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Implementing a strand of a scalable fault-tolerant
quantum computing fabric
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With favourable error thresholds and requiring only nearest-neighbour interactions on

a lattice, the surface code is an error-correcting code that has garnered considerable

attention. At the heart of this code is the ability to perform a low-weight parity measurement

of local code qubits. Here we demonstrate high-fidelity parity detection of two code qubits via

measurement of a third syndrome qubit. With high-fidelity gates, we generate entanglement

distributed across three superconducting qubits in a lattice where each code qubit is

coupled to two bus resonators. Via high-fidelity measurement of the syndrome qubit,

we deterministically entangle the code qubits in either an even or odd parity Bell state,

conditioned on the syndrome qubit state. Finally, to fully characterize this parity readout,

we develop a measurement tomography protocol. The lattice presented naturally extends

to larger networks of qubits, outlining a path towards fault-tolerant quantum computing.
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Q
uantum error correction is an essential step towards
realizing scalable quantum computers. Theoretically, it is
possible to achieve arbitrarily long protection of quantum

information from corruption due to decoherence or imperfect
controls, so long as the error rate is below a threshold value1,2.
However, most of the initial fault-tolerant quantum computing
proposals were purely theoretical studies that would be
impractical to implement in a physical system. Knill’s C4/C6
architecture3 showed that it was possible to have a pseudo-
threshold as high as 3% but with very long-range interactions.
The two-dimensional surface code (SC) is a topological error-
correcting code4,5 that achieves high error thresholds B1% in
a two-dimensional lattice of qubits supporting nearest-neighbour
interactions6,7.

With ongoing improvements to coherence times8–11, and with
gate12,13 and readout fidelities14–16 at or approaching relevant
threshold values, superconducting qubits are prime candidates for
scaling up towards a fault-tolerant architecture. Our scheme for
building a network of superconducting qubits employs
microwave resonators as the links, as it has been shown that
resonators can be used as quantum buses to mediate interactions
between qubits17, and that multiple resonators can be coupled to
a single qubit18. In the future, larger superconducting qubit
systems and networks will also leverage circuit integration
techniques that come along with a solid-state architecture.

The original SC layout comprises qubits arranged in a square
lattice5 with the qubits in the lattice coming in two distinct
flavours, either code qubits, which carry logical information, or
syndrome qubits, which are used to measure stabilizer operators
of surrounding code qubits. Performing a round of error
correction in the SC consists of applying controlled-NOT
(CNOT) gates to map the parity of the surrounding code
qubits into the states of the syndrome qubits, which are then
measured to determine the plaquette parities. Using
superconducting resonators as the links of the lattice, it is
possible to construct a SC architecture using superconducting
qubits at each vertex along with the ability to couple a single qubit
to four resonators. As it is also important to be able to read out
and address the qubits individually, this may require an
additional fifth resonator per qubit. A layout proposed by
DiVincenzo19 allows for the number of resonators per qubit to be
reduced to two (three with readout). However, each code and
syndrome qubit in this scheme is replaced by four qubits, which
results in a fourfold increase in the number of two-qubit gates.

Here we introduce an optimal layout for implementing the SC
on a two-dimensional lattice that does not carry additional
overhead as in the original DiVincenzo proposal. In this work, we
demonstrate a subsection of this optimized lattice using three
transmon qubits, in which two independent outer code qubits are
joined to a central syndrome qubit via two independent bus
resonators. By combining all-microwave high-fidelity single- and
two-qubit nearest-neighbour entangling gates, with high-fidelity
measurement of the syndrome qubit, we deterministically
measure the parity of the code qubits. This protocol is tested in
the case of a superposition of the code qubits, and we are able to
detect the outer code qubits in either an even or odd parity Bell
state, conditioned on the syndrome state. As a full characteriza-
tion of this parity detection, we implement a measurement
tomography protocol to obtain a fidelity metric (90% for odd and
91% for even). Our results reveal a straightforward path for
expanding superconducting circuits towards larger networks for
the SC and eventually a primitive logical qubit implementation.

