
189

Implementing and Verifying Release-Acquire Transactional

Memory in C11

SADEGH DALVANDI, University of Surrey, UK

BRIJESH DONGOL, University of Surrey, UK

Transactional memory (TM) is an intensively studied synchronisation paradigm with many proposed imple-
mentations in software and hardware, and combinations thereof. However, TM under relaxed memory, e.g.,
C11 (the 2011 C/C++ standard) is still poorly understood, lacking rigorous foundations that support verifiable
implementations. This paper addresses this gap by developing TMS2-ra, a relaxed operational TM specification.
We integrate TMS2-ra with RC11 (the repaired C11 memory model that disallows load-buffering) to provide a
formal semantics for TM libraries and their clients. We develop a logic, TARO, for verifying client programs
that use TMS2-ra for synchronisation. We also show how TMS2-ra can be implemented by a C11 library,
TML-ra, that uses relaxed and release-acquire atomics, yet guarantees the synchronisation properties required
by TMS2-ra. We benchmark TML-ra and show that it outperforms its sequentially consistent counterpart
in the STAMP benchmarks. Finally, we use a simulation-based verification technique to prove correctness of
TML-ra. Our entire development is supported by the Isabelle/HOL proof assistant.

CCS Concepts: • Theory of computation → Semantics and reasoning; Concurrency; • Computing

methodologies→ Concurrent computing methodologies.

Additional Key Words and Phrases: Weak Memory, Transactional Memory, C11, Verification, Refinement

ACM Reference Format:

SadeghDalvandi and Brijesh Dongol. 2022. Implementing and Verifying Release-Acquire TransactionalMemory
in C11. Proc. ACM Program. Lang. 6, OOPSLA2, Article 189 (October 2022), 28 pages. https://doi.org/10.1145/
3563352

1 INTRODUCTION

The advent and proliferation of architectures implementing relaxed memory models has resulted
in many new challenges in the development of concurrent programs. In the context of the C/C++
relaxed memory model defined by C111, over a decade’s worth of research has resulted in rigorous
semantic foundations [Batty et al. 2016, 2011; Kang et al. 2017; Lahav et al. 2017; Lee et al. 2020;
Paviotti et al. 2020], and more recently, logics for reasoning about the correctness of concurrent
programs [Dalvandi et al. 2020a, 2022; Doherty et al. 2019; Doko and Vafeiadis 2017; He et al.
2016; Kaiser et al. 2017; Kang et al. 2017; Lahav and Vafeiadis 2015; Vafeiadis and Narayan 2013;
Wright et al. 2021]. These works have provided the background necessary to develop high-level
abstractions and concurrency libraries over relaxed-memory architectures. Recent works have
included reimplementations of concurrent data structures [Dalvandi and Dongol 2021; Dongol et al.
2018b; Emmi and Enea 2019; Krishna et al. 2020; Raad et al. 2019a], including those with relaxed
specifications that aim to exploit the additional behaviours allowed by relaxed memory.

1C11 refers to the 2011 ISO specification of C/C++.

Authors’ addresses: Sadegh Dalvandi, m.dalvandi@surrey.ac.uk, University of Surrey, Guildford, UK; Brijesh Dongol,

b.dongol@surrey.ac.uk, University of Surrey, Guildford, UK.

© 2022 Copyright held by the owner/author(s).

2475-1421/2022/10-ART189

https://doi.org/10.1145/3563352

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 189. Publication date: October 2022.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0001-8813-780X
HTTPS://ORCID.ORG/0000-0003-0446-3507
https://doi.org/10.1145/3563352
https://doi.org/10.1145/3563352
https://orcid.org/0000-0001-8813-780X
https://orcid.org/0000-0003-0446-3507
https://doi.org/10.1145/3563352
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3563352&domain=pdf&date_stamp=2022-10-31

189:2 Sadegh Dalvandi and Brijesh Dongol

Our aim for this paper is to implement and verify synchronisation abstractions, fine-tuned for
C11, in the form of transactional memory (TM) libraries, which provide reusable foundations for
high-performance, yet easy to manage concurrency control [Guerraoui and Kapalka 2010; Herlihy
and Moss 1993; Shavit and Touitou 1997]. Implementations include those in software (as STM
libraries) and hardware (Intel-RTM and Armv9). Other variations include hybrid TM that combine
software and hardware TMs and implementations that are natively supported by the compiler (e.g.,
the C++ TM Lite development). In addition to supporting general-purpose concurrency, TM has also
been used to develop transactional concurrent objects and data structures [Assa et al. 2020, 2021;
Bronson et al. 2010; Lesani et al. 2022]. Intel’s persistent memory development kit (PMDK) [Scargall
2020] extensively promotes the transactional paradigm (though multi-threaded transactions are
not directly supported by PMDK’s transactions). These prior works have assumed SC transactions,
i.e., that transactional access provide the same guarantees as sequentially consistent memory. Our
focus is the verification of STMs implemented as a programming language library with relaxed,
release, acquire and release-acquire accesses providing a pathway towards simplified development
of transactional objects (including concurrent data structures) for relaxed memory.
TM implementations provide fine-grained interleaving (for efficiency) that execute with an

illusion of atomicity (for correctness). A completed transaction may be committed or aborted so
that all or none of its effects are externally visible. TM implementations are designed to satisfy
a variety of correctness conditions such as (strict) serialisability, opacity, and snapshot isolation,
which restrict ordering possibilities of completed transactions. TM has been extensively studied
for sequentially consistent (SC) architectures [Lamport 1979], but implementations over relaxed
memory are limited.
Prior works on relaxed memory transactions (e.g., [Chong et al. 2018; Dongol et al. 2018a])

have focussed on foundations of hardware transactions and their interaction with relaxed memory
models, e.g., the expected isolation guarantees, reordering possibilities etc. The work of Chong et al.
[2018] also provides for semantics of native C++ transactions. However, native TM support in C++
is still in a state of flux [Spear et al. 2020; Zardoshti et al. 2019] and the underlying designs have
changed since the original works by Chong et al. [2018]. Moreover, these semantics are presented
in an axiomatic (aka declarative) style, which cannot be used to verify TM implementations, where
we require operational descriptions of correctness. Therefore, our point of departure is a separate
set of works on TM specifications, in particular the TMS2 specification [Doherty et al. 2013], which
has been used extensively as a TM specification for standard (i.e., SC) architectures.

More recent works have taken steps towards C++ implementations, including native support of
TM within C++ [Zardoshti et al. 2019] and STMs implemented using C++ relaxed memory [Ro-
driguez and Spear 2020]. However, Zardoshti et al. [2019] do not describe interactions with the
C11 relaxed memory model, while Rodriguez and Spear [2020] focus on data race freedom and
privatisation guarantees. Neither of these works have a formal semantics, nor are they supported
by a verification methodology. (See ğ7 for a more comprehensive survey of related works.)
Our work addresses several gaps in the current state-of-the-art of transactions for C/C++. We

work with RC11, i.e., the repaired C11 memory model [Lahav et al. 2017]. The RC11 memory model
disallows program-order and reads-from cycles, and hence disallows load-buffering behaviour.
This restriction greatly simplifies reasoning and variants of RC11 are supported by a number of
different logics [Dalvandi et al. 2020a; Dalvandi and Dongol 2021; Dalvandi et al. 2022; Dang et al.
2022; Kaiser et al. 2017; Lahav and Vafeiadis 2015]. Logics that address the full C11 memory model
(allowing load buffering) have also been developed, but proofs in these logics are limited to small
litmus tests [Svendsen et al. 2018; Wright et al. 2021].
We develop: (i) a reusable specification of TM that provides well-defined guarantees to those

developing client programs; (ii) techniques for verifying client programs in C11 that use such

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 189. Publication date: October 2022.

Implementing and Verifying Release-Acquire Transactional Memory in C11 189:3

TM abstractions; (iii) implementations of TM in C11, including their rigorous verification; and
(iv) mechanisation of the verification described above in the theorem prover Isabelle/HOL. We
discuss these contributions in more detail below.

Correctness specifications. To enable verification, we start with the TMS2 specification [Doherty
et al. 2013]. TMS2 implies the TMS1 specification, which is known to be both necessary and
sufficient for observational refinement (of client programs) [Attiya et al. 2018]. The main difference
between TMS1 and TMS2 is that TMS1 allows aborted transactions to observe different serialization
orders [Lesani et al. 2012]. In contrast, TMS2, like opacity [Guerraoui and Kapalka 2010], ensures
strict serializability of the committed transactions and furthermore that aborted transactions are
consistent with the serialisation order. Although more restrictive than TMS1, TMS2 has been shown
to be a robust correctness condition that is useful in practice, providing a specification for a number
of TM implementations under SC [Armstrong and Dongol 2017; Armstrong et al. 2017; Derrick
et al. 2018; Doherty et al. 2016]. Under relaxed memory, the TMS2 specification is inadequate since
it does not provide any of the client-side guarantees required by relaxed memory libraries [Dalvandi
and Dongol 2021; Dang et al. 2022; Dongol et al. 2018b; Raad et al. 2019a, 2018]. Such guarantees
are required under relaxed memory since writes in one thread may not be propagated to other
threads unless the library is properly synchronised (cf. the message passing litmus tests [Alglave
et al. 2014]).
Our first contribution is the adaptation of TMS2 to address this issue. In particular, our specifi-

cation, TMS2-ra, provides a flexible meaning of correctness, allowing a client to specify relaxed,
releasing, acquiring and release-acquiring transactions (see ğ3), mimicking the memory annotations
of C11 atomics [Batty et al. 2011]. This provides greater flexibility in TM design; we develop a
model in which these different types of transactions co-exist within the same TM system.

Client verification. Our second contribution (see ğ5) is a verification technique for relaxed-
memory client programs that use TMS2-ra. In particular, we prove correctness of several variations
of the message passing litmus test, synchronised through TMS2-ra transactions, to show that
TMS2-ra behaves as expected. In particular, we show how different client-side guarantees are
achieved depending on the type of synchronisation guarantee (relaxed, releasing or acquiring)
provided by the transaction in question.

Our verification framework includes a new logic, TARO, capable of efficiently reasoning about the
views of a client programs [Dalvandi et al. 2022; Kaiser et al. 2017]. This means that the correctness
of programs can be established using a standard Owicki-Gries reasoning framework [Dalvandi
et al. 2020a; Dalvandi and Dongol 2021; Owicki and Gries 1976].

Implementation, benchmarking and verification. Our third contribution is the implementation and
full verification of an STM algorithm that uses C11 relaxed/release-acquire atomics and implements
TMS2-ra. Our implementation is an adaptation of Dalessandro et al’s Transactional Mutex Lock

(TML) [Dalessandro et al. 2010], which presents a simple mechanism for synchronising transactions
optimised for read-heavy workloads. TML is synchronised using a single global lock, and allows
multiple concurrent read-only transactions, but at most one writing transaction, i.e., a writing
transaction causes all other concurrent transactions to abort.

Interestingly, our adapted algorithm, which we call TML-ra, allows more concurrency than TML
by exploiting the parallelism afforded by relaxed and release-acquire C11 atomics. Moreover, a
writing transaction does not force other read-only transactions to abort, allowing greater read/write
parallelism (see ğ4). We show that this theoretical speedup manifests in real implementations and
TML-ra outperforms its SC counterpart in all STAMP benchmarks (see ğ4.3).

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 189. Publication date: October 2022.

189:4 Sadegh Dalvandi and Brijesh Dongol

Thread 𝜏1 Thread 𝜏2

1 : 𝑑 := 5; 3 : do 𝑟1 ← 𝑓

2 : 𝑓 := 1; until 𝑟1 = 1;

4 : 𝑟2 ← 𝑑 ;
{𝑟2 = 0 ∨ 𝑟2 = 5}

(a) Unsynchronised MP

Thread 𝜏1

1 : 𝑑 := 5;

2 : 𝑓 :=R 1;

Thread 𝜏2

3 : do 𝑟1 ←
A 𝑓

until 𝑟1 = 1;

4 : 𝑟2 ← 𝑑 ;
{𝑟2 = 5}

(b) Synchronised MP

Fig. 1. Message passing (MP) in C11

Furthermore, we use a simulation-based verificationmethod for the C11memorymodel [Dalvandi
and Dongol 2021] to prove correctness of TML-ra. This proof establishes trace refinement between
TML-ra and TMS2-ra, which ensures that all observable behaviours of TML-ra are observable
behaviours of TMS2-ra. Thus, if a client program 𝐶 is proved correct when it uses TMS2-ra, then
𝐶 will also be correct if we replace calls to TMS2-ra in 𝐶 by calls to TML-ra.

