnecessary. Furthermore, it is both less expensive
and more functional than traditional computing models. Due
to these advantages, MapReduce has become a hotspot in
the field of parallel design [7]. Therefore, this study aims to
apply the MapReduce programming model on the Hadoop
platform to parallelize the Canny operator so that it better
meets the needs of big data processing.

2. Related Works

Classic image edge detection algorithms include both first-
order differential operators (i.e., the Roberts, Prewitt, Sobel,
and Canny operators) and second-order differential oper-
ators (i.e., the Laplacian and LoG operators) and can be
applied to a wide range of applications. Wang and Liu
applied the Roberts operator to detect vehicle image edges
and recognize vehicle license plate locations by combining
it with mathematical morphology [8]. Yang et al. used the
Roberts operator and linear fitting to obtain two boundaries
and proposed an Otsu thresholding image segmentation
method [9]. To calculate image quality more consistently
compared to subjective evaluations, Zhang et al. designed a
new image quality assessment algorithm that used the Prewitt
operator to extract vertical edges in the HSV color space
[10]. Dwivedi et al. presented a handwritten Sanskrit word-
recognition method using the Prewitt operator for character
edge detection [11]. Nguyen et al. built an architecture for the
real-time hardware cosimulation of edge detection using the
Prewitt edge operator to evaluate the real-time performance
of an edge detection algorithm [12]. Singh et al. applied
the Sobel operator to detect edges in real-time surveillance
videos and presented a new resource-efficient FPGA-based
hardware architecture [13]. Jiang et al. performed color image
segmentation using the Canny operator by combining it with
a pulse-coupled neural network [14]. Based on the color
vector angle and the Canny operator, Tang et al. proposed
a robust image hashing mechanism to achieve a desirable
tradeoff of classification performances between rotation
robustness and discrimination [15]. Sun and Han enhanced
images by extracting the edge and texture information from
the original images using the Laplacian operator [16]. For
glass fragment images, Yang et al. proposed an edge detection
method that combined the LoG operator and mathematical
morphology and established a rapid transmission system to

Computational Intelligence and Neuroscience

realize rapid edge detection [17]. Amer and Abushaala per-
formed a comparative study on typical classical edge detec-
tion operators [18]. By comparing experiments from existing
studies, the following conclusions were drawn. Although the
abovementioned detection algorithms have the advantages
of being simple and easy to implement and provide good
real-time performance, they also have obvious shortcomings.
The image edge feature extracted by the Roberts operator
is relatively rough and provides inaccurate edge locations.
The edge features extracted by the Prewitt operator have
wide margins and many discontinuities. Similarly, the Sobel
operator does not provide accurate locations of image edges.
The Laplacian operator is highly sensitive to noise, and
the LoG operator cannot eliminate salt-and-pepper noise
in an image. In contrast, the Canny operator applies an
optimization principle to detect image edges and sets the
high and low thresholds using the gradient histogram of the
image, which gives edge detection a high signal-to-noise ratio
and improves its reliability. The Canny operator can obtain
satisfactory edge detection results when there is only one
image background and when the gray-level changes between
the background and target are not too large [19]. However,
in reality, images are easily affected by factors such as the
environment and illumination, which can cause substantial
gray-level changes between the image background and a
target, which degrades the edge detection performance of
the traditional Canny operator because the parameters must
be adjusted manually. Such weak contrast conditions reduce
the adaptability of the Canny algorithm, causing it to easily
fail to detect edges [20]. Various researchers have improved
the traditional Canny operator and proposed some improved
Canny edge detection algorithms based on adaptive thresh-
olds. Ronggui et al. presented an automatic road extraction
method for vague aerial images using an improved Canny
edge detection operator that included automatic thresholding
to segment the image into a binary edge image [21]. Guiming
and Jidong realized remote sensing image edge detection
based on an improved Canny operator [22]. However, with
the arrival of the big data era, traditional algorithms have
become insufficient when faced with massive images. The
algorithms’ computational load increases dramatically, and
their runtime performance declines sharply. Thus, extracting
edge features from large-scale digital image collections faces
new challenges.

Hadoop is an open-source software framework developed
by the community at large and distributed under the Apache
License; programmers can use it to develop distributed
programs without knowing the underlying details of the
framework [23]. The core design of the Hadoop frame-
work includes the Hadoop distributed file system (HDES)
and MapReduce. HDFS provides distributed storage for
large amounts of data, and MapReduce implements dis-
tributed parallel computing, which provides a new approach
for improving the edge detection performance on mas-
sive images. O’Driscoll et al. discussed how to apply big
data technologies, such as the Apache Hadoop project, to
process and analyze petabyte- (PB-) scale datasets within
the bioinformatics community [24]. Lee et al. conducted a
survey on MapReduce to assist the database and open-source

Computational Intelligence and Neuroscience

communities in understanding various technical aspects
of the MapReduce parallel programming framework [25].
MapReduce is widely used in various fields. Alham et al.
applied the MapReduce framework to the SVM algorithm
and proposed a MapReduce-based distributed SVM algo-
rithm (MRSMO) for automatic image annotation [26]. Cao
et al. designed a parallel particle swarm optimization- (PSO-
) optimized BP neural network algorithm using the MapRe-
duce framework to realize massive scene image classification
[27]. Li et al. used MapReduce to parallelize the fast fuzzy
c-means algorithm to achieve large-scale underwater image
segmentation [28]. Cao et al. parallelized the traditional k-
means algorithm in a MapReduce environment to retrieve
large-scale scene images [29]. The above studies all improved
the runtime performance and system efficiency of vari-
ous algorithms using the MapReduce parallel programming
model, and the number of MapReduce-based applications is
gradually increasing. However, there are few studies concern-
ing the Otsu algorithm or that investigate the MapReduce
distributed parallel processing of edge detection operators
and their application to the field of digital image processing.

