
Implementing and Evaluating Provers
for First-order Modal Logics

Christoph Benzmüller12 and Jens Otten3 and Thomas Raths45

Abstract. While there is a broad literature on the theory of first-

order modal logics, little is known about practical reasoning systems

for them. This paper presents several implementations of fully auto-

mated theorem provers for first-order modal logics based on different

proof calculi. Among these calculi are the standard sequent calculus,

a prefixed tableau calculus, an embedding into simple type theory, an

instance-based method, and a prefixed connection calculus. All im-

plementations are tested and evaluated on the new QMLTP problem

library for first-order modal logic.

1 Introduction

Modal logics extend classical logic with the modalities ”it is neces-

sarily true that” and ”it is possibly true that” represented by the unary

operators ! and ", respectively. First-order modal logics (FMLs)

extend propositional modal logics by domains specifying sets of ob-

jects that are associated with each world, and the standard universal

and existential quantifiers [6, 9, 10, 13].

FMLs allow a natural and compact knowledge representation. The

subtle combination of the modal operators and first-order logic en-

ables specifications of epistemic, dynamic and temporal aspects, and

of infinite sets of objects. For this reason, FMLs have many applica-

tions, e.g., in planning, natural language processing, program verifi-

cation, querying knowledge bases, and modeling communication.

All these applications motivate the use of automated theorem prov-

ing (ATP) systems for FMLs. Whereas there are some ATP systems

available for propositional modal logics, e.g., MSPASS [14] and

modleanTAP [1], there were — until recently — no (correct) ATP

systems that can deal with the full first-order fragment of modal log-

ics. Relatively little is known about the new ATP systems for FML

presented in this paper, in particular, about their underlying calculi

and their performance.

The purpose of this paper is to introduce these new ATP systems

to the wider AI community and to evaluate and compare their per-

formance. The contributions of this paper include (i) a description of

the new ATP systems for FML, (ii) an extension of one of the pre-

sented approaches (the simple type theory embedding of FML [4] is

extended from constant domain semantics to varying and cumulative

domain semantics), and (iii) an evaluation of these systems exploit-

ing the new QMLTP library, which provides a standardized environ-

ment for the application and evaluation of FML ATP systems.

1 FU Berlin, email: c.benzmueller@googlemail.com
2 The author is funded by the German Research Foundation DFG under ref-

erence number BE2501/9-1.
3 University of Potsdam, email: jeotten@cs.uni-potsdam.de
4 University of Potsdam, email: traths@cs.uni-potsdam.de
5 This author is funded by the German Research Foundation DFG under ref-

erence number KR858/9-1.

This paper is structured as follows. Section 2 starts with some pre-

liminaries. In Section 3 ATP systems for FML and their underlying

proof search calculi are described; these are all sound and available

FML ATP systems that exist to date. Section 4 outlines the QMLTP

library and infrastructure. Section 5 provides performance results of

all described ATP systems. Section 6 concludes the paper.

2 Basics

The syntax of first-order modal logic adopted in this paper is:

F,G ::= P (t1, . . . , tn) | ¬F | F ∧ G | F ∨ G | F ⇒ G |
!F | "F | ∀xF | ∃xF . The symbols P are n-ary (n ≥ 0) relation

constants which are applied to terms t1, . . . , tn. The ti (0 ≤ i ≤ n)

are ordinary first-order terms and they may contain function and con-

stant symbols. Primitive equality is not included (yet); when equality

occurs in example problems its properties are explicitly axiomatized.

The usual precedence rules for logical constants are assumed. The

formula ("∃xPfx ∧ !∀y("Py ⇒ Qy)) ⇒ "∃zQz is used as a

running example in this paper, it is referred to as F1.

The motivation of this paper is practical. Philosophical debates,

e.g. the possibilist-actualist debate [11], are deliberately avoided.

Regarding semantics a well accepted and straightforward notion

of Kripke style semantics for FML is adopted [9, 13]. In particular, it

is assumed that constants and terms are denoting and rigid, i.e. they

always pick an object and this pick is the same object in all worlds.

Regarding the universe of discourse constant domain, varying do-

main and cumulative domain semantics are considered. With respect

to these base choices the normal modal logics K, K4, K5, B, D, D4,

T, S4, and S5 are studied.

3 Implementations

Sound ATP systems for FML are: the sequent prover MleanSeP,

the tableau prover leanTAP, the connection prover MleanCoP, the

instance-based method f2p-MSPASS, and modal versions of the

higher-order provers LEO-II and Satallax. Table 1 shows for which

modal logics these ATP systems can be used.

Table 1. ATP systems for FML

ATP system modal logics domains

MleanSeP 1.2 K,K4,D,D4,T,S4 const,cumul
MleanTAP 1.3 D,T,S4,S5 const,cumul,vary
MleanCoP 1.2 D,T,S4,S5 const,cumul,vary
f2p-MSPASS 3.0 K,K4,K5,KB,D,T,S4,S5 const,cumul
LEO-II 1.3.2-M1.0 K,K4,K5,B,D,D4,T,S4,S5 const,cumul,vary
Satallax 2.2-M1.0 K,K4,K5,B,D,D4,T,S4,S5 const,cumul,vary

ECAI 2012

Luc De Raedt et al. (Eds.)