Mechanisation. Our fourth contribution is the mechanisation of all proofs presented in the paper
in the Isabelle/HOL proof assistant (available as supplementary material [Dalvandi and Dongol
2022a]). This includes the operational semantics of C11 integrated with TMS2-ra, soundness of all
TARO rules, the use of TARO to prove several client programs that use TMS2-ra, and finally the
proof of simulation between TMS2-ra and TML-ra.2

Overview. This paper is structured as follows. We describe our requirements for relaxed and
release-acquire transactions in ğ2. We formalise this semantics in ğ3 via the TMS2-ra specification,
and describe its integration with a view-based semantics for RC11 with release-acquire atom-
ics [Dalvandi et al. 2020a]. In ğ4, we provide an examplar implementation and benchmarking results
for TML-ra. In ğ5, we present our logic for reasoning about release-acquire transactional memory,
which provides a method of reasoning about client programs that use the TMS2-ra specification.
Finally, in ğ6, we present a proof of correctness of TML-ra via refinement w.r.t. TMS2-ra.

2 TRANSACTIONAL GUARANTEES IN C11

A TM specification in a relaxed memory setting has two distinct sets of goals. The first set must
guarantee the expected behaviours of transactions, e.g., serializability, opacity etc. The second must
provide client-side guarantees, e.g., release-acquire synchronisation, observational refinement etc.
We consider both in our TMS2-ra specification (see Fig. 4).

2.1 Release-Acquire Synchronisation

Prior to detailing the design choices of TMS2-ra, we recap the basics of release-acquire synchroni-
sation in C11, including a recently developed timestamp-based operational semantics, which is the
semantics assumed by TMS2-ra.

The fragment of C11 we focus on is the RC11-RAR fragment. The first łRž denotes the repairing
model [Lahav et al. 2017], which precludes ‘thin-air’ behaviour by disallowing memory operations
within a thread to be reordered. The łRARž refers to the fact that the model includes release-acquire
as well as relaxed atomics [Dalvandi et al. 2020b; Doherty et al. 2019]. 3 For the remainder of this
paper, we simply write C11 to refer to RC11-RAR.

2Our development may be found in [Dalvandi and Dongol 2022a].
3Note that extending this model to include other types of C11 synchronisation (e.g., SC fences) and relaxations that allow

intra-thread ordering is possible [Wright et al. 2021], but these extended models are not so interesting for the purposes of

this paper, and the additional complexity that they induce detracts from our main contributions.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 189. Publication date: October 2022.

Implementing and Verifying Release-Acquire Transactional Memory in C11 189:5

Thread 𝜏1

1 : 𝑑 := 5;

2 : TxBegin(R, ∅) ;

3 : TxWrite(𝑓 , 1) ;

4 : TxEnd

Thread 𝜏2

5 : do

6 : TxBegin(A, {r1}) ;

7 : TxRead(𝑓 , 𝑟1) ;

8 : TxEnd ;

9 : until 𝑟1 = 1;

10 : 𝑟2 ← 𝑑
{𝑟2 = 5}

(a) Transactional MP

Thread 𝜏1

1 : 𝑑1 := 5;

2 : TxBegin(RX, ∅) ;

3 : TxWrite(𝑑2, 10) ;

4 : TxWrite(𝑓 , 1) ;

5 : TxEnd

Thread 𝜏2

6 : TxBegin(RX, {r1, r2}) ;

7 : TxRead(𝑓 , 𝑟1) ;

8 : if 𝑟1 = 1 then

9 : TxRead(𝑑2, 𝑟2) ;

10 : TxEnd ;

11 : 𝑟3 ← 𝑑1
{𝑟1 = 1⇒ 𝑟2 = 10 ∧ 𝑟3 ∈ {0, 5}}

(b) Relaxed transactions

Thread 𝜏1

1 : 𝑑1 := 5;

2 : TxBegin(R, ∅) ;

3 : TxWrite(𝑓 , 1) ;

4 : TxEnd

Thread 𝜏2

5 : 𝑑2 := 10;

6 : TxBegin(RA, {r2}) ;

7 : TxRead(𝑓 , 𝑟2) ;

8 : if 𝑟2 = 1 then

9 : TxWrite(𝑓 , 2)

10 : TxEnd

Thread 𝜏3

11 : TxBegin(A, {r3}) ;

12 : TxRead(𝑓 , 𝑟3) ;

13 : TxEnd ;

14 : if 𝑟3 = 2 then

15 : 𝑠1 ← 𝑑1;

16 : 𝑠2 ← 𝑑2
{𝑟3 = 2⇒ 𝑠1 = 5 ∧ 𝑠2 = 10}

(c) Extended transactional MP

Fig. 2. Transactional memory client interactions

We explain the main ideas behind release-acquire synchronisation using the message passing
(MP) litmus test in Figs. 1a and 1b. It comprises two shared variables: 𝑑 (for data) and 𝑓 (for a flag),
both of which are initially 0. Under SC, the postcondition of the program is 𝑟2 = 5 because the loop
in thread 𝜏2 only terminates after 𝑓 has been updated to 1 in thread 𝜏1, which in turn happens after
𝑑 is set to 5. Therefore, the only possible value of 𝑑 that thread 𝜏2 can read is 5.

However, in Fig. 1a, all read/write accesses of 𝑑 and 𝑓 are relaxed, and hence the program can
only establish the weaker postcondition 𝑟2 = 0 ∨ 𝑟2 = 5 since it is possible for thread 𝜏2 to read 0

for d at line 4. In particular, reading 1 for 𝑓 does not guarantee that thread 𝜏2 will read 5 for 𝑑 .
This anomaly is corrected in Fig. 1b where the highlighted code depicts the necessary changes.

In particular, we introduce a release annotation (line 2) as well as an acquire annotation (line 3),
which together induces a happens-before relation if the read of 𝑓 at line 3 reads from the write at
line 2 (see [Batty et al. 2011]). This in turn ensures that thread 𝜏2 sees the most recent write to 𝑑 at
line 1. We explain how relaxed accesses and release-acquire synchronisation is formalised by the
operational semantics in ğ3.1.

2.2 Transactional Message Passing

We now describe the guarantees provided by our transactional model in the context of a client
program. Like standard reads and writes in C11, we allow transactions to be combined with a
synchronising annotation, which may be one of relaxed (RX), releasing (R), acquiring (A), or release-
acquiring (RA). These annotations dictate whether or not a transaction induces a client-side happens
before. In particular, client-side happens-before is induced from thread 𝜏1 to thread 𝜏2 if (i) a read
in transaction 𝑡2 executed by 𝜏2 reads-from a write in transaction 𝑡1 executed by 𝜏1, (ii) 𝑡1 contains
a release annotation (either R or RA), and (iii) 𝑡2 contains an acquire annotation (either A or RA).
We illustrate the implications of these annotations via the examples in Fig. 2, where the highlights

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 189. Publication date: October 2022.

189:6 Sadegh Dalvandi and Brijesh Dongol

are used to identify the transactions. We assume that a client provides a transaction with a set of
registers that it may use when the transaction begins (see ğ3).
Fig. 2a describes a transactional variation of MP. Thread 𝜏1 comprises a (non-transactional)

relaxed write on 𝑑 followed by a transactional write of the flag, 𝑓 . Thread 𝜏2 contains a transactional
read of 𝑓 within a loop that terminates if 𝜏2 reads 1 for 𝑓 . After the loop terminates, 𝜏2 performs a
(non-transactional) relaxed read of𝑑 . In this example, like Fig. 1b, the release and acquire annotations
induce a happens-before relation from 𝜏1 to 𝜏2 and hence ensure that the read of 𝑑 in 𝜏2 does not
return the stale value, 0.
Fig. 2b describes a program that uses a relaxed transaction. The postcondition of the program

considers the case where the transaction in 𝜏1 occurs before the transaction in 𝜏2 since the an-
tecedent assumes that 𝑟1 = 1, i.e., the read of 𝑓 at line 7 reads the write of 𝑓 at line 4. In this example,
both transactions are relaxed, and hence, the ordering of transactions above does not induce a
happens before from 𝜏1 to 𝜏2. Thus, the read of 𝑑1 at line 11 is not guaranteed to see the write of 𝑑1
at line 1, i.e., the final value of 𝑟3 is either 0 or 5. However, since the write and read of 𝑑2 occurs
within the transactions of 𝜏1 and 𝜏2, respectively, if 𝑟1 = 1, then 𝜏2 is guaranteed to read 10 for 𝑑2.

Finally, Fig. 2c demonstrates a program with an RA transaction. The antecedent of the program’s
postcondition implies that the transaction in 𝜏3 occurs after the transaction in 𝜏2, which in turn
occurs after the transaction in 𝜏1. Here, the transaction annotations ensure that the writes to
𝑑1 and 𝑑2 (at lines 1 and 5) performed by the client are seen by the client reads at lines 15 and
16. This is because the transaction in 𝜏2 (annotated by RA) is guaranteed to synchronise with
the transaction in 𝜏1 (annotated by R), and similarly, the transaction in 𝜏3 (annotated by A) is
guaranteed to synchronise with the transaction in 𝜏2 (annotated by RA). Note that if the transaction
in 𝜏2 was only releasing, then 𝜏1 and 𝜏2 would not synchronise, and the read at line 15 may return
either 0 or 5. Yet, the read at line 16 would still be guaranteed to return 10 for 𝑑2 since 𝜏2 and 𝜏3
synchronise. If the transaction in 𝜏2 was only acquiring, then 𝜏2 and 𝜏3 would not synchronise.
In this case, although 𝜏1 and 𝜏2 have synchronised, neither of the reads at lines 15 and 16 are
guaranteed to return the new writes at lines 1 and 5.
Deciding a transaction’s synchronisation flag ultimately comes down to the needs of a client

program, much like memory_order parameters on atomic_compare_exchange instructions in
C11 [cppreference.com 2022]. Client programs that require message passing through transactions
would use release-acquire, while others may only require relaxed annotations.

3 RELEASE-ACQUIRE TM SPECIFICATION

With the basic requirements for release-acquire and transactional synchronisation in place, we
work towards a formal TM specification. Our specification will be closely tied to an operational
semantics for C11 with timestamped writes and per-thread views [Dalvandi et al. 2020a; Dolan
et al. 2018; Kaiser et al. 2017; Kang et al. 2017; Podkopaev et al. 2016] (see ğ3.1). We integrate this
model with a TM specification in ğ3.3.

3.1 View-Based Operational Semantics

As discussed above, in our model, the C11 relaxed memory state is formalised by timestamped writes.
Instead of mapping each location to a value, the state contains a set of writes writes ⊆ Write,
where Write = Loc × Val × TS represents a write to a location Loc with value Val and 𝑇𝑆 =̂ Q is
the set of possible timestamps. If𝑤 ∈ Write and𝑤 = (𝑥, 𝑣, q), then we let loc(𝑤) =̂ 𝑥 , val(𝑤) =̂ 𝑣 ,
tst(𝑤) =̂ q, be the functions that extract the location, value and timestamp of𝑤 , respectively.
A view is a mapping from a location to a write of that location, i.e., View =̂ Loc → Write. To

define the allowable reads by each thread to each location, the state also records a thread view for

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 189. Publication date: October 2022.