Results
Modified lattice for SC with superconducting qubits.
We introduce a direct one-to-one mapping of the SC to a

two-dimensional lattice (Fig. 1) that does not carry the additional
overhead of qubits and gates as in the original proposal by
DiVincenzo19. Rather than requiring 12 qubits to demonstrate a
half-plaquette strand operation on the surface fabric, this
arrangement allows such an achievement with just 3 qubits
(details about the mapping are given in the Methods). Syndrome
qubits can be used as either X-parity checks (red circles) or
Z-parity checks (green circles) of four surrounding code qubits
(blue circles). The five-qubit block consisting of X (Z)-syndrome
and four surrounding code qubits defines a unit cell X (Z)-
plaquette.

An advantage of our lattice architecture is that it is
commensurate with experiments already demonstrated, where a
single qubit can be coupled to two separate resonators18, a single
bus has been used to couple up to three qubits20, and an
independent readout can be used to measure a single qubit that
has been entangled with a separate qubit via a bus resonator21.
The experiments presented in this article are performed
effectively on a ‘half-plaquette’ subsection, consisting of three
qubits (all with individual readout resonators) and two bus
resonators, depicted by the pink square of Fig. 1, where we
demonstrate all necessary gate operations and measurements that
constitute the SC protocol.

Physical subsection and control characterization. The half-
plaquette device (Fig. 2a) contains three single-junction transmon
qubits connected by two coplanar waveguide (CPW) resonators
serving as the buses, and each qubit is coupled to its own separate
CPW resonator for independent readout and control. Here we
label the code qubits Q1 and Q3, and the middle qubit Q2 serves
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Figure 1 | Implemented two-dimensional SC layout. Lattice of nearest-

neighbour qubits for realizing the SC. The lattice contains three flavours of

qubits, code (blue circles), X-syndrome (red circles) and Z-syndrome

(green circles) qubits. The lattice is composed of two types of plaquettes,

an X-plaquette (square enclosing a red X-syndrome qubit) and a

Z-plaquette (square enclosing a green Z-syndrome qubit). Critical to the

SC is performing CNOT operations between code qubits and their

neighbouring syndrome qubits, followed by measuring the Z- and

X-syndrome qubits to determine the parity of the code qubits. Bus

resonators that link qubits are denoted by grey bars and each qubit need

only connect to two bus resonators instead of the required four in the strict

square lattice approach. The smallest logical qubit is shown in the shaded

blue area, made up of four plaquettes. The half-plaquette device studied

here is enclosed in the pink square and comprises three qubits (Q1, Q2, Q3)

and two bus resonators R12 and R23. Note that Q3 is also a code qubit, but

coloured in teal for clarity to be distinguished from Q1.
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as the syndrome. A simplified control and readout diagram is also
shown in Fig. 2a, with all microwave sources for single- and
two-qubit gates and independent readout indicated. The
syndrome Q2 is read out with the assistance of a Josephson
parametric amplifier (JPA)16,22 for high-fidelity single-shot state
discrimination, which is a critical component for demonstrating
the SC parity check protocol. All device parameters, relevant
coherence times and a complete schematic are given in the
Methods. All single-qubit controls are performed in 40 ns and
characterized to 499.7% average gate fidelity via simultaneous
randomized benchmarking23 (see Methods).

At the crux of the SC protocol is the detection of the parity of
the code qubits. Figure 2b shows the parity check protocol (PCP)
in a circuit depiction on an arbitrary state cj i of Q1 and Q3, with
the parity being indicated through the classical detection of an
indication bit, b2. The PCP is realized in a system of three qubits
via the quantum circuit shown in Fig. 2c, where the parity of the
Q1 and Q3 state cj i is mapped on to the syndrome Q2 via two
CNOT gates, between Q1 and Q2, Q3 and Q2, and then
subsequently the classical indication bit b2 is obtained via
a quantum measurement of Q2.

High-fidelity CNOT entangling gates are critical for the PCP.
To realize these CNOTs in our device, we implement entangling
ZX90 gates using the cross-resonance interaction24,25. By driving
Q1 (Q3) at the Q2 transition frequency o2, we use a simple
decoupling sequence12 to implement the two-qubit Clifford
generator ZX90 gate between Q2 and Q1 (Q3). The ZX90 gate is
equivalent to a CNOT up to single-qubit rotations, as illustrated
in Fig. 2d, and thus can be used interchangeably in the PCP.

Both pairs of ZX90 entangling gates are characterized with
two-qubit Clifford randomized benchmarking. With a total gate
time of 350 ns, the ZX90 gate between Q2 and Q1 (Q3) is
experimentally shown to have a gate fidelity of 0.962±0.002

(0.957±0.001). The fidelities are consistent with the gate and
coherence times in the system. Further details about the gate
tune-up, calibration and timescales can be found in the Methods.