To solve the abovementioned problems, this study pro-
poses a parallel image edge detection algorithm based on
the Otsu operator by optimizing the thresholds of the
Canny operator on the Hadoop platform. The proposed
method improves the Canny edge detection algorithm in
the OpenCV function library using the Otsu algorithm.
Then, the MapReduce parallel programming model on the
Hadoop platform is applied to realize the parallel Otsu-
Canny edge detection algorithm in a cluster environment
and achieve parallel processing for the feature extraction
task for massive numbers of images. Compared with the
single-node architecture, the proposed approach reduces the
running time of the proposed algorithm by approximately
67.2% when using a Hadoop cluster architecture consisting
of 5 nodes and an image scale of 60,000 images. The system
achieves a speedup of approximately 3.4 times, which reflects
its obvious superiority in processing large-scale datasets. Our
approach significantly reduces the computational load and
improves the runtime and edge detection performance for
images, greatly increasing the speed of edge feature extraction
through task decomposition.

3. Otsu-Canny Edge Detection Algorithm

The Canny edge detection operator is a multilevel edge
detection algorithm developed by John F. Canny in 1986; this
operator uses a method called calculus of variations to find
a function that optimizes a particular function. The goal is
to find an optimal edge detection algorithm that retains the
original image attributes [30].

3.1. Canny Algorithm Principle. The traditional Canny oper-
ator detects image edges by performing the following steps
sequentially.

(1) Applying Gaussian Smoothing to Images Using Gaussian
Convolution. To eliminate image noise, the Canny operator
takes the first derivative of the two-dimensional Gaussian

function (formula (1)) as a noise filter; then, it performs
convolution processing to smooth the image:

2, 2
exp [_x Y], (1)

202

G(xy) = 27102

where o represents the standard deviation of the Gaussian
filter function, which is manually set and controls the image
smoothness.

(2) Filtering the Image Using the First Derivative of the Gaus-
sian Operator to Obtain the Gradient Intensity and Direction
of the Image. Suppose that I(i, j) is a smooth image. The first
derivative of the image in the x and y directions is

Blisjl = 3 ([j+ 1) =1 []+ 1[i+1,j+1]
~I[i+1,j]),
1 @
Py lijl= S ([l = 1[i+ 1 jl+ 1[0 j+1]
—I[i+1,j+1]).

Thus, the gradient intensity M{[i, j] and gradient direction
0li, j] are

M i, j] = \P. [i,) + P, [is 7, 3)
0[i, j] = arctan (Z ﬁ: ﬁ), (4)

respectively.

(3) Performing Nonmaximum Suppression Along the Gradient
Direction. Divide the gradient directions into 8 directions:
0° -180° , 45° -22.5°,90° -270° , and 135° -31.5°. Compare
the value of the derivative of each pixel with the modulus
of adjacent pixels in the image for these 8 directions along
the edge detection points of the argument direction. Finally,
take the pixel with the maximum partial derivative as an edge
point.

(4) Detecting and Connecting the Edge Points Using the Dual-
Threshold Method. The traditional Canny operator requires
manually setting the high threshold T}y, and low threshold
T4y the relation of which is generally Ty,,, = 0.5T;,. When
the gradient intensity M (i, j) of a pixel (4, j) is greater than
the high threshold value Ty, the point is marked as an edge
point, and when the gradient intensity M(i, j) of the pixel
(i, j) is less than the low threshold value T}, the pixel cannot
be an edge point. When the gradient intensity of the pixel is
between Ty, and Ty, the point is marked as a candidate
edge point; further judgments are later made by combining
each candidate point with its surrounding pixels.

3.2. Otsu-Optimized Threshold Values of the Canny Operator.
The Otsu operator, also called the maximum class square
error method, is a self-adapting threshold determination

method that can solve the Canny operator’s problem, which
is that it is unable to select the high and low thresholds
adaptively according to the image characteristics [31]. The
Otsu operator uses the thresholds to divide the image into
two parts: the background and the target. The best thresh-
old occurs when the difference between the two parts is
the largest (i.e., the maximum variance between classes is
achieved). The method for determining the optimal threshold
value for the Otsu operator is as follows.

Suppose that ¢ is the segmentation threshold between the
background and target of image I(, j), the grayscale range G
of the image is [0, L — 1], and the probability of each grayscale
is p;. The threshold t divides the image into two categories:
G, = [0,t] and G; = [t + 1, L — 1]. Then, the following are
true.

The probabilities of the two classes G, and G, are ¢, =
Yo piand a; = 1 — ap, respectively.

The average gray values of the two classes G, and G, are
Ho = Ml and y; = (u —)/ (1 —), respectively, where
p= ZiL:—oliXPi and 4, = Zf:oixpi-

The between-cluster variance of the two classes G, and G,
is

’72 (t) = oy (po — !4)2 +ay (4 - !4)2 = g0y (pho — !41)2~ ©)

Then, the high threshold Ty, of the Canny operator can
be obtained by solving max(112 (1)).

4. Parallel Implementation of the Otsu-Canny
Edge Detection Algorithm

Recently, big data has attracted increasing attention. Big data
often possess multiple sources, complex semantics, and large
scales, and they are heterogeneous, dynamic, and changeable,
which brings new challenges to traditional machine learning
technologies. Traditional machine learning methods focus
on data analysis with an appropriate statistical method from
datasets with relatively small numbers of samples to find the
function and value of the data. However, one of the core
objectives of big data technologies is to extract the potential
rules from huge amounts of data with extremely complex
structures to maximize the value of the data. Therefore,
both the runtime performance and the system efficiency of
traditional algorithms decrease sharply when applied to big
data.