Implementing and Verifying Release-Acquire Transactional Memory in C11 189:7

𝜎0

𝑑 𝑓 𝜏2

𝜏1
0, 0

0, 0

𝜎1

𝑑 𝑓 𝜏2

𝜏1
0, 0

0, 0

5, 1

𝜎2

𝑑 𝑓 𝜏2

𝜏1
0, 0 0, 0

5, 1
1R ,1

𝜎3

𝑑 𝑓 𝜏2

𝜏1
0, 0 0, 0

5, 1
1R ,1

Fig. 3. Synchronised message passing views

each thread defined by a function

tview : TId → View

where TId =̂ N is the set of thread identifiers. A thread may read from any write whose timestamp
is no smaller than the thread’s current view. Thus, the observable values (OV), i.e., the set of values
that thread 𝜏 can read for location 𝑥 is

OW 𝜏 (𝑥) =̂
{
w ∈ writes loc(w) = 𝑥 ∧ tst(w) ≥ tst(tview𝜏 (𝑥))

}

OV𝜏 (𝑥) =̂ {val(w) | w ∈ OW 𝜏 (𝑥)}

A write may be introduced at any timestamp greater than the thread’s current view (with a caveat
that ensures atomicity of read-modify-writes, see [Dalvandi et al. 2020a; Doherty et al. 2019] for
details).

Finally, to formalise release-acquire synchronisation, a state in the timestamp model also includes
a notion of a modification view,

mview : Write→ View

which is a function that records the thread view of the executing thread when a new write is
introduced to writes. In particular, if thread 𝜏 introduces a new write w to writes and tview𝜏 is
updated to 𝑣𝑖𝑒𝑤 in this new state, then mview is also updated so that mvieww = 𝑣𝑖𝑒𝑤 in the new
state. This information is used to update thread views in case release-acquire synchronisation
occurs.
Formally, when threads synchronise, a new view is calculated using an operator ‘⊗’, which is

defined as follows. Given 𝑉1,𝑉2 ∈ View, we have

𝑉1 ⊗ 𝑉2 =̂ 𝜆𝑥. if tst(𝑉2 (𝑥)) ≤ tst(𝑉1 (𝑥)) then 𝑉1 (𝑥) else 𝑉2 (𝑥)

which constructs a new view by taking the write with the larger timestamp for each location 𝑥 .

Example 1 (Synchronised MP). Consider Fig. 3, which depicts a possible execution of the program
in Fig. 1b. Each ł𝑣, 𝑖ž represents a łvalue, timestampž pair for the location in question. The initial
state is 𝜎0, where the views of threads 𝜏1 and 𝜏2 are both the initial writes. State 𝜎1 occurs after
executing line 1, where the view of 𝜏1 is updated to the new write on 𝑑 . Similarly, 𝜎2 occurs
after executing line 2. Note that the new write is tagged with a release annotation. Moreover,
the operational semantics guarantees that in 𝜎2, we have 𝜎2.mview(𝑓 ,1,1) (𝑑) = (𝑑, 5, 1), i.e., the
modification view of the write (𝑓 , 1, 1) returns (𝑑, 5, 1) for 𝑑 (since this was the thread view of 𝜏1
for 𝑑 when the write at line 2 occurred).
Finally, 𝜎3 depicts the state after execution of line 3, where the read returns the value 1 for

𝑓 . In this case, the thread view of 𝜏2 for 𝑓 is updated to the new read. More importantly, due to
release-acquire annotations the semantics enforces that the thread view of 𝜏2 for 𝑑 in 𝜎3 is also
updated to the new modification view, i.e., 𝜎2.mview(𝑓 ,1,1) (𝑑). Thus, after state 𝜎3, 𝜏2 will no longer
be able to return the stale value 0 for 𝑑 .

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 189. Publication date: October 2022.

189:8 Sadegh Dalvandi and Brijesh Dongol

The key difference in execution of the unsynchronised example (Fig. 1a) is that the read at line 3
does not update tview𝜏2 (𝑑). Hence, for the state of Fig. 1a analogous to 𝜎3, the view of 𝜏2 for 𝑑
will remain at the initial write, allowing it to return a stale value.

3.2 TMS2

First, we consider the TMS2 specification, which is our TMS2-ra specification without any client-
side release-acquire guarantees. This is given by the unhighlighted components of Fig. 4, which
correspond precisely to the internal actions of TMS2 [Doherty et al. 2013].4 Note that each action
of Fig. 4 is atomic and guarded by the conditions defined in pre. If all the conditions in pre hold
the transition is enabled, and the corresponding action atomically updates the state according to
the assignments and functions in eff. If some condition in pre does not hold then the transition is
blocked. We use ⊓ to denote a non-deterministic choice (see [Lynch 1996] for details).
TMS2 is a close operational approximation of opacity [Guerraoui and Kapalka 2010]. The dif-

ferences between TMS2 and opacity are minor [Lesani et al. 2012], and much of the discussion
below applies equally to opacity. TMS2 (and opacity) distinguishes between completed and live

transactions, where completed transaction may either be committed or aborted. TMS2 guarantees
the existence of a total order ≺ over all transactions such that:

(1) if transaction 𝑡1 executes TxEnd before 𝑡2 executes TxBegin, then 𝑡1 ≺ 𝑡2;
(2) for any transaction 𝑡 , if ≺↓𝑡 is the strict downclosure of 𝑡 w.r.t. ≺ and 𝑚 is the memory

obtained by applying the committed transactions in ≺↓𝑡 in order, then
• all internal reads in 𝑡 for a variable 𝑥 are consistent with the last write to 𝑥 in 𝑡 , and
• all external reads of 𝑡 are consistent with𝑚.

Note that conditions (1) and (2) together imply strict serialisability of the transactions. Condition (2)
additionally ensures that no transaction reads from an aborted or live transaction since all external
writes can be explained by the prior writes of committed transactions only. Moreover, reads of
all transactions (including aborted and live transactions) never return a spurious value, i.e., each
non-aborting read can be explained by prior committed transactions.
The existence of the total order mentioned above is guaranteed by the TMS2 specification as

follows. Each transaction 𝑡 comprises a local read set, rdSet𝑡 , local write set, wrSet𝑡 , and variable,
status𝑡 that is used to model control flow within a transaction. If the status of 𝑡 is NOTSTARTED, 𝑡
may transition to status READY if a thread 𝜏 executes TxBegin𝜏 . Once ready, 𝜏 may execute some
number of TxRead and TxWrite operations, or TxEnd, which sets the status of 𝑡 (the transaction
that 𝜏 is executing) to COMMITTED. Note that if transaction 𝑡 is READY, it may transition to status
ABORT at any time. Moreover, in some circumstances, 𝑡 may be forced to abort because all other
transitions of 𝑡 are blocked.
To ensure read/write consistency, TMS2 uses a sequence of memories𝑀 , where a memory is a

mapping from locations to values. A transaction 𝑡 records the earliest memory it can read from by
setting beginIdx𝑡 to the last index of𝑀 when 𝑡 executed TxBegin𝜏 . Moreover, each committing
writing transaction 𝑡 constructs a newmemory 𝑁 = last (𝑀) ⊕wrSet𝑡 which is the memory last (𝑀)
overwritten with the write set of 𝑡 . It then appends 𝑁 to the end of𝑀 (see TxEndWR).
We differentiate between internal reads TxReadInt and external reads TxReadExt, by whether

the read location 𝑥 is in the write set of the executing transaction, 𝑡 . An internal read of 𝑥 simply
returns the value of 𝑥 in the write set of 𝑡 . An external read of 𝑥 non-deterministically picks a
memory index 𝑖 . This read is enabled iff 𝑖 is a valid index (i.e., is between beginIdx𝑡 and the last
memory index, |𝑀 | − 1) and the read set of 𝑡 is consistent with𝑀𝑖 (i.e., the memory at index 𝑖). In

4
TMS2-ra, like TMS2 is presented as an I/O automaton [Lynch 1996]. For simplicity, we eschew the external actions, but

they can easily be included to formalise the TM interface.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 189. Publication date: October 2022.

Implementing and Verifying Release-Acquire Transactional Memory in C11 189:9

case an external read occurs, the read set is updated and the value read is returned. This means
that all external reads in 𝑡 are validated with respect to somememory snapshot between beginIdx𝑡
and the maximum memory index. Note that it is possible for two different reads to validate w.r.t.
different memory snapshots.

TMS2 prescribes a lazy write-back strategy via TxWrite, where writes are cached in a local write
set until the commit occurs (as described above). However, as we shall see, this does not preclude
implementations of TMS2 that use eager write-backs, where writes occur in memory at the time of
writing (see [Derrick et al. 2018]). In fact, the TML-ra algorithm, our main case study in this paper,
is such an eager algorithm (see ğ4).

We split the commit phase into two cases: read-only (modelled by TxEndRO) andwriting (modelled
by TxEndWR). Since all reads are validated at the time of reading, a read-only transaction can simply
commit the transaction. On the other hand, the writing transaction must ensure its reads are valid
w.r.t. the last memory snapshot. The effect of this transition is to install a new memory snapshot as
described above.

The final component of 𝑡 is a local set regs𝑡 that is used to keep track of the set of registers that
the transaction has written to. A client provides the set of registers to be used by each transaction
when the transaction begins. These registers are set to a special value ⊥ when a transaction aborts
to ensure that no value read by 𝑡 is seen outside 𝑡 .

3.3 TMS2-ra

Wenowdiscuss the release-acquire extensions of TMS2-ra, as defined by the I/O automata algorithm
in Fig. 4, including the highlighted components. The key extension of TMS2-ra is its ability to
synchronise client threads, thus allowing it to cope with the examples in Fig. 2. Formally, this is
achieved by ensuring TMS2-ra synchronises the thread view of the client whenever transactional
release-acquire synchronisation occurs.
We introduce two new local variables in transaction 𝑡 . Namely, synctype𝑡 , which records the

type of synchronisation of 𝑡 , and seenIdxs𝑡 , which records the set of all memory indices seen
by 𝑡 that are either releasing or release-acquiring. We also introduce a new thread local variable
txview, which records the transaction thread view of 𝜏 . The transaction thread view is similar to
thread view introduced in ğ3.1. The difference here is in the definition of View. In this context the
View is a function that maps the threads to memory indexes of 𝑀 . The transaction view of 𝜏 is
the smallest memory in𝑀 that can be read by any transaction 𝑡 that was begun by thread 𝜏 . We
also introduce two global variables. Namely 𝑆 , which is a sequence recording the type of each
committed writing transaction that installs each new memory in𝑀 , and 𝑉 which is a sequence of
modification views for each new memory in𝑀 . Thus, in TMS2-ra, memory𝑀𝑖 has synchronisation
type 𝑆𝑖 , and modification view 𝑉𝑖 .

The transactional operations of TMS2 are modified as follows. In TxBegin𝑡 , we take as input the
type of synchronisation transaction 𝑡 is to perform, and store this value in synctype𝑡 . TxBegin𝑡
calls TxBeginV𝑡 with another input𝑚, which is an index to a visible memory𝑀 . We also initialise
seenIdxs𝑡 to the empty set. In TxReadExt𝑡 (𝑥, 𝑖), i.e., a transition for external read of 𝑥 frommemory
index 𝑖 , we record the index 𝑖 in seenIdxs𝑡 if the memory𝑀𝑖 is releasing or release-acquiring.
When a transaction ends (for both read-only and writing transactions), if the transaction is

acquiring or release-acquiring and seenIdxs𝑡 is non-empty, we construct a new view nv to be the
maximummodification view for each transaction in seenIdxs𝑡 using the function view. We use this
to synchronise the client thread’s view by updating tview𝜏 to tview𝜏 ⊗nv. For a writing transaction,
we record this new view of the client in 𝑉 so that any future transactions that synchronise with
this new transaction does so with respect to this view. Finally, once a transaction ends, it updates
txview to the largest index in seenIdxs.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 189. Publication date: October 2022.