To determine the collective state of all qubits in the system, we
can perform independent readouts of each qubit through the
individually coupled resonators. The syndrome qubit, Q2, is read
out dispersively with the JPA, pumped � 4MHz from the
readout frequency (oM2¼ 2p � 6.584GHz) and an optimized
single-shot assignment fidelity (with no preparation corrections,
and defined in Methods) of 91% is achieved, although fluctua-
tions on the order of 2–3% are observed. The code qubits are read
out using the high-powered Josephson nonlinearity of the readout
cavities26. Further detail and parameters about the readouts are
given in the Methods.

Distributed entanglement and parity measurement. To observe
the action of the gate portion of the PCP, in which CNOT (in our
case ZX90) gates are performed between the syndrome and
the code qubits, it is insightful to perform tomographic recon-
struction of the complete three-qubit system. State tomography
in our system is achieved by correlating individual single shots of
all three individual readouts27, Mi, iA[1,3]. Figure 3 shows
reconstructed three-qubit Pauli state vectors for the entanglement
processes necessary for the PCP. In Fig. 3a, a ZX90 entangling
operation between the code qubit Q3 and the syndrome Q2 is
implemented giving a state fidelity F state¼ 0.949±0.002 (SDP)
0.954±0.002 (raw), where SDP refers to a semi-definite program
reconstruction of the state and raw reflects unconstrained
inversion28. The difference between the SDP and raw estimates
exceeds the statistical error estimated from the readout signal-to-
noise and suggests that the main source of error in our
experiment is systematic. We estimate that our systematic
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Figure 2 | Half-plaquette device schematic and parity check quantum circuits. (a) The optical image of the half-plaquette device shows in false

colour all the different components of the device: three qubits, Q1 (blue), Q2 (green) and Q3 (teal), each with individual readout resonators, and two

bus resonators (maroon) R12 and R23. Each transmon qubit (zoom view inset) is independently addressed via its corresponding readout resonator,

with single-qubit gates applied on resonance with each qubit at oi, iA[1, 2, 3] and readout performed at the measurement frequencies oMi. Whereas

Q1 and Q3 readout signals are only amplified through HEMTs, the Q2 readout is reflected off a JPA stage first before going on to a HEMT. Two-qubit

gates are performed in the cross-resonance scheme, applying o2 on both control qubits, Q1 and Q3. (b) The PCP for qubit Q1 and Q3 where the Z-parity

operator PZZ is applied, giving a single classical bit of information b2 (double lines indicate classical channel). (c) The quantum circuit which implements

the Z-parity check consists of a pair of CNOTgates from the code qubits (Q1 and Q3) to the syndrome (Q2) followed by a measurement M2, which gives

the classical bit b2. (d) The CNOT can be decomposed into the ZX90 gate and single-qubit rotations. Using the cross-resonance microwave interaction,

we have at our disposal the gate combination boxed in dashed red, composed of a ZX90 followed by a NOT (or X) gate on the control qubit. The n in the

depiction of the ZX90 gate can be either 0 or 1, indicating the state-dependent rotation.
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errors are of order B2–3%. A rigorous error bound on fidelity in
the presence of systematic noise is still the subject of future
study29. In Fig. 3b, a ZX90 entangling operation between Q1 and
Q2 is implemented (F state¼ 0.951±0.002 (SDP) 0.953±0.003
(raw)) and finally, in Fig. 3c both ZX90 gates are applied
simultaneously, generating a maximally entangled GHZ state of
all three qubits (F state¼ 0.935±0.002 (SDP) 0.942±0.003 (raw)).
We thus show the ability to distribute entanglement across the
full network, first between nearest-neighbour qubits Q3 and Q2
or Q1 and Q2, and then across the entire system with the GHZ
state, spanning both bus resonators.