© 2012 The Author(s).

This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.

doi:10.3233/978-1-61499-098-7-163

163

3.1 Sequent Calculus

The modal sequent calculus extends the classical sequent calcu-

lus [12] by the modal rules !-left, !-right, "-left, and "-right.

These rules are used to introduce the modal operators ! and " into

the left side or right side of the sequent, respectively [26].6

Definition 1 (Modal sequent calculus) The sequent calculus for

the modal logics K, K4, D, D4, T, and S4 consists of the axiom and

rules of the classical sequent calculus and the four additional rules

shown in Figure 1 with Γ! := {!G |!G∈Γ}, ∆" := {"G |"G

∈∆}, Γ(!) := {G |!G∈Γ}, ∆(") := {G |"G∈∆}, Γ[!] :=Γ! ∪

Γ(!), and ∆["] :=∆" ∪∆(").

Γ
+, F * ∆

+

Γ,!F * ∆
!-left

Γ
+
* F,∆+

Γ * "F,∆
"-right

Γ
∗
* F,∆∗

Γ * !F,∆
!-right

Γ
∗, F * ∆

∗

Γ,"F * ∆
"-left

logic Γ
+

∆
+

Γ
∗

∆
∗

K (no rules) Γ(!) ∆(")

K4 (no rules) Γ[!] ∆["]

D Γ(!) ∆(") Γ(!) ∆(")

logic Γ
+

∆
+

Γ
∗

∆
∗

D4 Γ[!] ∆["] Γ[!] ∆["]

T Γ ∆ Γ(!) ∆(")

S4 Γ ∆ Γ! ∆"

Figure 1. The additional rules of the (cumulative) modal sequent calculus

MleanSeP is a prover that implements the standard sequent cal-

culus for several modal logics.7 It is written in Prolog and proof

search is carried out in an analytic way. In order to optimize the proof

search in the standard calculus of Figure 1, MleanSeP uses free vari-

ables and a dynamic Skolemization that is calculated during the proof

search. Together with the occurs-check of the term unification algo-

rithm this ensures that the Eigenvariable condition is respected. To

deal with constant domains, the Barcan formula (scheme)8 is auto-

matically added to the given formula in a preprocessing step.

Example 1 (Modal sequent calculus) A derivation of the running

example formula F1 in the modal sequent calculus for the modal

logic T (and cumulative domain) is shown in Figure 2.

Pfd * Pfd,Qfd
axiom

Pfd * "Pfd,Qfd
"-right

Pfd,Qfd * Qfd
axiom

Pfd,"Pfd ⇒ Qfd * Qfd
⇒-left

Pfd,"Pfd ⇒ Qfd * ∃zQz
∃-right (z\fd)

Pfd, ∀y("Py ⇒ Qy) * ∃zQz
∀-left (y\fd)

∃xPfx, ∀y("Py ⇒ Qy) * ∃zQz
∃-left (x\d)

"∃xPfx,!∀y("Py ⇒ Qy) * "∃zQz
"-left

"∃xPfx ∧ !∀y("Py ⇒ Qy) * "∃zQz
∧-left

* ("∃xPfx ∧ !∀y("Py ⇒ Qy)) ⇒ "∃zQz
⇒-right

Figure 2. A proof for F1 in the modal sequent calculus

6 The modal sequent calculus captures the cumulative domain condition.
There are no similar cut-free sequent calculi for the logics with constant
or varying domain or for the modal logic S5.

7
MleanSeP can be downloaded at www.leancop.de/mleansep/.

8 The Barcan formula scheme has the form ∀!x(!p(!x) ⇒ !∀!xp(!x) with
!x = x1, . . . , xn for all predicates p with n ≥ 1.

3.2 Tableau Calculus

The classical tableau calculus [21] can be extended to modal logic

by adding a prefix to each formula in a tableau derivation [8]. An op-

timization of this approach uses free variables not only within terms

but also within prefixes. It is inspired by the modal matrix charac-

terization of logical validity [26] but uses a tableau-based search to

find complementary connections. A prefix is a string consisting of

variables and constants, and represents a world path that captures the

particular Kripke semantics of the modal logic in question. A pre-

fixed formula has the form F pol : p, where F is a modal formula,

pol∈ {0, 1} is a polarity and p is a prefix.

Definition 2 (Modal tableau calculus) The tableau calculus for the

modal logics D, T, S4, and S5 consists of the rules of the classi-

cal tableau calculus (which do not change the prefix p of formu-

lae) and the four additional rules shown in Figure 3. V ∗ is a new

prefix variable, a∗ is a new prefix constant and ◦ is the string con-

catenation operator. A branch is closed (×) iff it contains a pair of

literals of the form {A1
1 : p1, A

0
2 : p2} that are complementary under

a term substitution σQ and an additional modal substitution σM ,

i.e. σQ(A1)=σQ(A2) and σM (p1)=σM (p2). A tableau proof for

a prefixed formula F pol : p is a tableau derivation such that every

branch is closed for the pair of substitutions (σQ,σM). A proof for

a modal formula F is a proof for F 0 : ε.