Although the Otsu-Canny algorithm improves the per-
formance of the traditional Canny edge detection algorithm,
when it is applied to larger datasets, the time it requires for
edge detection increases as well, eventually raising efficiency
issues. The MapReduce parallel programming framework in
the Hadoop platform provides a distributed parallel comput-
ing environment for big data processing. Faced with the rapid
growth in data in the big data era, there is a need to improve
the time efficiency and edge detection performance of the
Canny algorithm. Therefore, this study intends to address
the low time efficiency problem and the poor edge detection
performance of the traditional Canny algorithm optimized
by the Otsu algorithm as proposed in the literature [18]. To
this end, this study implemented a parallel version of the

Computational Intelligence and Neuroscience

Otsu-Canny edge detection algorithm using the MapReduce
parallel programming framework.

4.1. Hadoop Platform and the MapReduce Programming
Model. Hadoop is a software framework for the distributed
processing of large-scale data, and it is a widely accepted big
data platform. Hadoop implements a distributed file system
called HDFS, which provides high fault tolerance, can be
deployed on inexpensive hardware, provides high throughput
for accessing application data, and is suitable for applications
involving large datasets [32].

As one of the core subprojects of Hadoop, MapReduce
is a parallel programming model that distributes computing
tasks and data to Hadoop cluster nodes, allowing all nodes
to perform tasks in parallel to obtain intermediate results,
then subsequently summarizing the intermediate results and
distributing additional computing tasks to each node to
obtain the final results [33]. When performing these tasks,
MapReduce divides calculations into two tasks, Map and
Reduce, with the help of a functional programming method.
The input and output of each task take the form of key-value
pairs, and the mapper() and reducer() functions are designed
to achieve the mapping from one key-value pair to another
key-value pair. A flowchart of the MapReduce process is
shown in Figure 1.

4.2. Parallel Design and Implementation of the
Otsu-Canny Algorithm

4.2.1. General Framework for Parallel Image Edge Detection.
The general architecture of the parallel Otsu-Canny edge
detection on the Hadoop platform is shown in Figure 2.

The general architecture is divided into three layers.

(1) Presentation layer: users access services through the
Internet through which they can submit images or
receive edge detection results.

(2) Business logic layer: a web server executes the cor-
responding processing tasks according to the users’
requests.

(3) Data processing layer: this layer is the core of the
entire system architecture and it is mainly responsible
for storage, management, optimization of the thresh-
old for the Canny operator, edge feature extraction,
and outputting the results for massive numbers of
images. Users submit their images to the Hadoop
distributed system, which then performs threshold
optimization and edge feature extraction and outputs
the results.

The specific processes are as follows. First, the images
in the massive image database are processed into the input
format SequenceFile of a Hadoop job. Then, the Map task seg-
ments the image files into splits in accordance with the default
slice size (128 MB) of the Hadoop system, each of which may
contain multiple image files. Next, the MapReduce frame-
work is used to optimize the threshold and extract the edge
features of the image in a parallel manner using key-value
pairs such as <image name, image file>. Finally, key-value

Computational Intelligence and Neuroscience

split
I
I
I
i
| 1
_Eﬁi Split0 |—s>| mapper
I
I e e =
Input i
I :' _________ !
—H: Split 0 i—) mapper
Data i o N
T :
—> Split0 > mapper
A SO i
| I I
| I I
| I I
. ! !
|<k1,vI>| <kl,v1l> <k2,v2>

reduce output
i i
I I
I I
1 1
1 1
I I
reducer M| Part0 =
| i | Output
i i
I I
I I
| l Data
I I
1 1
reducer > Partl
i i
I I
1 1
| 1 1
! i i
1 I I
! i i
<k2, |v2|> <k3,v3> |<k3,v3>|

F1GURE 1: The MapReduce programming model process.

Presentation layer

Web Server

Image edge extraction

Business logic layer —————{ —————————————————————— $ -———
ittt ettt |
[1 [T-—~~~~——~—~—-——- [
! | 1 1 [
! 1 1 1 [
! 1 1 1 [
! I | I | I
! 1 o) - g 1 1 E [
! | f<loo] == 1 | [o [
[[=ae 3 o I 1 2 0 2 5 [
[S 8 @3 1 | =5 & [
[aQc g‘ = <—> g T da [
I 1 o a =3 I I o B » O I I
[=1 as. 1 1 ®© o @ [
[B 1 | a [
! | 1 1 [
! 1 1 1 [
! 1 1 1 [
! I | I | I
b MapReduce ! : HDFS -

Data processing layer

FIGURE 2: Architecture for massive image edge extraction.

pairs (such as <image name, image edge feature>) are
generated and written to the HDFS distributed file system of
the Hadoop platform.