With the demonstrated high-fidelity ZX90 gate primitives for
the PCP, the next step is to observe the single-shot readout of the
syndrome Q2 to signal the parity of the code qubits Q1 and Q3.
We begin by obtaining a syndrome readout calibration histogram
(a typical one is shown in Fig. 4a). Then, we prepare the simple
computational basis states, 00j i, 01j i, 10j i and 11j i, as inputs for
the code qubits and observe the proper parity assignment via the
PCP, shown via the M2 histograms in Fig. 4b. By thresholding the
measurement outcomes of M2 based on the readout calibration
traces, we reconstruct the state of Q1 and Q3 conditioned on
M2 using standard quantum state tomography techniques (see
Methods). In the case of the four computational states, we obtain
fidelity of F SDP¼ 0.984, 0.987, 0.989, 0.909 and F raw¼ 0.975,
0.989, 0.999, 0.905, respectively.

A more complete stress test of the PCP is to observe its
function on the maximal superposition state of the code qubits
Q1 and Q3. The gate protocol now mimics that of the GHZ state
generation from Fig. 3c, and over repeated state preparations and
measurements of the syndrome, M2, we obtain a bi-modal
histogram, indicating that instances of both parities exist (Fig. 4c).
We observe the probabilistic entanglement of either the odd
or even Bell states coddj i ¼ 01j i þ 10j ið Þ

� ffiffiffi
2

p
or cevenj i ¼

00j i þ 11j ið Þ
� ffiffiffi

2
p

conditioned on M2. For these conditioned
entangled states, we find state fidelities of F odd¼ 0.891 (raw)
0.891 (SDP) and F even¼ 0.970 (raw) 0.948 (SDP). In an

error-free situation, these fidelities should not exceed the
assignment fidelity; however, due to systematic errors it is
possible for these to deviate. The observed deviation between the
assignment and state fidelity is within our estimate of systematic
error. Nonetheless, the ability to generate these entangled states of
non-nearest-neighbour qubits Q1 and Q3 in two separate bus
resonators is a crucial element for scaling up towards larger
quantum networks.

Finally, to characterize the complete ideal projective nature of
the PCP, we perform measurement tomography. This is
accomplished via quantum process tomography of the code
qubits, for which further details are given in the Methods.
Conditioned on the measurement of the syndrome M2, we obtain
the two maps for the odd and even parity projection operators
shown in Fig. 4f,h (ideal maps are shown in Fig. 4i,k). To quantify
the performance of the PCP, we introduce a measurement fidelity
metric that takes into account the full quantum dynamics of the
measurement, including projection and back-action (see Methods
for more details). We obtain a measurement fidelity of F odd

meas ¼
0:904 � 0:002 and F even

meas ¼ 0:912 � 0:003. The loss in
measurement fidelity corresponds mostly to the 91% assignment
fidelity of M2, best illustrated by the unconditional map (shown
in Fig. 4g) having a measurement fidelity Fmeas¼ 0.968.

It is important to note that all the gates used are calibrated and
run to achieve these results without any Hamiltonian corrections
for either single-qubit or two-qubit errors. An X-parity check is a
simple extension through the appropriate application of single-
qubit Hadamard pulses on the code qubits.

Discussion
The experiment described implements a subsection of the SC
fault-tolerant architecture. By combining high-coherence trans-
mon qubits, high-fidelity nearest-neighbour two-qubit gates and
high-fidelity quantum non-demolition single-shot readout, we
use a syndrome qubit to determine the parity of its neighbouring
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Figure 3 | Three-qubit state tomography via correlated single-shot readout. Building towards the action of the PCP on a superposition state of the

code qubits (c), we also show the operation of entangling the syndrome Q2 with each of the data qubits Q1 (a) and Q3 (b). Reconstructed three-

qubit state represented in Pauli state vector form (black filled bars, experiment, white bars in background, ideal) after entangling syndrome Q2 with,

a, code qubit Q3 via a ZX90 two-qubit gate (entangled two-qubit state with fidelity F stateB0.95), (b) code qubit Q1 via a ZX90 two-qubit gate

(entangled two-qubit state with fidelity F stateB0.95), (c) both code qubits Q1 and Q3 via ZX90 between Q1 and Q2, and Q3 and Q2 simultaneously

(which comprise performing the gate portion of the PCP) giving the maximally entangled three-qubit GHZ state (F stateB0.94). In the shown Pauli

vector plots, the blue-, pink- and purple-shaded regions signify single-, two- and three-qubit Pauli operators, respectively.
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qubits. With this device, we demonstrate the versatility of
superconducting qubits in the extended quantum bus architecture
for application towards a larger fault-tolerant quantum comput-
ing device. Looking ahead, direct extensions to simple error
detection and error correction demonstrations will be feasible
with existing integration techniques and coherence levels. Over-
coming integrated circuit engineering hurdles while preserving
long coherence times should pave the way for larger surfaces for
quantum error correction.