(!F)1: p

F 1: p ◦ V ∗
!

1
("F)0: p

F 0: p ◦ V ∗
"

0
(!F)0: p

F 0: p ◦ a∗
!

0
("F)1: p

F 1: p ◦ a∗
"

1

Figure 3. The four additional rules of the modal tableau calculus

The particular modal logic is specified by distinct properties of

the modal substitution σM , and an additional admissible criterion on

σM is used to capture the different domain variants, i.e., constant,

cumulative, and varying domain; see Section 3.3 for details.

MleanTAP implements the modal tableau calculus.9 The compact

code is written in Prolog. At first MleanTAP performs a purely clas-

sical proof search. After a classical proof is found, the prefixes of

the literals that close the branches in the classical tableau are unified.

To this end a specialized string unification algorithm is used. If the

prefix unification fails, alternative classical proofs (and prefixes) are

computed via backtracking. For each modal logic a specific unifica-

tion algorithm is used that respects the properties and the admissible

criterion of the modal substitution for that logic.

Example 2 (Modal tableau calculus) A tableau proof for F1 with

σQ(y)=σQ(z)= fd, σM (V1)=σM (V3)= a1, and σM (V2)= ε

(for T, S4) or σM (V2)= a1 (for S5) is shown in Figure 4.

3.3 Connection Calculus

In contrast to sequent and tableau calculi, which are connective-

driven, connection calculi use a connection-driven search strategy.

They are already successfully used for automated theorem proving

in classical and intuitionistic logic [16, 17]. A connection is a pair

of literals, {A,¬A} or {A1, A0}, with the same predicate symbols

but different polarities. The connection calculus for classical logic is

adapted to modal logic by adding prefixes to all literals and employ-

ing a prefix unification algorithm.

9
MleanTAP can be downloaded at www.leancop.de/mleantap/.

C. Benzmüller et al. / Implementing and Evaluating Provers for First-Order Modal Logics164

(1) (("∃xPfx ∧ !∀y("Py ⇒ Qy)) ⇒ "∃zQz)0 : ε
⇒0 (1)

(2) ("∃xPfx ∧ !∀y("Py ⇒ Qy))1 : ε
⇒0 (1)

(3) ("∃zQz)0 : ε
∧1 (2)

(4) ("∃xPfx)1 : ε
∧1 (2)

(5) (!∀y("Py ⇒ Qy))1 : ε
!

1 (5)
(6) (∀y("Py ⇒ Qy))1 : V1

∀1 (6)
(7) ("Py ⇒ Qy)1 : V1

⇒1 (7)

(8) ("Py)0 : V1 (12) (Qy)1 : V1

"
0 (8) "

0 (3)
(9) (Py)0 : V1V2 (13) (∃zQz)0 : V3

"
1 (4) ∃0 (13)

(10) (∃xPfx)1 : a1 (14) (Qz)0 : V3

∃1 (10) (12, 14)
(11) (Pfd)1 : a1 ×

(9, 11)
×

!
!

!
!

!
!

"
"

"
"

"
"

Figure 4. A proof for F1 in the modal tableau calculus

The prefix of a subformula is defined in the same way as in the

tableau calculus (see Section 3.2). Formally, a prefix is a string over

an alphabet ν ∪ Π, where ν is a set of prefix variables, denoted

by V or Vi, and Π is a set of prefix constants, denoted by a or ai.

Subformulae of the form (!F)1 or ("F)0 extend the prefix by a

variable V , subformulae of the form (!F)0 or ("F)1 extend the

prefix by a constant a (see also Figure 3). ε denotes the empty string.

Proof-theoretically, a prefix of a formula F captures the modal

context of F and specifies the sequence of modal rules of the sequent

calculus (see Section 3.1) that have to be applied (analytically) in

order to obtain F in the sequent. Semantically, a prefix denotes a

specific world in a model [8, 26]. Prefixes of literals that form an

axiom in the sequent calculus need to denote the same world, hence,

they need to unify under a modal substitution.

A modal substitution is a mapping σM : ν → (ν ∪ Π)∗ that as-

signs a string over the alphabet ν ∪ Π to every element in ν . For

the modal logics D and T the accessibility condition |σM (V)| = 1
or |σM (V)| ≤ 1 has to hold for all V ∈ν , respectively. The acces-

sibility condition encodes the characteristics of the different modal

rules in the sequent calculus for each modal logic. A term substi-

tution σQ is the (usual) mapping from the set of term variables

to the set of terms. The substitutions σQ and σM induce a reduc-

tion ordering, which has to be irreflexive [26]. Alternatively, an ex-

tended Skolemization technique that was already used for intuition-

istic logic [15] can be used for the term Eigenvariables and for

the prefix constants. A combined substitution σ := (σQ,σM) is ad-

missible if the following domain condition holds for all term vari-

ables x and all term variables y occurring in σQ(x): (i) for cumula-

tive domains σM (pre(y)) . σM (pre(x)), (ii) for varying domains

σM (pre(y)) = σM (pre(x)). The prefix pre(x) is the prefix of the

corresponding subformula ∀xF or ∃xF . u . w holds iff u is an

initial substring of w or u = w.