189:10 Sadegh Dalvandi and Brijesh Dongol

TxBeginV𝜏 (sflag , 𝑚 ,regSet)

pre status𝑡 = NOTSTARTED

txn𝜏 = ⊥

𝑚 ∈ OM𝜏

eff wrSet𝑡:= ∅

rdSet𝑡:= ∅

beginIdx𝑡:= 𝑚

seenIdxs𝑡:= ∅

synctype𝑡:= sflag

regs𝑡:= regSet

txn𝜏:= 𝑡

status𝑡:= READY

TxWrite𝜏(𝑥, 𝑣)

pre status𝑡 = READY

txn𝜏 = 𝑡

eff wrSet𝑡:= wrSet𝑡∪{𝑥 ↦→ 𝑣}

TxReadInt𝜏(𝑥, 𝑟)

pre status𝑡 = READY

𝑥 ↦→ 𝑣 ∈ wrSet𝑡

𝑟 ∈ regs𝑡
txn𝜏 = 𝑡

eff 𝑟:= 𝑣

TxReadExt𝜏(𝑥, 𝑖, 𝑟)

pre status𝑡 = READY

𝑥 ∉ dom(wrSet𝑡)

beginIdx𝑡 ≤ 𝑖 < |𝑀 |

rdSet𝑡 ⊆ 𝑀𝑖

txn𝜏 = 𝑡

eff rdSet𝑡:= rdSet𝑡 ∪ {𝑥 ↦→ 𝑀𝑖 (𝑥)}

if 𝑆𝑖 ∈ {R,RA}

then seenIdxs𝑡:= seenIdxs𝑡 ∪ {𝑖}

𝑟:= 𝑀𝑖 (𝑥)

TxRead𝜏 (𝑥, 𝑟) =

TxReadInt𝜏 (𝑥) ⊓
.

𝑖TxReadExt𝜏 (𝑥, 𝑖, 𝑟)

TxEndRO𝜏

pre status𝑡 = READY

wrSet𝑡 = ∅

txn𝜏 = 𝑡

eff status𝑡:= COMMIT

if synctype𝑡 ∈ {A,RA} ∧ seenIdxs𝑡 ≠ ∅

then

let nv = view(seenIdxs𝑡,V) in

tview𝜏:= tview𝜏 ⊗ nv

txn𝜏:= ⊥

txview𝜏:= max(seenIdxs𝑡)

TxEndWR𝜏

pre status𝑡 = READY

wrSet𝑡 ≠ ∅

rdSet𝑡 ⊆ last (𝑀)

txn𝜏 = 𝑡

eff 𝑀:= 𝑀 · (last (𝑀) ⊕ wrSet𝑡)

status𝑡:= COMMIT

if synctype𝑡 ∈ {A,RA} ∧ seenIdxs𝑡 ≠ ∅

then

let nv = view(seenIdxs𝑡,V) in

𝑉 := 𝑉 · (tview𝜏 ⊗ nv)

tview𝜏:= tview𝜏 ⊗ nv

else 𝑉 := 𝑉 · tview𝜏
𝑆:= 𝑆 · synctype𝑡
txn𝜏:= ⊥

txview𝜏:= max(seenIdxs𝑡)

Abort𝜏

pre status𝑡 = READY

txn𝜏 = 𝑡

eff ∀𝑠 ∈ regs𝑡. 𝑠:= ⊥

txn𝑡:= ⊥

status𝑡:= ABORT

TXBegin𝜏 (sflag, regSet) =
.
𝑚 TXBeginV𝜏 (sflag,𝑚, regSet)

TxEnd𝜏 = TxEndRO𝜏 ⊓ TxEndWR𝜏

where

𝑀 : seq(Loc → Val), initially𝑀 = ⟨(𝜆𝑣 ∈ Loc.0)⟩ 𝑆 : seq{RX,R,A,RA}, initially 𝑆 = ⟨RX⟩

𝑉 : seq(Loc → TS), initially 𝑉 = ⟨(𝜆𝑣 ∈ Loc.0)⟩ view(Idxs,Vf) = 𝜆𝑙 ∈ Loc. maxWr{Vf 𝑖 (𝑙) | 𝑖 ∈ Idxs}

OM𝜏 = {𝑛 | 𝑛 ≥ txview𝜏 ∧ 𝑛 ≤ |𝑀 | − 1}

Fig. 4. TMS2-ra specification: highlighted components are extensions necessary for client synchronisation

for C11 transactions. We assume that the transactions are executed by thread 𝜏 . Moreover, let 𝑄 · 𝑎 be the

sequence𝑄 appended with element 𝑎 and 𝑓 ⊕𝑔 be the function 𝑓 overridden by function 𝑔. Finally, letmaxWr

be a function that returns the write with the largest timestamp in the given set of writes.

We demonstrate the interaction of TMS2-ra and a client program by considering the views of
three possible executions of the programs in Fig. 5. Unlike the trace considered in Fig. 3, we only

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 189. Publication date: October 2022.

Implementing and Verifying Release-Acquire Transactional Memory in C11 189:11

𝑑𝑀 𝜏2

𝜏1
0, 0

5, 1

{𝑓 ↦→ 0}RX

{𝑓 ↦→ 1}R

𝜎2 (after executing
line 4)

𝑑𝑀 𝜏2

𝜏1
0, 0

5, 1

{𝑓 ↦→ 0}RX

{𝑓 ↦→ 1}R

𝜎3 (after executing
line 8)

(a) Views for transactional MP (Fig. 2a)

𝑑1𝑀 𝜏2

𝜏1

0, 0

5, 1

{
𝑓 ↦→ 0,

𝑑2 ↦→ 0

}RX

{
𝑓 ↦→ 1,

𝑑2 ↦→ 10

}RX

𝜎2 (after executing
line 5)

𝑑1𝑀
𝜏2

𝜏1

0, 0

5, 1

{
𝑓 ↦→ 0,

𝑑2 ↦→ 0

}RX

{
𝑓 ↦→ 1,

𝑑2 ↦→ 10

}RX

𝜎3 (after executing
line 10)

(b) Views for relaxed transactions (Fig. 2b)

𝑀 𝑑1 𝑑2 𝜏3

𝜏2

𝜏1

0, 0

5, 1

0, 0
{
𝑓 ↦→ 0

}RX

{
𝑓 ↦→ 1

}R

𝜎2 (after executing line 4)

𝑀 𝑑1 𝑑2 𝜏3

𝜏2

𝜏1

0, 0

5, 1

0, 0

10, 1

{
𝑓 ↦→ 0

}RX

{
𝑓 ↦→ 1

}R

{
𝑓 ↦→ 2

}RA

𝜎4 (after executing line 10)

𝑀 𝑑1 𝑑2 𝜏3

𝜏2

𝜏1

0, 0

5, 1

0, 0

10, 1

{
𝑓 ↦→ 0

}RX

{
𝑓 ↦→ 1

}R

{
𝑓 ↦→ 2

}RA

𝜎5 (after executing line 13)

(c) Views for release-acquire transaction chain (Fig. 2c)

Fig. 5. Views for the transaction-based client program from Fig. 2

show the most critical transitions. The memory sequence𝑀 of TMS2-ra is clear from the figures.
We represent 𝑆 by the superscripts on each state of𝑀 , and the modification views 𝑉 by the dotted
arrows () from each state of𝑀 .
Fig. 5a represents part of an execution of the program in Fig. 2a. In the execution depicted, we

assume that all of thread 𝜏1 executes before 𝜏2. Here, 𝜎2 is the state after executing line 4, where
𝜏1 has introduced a new write to 𝑑 and then executed its (releasing) transaction, introducing a
new memory snapshot whose modification view becomes the new write of 𝑑 (since 𝜏1’s thread
view is at this new write). Then, when 𝜏2 executes its (acquiring) transaction that reads 1 from 𝑓 , it
synchronises with the latest memory snapshot, causing 𝜏2’s thread view to be the new write of 𝑑 as
well. This is analogous, as required, to the way in which views are updated in C11 (see Fig. 3).

Fig. 5b represents a part execution of the program in Fig. 2b. Again, we assume a complete
execution of thread 𝜏1 followed by 𝜏2. State 𝜎2 is the state after executing line 5, where 𝜏1 has
introduced a new write to 𝑑1. Now consider the state 𝜎3 (the state after execution of line 10), where
𝜏1 introduces a new memory snapshot in𝑀 with annotation RX and modification view pointing
to the new write on 𝑑1. When 𝜏2 continues execution, its transaction must be ordered after the
latest memory snapshot, but this will not induce a release-acquire synchronisation. This means that
𝜏2’s view of 𝑑2 will not be updated. However, since 𝜏2’s transaction occurs after 𝜏1’s transaction,
𝜏2 is guaranteed to read 10 for 𝑑2. Note that since the transaction executed by 𝜏2 is a read-only
relaxed transaction, the view of 𝜏2 of the client variable (𝑑1) is unchanged. However, 𝜏2’s view of
the transactional memory (not shown in the diagrams) will be updated to the new memory state
{𝑓 ↦→ 1, 𝑑2 ↦→ 10}.
Finally, Fig. 5c represents part of an execution of Fig. 2c comprising the complete execution of

𝜏1, 𝜏2 then 𝜏3 in order. State 𝜎2 represents the state after executing line 4, where the modification
view of the newly installed memory is consistent with the view of the executing thread 𝜏1. Then,

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 189. Publication date: October 2022.

189:12 Sadegh Dalvandi and Brijesh Dongol

TxBegin𝜏 (sflag, regSet)
𝛾 .status𝑡 = NOTSTARTED 𝛾 .txn𝜏 = ⊥ 𝑚 ∈ 𝑣𝑚𝑒𝑚𝑠𝜏

lst, 𝛾, 𝛽 𝜏 lst, 𝛾

beginIdx𝑡 :=𝑚, seenIdxs𝑡 := ∅, rdSet𝑡 := ∅,

wrSet𝑡 := ∅, synctype𝑡 := sflag, regs𝑡 := regSet,

status𝑡 = READY, txn𝜏 := 𝑡

, 𝛽

TxWrite𝜏 (𝑙, 𝑣)
𝛾 .status𝑡 = READY 𝛾 .txn𝜏 = 𝑡

lst, 𝛾, 𝛽 𝜏 lst, 𝛾
[
wrSet𝑡 := 𝛾 .wrSet𝑡 ∪ {𝑙 ↦→ 𝑣}

]
, 𝛽

TxRead𝜏 (𝑙, 𝑟)

𝛾 .status𝑡 = READY 𝛾 .txn𝜏 = 𝑡 𝑟 ∈ 𝛾 .regs𝑡
(𝑙 ∈ dom(𝛾 .wrSet𝑡) ∨ (𝛾 .beginIdx𝑡 ≤ 𝑖 ∧ 𝛾 .rdSet𝑡 ⊆ 𝛾 .M𝑖))

𝑣 = if 𝑙 ∉ dom(𝛾 .wrSet𝑡) then 𝛾 .M𝑖 (𝑙) else 𝛾 .wrSet𝑡 (𝑙)

seenIdxs′ = if 𝑙 ∉ dom(𝛾 .wrSet𝑡) ∧ 𝛾 .𝑆𝑖 ∈ {R,RA}

then 𝛾 .seenIdxs𝑡 ∪ {𝑖} else 𝛾 .seenIdxs𝑡

rdSet′ = if 𝑙 ∉ dom(𝛾 .wrSet𝑡) then 𝛾 .rdSet𝑡 ∪ {𝑙 ↦→ 𝑣} else 𝛾 .rdSet𝑡

lst, 𝛾, 𝛽 𝜏 lst [𝑟 := 𝑣], 𝛾
[
rdSet𝑡 := rdSet′, seenIdxs𝑡 := seenIdxs′

]
, 𝛽

TxEndRO𝜏

𝛾 .status𝑡 = READY 𝛾 .txn𝜏 = 𝑡 𝛾 .wrSet𝑡 = ∅

tview′ = if 𝛾 .rdSet𝑡 ≠ ∅ ∧ 𝛾 .synctype𝑡 ∈ {A,RA} ∧ 𝛾 .seenIdxs𝑡 ≠ ∅

then 𝛽.tview𝜏 ⊗ view(𝛾 .seenIdxs𝑡 , 𝛾 .𝑉) else 𝛽.tview𝜏

lst, 𝛾, 𝛽 𝜏 lst, 𝛾

[
status𝑡 := COMMITTED,

txview𝜏 := max(𝛾 .seenIdxs𝑡)

]
, 𝛽 [tview𝜏 := tview′]