During the completion of this manuscript, we became aware of
similar work by Saira et al.33

Methods
Mapping to SC. The SC requires CNOT gates to be performed between the code
and syndrome qubits. To optimize the fidelity of these gates, it is important to use
a connective element (connector) to mediate a strong interaction between these
qubits. For superconducting transmon qubits, the connections are typically
achieved by capacitively coupling two (or more) qubits to a resonator. Since the
SC is a two-dimensional geometry, connectors should not cross.

The most straightforward layout of the SC is to have the qubits arranged on
a square lattice, each connected to its nearest neighbours (see Fig. 5a). This
arrangement has considerable overhead, in that each qubit is attached to four
connectors. For a realization in a transmon-based architecture it will require each
qubit having at least four capacitive couplers (not including readout and control
lines). As a result, a significant amount of the qubit charging energy will come from
the presence of the couplers.

Previously, DiVincenzo19 has shown that it is possible to have a lattice that
realizes the SC with each qubit attached only to two connectors. The DiVincenzo
lattice is shown in Fig. 6. In this lattice, each small square contains four qubits and
is used to represent a single code or syndrome qubit. It is apparent that this
arrangement has connectivity between the small squares that is equivalent to the
standard square lattice. However, the mapping is inefficient in that it requires four
qubits to represent a single qubit in the original SC and furthermore it requires as
many as four CNOT operations spanning four connections (resonators) for the
furthest reaches of adjacent squares to communicate.

Figure 5b shows three additional arrangements of connections in the square
lattice. Connectors are located in every other square of the checkerboard, shown as
pink, and each pink square represents either four, two or one connector. In the first
case, the pink square is broken up into four connectors, each attached to two qubits
and each qubit to four connectors, recovering Fig. 5a. We call this the [2,4]
arrangement. The second arrangement is to divide the pink regions into two, with
each connector joined to three qubits and each qubit attached to three couplers
([3,3] arrangement).

Finally, the connector can be the entire pink square connecting four qubits with
each qubit connecting only to two connectors ([4,2] arrangement). This final
arrangement can easily been seen to achieve the desired simultaneous goals of
having each qubit attached to just two connections while retaining the connectivity
of the square lattice. As shown in Fig. 1, the connector can be realized by using a
resonator that connects to four qubits. The alternating horizontal and vertical lines
inside the pink squares correspond precisely to the bus resonators.

Two final points are worth discussing. First, note that the [4,2] arrangement is
actually more connected than the square lattice, that is, diagonal neighbouring
qubits can be coupled. This extra connectivity may be of some advantage, although
it comes at the cost of reducing the isolation between these qubits. This is an
unavoidable consequence of having more than two qubits per connector. Lastly,
DiVincenzo’s lattice is a simple distortion, a skewing, of the [4,2] lattice. Our key
observation can be thought of as seeing that his lattice can be directly mapped to
the square lattice without having four qubits being used to represent just one qubit
from the SC.

Device fabrication. The device is fabricated on a 720-mm thick silicon substrate.
All superconducting CPW resonators are defined via optical lithography and
subtractive reactive ion etching of a sputtered niobium film (200 nm thick). The
three single-junction transmon qubits are patterned using electron-beam litho-
graphy, followed by double-angle deposition of aluminium, with layer thicknesses
of 35 and 85 nm. Lift-off process is used to form the final junction structure.

Device parameters. The three transmon qubits (iA[1,3]) have transition
frequencies {oi}/2p¼ {5.0388, 5.0080, 5.2286} GHz, with readout resonators at
{oRi}/2p¼ {6.698, 6.585, 6.695} GHz, relaxation times {T1(i)}¼ {24, 29, 20}ms,

Techo
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Figure 4 | Parity check experiment and non-nearest-neighbour pair entanglement generation. (a) Readout histograms of M2 having prepared Q2

in the state 0j i and 1j i averaged over all basis states for Q1 and Q3. (b) Readout histograms of M2 after applying the PCP when Q1 and Q3 are prepared

in the four different basis states, 00j i (black), 01j i (teal), 10j i (blue), 11j i (purple). (c) Readout histogram of measurement M2 after applying the PCP

when Q1 and Q3 are prepared in an equal superposition state. (d,e) Pauli state vectors of Q1 and Q3 conditioned on the single-shot measurement of Q2.