A connection {A1
1 : p1, A

0
2 : p2} is σ-complementary if σQ(A1)=

σQ(A2) and σM (p1)=σM (p2). For the modal logic S5 only the last

character of all prefixes is considered (or ε if the prefix is the empty

string). The matrix of a formula F is a set of clauses that represents

the disjunctive normal form of F [5]. In the prefixed matrix M(F)
of F each literal L is additionally marked with its prefix p.

The modal connection calculus consists of one axiom, a start rule,

a reduction rule, and an extension rule. The two latter rules identify

σ-complementary connections.

Definition 3 (Modal connection calculus) The axiom and the rules

of the modal connection calculus are given in Figure 5. The words

of the calculus are tuples of the form “C,M,Path”, where M is a

(prefixed) matrix, C and Path are sets of (prefixed) literals or ε. C

is called the subgoal clause and Path is called the active path. C1

and C2 are clauses, σ=(σQ,σM) is an admissible substitution. σQ

and σM are rigid, i.e. they are applied to the whole derivation.

Axiom (A)
{},M, Path

Start (S)
C2,M, {}

ε, M, ε
and C2 is copy of C1∈M

Reduction (R)
C,M,Path∪{L2: p2}

C∪{L1: p1},M, Path∪{L2: p2}

and {L1: p1, L2: p2} is σ-complementary

Extension (E)
C2\{L2: p2},M, Path∪{L1: p1} C,M,Path

C∪{L1: p1},M, Path

and C2 is a copy of C1∈M , L2:p2 ∈C2, and

{L1: p1, L2: p2} is σ-complementary

Figure 5. The modal connection calculus

A derivation for C,M,Path with the admissible substitution

σ = (σQ,σM) that respects the accessibility condition and the

domain condition for the logic L∈ {D,S4,S5,T} and the domain

D∈ {constant,cumulative,varying} in which all leaves are axioms is

called a modal connection proof for C,M,Path in L /D. A modal

connection proof for M is a modal connection proof for ε,M, ε.

Theorem 1 (Correctness and completeness) A (first-order) modal

formula F is valid in the modal logic L and the domain D iff there is

a modal connection proof for M(F) in L /D.

The proof of Theorem 1 is based on the the matrix characterization

for modal logic [26] and the correctness and completeness of the

connection calculus [5]. Proof search in the connection calculus is

carried out by applying the rules of the calculus in an analytic way,

i.e. from bottom to top. σQ and σM are calculated by algorithms

for term and prefix unification, respectively, whenever a reduction or

extension rule is applied. See the work of Otten [18] for details.

Example 3 (Modal connection calculus) The prefixed matrix M1

of the formula F1 from Example 1 is {{P 1fd : a1}, {P
0y :V1V2,

Q1y :V1}, {Q
0z :V3}}. A derivation for M1 in the modal connec-

tion calculus with σQ(y
′)=σQ(z

′)= fd, σM (V ′

1)=σM (V ′

3)= a1

and σM (V ′

2)= ε (for T, S4) or σM (V ′

2)= a1 (for S5) is shown in

Figure 6. y′, z′ and V ′

1 , V ′

2 , V ′

3 are new term and prefix variables. The

two extension steps use the connections {P 1fd : a1, P
0y′ :V ′

1V
′

2}
and {Q1y′ :V ′

1 , Q
0z′ :V ′

3}. As all leaves are axioms and the substi-

tution σ1 = (σQ,σM) is admissible the derivation is a proof for M1.

Hence, the formula F1 is valid in the modal logics T , S4 and S5.

C. Benzmüller et al. / Implementing and Evaluating Provers for First-Order Modal Logics 165

{},M1,{P 1fd : a1, Q1y′ :V ′

1}
A

{},M1,{P 1fd : a1}
A

{Q1y′ :V ′

1},M1, {P 1fd : a1}
E

{},M1,{}
A

{P 1fd : a1}, {P 0y :V1V2, Q
1y :V1}, {Q0z :V3}}, {}

E

ε, {P 0y :V1V2, Q
1y :V1}, {Q0z :V3}}, ε

S

Figure 6. A proof for M1 in the modal connection calculus

MleanCoP [18] is an implementation of the connection calculus

for first-order modal logic.10 It is based on leanCoP, an automated

theorem prover for first-order classical logic [16]. To adapt the im-

plementation the leanCoP prover is extended by (a) prefixes that are

added to literals and collected during the proof search and (b) a list

for each clause that contains term variables and their prefixes in order

to check the domain condition. First, MleanCoP performs a classical

proof search. After a proof is found, the prefixes of the literals in

each connection are unified and the domain condition is checked. A

specific unification algorithm is used for each of the modal logics

D, T, S4, and S5.11 The code of the unification algorithm is shared

with the unification code of MleanTAP. Furthermore, the following

additional techniques that are already used in leanCoP are integrated

into MleanCoP: regularity, lemmata, restricted backtracking, a defini-

tional clausal form translation, and a fixed strategy scheduling [17].