4.2.2. Design and Realization of the Algorithm. Because
OpenCV is an open-source and cross-platform computer
vision library that has been used to realize many algorithms
for image processing and computer vision and provides a
large number of Java interfaces [34], this study improved
the Canny operator using the OpenCV function library and

implemented the parallel image edge detection algorithm
based on the Otsu-Canny operator using Java on the Hadoop
platform using a total of approximately 600 lines of source
code. The most important Map and Reduce tasks of the
proposed algorithm are provided as complete source code
implementations in the Supplementary Materials (available
here). The workflow of the mapper() and reducer() functions
is shown in Figure 3. MapReduce transforms splits into
key-value pairs (<keyl, valuel>) using the recordReader
method of SequenceFileInputFormat, in which keyl is the

recordReader

Output

Computational Intelligence and Neuroscience

While(<keyl,valuel>!=null)

map(keyl,valuel)

Extract and output the image

feature <key2,value2>

|
|
|
|
|
|
|
:
<keyl,valuel> SN
l
|
|
|
|
|
|
|
|

Reducer()

HDES

recordWriter

|

l

|

i | While(key2!=null)
|

|

! reduce(key2,list of value2)
|

(

output the image feature
<key3,value3>

|
|
|
|
|
|
|
|
|
|
for(list of value2) !
|
|
|
|
|
|
|
|
|
|
|

FIGURE 3: The workflow of the mapper() and reducer() functions.

path name of the image and valuel is a pointer to the
image data. The mapper() function returns another key-value
pair (<key2, value2>). The MapReduce functionality merges
all the values that have the same key to generate <key2,
(value2 list)>, which serves as the input to the reducer()
functions. After reducer() processing the output key-value
pair (<key3, value3>) is written to the HDFS file system by the
RecordWriter functions in the ImageOutputFormat custom
category.

Definition of Image Data Type. Because the Hadoop frame-
work does not define the class associated with the image as
the data type of the key-value pair <key, value> and because
the Hadoop framework specifies that a user-defined data type
can only be used by implementing the Writable interface, this
study defines the data type Rawlmage and rewrites the basic
input and output method defined by the Writable interface
in Hadoop. Unlike other data types, the Rawlmage data
type exposes some new functions to implement reading and
storing images, such as converting images to the Mat type
of a single channel or three channels and encoding the Mat
type into an image file. These functions facilitate combining
Hadoop with OpenCV.

Design of Input/Output Format for Jobs. The image pixel
information would be destroyed if the image were to be split
to store and process it in a distributed manner on the Hadoop
platform. Therefore, we adopt the whole image as the value of
the key-value pair.

We define the input format class of the image file. Then,
we use the input format SequenceFileInputFormat, which is
a built-in Hadoop format that takes the SequenceFile file
as input. The SequenceFileInputFormat format segments the
SequenceFile file into splits and sends it to the Map task. Each
split contains multiple records, and each record is an image
(image name as key, image content as value), which is a good
solution to the problem of starting too many Map tasks due
to too many small files.

We also defined the output format class of the image file.
The class FileOutputFormat describes the output format of
the data. We designed the class ImageOutputFormat, which
inherits from FileOutputFormat and is used to write the
<key, value> provided by the users to a file with a specified
format. The ImageRecordWriter class inherits from the class
RecordWriter<Text, Rawlmage>, which regards the image
name as the key and the instance of the Rawlmage type as
the value to be stored in the HDEFS file system.

Design and Realization of mapper() Function. The main
mapper() tasks include reading images, processing images,
and converting data. The main mapper() code is as fol-
lows.

mapper (Text Key, RawImage value)
{
Mat img = value.toMat (); //Convert value to

Mat matrix

Computational Intelligence and Neuroscience

Imgproc.cvtColor (img, img_Gray, Imgproc. COLOR_
BGR2GRAY);

//Transform the image into
the gray image
Thresh = Imgproc.threshold (img_Gray, dst, 0, 255,

Imgproc THRESH_BINARY +Imgproc.
THRESH_OTSU);

//Use Otsu threshold segmentation method to
obtain the high threshold of the image Tz,

Imgproc. Canny (img_Gray, Cannyop, Tyg, *
0.5, Thigh);

/ITake Ty, * 0.5 as the low threshold and
extract the Canny edge feature of the image
mos.write (fileName, RawImage.toImage
(Cannyop), fileName.toString());
/] Write file to HDEFS file
system using multioutput

mode

}

Design and Realization of reducer() Function. The main
reducer() tasks include reduction and consolidation, sorting,
and outputting the results. The main reducer code is as
follows.

reducer(Text Key, RawImage value)

{
for(RawImage value: values)
{
mos.sort (key, value, key.toString());
//Reduction and sorting
mos.write (key, value, key.toString());
/] Write file to HDEFS file system
using multioutput mode
}
}

Result Output of Image Edge Detection. The default output file
name of Hadoop takes the form name-r(m)-nnnnn, where
name is set by the user, r represents the output of the Reduce
task, m represents the output of the Map task, and nnnnn is
an integer indicating the block number. However, to facilitate
subsequent processing and display images, we rewrote the
getDefaultWorkFile() method in the FileOutputFormat class
using the following code, which causes the output filename
to be in the form “filename.jpg.”

public Path getDefaultWorkFile (TaskAttemptCon-
text context,
String extension) throws IOException

{

FileOutputCommitter committer =
(FileOutputCommitter) getOutputCommitter
(context);

return new Path (committer.getWorkPath(), getU-
niqueFile (context, getOutputName (context), exten-
sion));

} //Get a task submission

In this study, we use the Hadoop multifile output format
MultipleOutputs and write the output to the file system in the
form of records, in which the image file name is regarded as
the key of the key-value pair, and the image file is regarded as
the value of the key-value pair. The main code is as follows.

ImageRecordWriter extends RecordWriter <Text,
Rawlmage>

{

write (Text fileName, Rawlmage img)

{

FSDataOutputStream out = fs.create
(outputPath);
out.write (img.getRawData ());

} // Write the image data to the output path, using
the specified file name

}

5. Experiment and Result Analysis

To validate the performance of the parallel Otsu-Canny edge
detection algorithm proposed in this study, we tested it on
an image edge feature extraction task for a large number of
images on the Hadoop platform.