In the case of Q2 in 0j i 1j ið Þ, state tomography confirms the odd (even) parity Bell state, coddj i ¼ 01j iþ 10j ið Þ
� ffiffiffi

2
p

cevenj i ¼ 00j iþ 11j ið Þ
� ffiffiffi

2
p� �

with

fidelity 0.89 (0.95). (f–k) Pauli transfer matrices of the Z-parity check measurement operation. Top (bottom) corresponds to the odd (even) projection

and has a measurement fidelity of 0.90 (0.91). The central measurement operation corresponds to the unconditional map and has a fidelity of 0.968

with a map that is completely dephasing in the even and odd parity basis.
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resonators are measured to be {wi}/p¼ {� 2.0, � 2.0, � 2.3}MHz and the readout
resonators have line widths {kRi}/2p¼ {443, 976, 793} kHz. All qubits have
measured anharmonicities of B� 340MHz. From the above, we calculate
coupling strengths {|gi|}/2p¼ {70, 67, 67}MHz to the readout resonators, which is
consistent with electromagnetic simulations.

Experimental set-up. The half-plaquette device is cooled to 15mK in an Oxford
Triton dilution refrigerator. A full schematic of the wiring and experimental
control hardware is depicted in Fig. 7. Each qubit has its own dedicated readout
line with an associated set of isolators and Caltech HEMT (noise temp B6K)
amplifiers. Q2 is unique in that its readout signal is reflected off of a UC Berkeley
JPA before going on to the isolator and high-electron mobility transistor (HEMT)
chain. The device is housed in a light-tight Ammuneal cryoperm-shield that is
coated throughout with a layer of lossy eccosorb (Emerson & Cuming CR-124).
Besides explicit cryogenic attenuators at the different stages of the cryostat, all
qubits are also attenuated at the lowest temperature stage with in-house eccosorb
coaxial filters.

Outside the cryostat, all microwave qubit control signals are generated via
vector modulation combining off-the-shelf electronics. The microwave readout
signals are pulse modulated using Arbitrary Pulse Sequencers built by Raytheon
BBN Technologies. The readout signals are processed via two Alazartech ATS9870
acquisition cards. All single-shot readout traces are processed with various filters,
down-sampling and an optimal quadrature rotation filter. The details of this full
process, which is currently performed explicitly in the acquisition computer, is
described in detail in parallel work27. As the devices scale up in the near term
towards plaquette and logical qubit demonstrations, the multiple readout signals
will need to be processed directly on Field-Programmable Gate Arrays and then
correlated in post processing.

Calibration sequences. Complete tune-up of all microwave gates is accomplished
using sets of automated repeated sequences. For single-qubit gates, the repeated
calibration sequences are described in a previous publication28.

The cross-resonance pulse amplitude is calibrated in close analogy to single-
qubit amplitude calibrations. An odd number 2N� 1 of ZX90 pulses are applied
and the amplitude is adjusted so that for each N the expected signal is halfway
between 0 and 1. Any amplitude miscalibrations lead to departures from this
expected signal and are amplified for increasing N.

In addition to amplitude, we must also calibrate the phase of the ZX90 pulse
between Q3 and Q2 (as well as Q1 and Q2). In our experiment, we use a separate
microwave generator to supply the cross-resonance pulse on Q3 at the frequency of
Q2. The phase of this microwave signal must be calibrated to match that of the
microwave generator supplying the single-qubit pulses on Q2. This is done by
applying the pulse sequence IY90(ZU180IX)NIX90. The U denotes the rotation axis
defined by the second generator and the goal is to calibrate for an X-rotation. In the
case of an X-rotation, we expect the signal to be halfway between 0 and 1 for each
N and miscalibration of the phase leads to deviations that are amplified with
increasing N. These methods provide a routine for automated calibration with high
precision. In the experiments, all cross-resonance pulses were calibrated on a
regular basis because of phase drift between the two microwave generators.