TxEndWR𝜏

𝛾 .status𝑡 = READY 𝛾 .txn𝜏 = 𝑡 𝛾 .wrSet𝑡 ≠ ∅ 𝑖 = |𝛾 .M |
S′ = 𝛾 .synctype𝑡 𝑚𝑒𝑚′ = (last (𝛾 .M) ⊕ 𝛾 .wrSet𝜏)

tview′ = if 𝛾 .rdSet𝑡 ≠ ∅ ∧ 𝛾 .synctype𝑡 ∈ {A,RA} ∧ 𝛾 .seenIdxs𝑡 ≠ ∅

then 𝛽.tview𝜏 ⊗ view(𝛾 .seenIdxs𝑡 , 𝛾 .𝑉) else 𝛽.tview𝜏

lst, 𝛾, 𝛽 𝜏 lst, 𝛾

status𝑡 := COMMITTED,M𝑖 :=𝑚𝑒𝑚′

S𝑖 := S′, V𝑖 := tview′

txview𝜏 := max(𝛾 .seenIdxs𝑡)

, 𝛽 [tview𝜏 := tview′]

TxAbort𝜏

𝛾 .status𝑡 = READY 𝛾 .txn𝜏 = 𝑡 lst′ = 𝜆𝑟 ∈ Reg. if 𝑟 ∈ 𝛾 .regs𝑡 then ⊥ else lst (𝑟)

lst, 𝛾, 𝛽 𝜏 lst′, 𝛾
[
status𝑡 := ABORTED

]
, 𝛽

Fig. 6. Operational semantics for TMS2-RA

in 𝜎4 (the state after execution of line 10), we have a new write on 𝑑2 with value 10 and a further
new snapshot that synchronises with the snapshot {𝑓 ↦→ 1}R causing the thread view of 𝜏2 and
the modification view of the new snapshot to be updated to the last writes of 𝑑1 and 𝑑2. Next, in 𝜎5,
when 𝜏3 executes its transaction, this transaction is guaranteed to synchronise with {𝑓 ↦→ 2}RA,
causing 𝜏3’s view to be updated to the latest writes of 𝑑1 and 𝑑2, which is inherited from the
modification view of {𝑓 ↦→ 2}RA.

3.4 Modular Operational Semantics

To reason about clients that use abstract TMS2-ra transactions in a modular fashion, we use
configurations that are triples (lst, 𝛾, 𝛽), where lst : Reg → Val denotes the local register state, 𝛾 is

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 189. Publication date: October 2022.

Implementing and Verifying Release-Acquire Transactional Memory in C11 189:13

Init: glb := 0

TxBegin(regSet)

𝐵1 : regs := regSet;

𝐵2 : hasRead := false ;

𝐵3 : do loc ←A glb

𝐵4 : until 𝑒𝑣𝑒𝑛(loc)

TxWrite(𝑥, 𝑣)

𝑊1 : if 𝑒𝑣𝑒𝑛(loc) then

𝑊2 : 𝑟1 ← CASRA (glb, loc, loc + 1);

𝑊3 : if ¬𝑟1 then

𝑊4 : ∀𝑠 ∈ regs. 𝑠 := ⊥; return; // ABORT

𝑊5 : else loc := loc + 1;

𝑊6 : 𝑥 :=R 𝑣 ; // WRITE OK

TxEnd

𝐸1 : if 𝑜𝑑𝑑 (loc) then

𝐸2 : glb :=R loc + 1;

TMRead(𝑥, 𝑟)

𝑅1 : if 𝑟 ∈ regs then

𝑅2 : 𝑟 ←A 𝑥 ;

𝑅3 : if ¬hasRead ∧ 𝑒𝑣𝑒𝑛(loc) then

𝑅4 : 𝑟1 ← CASRA (glb, loc, loc)

𝑅5 : if 𝑟1 then

𝑅6 : hasRead := 𝑡𝑟𝑢𝑒;

𝑅7 : return; // READ OK

𝑅8 : else

𝑅9 : 𝑟1 ← glb;

𝑅10 : if 𝑟1 = loc then

𝑅11 : return; // READ OK

𝑅12 : ∀𝑠 ∈ regs. 𝑠 := ⊥; // ABORT

Fig. 7. TML-ra: A release-acquire transactional mutex lock. For simplicity, the thread id is omitted

the TMS2-ra state (which includes all transactional variables described in Fig. 4) and 𝛽 is the C11
state of the client (see [Dalvandi et al. 2020a; Dalvandi and Dongol 2022b; Dalvandi et al. 2022]).

The transition relation for transactional operations is given in Fig. 6. These follow the automata-
style description given in Fig. 4, but make state components that are affected by each transition
more precise. The most interesting aspect of these rules is the interaction between a releasing
writing transaction and subsequent committing reading transaction.

Note that each releasing writing transaction sets 𝑆𝑖 (where 𝑖 is last index in 𝑀 at the time of
writing) to either R or RA. Additionally, the view of the thread at the time of writing is recorded
in 𝑉𝑖 . A later transaction with an acquiring annotation calculates a new view using the function
view as defined in Fig. 4 and updates, among other components, the executing thread’s view in 𝛽 .
This means that, as expected, if there is a release-acquire synchronisation through a transactional
memory library, then the client’s view will be updated to match the synchronisation that occurs.

4 A C11 STM IMPLEMENTATION

In this section, we develop a release-acquire version of a transactional mutex lock, that we call
TML-ra, based on an SC implementation by Dalessandro et al [Dalessandro et al. 2010]. Our
algorithm is provided in Fig. 7, where the highlights indicate the fragments of code that we have
introduced or modified. The grey highlights represent code additional to Dalessandro et al’s original
implementation, and the blue highlights represent the necessary release-acquire synchronisation.

We first discuss the core features of TML (ğ4.1), then discuss the extensions introduced in TML-ra

to optimise for C11 release-acquire synchronisation (ğ4.2). We present the benchmarking results
for both algorithms in ğ4.3. In ğ6, we present a proof that TML-ra implements TMS2-ra, i.e., any
observation a client program makes when it uses TML-ra is a possible observation when it uses
TMS2-ra.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 189. Publication date: October 2022.

189:14 Sadegh Dalvandi and Brijesh Dongol

4.1 TML

TML is synchronised using a single global counter glb, initialised to 0, where glb is even iff no
writing transaction is currently executing.

A transaction begins by taking a snapshot of glb in local variable loc and only begins if the
value read is even.

A write operation checks that loc is even and if so, it attempts to increment glb using the
CAS at line𝑊2. If this CAS succeeds, it increments loc (line𝑊5), then immediately updates the
location 𝑥 (line𝑊6). If the CAS fails, the transaction aborts. Note that if loc is odd then the current
transaction łownsž the lock, meaning that lines𝑊2-𝑊5 can be bypassed.

A read operation (ignoring lines 𝑅3-𝑅7 for now) reads the given location into the given register
𝑟 (line 𝑅2). At lines 𝑅9 and 𝑅10 it checks that glb is consistent with loc. If so, the read succeeds,
otherwise, the transaction aborts.

A transaction ends by checking whether the current transaction is a writing transaction. This can
be determined by checking whether loc is odd since a writing transaction must have incremented
glb via theCAS at line𝑊2 and loc via the write at line𝑊5making both their values odd. Therefore,
a writing transaction must increment glb to make it even again.

4.2 TML-ra

We now describe the necessary modifications to TML and the synchronisation induced by TMS2-ra.
We assume that transactions in TML-ra are all release-acquiring and hence we omit the transaction
annotation in TxBegin.

We assume all accesses to shared variables are either relaxed (e.g., the read at line 𝑅9), releasing
(e.g., the write at line 𝐸2), acquiring (e.g., the read at line 𝐵2) or release-acquiring (e.g., the CAS
at line 𝑅4). Additionally, we introduce a new local variable hasRead, initially set to false and a
code path 𝑅3-𝑅7, which is followed if a transaction performs a read without having previously
performed a read or a write. We explain the purpose of this code path in more detail below.

Transaction synchronisation. Recall that TMS2-ra requires that transactions are consistent w.r.t.
a single memory snapshot and that external reads of a transaction synchronise with some memory
snapshot. This may not occur in a relaxed memory context without adequate synchronisation. In
particular, a writing transaction must perform a releasing write to glb at line 𝐸2 so that if a later
transaction reads from this write, it synchronises with all of the writes performed by the writing
transaction. To ensure this, we require the read of glb at line 𝐵3 as well as the CAS operations at
lines𝑊2 and 𝑅4 to be acquiring. Note that this also guarantees release-acquire client synchronisation.
The second key synchronisation is between𝑊6 performed by a writing transaction 𝑡𝑤 and 𝑅2

performed by a (different) reading transaction 𝑡𝑟 . Suppose that both 𝑡𝑤 and 𝑡𝑟 are live. If 𝑡𝑟 happens
to read the write written at𝑊6, it must now abort because 𝑡𝑟 ’s snapshot of glb will be inconsistent
with the latest value of glb installed by the 𝑡𝑤 . The release-acquire synchronisation between𝑊6

and 𝑅2 ensures that this will happen, i.e., 𝑡𝑟 will see the new glb written by 𝑡𝑤 , causing the test at
𝑅10 to fail and 𝑡𝑟 to abort.

Causal linearizability. The design of TML-ra ensures that all transactions, including read-only
transactions are causally linearizable [Doherty et al. 2018], which is a condition that additionally
guarantees compositionality (or locality [Herlihy and Wing 1990; Sela et al. 2021]) of concurrent
objects. This notion of compositionality is that of Herlihy and Wing [Herlihy and Wing 1990].
In particular, under SC memory, given a history comprising several concurrent objects, if the
history restricted to each object is linearizable, then the history as a whole is linearizable. In a
relaxed memory setting, Doherty et al [Doherty et al. 2018] have shown that linearizability alone is

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 189. Publication date: October 2022.

Implementing and Verifying Release-Acquire Transactional Memory in C11 189:15

1 2 4 8 16 32
1

5

9

13

17

21

25

29

Number of Threads

T
im

e

Genome-RA
Genome-SC
Yada-RA
Yada-SC

(a) Genome and Yada

1 2 4 8 16 32

20

30

40

50

Number of Threads

Intruder-RA
Intruder-SC
Labyrinth-RA
Labyrinth-SC

(b) Intruder and Labyrinth

1 2 4 8 16 32
10

20

30

40

50

Number of Threads

SSCA2-RA
SSCA2-SC
Vacation-RA
Vacation-SC

(c) SSCA2 and Vacation

Fig. 8. Results of STAMP benchmarks for TML-ra and TML-sc

insufficient to guarantee compositionality, and it is necessary to induce a łhappens-beforež relation
when a specification induces a particular linearization.

The happens-before required by causal linearizability is naturally achieved for writing transac-
tions via the CAS at line𝑊2. For a read-only transaction, we introduce the CAS at line 𝑅4, which
installs a new write to glb without changing its value. All transactions that follow the CAS at line
𝑅4 will be causally ordered after the reading transaction. Such a CAS must only be performed once,
thus we introduce a local variable hasRead, which is set to true if the CAS succeeds so that later
reads from the same transaction can avoid the code path from 𝑅3-𝑅7.
Note that the conditions necessary to guarantee causal linearizability (and hence composition-

ality) could have been introduced at the level of TMS2-ra. However, there are questions about
whether the notion of compositionality introduced by Herlihy and Wing [Herlihy and Wing 1990]
are appropriate in a relaxed memory context [Raad et al. 2019a]. Therefore we leave out the causal
linearizability conditions in TMS2-ra to avoid over-constraining the specification.

4.3 Benchmarking

We implemented two versions of the TML algorithm: TML-ra (see Fig. 7) and TML-sc (the SC
counterpart [Dalessandro et al. 2010]) and benchmarked both using the STAMP benchmarking
suite [Minh et al. 2008]. Each experiment was repeated 20 times to rule out external loads on the
test machine and an average of these times was taken. The results of the six benchmarks that we
ran with STAMP are presented in Fig. 8. TML-ra is equivalent to or outperforms TML-sc in almost
all cases, with a maximum improvement of 20%. On average, TML-ra performs 8.2% better than
TML-sc.