3.4 Instance-Based Method

In general, instance-based methods consist of two components. The

first component adds instances of subformulae to the given formula

and grounds the resulting formula, i.e. removes quantifiers and re-

places all variables by a unique constant. The second component

uses an ATP system for propositional logic to find a proof or counter

model for the ground formula. If a counter model is found, the first

component is invoked again in order to add more instances. After-

wards, the propositional ATP system again tries to find a proof or

counter model, and so on. This method can be adapted to modal logic

by using an ATP system for propositional modal logic. The basic ap-

proach works for the cumulative domain and formulae that contain

either only existential or only universal quantiers. This restriction is

due to the dependency between applications of modal and quantifier

rules, which cannot be captured by the standard Skolemization.

f2p-MSPASS implements the instance-based method for various

modal logics. It consists of two components. The first component,

called first2p, takes a FML formula, adds instances of subformulae,

removes all quantifiers, and replaces every variable with a unique

constant. If first2p is unable to add any new instances of subformu-

lae, the given FML formula is refuted, i.e. it is not valid. first2p is

written in Prolog. It does not translate the given formula into any

clausal form but preserves its structure throughout the whole proof

process. The second component, MSPASS [14], takes the resulting

propositional formula and tries to find a proof or a counter model.

MSPASS is an extension of and incorporated into the resolution-

based ATP system SPASS. It uses several translation methods into

classical logic. By default the standard relational translation from

modal logic into classical logic is applied. To deal with the con-

stant domain, first2p automatically adds the Barcan formulae (see

Section 3.1) to the given FML formula in a preprocessing step.

10
MleanCoP can be downloaded at www.leancop.de/mleancop/.

11 For the modal logic K the matrix characterization requires an additional
criterion [26], which cannot be integrated into the modal connection cal-
culus or the modal tableau calculus (Section 3.2) in a straightforward way.

Example 4 (Modal instance-based method) Let F ′

1 be the modal

formula ("Pfd ∧ !∀y("Py ⇒ Qy)) ⇒ "∃zQz. Initially, the

first component of the instance-based method generates the proposi-

tional modal formula ("Pfd ∧ !("Pa ⇒ Qa)) ⇒ "Qa by re-

moving all quantifiers and replacing all variables by the unique con-

stant a. This formula is refuted by MSPASS and, hence, additional

subformula instances are added to F ′

1: ("Pfd ∧ !(∀y("Py ⇒

Qy) ∧ ("Pfd ⇒ Qfd))) ⇒ "(∃zQz ∨ Qfd) and all variables

replaced by a. Then, the resulting formula ("Pfd ∧ !(("Pa ⇒

Qa)∧ ("Pfd ⇒ Qfd))) ⇒ "(Qa∨Qfd) is proved by MSPASS.

3.5 Embedding into Classical Higher-Order Logic

Kripke structures can be elegantly modeled in Church’s simple

type theory [7], which is also known as classical higher-order

logic (HOL). Consequently, prominent non-classical logics, includ-

ing FMLs, can be encoded as natural fragments of HOL [3].

Definition 4 (Embedding of FML in HOL) Choose HOL type ι to

denote the (non-empty) set of possible worlds and choose an addi-

tional base type µ to denote the (non-empty) set of individuals. As

usual, the type o denotes the set of truth values. Certain HOL terms

tρ of type ρ := ι ! o then correspond to FML formulae. The log-

ical constants ¬,∨,!, and Π (∀xF is syntactic sugar for ΠλxF)

are modeled as abbreviations for the following λ terms (types are

provided as subscripts):

¬ρ!ρ = λFρλwι¬Fw

∨ρ!ρ!ρ = λFρλGρλwι(Fw ∨Gw)

!ρ!ρ = λFρλwι∀vι(¬Rwv ∨ Fv)

Π(µ!ρ)!ρ = λHµ!ρλwι∀xµHxw

n-ary relation symbols P, n-ary function symbols f and individual

constants c obtain types µ1 ! . . . ! µn ! ρ, µ1 ! . . . ! µn !

µn+1 (both with µi = µ for 0 ≤ i ≤ n+1) and µ, respectively. Fur-

ther logical connectives are defined as usual (∃xF is syntactic sugar

for ΣλxF): ∧ = λFρλGρ¬(¬F ∨ ¬G), ⇒ = λFρλGρ(¬F ∨G),
" = λFρ¬!¬F , Σ = λHµ!ρ¬Πλxι¬Hx. Constant symbol Rι!ρ

denotes the accessibility relation of the ! operator, which remains

unconstrained in logic K. For logics D, T, S4, and S5, R is axioma-

tized as serial, reflexive, reflexive and transitive, and an equivalence

relation, respectively. This can be done ’semantically’ (e.g. with ax-

iom ∀xRxx for reflexivity) or ’syntactically’ (e.g. with correspond-

ing axiom vld ∀Fρ !F ⇒ F , where quantification over propositions

is employed [4]).12 Evaluation of a modal formula F for a world w

corresponds to evaluating the application Fw in HOL. Validity of a

modal formula is hence formalized as vldρ!o = λFρ∀wιFw.