Randomized benchmarking. All single-qubit gates are 40-ns Gaussian-shaped
microwave pulses (Gaussian width s¼ 10 ns) resonant with the transition fre-
quencies of the qubits, with scaled derivative-of-Gaussian shapes applied on the
quadrature channel to minimize leakage effects30. The gates are all autonomously
calibrated with a set of repeated pulse experiments, correcting for: amplitude of X90

and X gates, amplitude imbalance between X- and Y-rotations, mixer skew and
derivative-of-Gaussian-shape parameter. Single-qubit gates are all independently
characterized via Clifford31 randomized benchmarking (RB) and summarized in
Table 1. To characterize the addressability error of the system, we perform
simultaneous23 RB, applying different sets of randomized single-qubit Clifford
gates to all three qubits at the same time. These results are also summarized in
Table 1 and essentially indicate that addressability errors are at the 0.1% error level.

The two-qubit ZX90 gates for both pairs of qubits are composed as a two-qubit
refocusing sequence previously described32 and include shaped Gaussian turn-on
(3s, s¼ 24 ns), a flat section and then a Gaussian turn-off, for a total gate time of
350 ns. The ZX90 gates are tuned-up also using repeated pulse experiments
(described in previous section). It is also important to note that the pair of two-
qubit gates can be applied simultaneously, as they commute with one another.
To characterize the gates, we generate two-qubit Clifford operations12 and perform
RB. The results for the two cases are shown in Fig. 8, where we show the average
fidelity decay over 35 different randomized two-qubit Clifford sequences.
Analysing the decay curves gives us error per two-qubit Clifford gate of
0.058±0.003 for Q1 and Q2, and 0.065±0.002 for Q3 and Q2. We find that the
reduced chi-square for these fits are 0.583 and 0.385, respectively. This
demonstrates that the model is a faithful representation of the data. As each
two-qubit Clifford gate is composed of 1.5 ZX90 generators, we estimate the
two-qubit ZX90 gate errors to be 3.8 and 4.3%.

Readout characterization. For this experiment, each qubit has its own
measurement resonator. On Q1 and Q3 high-power readout was used and for Q2 a
dispersive linear readout with a JPA was used. The readout was performed by using
an integrating kernel that takes into account the response of the cavity (see ref. 27
for more details). This is important when most of the information is in the initial
transients of the signal. The integration time for the experiment was 4 ms for the
high-power readout and 2 ms for the dispersive readout with the JPA.

Shown in Fig. 9 are typical histograms for the three readout channels averaged
over all computational basis for the qubits not measured. Here we see that the
assignment fidelity, defined by

F a ¼ 1�P 0 j1ð Þ=2� P 1 j0ð Þ=2 ð1Þ

Z-syndrome
qubit

X-syndrome
qubit

Code
qubit

[2.4]  [3.3]  [4.2]

Figure 5 | Square lattice with connectors. (a) The conventional square

lattice. Each qubit is connected to its four nearest neighbours. The lattice

contains three flavours of qubits, code (blue circles), X-syndrome (red

circles) and Z-syndrome (green circles) qubits. (b) Three kinds of

connectivity: the pink squares shows a connector that is used to allow the

application of gates required for the SC. This square can be made from four

connectors, two connectors or a single connector.

Figure 6 | Original skew-square lattice of DiVincenzo. Each code and

syndrome qubit is represented by the small coloured squares, each

containing four physical qubits. The black lines represent resonators

(couplers).
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for the three channels is 0.84, 0.91 and 0.89, respectively. These are typical values
and we see about a 2–3% fluctuation over the course of a typical experiment. By
fitting a double-Gaussian model to the data, we find that the ratio of the undesired
state to the desired state for Q1 prepared in the ground (excited) is 9.9% (22%), for
Q2 5.7% (8.3%) and for Q3 13.7% (6.0%). We believe most of the error is due to the
high-power nonlinear readout of Q1 and Q3 and is not due to the qubits being
initialized in the wrong state. With no power applied to the Q1 and Q3 resonator,
the assignment fidelity is 0.95 and the ratios of the two Gaussians are 5.6% when
Q2 is prepared in the excited state and negligible when Q2 is prepared in the
ground state.

State tomography. For state tomography we used the correlation method as
described in ref. 27. The single shots for each measurement resonator are correlated
and from a set of complete post rotations we can use either linear inversion or an
SDP (with constraints rr and tr(r)¼ 1) to reconstruct the state. The complete set
of rotations used are {I, X, Xþ 90, X� 90, Yþ 90, Y� 90}#n.