Unsurprisingly, since TML optimises read-heavy workloads, its performance degrades under
high write contention, and this is consistent with prior results [Dalessandro et al. 2010]. However,
it is interesting that the degradation of TML-ra is not as severe as TML-sc for the Intruder and
SSCA2 benchmarks.
TML-ra theoretically allows more parallelism than TML-sc since a read-only transaction 𝑡𝑟

is not forced to abort if a writing transaction 𝑡𝑤 executes after 𝑡𝑟 ’s first read operation - 𝑡𝑟 must
only aborts if it sees 𝑡𝑤 ’s 𝑔𝑙𝑏 update, or one of 𝑡𝑤 ’s writes. Both Intruder and SSCA2 have a large
number of short transactions; SSCA2 additionally has small read/write sets [Minh et al. 2008]. Here,
TML-ra may be able to exploit the theoretical parallelism. In the single-threaded case, TML-ra

executes far fewer heavyweight CASs.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 189. Publication date: October 2022.

189:16 Sadegh Dalvandi and Brijesh Dongol

{
[𝑑 = 0]𝜏1 ∧ [𝑑 = 0]𝜏2 ∧ [𝑓 = 0]𝜏1 ∧ [𝑓 = 0]𝜏2

}

Thread 𝜏1{
¬[𝑓 ≈ 1]𝜏2 ∧ [𝑑 = 0]𝜏1

}

1 : 𝑑 := 5;{
¬[𝑓 ≈ 1]𝜏2 ∧ [𝑑 = 5]𝜏1

}

2 : TxBegin(R, ∅) ;{
¬[𝑓 ≈ 1]𝜏2 ∧ [𝑑 = 5]𝜏1
∧ Rel𝜏1

}

3 : TxWrite(𝑓 , 1) ;{
¬[𝑓 ≈ 1]𝜏2 ∧ [𝑑 = 5]𝜏1

∧ Rel𝜏1 ∧ (𝑓 , 1) ∈ WS𝜏1

}

4 : TxEnd ;{
true

}

Thread 𝜏2

5 : do{
⟨𝑓 = 1⟩[𝑑 = 5]𝜏2

}

6 : TxBegin(A, {r1}) ;{
⟨𝑓 = 1⟩[𝑑 = 5]𝜏2 ∧WS𝜏2 = ∅ ∧ Acq𝜏2

}

7 : TxRead(𝑓 , 𝑟1) ;{
⟨𝑓 = 1⟩[𝑑 = 5]𝜏2 ∧WS𝜏2 = ∅ ∧ Acq𝜏2

∧ (𝑓 , 𝑟1) ∈ RS𝜏2 ∧ (𝑟1 = 1⇒ [𝑑
𝑆
= 5]𝜏2)

}

8 : TxEnd ;{
⟨𝑓 = 1⟩[𝑑 = 5]𝜏2 ∧ (𝑟1 = 1⇒ [𝑑 = 5]𝜏2)

}

9 : until 𝑟1 = 1{
[𝑑 = 5]𝜏2

}

10 : 𝑟2 ← 𝑑{
𝑟2 = 5

}

{𝑟2 = 5}

Fig. 9. Proof outline for transactional MP from Fig. 2a

As with prior results, we see that for the read-heavy benchmark Genome, the performance of
both TML-ra and TML-sc improves as the number of threads increases.

5 TARO: A LOGIC FOR RELEASE-ACQUIRE TM

The development of view-based operational semantics for various fragments of C11 [Dalvandi et al.
2020a; Kaiser et al. 2017; Kang et al. 2017] has provided foundations for several logics for reasoning
about C11 programs. These include separation logics [Kaiser et al. 2017; Svendsen et al. 2018]
and extensions to Owicki-Gries reasoning [Dalvandi et al. 2020a, 2022; Lahav and Vafeiadis 2015;
Wright et al. 2021]. Our point of departure is the Owicki-Gries encoding for RC11 RAR [Dalvandi
et al. 2020a], which is the fragment of C11 that we focus on in this paper.5

A key benefit of the logic in [Dalvandi et al. 2020a] is that it enables reuse of standard Owicki-
Gries proof decomposition rules and straightforward mechanisation in Isabelle/HOL [Dalvandi
et al. 2020b, 2022]. As we shall see, we maintain these benefits in the context of C11 with release-
acquire transactions. Our reasoning framework, called TARO, like Dalvandi et al [Dalvandi et al.
2020a; Dalvandi and Dongol 2021] uses view-based assertions to abstractly describe the system
state, allowing reasoning about the current view of a thread, and view transfer from one thread to
another through release-acquire synchronisation. TARO introduces additional assertions to enable
reasoning about transactional views.

5.1 View-Based Assertions

In this section, we discuss the assertions and proof rules of TARO abstractly. The proof rules can be
used to reason syntactically about a programwithout having to understand the low-level operational
semantics of the C11 model. Our operational semantics is an extension of prior works [Dalvandi
et al. 2020a; Kaiser et al. 2017; Kang et al. 2017] that include an encoding of TMS2-ra.

5These frameworks are based on models that assume top-level parallelism only. Therefore, our framework similarly

re assumes top-level paralellism. This model can be extended to support dynamic parallelism, but such extensions are

uninteresting for the purposes of this paper.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 189. Publication date: October 2022.

Implementing and Verifying Release-Acquire Transactional Memory in C11 189:17

To motivate TARO, consider the proof outline in Fig. 9 for the transactional message passing
program from Fig. 2a. We use ‘ˆ’ to distinguish transactional locations in a proof. For the program

in Fig. 9, we have a transactional location 𝑓 .

5.1.1 View assertions. The proof outline contains three assertions from [Dalvandi et al. 2020a]
describing the views that each thread may have of the system state. Recall (ğ3.1), that we can define
the set of values that a thread can see in each state using the function 𝑂𝑉 .

• A definite value assertion, denoted [𝑥 = 𝑣]𝜏 , holds iff thread 𝜏 sees the last write to location 𝑥
and this write has value 𝑣 . Thus, [𝑥 = 𝑣]𝜏 ⇒ 𝑂𝑉𝜏 (𝑥) = {𝑣}.
• A possible value assertion, denoted [𝑥 ≈ 𝑣]𝜏 , which holds iff when 𝜏 can see a write to 𝑥 with
value 𝑣 . [𝑥 ≈ 𝑣]𝜏 is shorthand for 𝑣 ∈ 𝑂𝑉𝜏 (𝑥).
• A conditional value assertion, denoted ⟨𝑦 = 𝑢⟩[𝑥 = 𝑣]𝜏 , which holds iff an acquiring read of 𝑦
by 𝜏 that returns the value 𝑢 is guaranteed to induce a release-acquire synchronisation so
that [𝑥 = 𝑣]𝜏 holds after this read.

Example 2. Consider the third state, i.e., 𝜎2 in Fig. 3. There, we have [𝑑 = 5]𝜏1 ∧ [𝑓 = 1]𝜏1 as well
as [𝑓 ≈ 0]𝜏2 ∧ [𝑓 ≈ 1]𝜏2. Moreover, we have ⟨𝑓 = 1⟩[𝑑 = 5]𝜏2.

We ask the interested reader to consult [Dalvandi et al. 2020a, 2022] for further details of these
assertions.

5.1.2 Transactional assertions. As alluded to above, TARO introduces several new assertions to
describe the transactional state. These assertions are, in general, local to the transaction being
executed, and hence, stable under the execution of other threads. Fig. 9 contains the following
transaction local assertions:

• Rel𝜏 , which holds iff 𝜏 is executing a releasing or release-acquiring transaction.
• Acq𝜏 , which holds iff 𝜏 is executing an acquiring or release-acquiring transaction.
• (𝑥, 𝑣) ∈ WS𝜏 (and (𝑥, 𝑣) ∈ RS𝜏), which holds iff 𝜏 is executing a transaction whose write set
(resp. read set) contains a write to (resp. read of) 𝑥 with value 𝑣 .

• [𝑥
𝑆
= 𝑣]𝜏 , which holds iff 𝜏 is executing a transaction such that committing this transaction

results in the definite value assertion [𝑥 = 𝑣]𝜏 (see above).

In addition, we include a number of assertions that can be used to verify client programs that use
TMS2-RA (See ğ5.1). The assertion language presented here is heavily inspired by the view-based
assertion language presented in [Dalvandi et al. 2020a].

A memory 𝑖 is visible to a transaction executed by a thread 𝜏 iff 𝑖 is greater than the transaction
thread view of 𝜏 (txview𝜏) and is less than the maximum index of the memory (|𝑀 | − 1). We define
the set of visible memories OM𝑡 to be:

OM𝜏 = {𝑛 | 𝑛 ≥ txview𝜏 ∧ 𝑛 ≤ |𝑀 | − 1}

• A transactional definite observation assertion, denoted [𝑥 = 𝑣]𝑡 , holds iff for all memory
versions 𝑖 , where 𝑖 is greater than or equal to beginIdx𝑡 , the value of M𝑖 (𝑥) is 𝑣 . Formally,
for a transactional state 𝛾 :

[𝑥 = 𝑣]𝜏 (𝛾) =̂ ∀𝑖 ∈ 𝛾 .OM𝜏 . 𝛾 .M𝑖 (𝑥) = 𝑣

These are lifted to client-object states (𝛾, 𝛽) in the normal manner, e.g., [𝑥 = 𝑣]𝜏 (𝛾, 𝛽) = [𝑥 =

𝑣]𝜏 (𝛾)

• A transactional possible observation assertion, denoted [𝑥 ≈ 𝑣]𝜏 , holds iff there exists a
memory version 𝑖 that has value 𝑣 for 𝑥 . Formally:

[𝑥 ≈ 𝑣]𝜏 (𝛾) =̂ ∃𝑖 ∈ 𝛾 .OM𝜏 . 𝛾 .M𝑖 (𝑥) = 𝑣

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 189. Publication date: October 2022.

189:18 Sadegh Dalvandi and Brijesh Dongol

• A transactional conditional observation assertion, denoted ⟨𝑦 = 𝑢⟩[𝑥 = 𝑣]𝜏 , holds iff an
acquiring transactional read of 𝑦 by 𝜏 that returns a value 𝑢 is guaranteed to induce a release-

acquire synchronisation so that [𝑥
𝑆
= 𝑣]𝜏 holds in the client state after the reading transaction

successfully commits. Formally:

⟨𝑦 = 𝑢⟩[𝑥 = 𝑣]𝜏 (𝛾, 𝛽) =̂ ∀𝑖 ∈ 𝛾 .OM𝜏 . 𝛾 .M𝑖 (𝑦) = 𝑢 ⇒

𝛾 .V𝑖 (𝑥) = 𝛽.𝑙𝑎𝑠𝑡 (𝑥) ∧ val(𝛽.last (𝑥)) = 𝑣 ∧ 𝛾 .S𝑖

where 𝑙𝑎𝑠𝑡 (𝑥) is the last write to 𝑥 in the modification order. It is important to note that this
assertion is over two states: transaction state 𝛾 and client state 𝛽 , explaining transfer of infor-
mation across two threads using the transactional memory. In particular, the transactional
view 𝑉𝑖 for the memory index 𝑖 must see the last write to 𝑥 in the client state 𝛽 . This means
that the thread that committed the transaction writing the value 𝑢 to 𝑦 did so when it saw
the last write to 𝑥 .

Example 3. Returning to our transactional MP example (Fig. 9), the precondition of line 1 contains

assertions ¬[𝑓 ≈ 1]𝜏2 and [𝑑 = 0]𝜏1, which ensure that, prior to executing line 1, thread 𝜏2 cannot

see the value 1 for 𝑓 and thread 𝜏1 must see the value 0 for 𝑑 , respectively. In the postcondition
of line 2, [𝑑 = 0]𝜏1 changes to [𝑑 = 5]𝜏1 since 𝜏1 performs a write to 𝑑 with value 5. The other
view-based assertions in 𝜏1 are similar. We explain the transactional assertions involving Rel and
WS below.

Now consider the assertions in thread 𝜏2. The precondition of line 6 (which is also the precondition

of line 5) contains a conditional value assertion ⟨𝑓 = 1⟩[𝑑 = 5]𝜏2. This assertion ensures that, if

𝜏2 reads the value 1 for 𝑓 via an acquiring (or release-acquiring) transaction, and this transaction
successfuly commits, then its view is guaranteed to be updated so that [𝑑 = 5]𝜏2 holds. In a
transactional setting, we establish this fact in three steps.