5.1. Experimental Environment and Data. The experimental
environment was a Hadoop cluster composed of five comput-
ers (one master node and four slave nodes) configured in an
intranet. All the nodes were equipped with Intel Core 4.2 GHz
quad-core, 8-thread processors, 8 GB memory, 4 TB hard
disks, JDK1.7.0_79, and the 64-bit Ubuntu 14.04 operating
system, and Hadoop-2.5.1 (64-bit compiled version) was
used.

The experimental data stemmed from Pascal VOC2012
[32], which consists of 17125 images, involving people,
vehicles, animals and plants, indoor and outdoor scenes,
and other categories (20 categories total), and is freely
available to researchers. To verify the performance of the
proposed algorithm when addressing massive image datasets,
we constructed a massive image database by copying images
from the Pascal VOC2012 dataset.

5.2. Experimental Results and Analysis. To validate the per-
formance of the proposed algorithm in this study, we con-
ducted experimental comparisons by evaluating aspects such
as the edge detection performance, running time, system
speedup, scaleup, and sizeup.

8 Computational Intelligence and Neuroscience

Parallel
File name Original image Otsu-Canny [21] Parallel Canny Otsu-Canny

127.jpg

132jpg

142.jpg

169.jpg

178 jpg

187.jpg

1147.jpg

1152.jpg

FIGURE 4: Comparison of the edge detection performance of different algorithms.

5.2.1. Image Edge Detection Performance. Using the Pas- their edge detection performances. The experimental results
cal VOC2012 image database, the traditional serial Canny are shown in Figure 4.

algorithm, the Otsu-Canny algorithm in the literature [21], As shown in Figure 4, using different edge detection
the parallel Canny algorithm, and the parallel Otsu-Canny algorithms, the edge detection performance of the algorithm
algorithm proposed in this study were compared in terms of ~ proposed in this study is preferable to the traditional Canny

Computational Intelligence and Neuroscience

TaBLE 1: Comparison of the running times of different algorithms under different data scales.

Image scale

Running time (S)

Canny algorithm Otsu-Canny algorithm [21] Parallel Canny algorithm The proposed approach (4 slave nodes)
1,000 30 30 27 28
3,000 58 60 51 50
8,000 92 95 76 75
16,000 155 159 93 93
30,000 487 488 199 201
60,000 840 843 275 276

800 |

N

(=3

(=}
T

running time (S)
S
S
3

200

30000 40000 50000

image number

O 1 1
0 10000 20000 60000

—v— 3 nodes
—0— 4 nodes

—e— 1 node
—o0— 2 nodes

FIGURE 5: Comparison of the running times on the Hadoop cluster
nodes.

algorithm, the Otsu-Canny algorithm, and the parallel Canny
algorithm; it not only effectively retains the texture informa-
tion of the original image but also includes few false edges
and results in better-connected edges. Furthermore, because
the Otsu algorithm in the Hadoop cluster architecture finds
better thresholds, the algorithm proposed in this paper is
more accurate in terms of image edge location and better at
processing image details, which indicates that edge detection
performance improvements do not occur by chance.

5.2.2. Running Time. To further verify the effectiveness of
the proposed approach, we constructed datasets of different
sizes by replication. Table 1 and Figure 5 report a comparison
of the edge detection time for the different edge detection
approaches and different numbers of Hadoop cluster nodes
while varying the number of images.

The data in Table 1 show the running times required for
different numbers of images. The running times required by
the Canny and Otsu-Canny algorithm in the literature [21]
are much longer than those of the parallel Canny algorithm
and the parallel algorithm proposed in this study and become
dramatically longer as the number of images increases
because the parallel algorithm adopts the distributed parallel
processing technology of the MapReduce framework in the

Hadoop platform, whereas the Canny and Otsu-Canny algo-
rithm in the literature [18] use a single-node architecture with
limited processing capacity. Because the complexities of the
Canny algorithm and Otsu-Canny algorithm when executing
in parallel are similar, the running times of the parallel
Canny algorithm and the algorithm proposed in this study
are nearly identical under the MapReduce programming
model. However, the edge detection effect of the parallel
Canny algorithm is similar to that of the traditional Canny
algorithm as shown in Figure 4. Therefore, the proposed
algorithm in this study achieves better edge detection while
simultaneously improving the running time, combining the
experimental results shown in Figures 4 and 5.

Figure 5 shows a comparison of the running times for
the different Hadoop cluster nodes. As shown in Figure 5,
when the number of images is below 10,000, the running
time reduction for image edge detection is not very obvious
when multiple nodes are used. Instead, the running time of
the multinode cluster architecture is slightly longer than that
of the single-node architecture when processing small-scale
image datasets due to the increased communication overhead
among node computers. However, with a sharp increase in
the image scale, the advantage of the multinode architecture
of the Hadoop cluster gradually becomes apparent. Although
the running time with different numbers of Hadoop cluster
nodes increases as the number of images increases, the time
consumption of the single-node architecture grows approx-
imately linearly, whereas that of the multinode architecture
increases more slowly; in addition, using a larger number
of computer nodes results in a gentler running time curve.
These results fully demonstrate the superiority of the Hadoop
cluster architecture when processing big data. The running
time is reduced by approximately 67.2% using a Hadoop
cluster architecture with 5 nodes when the number of images
reaches 60,000. It is obvious from Table 1 and Figure 5 that
increasing the number of images has little influence on the
time performance of the parallel algorithm based on the
MapReduce framework, further illustrating the advantages of
distributed parallel processing.