Typically, 20,000 shots for each post rotation are used and we find that the
statistical error in the measured voltages has signal-to-noise ratio (SNR) B1� 104,
2� 104, 2� 104 for the three measurement channels M1, M2, M3, respectively. The
second-order correlators range in SNR from B2 to 5� 103 and the third order has
SNR B1,000. Using these and a bootstrapping method28 we can estimate the state

fidelity and the statistical error. The state fidelity is given by

F state ¼ Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rideal

p
rnoisy

ffiffiffiffiffiffiffiffiffiffi
rideal

pqh i� �2
; ð2Þ

where rideal is the ideal state and rnoisy is the reconstructed state.
We find that in all cases the fluctuations in the state fidelity from statistics is

much smaller than the difference between the linear reconstruction and the SDP.
Furthermore, we find typically the sum of all the negative eigenvalues in the three-
qubit space to be o0.03.
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Table 1 | Summary of single-qubit randomized
benchmarking.

Randomize Error (� 10� 3)

Q1 3.06±0.05 — —
Q2 — 2.30±0.05 —
Q3 — — 2.77±0.05
Q1, Q2, Q3 3.8±0.1 3.32±0.09 2.89±0.05
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Figure 8 | Two-qubit randomized benchmarking. Average P0, population

of Q2 ground state, versus number of two-qubit Cliffords generated via

ZX90 gates between Q1 (Q3) and Q2 is shown as red (blue) circles.

Experiments are performed randomizing over 35 different sequences of

Cliffords. Fits to the RB experiment for Q1 (Q3) and Q2 are shown as solid

red (blue) lines, from which we extract an error per two-qubit Clifford of

0.058±0.003 (0.065±0.002).
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Measurement tomography. An ideal Z-parity check can be described by the
quantum operation

� rð Þ ¼ �evenr�even � 1j i 1h j þ�oddr�odd � 0j i 0h j; ð3Þ

where

�even ¼ IIþZZð Þ=2 �odd ¼ II�ZZð Þ=2 ð4Þ

and the extra system is used to label the outcome of measurement of the syndrome
qubit. In the noisy case this is represented by the operation

E rð Þ ¼ Eeven rð Þ � 1j i 1h j þ Eodd rð Þ � 0j i 0h j ð5Þ

and the goal of measurement tomography is to determine the conditional maps
Eeven(r) and Eodd(r). These quantum operations are completely positive but not
trace preserving.

By binning the results of the measurement on the syndrome qubit, tomography
on the two-qubit subspace is performed by preparing a complete set of different
input states and measurement bases via pre and post rotations, and reconstructing
the operations from the measurement results. The complete set of rotations that we
use are the same as those used in state tomography. We use both a linear
reconstruction and a minimization to make the maps physical. For more details on
how quantum process tomography can be performed, see ref. 28.

We use the Pauli transfer matrix28 defined by

RL i; jð Þ ¼ Tr PiE Pj
� �� ��

d ð6Þ

to represent the measurement operations where Pjs are the standard Pauli
operators {I, X, Y, Z}#2.

To quantify the measurement, we define the measurement fidelity by a
generalization of the average fidelity. Since the measurement maps are not trace
preserving, we need to use normalized outputs �0

xðcÞ, and E0
xðcÞ, where

A0
x cð Þ ¼ Ax cj i ch jð Þ

�
Ax cj i ch jð Þk ktr , tr refers to the trace norm and x¼ {even,

odd}. Doing this gives

F x
meas ¼

Z
dcTr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0

x cð Þ
q

E0
x cð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�0

x cð Þ
qr !

: ð7Þ

Since the nullspace of a projection operation has measure zero and the noisy
realization typically will also have a nullspace of zero measure, this integral is well
defined. To compute this, we draw 150,000 different random states from the
Fubini–Study measure and compute the average.

One could also define a process fidelity by computing the state fidelity between
normalized Choi matrices of the ideal and noisy operations

F x
pro ¼

Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rxideal
p

rxnoisy
ffiffiffiffiffiffiffiffiffiffi
rxideal

pqh i� �2
Tr rxideal
� 	

Tr rxnoisy
h i ; ð8Þ

however, for non-unitary processes there is no simple relationship between them.

The unconditional map can be defined by tracing equation (5) over the
syndrome qubit giving

E rð Þ ¼ Eeven rð Þþ Eodd rð Þ: ð9Þ

Since this is a quantum operation, the standard fidelity between quantum
operations can be used.
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