Theorem 2 F is a K-valid FML formula for constant domain se-

mantics if and only if vld Fρ is valid in HOL for Henkin semantics.

K-valid means validity wrt. base modal logic K. The theorem follows

from Benzmüller and Paulson [4], who study FMLs with quantifica-

tion over individual and propositional variables (function and con-

stant symbols are avoided there though to achieve a leaner theory).

The ATP systems Satallax and LEO-II are based on Henkin-sound

and Henkin-complete calculi for HOL.13 By Theorem 2 these calculi

are also sound and complete for constant domain FMLs.

12 Arbitrary normal modal logics extending K can be axiomatized this way.
However, in some cases only the semantic approach (e.g. for irreflexivity
of R) or the syntactic approach (e.g. for McKinsey’s axiom) is applicable.

13 LEO-II can be download from www.leoprover.org, Satallax from
www.ps.uni-saarland.de/˜cebrown/satallax/.

C. Benzmüller et al. / Implementing and Evaluating Provers for First-Order Modal Logics166

LEO-II is based on an extensional higher-order RUE-resolution

calculus. It cooperates with a first-order ATP system, by default

prover E. Satallax uses a complete ground tableau calculus for

higher-order logic to generate successively propositional clauses and

calls the SAT solver MiniSat repeatedly to test unsatisfiability of

these clauses. It can be regarded as an instance-based method for

higher-order logic. Both systems are implemented in OCaml.

Example 5 (Embedding into HOL) Let FHOL
1 be the HOL for-

mula vld (("∃xPfx ∧ !∀y("Py ⇒ Qy)) ⇒ "∃zQz) for F1

according to Definition 4. The HOL ATP systems are asked to prove

FHOL
1 instead of F1. The abbreviations of the logical constants are

given as equation axioms to the provers, which subsequently ground-

expand them. Thus, FHOL
1 is rewritten into ∀w(¬¬(¬¬∀v(¬Rwv∨

¬¬∀x¬P (fx)v) ∨ ¬∀v(¬Rwv ∨ ∀y(¬¬∀u(¬Rvu ∨ ¬Pyu) ∨

Qyv))) ∨ ¬∀v(¬Rwv ∨ ¬¬∀z¬Qzv)). When no further axioms

for accessibility relation R are postulated, the ATP systems work for

modal logic K. In this case, Satallax reports a counter model and

LEO-II times out. To adapt the HOL ATP systems e.g. to modal logic

T, a reflexivity axiom for R is postulated (see above). If respective T-,

S4- or S5-axioms for R are available then FHOL
1 is proved in mil-

liseconds by Satallax and LEO-II. LEO-II delivers a detailed proof

object that integrates the contribution of prover E it cooperates with.

As a novel contribution of this paper, the above approach has been

adopted for cumulative and varying domain semantics. For this, the

following modifications have been implemented:

1. The definition of Π, which encodes first-order quantification, is

modified as follows: Π = λFµ!ρλwι∀xµExistsInWxw ⇒ Fxw,

where relation ExistsInWµ!ι!o (for ’Exists in world’) relates in-

dividuals with worlds. The sets {x | ExistsInWxw} are the possi-

bly varying individual domains associated with the worlds w.

2. A non-emptiness axiom for these individual domains is added:

∀wι∃xµExistsInWxw

3. For each individual constant symbol c in the proof problem an

axiom ∀wιExistsInWcw is postulated; these axioms enforce the

designation of c in the individual domain of each world w. Anal-

ogous designation axioms are required for function symbols.

Modifications 1–3 adapt the HOL approach to varying domain se-

mantics. For cumulative domain semantics one further modification

is needed:

4. The axiom ∀xµ∀vι∀wιExistsInWxv ∧ Rvw ⇒ ExistsInWxw is

added. It states that the individual domains are increasing along

the accessibility relation R.

The above approach to automate FMLs in HOL can be employed

in combination with any HOL ATP system (however, Satallax and

LEO-II are currently the strongest HOL ATP systems [24]). The con-

version to thf0-syntax [22] is realized with the new preprocessor

tool FMLtoHOL (1.0) (hence the suffices ’-M1.0’ in Table 1).

4 The QMLTP Library

The QMLTP library [19] is a benchmark library for testing and evalu-

ating ATP systems for FML, similar to the TPTP library for classical

logic [23] and the ILTP library for intuitionistic logic [20].14 The

most recent version 1.1 of the QMLTP library includes 600 FML

14 The QMLTP library is available online at www.iltp.de/qmltp/.

problems represented in a standardized extended TPTP syntax di-

vided into 11 problem domains. The problems were taken from dif-

ferent applications, various textbooks, and Gödel’s embedding of in-

tuitionistic logic. It also includes 20 problems in multimodal logic.

All problems include a header with many useful information. Fur-

thermore, the QMLTP library includes tools for converting the syntax

of FML formulae and provides information of published ATP sys-

tems for FML. Further details are provided by Raths and Otten [19].