(1) After executing line 7, we use ⟨𝑓 = 1⟩[𝑑 = 5]𝜏2 to establish that 𝑟1 = 1 ⇒ [𝑑
𝑆
= 5]𝜏2 holds.

Note that 𝑟2 stores the value 1 returned by a transactional read of 𝑓 . Thus, ⟨𝑓 = 1⟩[𝑑 = 5]𝜏2 is

transformed into an implication after the execution of line 7. The assertion [𝑑
𝑆
= 5]𝜏2 is a new

assertion introduced in TARO, which states that if the transaction executed by 𝜏2 commits,
then [𝑑 = 5]𝜏2 holds in the post-state.

(2) If the transaction sucessfully commits (line 8), we use 𝑟1 = 1 ⇒ [𝑑
𝑆
= 5]𝜏2 to establish

𝑟1 = 1⇒ [𝑑 = 5]𝜏2 in the postcondition. Recall that all registers used by a transaction are set
to ⊥ when a transaction aborts, so if 𝜏2 reaches line 9 by aborting the transaction, then this
assertion is trivially true.

(3) We use 𝑟1 = 1 ⇒ [𝑑 = 5]𝜏2 to establish [𝑑 = 5]𝜏2 after the do-until loop, using the guard
𝑟1 = 1 at line 9.

Finally, we use [𝑑 = 5]𝜏2 in the precondition of line 10 to establish the postcondition 𝑟2 = 5. This is
because [𝑑 = 5]𝜏2 guarantees that the only value 𝜏2 can read for 𝑑 is 5.

5.2 TARO: Transactional Owicki-Gries Reasoning

Now that we have introduced the assertions used by TARO, we now review the Owicki-Gries proof
obligations. As discussed above, the use of view-based assertions allows us to use the standard
Owicki-Gries theory. Regardless, we review the theory in the context of our language, which
supports (abstract) TM operations. Formally, we model programs as a labelled transition system,
given by the syntax in Fig. 10.
A command (of type ACom) is either a local assignment 𝑟 := Exp, a store to a shared location

𝑥 :=[R] Exp, a load from a shared location 𝑟 ←[A] 𝑥 , a compare-and-swap 𝑟 ← CAS[Sync] (𝑥,𝑢, 𝑣),

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 189. Publication date: October 2022.

Implementing and Verifying Release-Acquire Transactional Memory in C11 189:19

𝑢, 𝑣 ∈Val =̂ N 𝑥,𝑦, . . .∈Loc 𝑟, 𝑟1, 𝑟2 . . .∈Reg 𝜏, 𝜏1, 𝜏2, . . .∈TId =̂ N 𝑖, 𝑗, 𝑘, . . .∈Label

𝑒 ∈ Exp ::= 𝑣 | 𝑟 | 𝑒+𝑒 | · · ·

𝐵 ∈ BExp ::= true | 𝐵 ∧ 𝐵 | · · ·

Sync ::= RX | R | A

𝛼 ∈ ACom ::= 𝑟 := Exp | 𝑥 :=[R] Exp | 𝑟 ←[A] 𝑥 | 𝑟 ← CAS[Sync] (𝑥,𝑢, 𝑣) |

TxBegin(Sync, 2Reg) | TxRead(𝑥, 𝑟) | TxWrite(𝑥, 𝑣) | TxEnd

𝑙𝑠 ∈ LCom ::= 𝛼 goto 𝑗 | if 𝐵 goto 𝑗 elseto 𝑘

Π ∈ Prog =̂ TId × Label → LCom

Fig. 10. Language syntax

or a transactional operation. The annotations RX, R and A are optional, as indicated by the brackets
‘[’ and ‘]’. Thus, for example, both 𝑥 := 𝑒 and 𝑥 :=R 𝑒 are valid load commands; the former is
relaxed and the latter is releasing. A CAS may be annotated to be relaxed, or release and/or
acquire. Note that a CAS returns a boolean to indicate whether or not the compare-and-swap has
been successful. TxBegin([Sync], 2𝑅𝑒𝑔), TxRead(𝑥, 𝑟), TxWrite(𝑥, 𝑣) and TxEnd are transactional
operations, as defined by the TMS2-ra automata in Fig. 4.

We use a program counter variable 𝑝𝑐 : TId → 𝐿𝑎𝑏𝑒𝑙 to model control flow, and model a program
Π as a function mapping each pair (𝜏, 𝑖) of thread identifier and label to the labelled statement

(in LCom) to be executed. A labelled statement may be (i) a plain statement of the form 𝛼 goto 𝑗 ,
comprising an atomic statement 𝛼 to be executed and the label 𝑗 of the next statement; or (ii) a
conditional statement of the form if 𝐵 goto 𝑗 elseto 𝑘 to accommodate branching, which proceeds
to label 𝑗 if 𝐵 holds and to 𝑘 , otherwise. We assume a designated label, 𝜄 ∈ Label, representing the
initial label; i.e., each thread begins execution with pc(𝜏) = 𝜄. Similarly, 𝜁 ∈ Label represents the
final label.
We let Assertion be the set of assertions that use view-based expressions. We model program

annotations via an annotation function, ann ∈ Ann = TId × Label → Assertion, associating each
program point (𝜏, 𝑖) with its associated assertion. A proof outline is a tuple (in, ann, fin), where
in, fin ∈ Assertion are the initial and final assertions.

Definition 1 (Validity). A proof outline (in, ann, fin) is valid for a program Π iff each of the
following holds:

Initialisation For all 𝜏 ∈ TId, in⇒ ann(𝜏, 𝜄).
Finalisation (∀𝜏 ∈ TId . ann(𝜏, 𝜁)) ⇒ fin

Local correctness For all 𝜏 ∈ TId and 𝑖 ∈ Label, either:
• Π(𝜏, 𝑖) = 𝛼 goto 𝑗 and

{
ann(𝜏, 𝑖)

}
𝛼
{
ann(𝜏, 𝑗)

}
; or

• Π(𝜏, 𝑖) = if 𝐵 goto 𝑗 elseto 𝑘 and both ann(𝜏, 𝑖) ∧ 𝐵 ⇒ ann(𝜏, 𝑗) and ann(𝜏, 𝑖) ∧ ¬𝐵 ⇒

ann(𝜏, 𝑘) hold.
Stability For all 𝜏1, 𝜏2 ∈ TId such that 𝜏1 ≠ 𝜏2 and 𝑖1, 𝑖2 ∈ Label if Π(𝜏1, 𝑖1) = 𝛼 goto 𝑗 , then{

ann(𝜏2, 𝑖2) ∧ ann(𝜏1, 𝑖1)
}
𝛼
{
ann(𝜏2, 𝑖2)

}

Intuitively, Initialisation (resp. Finalisation) ensures that the initial (resp. final) assertion of each
thread holds at the beginning (resp. end); Local correctness establishes validity for each thread;
and Stability ensures that each (local) thread annotation is interference-free under the execution of
other threads [Owicki and Gries 1976].
To support Owicki-Gries reasoning, we have proved a number of high-level rules, extending

those of Dalvandi et al. [2020a]; Dalvandi and Dongol [2021] to cope with transactional assertions
from ğ5.1 and the transactional commands. For instance, the following rules are used in the proof

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 189. Publication date: October 2022.

189:20 Sadegh Dalvandi and Brijesh Dongol

of transactional message passing. A number of other rules are provided as part of our Isabelle/HOL
development.

Lemma 1. Suppose 𝜏1 ≠ 𝜏2. Then each of the following holds:
{
true

}
TxWrite𝜏 (𝑥, 𝑣)

{
(𝑥, 𝑣) ∈ WS𝜏

}

{
(𝑥,𝑢) ∈ WS𝜏1 ∧ Rel𝜏1 ∧ [𝑥 0 𝑢]𝜏2 ∧ [𝑦 = 𝑣]𝜏1

}
TxEnd𝜏2

{
⟨𝑥 = 𝑢⟩[𝑦 = 𝑣]𝜏2

}

{
(𝑥, _) ∉ WS𝜏 ∧𝐴𝑐𝑞𝜏 ∧ ⟨𝑥 = 𝑢⟩[𝑦 = 𝑣]𝜏

}
TxRead𝜏 (𝑥, 𝑟)

{
(𝑥, 𝑟) ∈ RS𝜏 ∧ (𝑟 = 𝑢 ⇒ [𝑦

𝑆
= 𝑣]𝜏)

}

{
(𝑥, 𝑟) ∈ RS𝜏 ∧ (𝑟 = 𝑢 ⇒ [𝑦

𝑆
= 𝑣]𝜏)

}
TxEnd𝜏

{
𝑟 = 𝑢 ⇒ [𝑦 =𝑚]𝜏

}

The rules in Lemma 1 have been verified in Isabelle/HOL w.r.t. the operational semantics. Once
proved, they can be used to show validity of proof outlines such as those in Fig. 9 without having
to consult the operational semantics.

Theorem 1. The proof outline in Fig. 9 is valid.

This theorem has been verified in Isabelle/HOL, and it makes extensive use of generic proof rules
such as the ones proved in Lemma 1. In particular, given such lemmas, like in previous works [Bila
et al. 2022; Dalvandi et al. 2020a; Dalvandi and Dongol 2021; Dalvandi et al. 2022], Isabelle/HOL is
automatically able to find and apply the appropriate proof rule using the built-in sledgehammer

tool [Böhme and Nipkow 2010]. This automation has been key to scaling mechanised verification of
proof outlines in view-based logics. For example, the proofs of TML-RA (see ğ6) requires verification
of complex invariants and proof outlines, and these proofs make use of the proof rules developed
in prior work [Dalvandi et al. 2020a]. Similarly, TARO can be applied to verify more complex
programs that use transactions, for instance if one were to develop transactional data structures.
Interestingly, because transactions provide isolation guarantees, many of the proofs are simplified
since the stability checks for in-flight transactions become trivial.
The proof outlines for the programs in Figs. 2b and 2c are provided in [Dalvandi and Dongol

2022b].

6 PROVING CORRECTNESS OF TML-RA

We now turn to the question of correctness of TML-ra with respect to the TMS2-ra specification.

6.1 Refinement and Simulation for Weak Memory

Since we have an operational semantics with an interleaving semantics over weak memory
states, the development of our refinement theory closely follows the standard approach under
SC [de Roever and Engelhardt 1998]. Suppose 𝑃 is a program with initialisation Init. An execution

of 𝑃 is defined by a possibly infinite sequence Δ0 Δ1 Δ2 . . . such that

(1) each Δ𝑖 is a 4-tuple (𝑃𝑖 , ls𝑖 , 𝛾𝑖 , 𝛽𝑖) comprising a program to be executed, local state, global library
state and global client state, and

(2) (𝑃0, ls0, 𝛾0, 𝛽0) = (𝑃, lsInit, 𝛾Init, 𝛽Init), and
(3) for each 𝑖 , we have Δ𝑖 =⇒ Δ𝑖+1, where =⇒ is the transition relation of the program (as defined

by the operational semantics).

Let LVar𝑃 be the set of local variables corresponding to a program 𝑃 . If 𝑃 is a client, a client trace
corresponding to an execution Δ0 Δ1 Δ2 . . . is a sequence ct ∈ Σ

∗
𝑃 such that ct𝑖 = (𝜋2 (Δ𝑖) |𝑃 , 𝜋4 (Δ𝑖)),

where 𝜋𝑛 is a projection function that extracts the 𝑛th component of a given tuple and ls |𝑃 restricts
the given local state ls to the variables in LVar𝑃 . Thus, each ct𝑖 is the global client state compo-
nent of Δ𝑖 . After such a projection, the concrete implementation may contain (finite or infinite)

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 189. Publication date: October 2022.

Implementing and Verifying Release-Acquire Transactional Memory in C11 189:21

stuttering [de Roever and Engelhardt 1998], i.e., consecutive states in which the client state is
unchanged. We let rem_stut (ct) be the function that removes all stuttering from the trace ct, i.e.,
each consecutively repeating state is replaced by a single instance of that state. We let TrSF (𝑃)
denote the set of stutter-free traces of a program 𝑃 , i.e., the stutter-free traces generated from the
set of all executions of 𝑃 .
Below we refer to the client that uses the abstract specification as the abstract client and the

client that uses the implementation as the concrete client. The notion of contextual refinement that
we develop ensures that a client is not able to distinguish the use of a concrete implementation in
place of an abstract specification. In other words, each thread of the concrete client should only be
able to observe the writes (and updates) in the client state (i.e., 𝛾 component) that the thread could
already observe in a corresponding of the client state of the abstract client. First we define trace
refinement for weak memory states.