5.2.3. Speedup, Sizeup, and Scaleup. Typically, for the parallel
programming model based on MapReduce on the Hadoop
platform, we adopt three important indicators, speedup,
sizeup, and scaleup [35], to evaluate the computational
performance of the proposed algorithm in this study. For
these experiments, we still randomly selected and replicated

10

35

3.0 F

25+

speedup

2.0 -

node number

—eo— 3000 images
—0— 16000 images
—»— 50000 images

FIGURE 6: Comparison of speedup.

images from the Pascal VOC2012 image database to construct
different datasets.

Speedup [36] refers to the ratio of the time consumed to
run a task under the single-node architecture to the time con-
sumed to run the same task under the multinode architecture.
Theoretically, the speedup should increase linearly. However,
speedup does not grow linearly due to communication costs
and load balancing, among other factors. Figure 6 shows the
experimental comparisons of the speedup of the approach
proposed in this study using datasets of different scales.

In Figure 6, the speedup presents the speedup growth
trends as the number of nodes in the Hadoop cluster
increases; increased data size leads to an increased speedup
magnitude. For the same dataset, the computing speed of
the system improves as the number of nodes in the Hadoop
cluster increases—that is, the computing time decreases.
Therefore, the speedup curve takes on a growth trend. With
regard to the different datasets, a larger number of images
result in better performance by the multinode architecture,
and the computing speed becomes much higher compared
to that of the single-node architecture. Furthermore, the
system speedup is almost linear when the number of images
reaches 50,000, which clearly demonstrates the superior
performance of the MapReduce parallel processing on the
Hadoop platform.

Sizeup is defined as how much longer a task takes on a
given system when the data scale is m-times larger than the
original data scale. In other words, as the data size increases, a
higher sizeup means that the Hadoop cluster will take longer
to complete the task. To evaluate the sizeup, we varied the
number of slave nodes in the Hadoop cluster from 1 to 4
and varied the number of images from 3,000 to 60,000. The
experimental results are shown in Figure 7.

As Figure 7 shows, when the image scale increases from
3,000 to 60,000, the sizeup increases by 2.97 for the I-node
cluster, whereas it increases by only 2.34 for the 4-node

Computational Intelligence and Neuroscience

Sizeup

30000 40000 50000

Image number

10000 20000 60000

—v— 3 nodes
—A— 4 nodes

—e— 1 node
—o— 2 nodes

FIGURE 7: Comparison of sizeup.

system. The sizeup for the 4-node cluster grows less due to
increased communication time among the nodes. Although
the communication time of the 4-node cluster system is
longer than that of the 1-node system, the communication
time does not increase significantly under the proposed
approach in the study as the number of images increases.
Therefore, the approach proposed in this study obtains a good
sizeup performance.

Scaleup is often used to measure the performance of an
algorithm when increasing the system and data sizes, and
it refers to the capability of an m-times larger system to
complete an m-times larger job within the same running time
as the original system. Therefore, the scaleup value illustrates
how much better an algorithm addresses big data when more
slave node computers are available in the Hadoop cluster.
Specifically, a higher scaleup value denotes a better algorithm
performance. To measure scaleup, we obtain different scaleup
values by increasing the number of slave nodes and the image
scale simultaneously using the following combinations: (1-
node cluster, 3,000 images), (2-node cluster, 5,000 images),
(3-node cluster, 30,000 images), and (4-node cluster, 60,000
images). Figure 8 shows the experimental results.

We can see that the scaleup values in Figure 8 are all above
0.90, which confirms the better performance of the algorithm
proposed in this study.

6. Conclusions

Edge detection is a basic problem in the image processing
field. The accuracy of edge detection strongly influences
subsequent operations such as feature extraction, object
recognition, 3D reconstruction, image matching, and quanti-
tative analysis. The rapid development of network technology
and multimedia technology has resulted in a sharp increase
in the number of available images—far exceeding the abilities
of traditional image processing algorithms. The algorithms
for extracting edge features from images are no exceptions.

Computational Intelligence and Neuroscience

1.00

98 +

96 |

Scaleup

94 +

92

90
1 node

2 nodes 3 nodes 4 nodes

The number of slave nodes

F1GURE 8: Comparison of scaleup.

Currently, the open-source Hadoop platform is widely used
because it is convenient and inexpensive for building clus-
tered systems. Moreover, it provides an easy-to-use parallel
distributed storage and programming model. Researchers in
both academia and industry are developing new ways to
apply algorithms developed for the traditional single-node
architecture environment in Hadoop cluster environments.

This study presented a parallel Otsu-Canny edge detec-
tion algorithm based on the MapReduce framework of the
Hadoop platform to realize edge feature extraction from
massive numbers of images. Moreover, it fostered a deeper
exploration and discussion of the parallel design and real-
ization of the Otsu-Canny algorithm. This study investigated
three topics: combining the MapReduce parallel program-
ming model with a traditional edge detection algorithm,
the parallel design and implementation of the Otsu-Canny
algorithm, and fast and effective automated edge feature
extraction for massive numbers of images on the Hadoop
platform. The completed algorithm was tested with images
from the Pascal VOC2012 image database. The experimental
results indicate that the proposed algorithm can not only
address massive datasets but also achieve good system perfor-
mance in terms of the speedup, sizeup, and scaleup evaluation
metrics. The experimental results also demonstrate that the
proposed algorithm can take full advantage of the resources
of the distributed cluster system to improve the algorithm’s
edge detection performance and that its parallelization is
very good. In addition, the distributed parallel cluster system
based on the MapReduce framework on the Hadoop platform
improved the runtime performance of the algorithm sig-
nificantly compared to traditional algorithms with a single-
node architecture, which demonstrates the strong computing
ability of distributed parallel processing.