5 Evaluation

The ATP systems presented in Section 3 were evaluated (in auto-

mode) on all 580 monomodal problems of version 1.1 of the QMLTP

library. The following modal logics were considered: K, D, T, S4,

and S5 with constant, cumulative, and varying domain semantics.15

Soundness of the provers modulo the problems in the QMLTP li-

brary has been checked by comparing the prover results with those

of (counter) model finders — some FML ATP systems support both

proving theorems and finding (counter) models. Only for GQML-

Prover [25] incorrect results have been detected this way and this

prover has subsequently been excluded from our experiments.

All tests were conducted on a 3.4 GHz Xeon system with 4 GB

RAM running Linux 2.6.24-24.x86 64. All ATP systems and com-

ponents written in Prolog use ECLiPSe Prolog 5.10. Leo II 1.3.2 was

compiled with OCaml 3.12 and it works with prover E 1.4. For Sa-

tallax a binary of version 2.2 is used. For MSPASS the sources of

SPASS 3.0 were compiled using the GNU gcc 4.2.4 compiler. The

CPU time limit for all proof attempts was set to 600 seconds.

Table 2 gives an overview of the test results. It contains the num-

ber of proved problems for each considered logic and each domain

condition for f2p-MSPASS 3.0, MleanSeP 1.2, LEO-II 1.3.2-M1.0,

Satallax 2.2-M1.0, MleanTAP 1.3, and MleanCoP 1.2.

Table 2. Number of proved monomodal problems of the QMLTP library

Logic/ —————————— ATP system ——————————
Domain f2p-MSPASS MleanSeP LEO-II Satallax MleanTAP MleanCoP

K/varying - - 72 104 - -
K/cumul. 70 121 89 122 - -
K/constant 67 124 120 146 - -

D/varying - - 81 113 100 179
D/cumul. 79 130 100 133 120 200
D/constant 76 134 135 160 135 217

T/varying - - 120 170 138 224
T/cumul. 105 163 139 192 160 249
T/constant 95 166 173 213 175 269

S4/varying - - 140 207 169 274
S4/cumul. 121 197 166 238 205 338
S4/constant 111 197 200 261 220 352

S5/varying - - 169 248 219 359
S5/cumul. 140 - 215 297 272 438
S5/constant 131 - 237 305 272 438

MleanCoP proves the highest number of problems for logics D,

T, S4 and S5. Satallax comes second for these logics and it per-

forms best for K. Satallax and LEO-II have the broadest coverage.

f2p-MSPASS cannot be applied to 299 problems as these problems

contain both existential and universal quantifiers (cf. Section 3.4).

However, this prover performs particularly well for ’almost proposi-

tional’ formulae, e.g. formulae with a finite Herbrand universe. The

15 These modal logics are supported by most of the described ATP systems.

C. Benzmüller et al. / Implementing and Evaluating Provers for First-Order Modal Logics 167

Figure 7. Complexity graph for modal logic S4 with cumulative domains

graph in Figure 7 shows the time complexity behaviour of all FML

ATP systems for the logic S4 with cumulative domains. For each

prover the associated graph depicts proved problems together with

their corresponding solution times (the problems are ordered with

respect to their solution time).

f2p-MSPASS, Satallax and MleanCoP also find counter models for

many (invalid) FML formulae; e.g. for T with cumulative domains

they refute 89, 90, and 125 problems, respectively. Further relevant

information is provided in Table 3 and on the QMLTP website.

In addition to the monomodal problems the QMLTP library con-

tains 20 multimodal problems. Currently only LEO-II and Satallax

are applicable to those; LEO-II proves 15 problems, Satallax 14.16

Table 3. The column entries x/y in this table show (i) the number x of
problems that were exclusively solved (i.e. proved or refuted) by an ATP
system in a particular logic&domain and (ii) the average CPU time y in

seconds needed by an ATP system for solving all problems in a particular
logic&domain (the full 600s timeout was counted for each failing attempt).

Logic/ —————————— ATP system ——————————
Domain f2p-MSPASS MleanSeP LEO-II Satallax MleanTAP MleanCoP

K/varying - - 0/529 165/356 - -
K/cumul. 88/363 4/471 0/511 50/349 - -
K/constant 42/405 2/471 12/481 45/328 - -

D/varying - - 0/519 0/477 0/492 293/173
D/cumul. 33/407 0/461 0/500 0/464 0/472 194/171
D/constant 33/411 0/462 2/466 0/425 0/456 167/169

T/varying - - 0/478 30/320 0/453 121/223
T/cumul. 6/400 0/427 2/456 4/310 0/430 76/217
T/constant 6/410 0/428 2/427 1/295 0/415 66/213

S4/varying - - 0/458 30/289 1/421 109/199
S4/cumul. 0/433 0/397 0/430 6/270 1/384 115/163
S4/constant 0/448 0/401 2/397 4/255 1/368 100/162

S5/varying - - 0/427 27/265 1/369 132/148
S5/cumul. 0/418 - 0/379 0/244 1/315 126/118
S5/constant 0/436 - 2/359 0/231 1/315 116/118

6 Conclusion

Heterogeneous ATP systems for various first-order modal logics have

been presented, including some very recent implementations and

some significant modifications of others. These are the first (and cur-

rently only) existing, sound ATP systems for FML.