The analysis and processing of big data, especially image
data, have become a hot research topic with the arrival of the
big data era. In the future, we plan to conduct a study that
considers the following aspects: optimizing the design of the
Map and Reduce tasks used in the MapReduce framework
and real-time large-scale image edge detection processing.

1

Data Availability

This work involved data from the Pascal VOC2012 image
database, which is publicly accessible at http://cvlab.postech
.ac.kr/~mooyeol/pascal voc_2012/ [32].

Conflicts of Interest

The authors have no conflicts of interest.

Authors’ Contributions

Jianfang Cao devised the study plan and led the writing
of the article. Jianfang Cao and Min Wang conducted the
experiments and collected the data. Jianfang Cao and Yun
Tian conducted the analysis, and Lichao Chen supervised the
entire process and provided constructive advice. Jianfang Cao
and Min Wang contributed equally to this work.

Acknowledgments

This study was supported by the Natural Science Foundation
of Shanxi Province (201701D21059), the Education Science
Planning Projects in the 13th Five-Year Plan of the Key Dis-
cipline Project of Shanxi Province (GH-17059), the Art and
Science Planning Project of Shanxi Province (2017F06), and
the Science and Technology Cooperation Project of Shanxi
Province and the Chinese Academy of Sciences (20141101001).

Supplementary Materials

This section consists of the core source codes of the Map and
Reduce tasks, respectively. (Supplementary Materials)

References

[1] C. Akinlar and C. Topal, “ColorED: Color edge and segment
detection by Edge Drawing (ED),” Journal of Visual Communi-
cation and Image Representation, vol. 44, pp. 82-94, 2017.

[2] Hildreth E C., Edge detection, Massachusetts Institute of Tech-
nology, Artificial Intelligence Laboratory, Cambridge, 1985.

[3] B.Julesz, “A Method of Coding Television Signals Based on Edge
Detection,” Bell System Technical Journal, vol. 38, no. 4, pp. 1001-
1020, 1959.

[4] L. D. Roberts, Machine perception of three-dimension solids
in optical and electro-optimal information processing, Mas-
sachusetts Institute of Technology Press, Cambridge, UK, 1966.

[5] B. Tang and W. Long, “Fast Canny algorithm based on GPU +
CPU;” Chinese Journal of Liquid Crystals and Displays, vol. 31,
no. 7, pp. 714720, 2016.

[6] H.Cui,]. Cao F and H. Shi, “Parallel PSO-BP neural network

»

algorithm based on MapReduce,” in Bulletin of Science and
Technology, vol. 33, pp. 110-115, 110-115, 33(4, 2017.

[71 W. Zhu S and P. Wang, “Large-scale image retrieval solution
based on Hadoop cloud computing platform,” Journal of Com-
puter Applications, vol. 34, no. 3, pp. 695-699, 2014.

[8] A. L. Wang and X. S. Liu, “Vehicle license plate location based
on improved Roberts operator and mathematical morphology;,’
in Second International Conference on Instrumentation &

http://cvlab.postech.ac.kr/~mooyeol/pascal_voc_2012/
http://cvlab.postech.ac.kr/~mooyeol/pascal_voc_2012/
http://downloads.hindawi.com/journals/cin/2018/3598284.f1.pdf

Measurement, Computer, Communication and Control (IMCCC
2012), Harbin, Peoples R China, 2012.

T. Yang, HW. Tian, XM. Liu, Ke. XT, and PJ. Xing, “Otsu
thresholding segmentation method based on two boundaries
and its fast algorithm,” Application Research of Computers, vol.
33, no. 12, pp. 3872-3875, 2016.

H. Zhang, Q. Zhu, C. Fan, and D. Deng, “Image quality
assessment based on Prewitt magnitude,” AE U - International
Journal of Electronics and Communications, vol. 67, no. 9, pp.
799-803, 2013.

N. Dwivedi, K. Srivastava, and N. Arya, “Sanskrit word recogni-
tion using Prewitt’s operator and support vector classification,”
in Proceedings of the IEEE International Conference on Emerging
Trends in Computing, Communication and Nanotechnology
(ICE-CCN’I3)., , MAR 25-26, Infant Jesus Coll Engn Technol,
Dept Elect Commun Engn, Tirunelveli, India, 2013.

P.-M. Nguyen, J.-H. Cho, and S. B. Cho, “An architecture for
real-time hardware co-simulation of edge detection in image
processing using Prewitt edge operator;” in Proceedings of the
13th International Conference on Electronics, Information, and
Communication, ICEIC 2014, Malaysia, January 2014.

S. Singh, A. K. Saini, R. Saini, A. S. Mandal, C. Shekhar, and
A. Vohra, “A novel real-time resource efficient implementation
of Sobel operator-based edge detection on FPGA,” International
Journal of Electronics, vol. 101, no. 12, pp. 1705-1715, 2014.

W. Jiang, H. Zhou, Y. Shen, B. Liu, and Z. Fu, “Image segmenta-
tion with pulse-coupled neural network and Canny operators,”
Computers and Electrical Engineering, vol. 46, pp. 528-538, 2015.

Z. Tang, L. Huang, X. Zhang, and H. Lao, “Robust image
hashing based on color vector angle and Canny operator,” AEU
- International Journal of Electronics and Communications, vol.
70, no. 6, pp. 833-841, 2016.

Z. G. Sun and C. Z. Han, “Image enhancement based on
Laplacian operator;” Application Research of Computers, vol. 24,
no. 1, pp. 222-223, 2007.

JW. Yang, TB. Cheng, ZY. Zhong, YJ. Cao, and WQ. Li, “dge
detection technique combined with mathematic morphology
and LoG operator,” Computer Engineering and Applications, vol.
47, no. 36, pp. 177-179, 2011.

G. M. H. Amer and A. M. Abushaala, “Edge detection methods,”
in Proceedings of the 2015 2nd World Symposium on Web
Applications and Networking, WSWAN 2015, Tunisia, March
2015.

K. A. Panetta, E. J. Wharton, and S. S. Agaian, “Logarithmic
edge detection with applications,” Journal of Computers, vol. 3,
no. 9, pp. 11-19, 2008.

Z. P. Sun, X. H. Shao, Z. Wang, and Y. X. Zhang, “The
improved adaptive Canny edge detection algorithm,” Electrical
Measurement & Instrumentation.

M. Ronggui, W. Weixing, and L. Sheng, “Extracting roads based
on retinex and improved canny operator with shape criteria
in vague and unevenly illuminated aerial images,” Journal of
Applied Remote Sensing, vol. 6, no. 1, Article ID 12248, 2012.

S. Guiming and S. Jidong, “Remote sensing image edge-
detection based on improved Canny operator;” in Proceedings
of the 8th IEEE International Conference on Communication
Software and Networks, ICCSN 2016, pp. 652-656, China, June
2016.

G. Mark, M. Ted, S. Jonathan, and S. Gwen, Hadoop Application
Architectures, Addison, Beijing, China, 2017.

Computational Intelligence and Neuroscience

[24] A. O'Driscoll, J. Daugelaite, and R. D. Sleator, “’Big data,
Hadoop and cloud computing in genomics,” Journal of Biomed-
ical Informatics, vol. 46, no. 5, pp. 774-781, 2013.

[25] K. H.Lee, Y.]. Lee, H. Choi, Y. D. Chung, and B. Moon, “Parallel
data processing with MapReduce: a survey,;, ACM SIGMOD
Record, vol. 40, no. 4, pp. 11-20, 2011.

[26] N. K. Alham, M. Li, Y. Liu, and S. Hammoud, “A MapReduce-
based distributed SVM algorithm for automatic image annota-
tion,” Computers & Mathematics with Applications, vol. 62, no.
7, pp- 2801-2811, 2011.

[27] J. Cao, H. Cui, H. Shi, and L. Jiao, “Big data: A parallel
particle swarm optimization-back-propagation neural network
algorithm based on MapReduce,” PLoS ONE, vol. 11, no. 6,
Article ID e0157551, 2016.

[28] X. Li, J. Song, E Zhang, X. Ouyang, and S. U. Khan, “MapRe-
duce-based fast fuzzy c-means algorithm for large-scale under-
water image segmentation,” Future Generation Computer Sys-
tems, vol. 65, pp. 90-101, 2016.

[29] J. Cao, M. Wang, H. Shi, G. Hu, and Y. Tian, “A New Approach
for Large-Scale Scene Image Retrieval Based on Improved
Parallel k-Means Algorithm in MapReduce Environment,”
Mathematical Problems in Engineering, vol. 2016, Article ID
3593975, 2016.

[30] Y. Zheng, Y. Zhou, H. Zhou, and X. Gong, “Ultrasound image
edge detection based on a novel multiplicative gradient and
canny operator;,” Ultrasonic Imaging, vol. 37, no. 3, pp. 238-250,
2015.

[31] T. Xue LX Li, “Adaptive Canny edge detection algorithm,”
Application Research of Computer, vol. 27, no. 9, pp. 3589-3590,
2010.

[32] T. White, “Hadoop: the definitive guide,” in Sebastopol: O’Reilly
Media, 3rd edition, 2012.

[33] C. Doulkeridis and K. Norvag, “A survey of large-scale analyti-
cal query processing in MapReduce,” The VLDB Journal, vol. 23,
no. 3, pp. 355-380, 2014.

[34] H. Xu, L. i. ZB, Y. Y. Jiang, and J. B. Huang, “Pavement crack
detection based on OpenCV and improved Canny operator;” in
Computer Engineering and Design, vol. 35, pp. 42544258, 4254-
4258, 35(12, 2014.

[35] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C.
Kozyrakis, “Evaluating MapReduce for multi-core and multi-
processor systems,” in the 13th IEEE International Symposium
on High Performance Computer Architecture (HPCA), pp. 13-
24, Scottsdale, Ariz, USA, February 2007.

[36] W. S. Zhu and P. Wang, “Large-scale image retrieval solution
based on Hadoop cloud computing platform,” Journal of Com-
puter Applications, vol. 34, pp. 695-699, 2014.

| Advances in !
\ 3 INultimedia
Applied

Computational

Intelligence and Soft

Camputing 2

The Saentlﬁc Mathematical Problems
World Journal in Engineering

Modelling &
Simulation
in Engineering

Advances in

Artlﬁqal
Intelligence

| 9

H i ndaWi Advances i;,

Reconfigurable Submit your manuscripts at
i Bl www.hindawi.com

Computer Networhks
and Communications

esin

Scientific Hu man-Computer
Programming Interaction

."‘
CLLLAS

. International Journal of
Journal of : Computer Games
Robotics Technology

Journal of
Electrical and Computer Computational Intelligence
Engineering and Neuroscience

https://www.hindawi.com/journals/ijcgt/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/afs/
https://www.hindawi.com/journals/ijrc/
https://www.hindawi.com/journals/acisc/
https://www.hindawi.com/journals/aai/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/jcnc/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/journals/ijbi/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/cin/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ahci/
https://www.hindawi.com/journals/sp/
https://www.hindawi.com/
https://www.hindawi.com/