16 The first-order ATP system leanTAP 2.3 [2] was also applied to the 580
problems after removing all modal operators. It proves 296 problems and
refutes one.

The new QMLTP problem library has been employed for a first,

thorough evaluation of their performance.

Future work includes improvements and extensions of both the

first-order modal logic ATP systems and the QMLTP library and

related infrastructure. There is obviously a wide spectrum for ex-

tensions, including e.g. non-rigid constants and terms, indefinite de-

scriptions, predicate abstractions and multimodal logics.

Acknowledgements. We thank Geoff Sutcliffe and Chad Brown

for their valuable input to this work.

REFERENCES

[1] B. Beckert, R. Goré. Free Variable Tableaux for Propositional Modal
Logics. In D. Galmiche, Ed., TABLEAUX-1997, LNAI 1227, pp. 91–
106, Springer, 1997.

[2] B. Beckert, J. Posegga. leanTAP: Lean Tableau-based Deduction. Jour-

nal of Automatic Reasoning, 15(3): 339–358, 1995.
[3] C. Benzmüller. Combining and Automating Classical and Non-

Classical Logics in Classical Higher-Order Logic, Annals of Mathe-

matics and Artificial Intelligence, 62:103-128, 2011.
[4] C. Benzmüller, L. Paulson. Quantified Multimodal Logics in Simple

Type Theory. Logica Universalis, 2012. doi:10.1007/s11787-012-0052-y

[5] W. Bibel. Automated Theorem Proving. Vieweg, Wiesbaden, 1987.
[6] P. Blackburn, J. van Benthem, F. Wolter. Handbook of Modal Logic.

Elsevier, 2006.
[7] A. Church. A Formulation of the Simple Theory of Types. Journal of

Symbolic Logic, 5:56–68, 1940.
[8] M. Fitting. Proof Methods for Modal and Intuitionistic Logic. D. Rei-

del, Dordrecht, 1983.
[9] M. Fitting, R. L. Mendelsohn. First-Order Modal Logic. Kluwer, 1998.

[10] J. Garson. Quantification in Modal Logic. Handbook of Philosophical

Logic, volume II, pp. 249–307. D. Reidel Publ. Co, 1984.
[11] J. Garson. Unifying Quantified Modal Logic. Journal of Philosophical

Logic, 34: 621-649, 2005.
[12] G. Gentzen. Untersuchungen über das logische Schließen. Mathema-

tische Zeitschrift, 39:176–210, 405–431, 1935.
[13] G.E. Hughes, M. Cresswell. A New Introduction to Modal Logic. Rout-

ledge, 1996.
[14] U. Hustadt, R. A. Schmidt. MSPASS: Modal Reasoning by Transla-

tion and First-Order Resolution. R. Dyckhoff., Ed., TABLEAUX-2000,
LNAI 1847, pp. 67–81. Springer, 2000.

[15] J. Otten. Clausal Connection-Based Theorem Proving in Intuitionistic
First-Order Logic. In B. Beckert, Ed., TABLEAUX 2005, LNAI 3702,
pp. 245–261. Springer, 2005.

[16] J. Otten. leanCoP 2.0 and ileanCoP 1.2: High Performance Lean The-
orem Proving in Classical and Intuitionistic Logic. In A. Armando, P.
Baumgartner, G. Dowek, Eds., IJCAR 2008, LNCS 5195, S. 283–291.
Springer, 2008.

[17] J. Otten. Restricting Backtracking in Connection Calculi. AI Commu-

nications 23:159–182, 2010.
[18] J. Otten. Implementing Connection Calculi for First-order Modal Log-

ics. 9th International Workshop on the Implementation of Logics,
Merida/Venezuela, 2012.

[19] T. Raths, J. Otten. The QMLTP Problem Library for First-order Modal
Logics. IJCAR-2012, LNAI, Springer, 2012. To appear.

[20] T. Raths, J. Otten, C. Kreitz. The ILTP Problem Library for Intuition-
istic Logic. Journal of Automated Reasoning, 38(1–3): 261–271, 2007.

[21] R. M. Smullyan. First-Order Logic. Springer, 1968.
[22] G. Sutcliffe and C. Benzmüller. Automated Reasoning in Higher-Order

Logic using the TPTP THF Infrastructure. Journal of Formalized Rea-

soning, 3(1):1-27, 2010.
[23] G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure:

The FOF and CNF Parts, v3.5.0. Journal of Automated Reasoning,
43(4):337–362, 2009.

[24] G. Sutcliffe. The CADE-23 Automated Theorem Proving System Com-
petition - CASC-23. AI Communications 25(1): 49-63, 2012.

[25] V. Thion, S. Cerrito, M. Cialdea Mayer. A General Theorem Prover
for Quantified Modal Logics. In U. Egly, C. G. Fermüller, Eds.,
TABLEAUX-2002, LNCS 2381, pp. 266–280. Springer, 2002.

[26] L. Wallen. Automated deduction in nonclassical logic. MIT Press,
Cambridge, 1990.

C. Benzmüller et al. / Implementing and Evaluating Provers for First-Order Modal Logics168