Definition 2 (State and Trace Refinement). We say a concrete client state (ls, 𝛽𝐶) is a refinement

of an abstract client state (als, 𝛽𝐴), denoted (ls, 𝛽𝐶) ≤ (als, 𝛽𝐴) iff ls = als and for all threads 𝜏 and
𝑥 ∈ GVar , we have 𝛽𝐶 .OW 𝜏 (𝑥) ⊆ 𝛽𝐴 .OW 𝜏 (𝑥). We say a concrete client trace ct is a refinement of
an abstract client trace at, denoted ct ≤ at, iff ct𝑖 ≤ at𝑖 for all 𝑖 .

This now leads to a natural trace-based definition of contextual refinement.

Definition 3 (Program Refinement). A concrete program 𝑃𝐶 is a refinement of an abstract program
𝑃𝐴, denoted 𝑃𝐶 ≤ 𝑃𝐴, iff for any (stutter-free) client trace ct ∈ TrSF (𝑃𝐶) there exists a (stutter-free)
client trace at ∈ TrSF (𝑃𝐴) such that ct ≤ at.

Finally, we obtain a notion of contextual refinement for abstract objects. We let 𝑃 [𝑂] be the client
program calling operations from object 𝑂 . Note that 𝑂 may be an abstract object, in which case
execution of each method call follows the abstract object semantics, or a concrete implementation.

Definition 4 (Contextual refinement). We say a concrete object 𝐶𝑂 is a contextual refinement of
an abstract object 𝐴𝑂 iff for any client program 𝑃 , we have 𝑃 [𝐶𝑂] ≤ 𝑃 [𝐴𝑂].

Here, we use a simulation-based proof method, which is a standard technique from the literature
that establishes refinement between TMS2-ra and TML-ra. The difference in a relaxed memory
setting is that the refinement relation is between more complex configurations of the form (ls, 𝛾, 𝛽),
where ls describes the local state, 𝛾 is the client state and 𝛽 is a state of the TM in question. In
particular, a simulation relation, 𝑅, relates triples Γ𝐴 =̂ (als, 𝛾𝐴, 𝛽𝐴) of the abstract system with
triples Γ𝐶 =̂ (ls, 𝛾𝐶 , 𝛽𝐶) of the concrete system.

The definition below assumes a reflexive relation 𝛾𝐶 −
tview𝜏
−−−−−→ 𝛾 ′𝐶 for each thread 𝜏 that arbitrarily

advances the thread view of 𝜏 (for one or more locations).

Definition 5 (Forward simulation). For an abstract object𝐴𝑂 and a concrete object𝐶𝑂 , for a client
program 𝑃 , we say 𝑅(Γ𝐴, Γ𝐶) =̂ 𝑅𝑉 ((als, 𝛽𝐴), (ls, 𝛽𝐶)) ∧ 𝑅𝑂 ((als |𝐴𝑂 , 𝛾𝐴), (ls |𝐶𝑂 , 𝛾𝐶)) is a forward
simulation between 𝐴 and 𝐶 iff each of the following holds:

Client observation.

𝑅𝑉 ((als, 𝛽𝐴), (ls, 𝛽𝐶)) = als |𝑃 = ls |𝑃 ∧ (∀𝜏 ∈ TId, 𝑥 ∈ Loc. 𝛽𝐴 .tview(𝑡, 𝑥) ≤ 𝛽𝐶 .tview(𝑡, 𝑥))

Thread view stability. For any thread 𝜏 ,

𝑅𝑂 ((als |𝐴𝑂 , 𝛾𝐴), (ls |𝐶𝑂 , 𝛾𝐶)) ∧ (𝛾𝐶 −
tview𝜏
−−−−−→ 𝛾 ′𝐶) ⇒ 𝑅𝑂 ((als |𝐴𝑂 , 𝛾𝐴), (ls |𝐶𝑂 , 𝛾

′
𝐶))

Initialisation. For any concrete initial state Γ0
𝐶
, there exists an abstract initial state Γ0

𝐴
such that

𝑅(Γ0
𝐴
, Γ0

𝐶
).

Preservation. For any concrete states Γ𝐶 , Γ
′
𝐶 such that 𝐶 can take an atomic transition from Γ𝐶 to

Γ
′
𝐶 , if Γ𝐴 is an abstract state such that 𝑅(Γ𝐴, Γ𝐶), then either

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 189. Publication date: October 2022.

189:22 Sadegh Dalvandi and Brijesh Dongol

• 𝑅(Γ𝐴, Γ
′
𝐶), or (stuttering step)

• there exists a transition of 𝐴 from Γ𝐴 to some state Γ′𝐴 such that 𝑅(Γ′𝐴, Γ
′
𝐶). (non-stuttering

step)

Initialisation and preservation are standard components of a forward simulation. Client observation
is necessary in a relaxed memory context to ensure that the client-side observations of the concrete
system are possible observations of the abstract system. In particular, if an abstract object specifies
a particular client-side synchronisation, then this synchronisation must also be present in the
concrete implementation (see [Dalvandi and Dongol 2021]). Thread view stability guarantees that
the 𝑅𝑂 component of the refinement relation is preserved when the thread view in the library is
shifted forward, e.g., due to synchronisation within a client.

Note that Definition 5 only guarantees preservation of safety. To additionally preserve liveness,
further progress guarantees are required in an implementation [Dongol and Groves 2016; Gotsman
and Yang 2011]. We leave liveness preservation through refinement for future work since notions
of fairness and progress of weak memory models is still at the early stages [Lahav et al. 2021].

Theorem 2. If 𝑅 is a forward simulation between 𝐴𝑂 and 𝐶𝑂 , then for any client 𝑃 we have

𝑃 [𝐶𝑂] ≤ 𝑃 [𝐴𝑂].

6.2 Forward Simulation for TML-ra

Perhaps the most technically challenging aspect of this paper is the proof of Theorem 3 below,
which ensures the correctness of TML-ra w.r.t. TMS2-ra.

This section describes the simulation relation used to prove refinement between TML-ra and
TMS2-RA. Validity of the forward simulation itself has been verified using Isabelle/HOL. The
refinement relation

𝑅((als, 𝛾𝐴, 𝛽𝐴), (𝑙𝑠, 𝛾𝐶 , 𝛽𝐶)) =̂ 𝑅𝑉 ((als, 𝛽𝐴), (ls, 𝛽𝐶)) ∧ (1) ∧

(∀𝑡 . (2) ∧ (3) ∧ (4) ∧ (5) ∧ (6) ∧ (7) ∧ (8) ∧ (9))

The first conjunct (1) in the refinement relation 𝑅 states that the value of the last write to glb divided
by 2 (wc(𝑛) =̂ 𝑛 ÷ 2) is equal to the last version of history written to M .

wc(𝛾𝐶 .lastval(𝑔𝑙𝑏)) = |𝛾𝐴 .M | (1)

The next conjunct, (2), states that the last value written to any location 𝑙 in 𝛾𝐶 is either the value of
𝑙 in the last abstract memory index or in the write set of the executing transaction

∀𝑙 . 𝑙 ≠ glb⇒ 𝛾𝐶 .lastval(𝑙) ∈ {𝛾𝐴 .M |𝛾𝐴 .M | (𝑙), 𝛾𝐴 .wrSet𝑡 (𝑙)} (2)

where lastval(𝑥) is a function that returns the value of the last write written to a location 𝑥 .
The next conjunct (3) is an in-flight simulation relation (i.e. the transaction has begun and is

not committed or aborted) and states that for all threads 𝜏 if transaction 𝑡 (𝛾𝐴 .txn𝜏 = 𝑡) is in-flight,
the value of wc(𝛾𝐶 .𝑙𝑜𝑐𝜏) will be greater than or equal to beginIdx𝑡 and the read set of 𝑡 will be
consistent with memory verison wc(𝛾𝐶 .𝑙𝑜𝑐𝜏):

𝛾𝐴 .beginIdx𝑡 ≤ wc(𝑙𝑠 .𝑙𝑜𝑐𝑡) ∧ 𝛾𝐴 .rdSet𝑡 ⊆ 𝛾𝐴 .Mwc(𝑙𝑠.𝑙𝑜𝑐𝑡) (3)

Conjunct (4) states that if the value of 𝑙𝑠 .𝑙𝑜𝑐𝑡 is even then write set of 𝛾𝐴 must be empty:

even(𝑙𝑠 .𝑙𝑜𝑐𝑡) ⇒ 𝛾𝐴 .wrSet𝑡 = ∅ (4)

Also if a transaction 𝑡 that has already written to a location then the write set of 𝛾𝐴 is not empty:

𝑙𝑠 .hasWritten𝑡 ⇒ 𝛾𝐴 .wrSet𝑡 ≠ ∅ (5)

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 189. Publication date: October 2022.

Implementing and Verifying Release-Acquire Transactional Memory in C11 189:23

If a transaction has not read any location yet in the concrete state, then the read set of the abstract
state should be empty:

¬𝑙𝑠 .hasRead𝑡 ⇒ 𝛾𝐴 .rdSet𝑡 = ∅ (6)

If there is a write in the write set of the abstract state, then the value should match the value of
the last write written to that location by the concrete implementation:

∀𝑙 ∈ dom(𝛾𝐴 .wrSet𝑡). 𝛾𝐴 .wrSet𝑡 (𝑙) = 𝛾𝐶 .lastval(𝑙) (7)

The value of a visible write of thread 𝜏 to variable 𝑔𝑙𝑏 divided by two is a visible memory by
thread 𝜏 of the abstract state:

∀𝑤 ∈ 𝛾𝐶 .𝑂𝑊𝜏 (𝑔𝑙𝑏). wc(val(𝑤)) ∈ 𝛾𝐴 .𝑣𝑚𝑒𝑚𝑠𝜏 (8)

All seen memory indices by the abstract transaction 𝑡 are less the value of thread view of 𝑔𝑙𝑏 for
thread 𝜏 divided by 2:

∀𝑖 ∈ 𝛾𝐴 .seenIdxs𝑡 . 𝑖 ≤ wc(val(𝛾𝐶 .tview𝜏 (𝑔𝑙𝑏))) (9)

Theorem 3. 𝑅 is a forward simulation between TMS2-ra and TML-ra.

Proof. This theorem has been verified in Isabelle/HOL (see [Dalvandi and Dongol 2022a]). □

7 RELATED WORK

Verifying C11 programs. There are now several different approaches to program verification
that support different aspects of the C11 relaxed memory model using pen-and-paper proofs
(e.g., [Alglave and Cousot 2017; Doko and Vafeiadis 2017; Lahav and Vafeiadis 2015; Turon et al.
2014]), model checking (e.g., [Abdulla et al. 2019; Kokologiannakis et al. 2019]), specialised tools
(e.g., [Krishna et al. 2020; Summers and Müller 2018; Svendsen et al. 2018; Tassarotti et al. 2015]),
and generalist theorem provers (e.g., [Dalvandi et al. 2020a]). These cover a variety of (fragments
of) memory models and proceed via exhaustive state space exploration, separation logics, or Hoare-
style calculi. A related approach to TARO that uses a view-based semantics for persistent x86-TSO
has been developed by Bila et al. [2022].

Another series of works has focussed on semantics that support the relaxed dependencies that are
allowed by C11 [Jagadeesan et al. 2020; Kang et al. 2017; Lee et al. 2020; Paviotti et al. 2020]. These
have been followed more recently by logics and verification over this semantics [Svendsen et al.
2018; Wright et al. 2021]. However, relaxed dependencies produce high levels of non-determinism,
making verification significantly more complex. We consider a verification framework that supports
relaxed dependencies and STMs to be a topic for future research.
More recent works include robustness of C11-style programs, which aims to show ładequate

synchronisationž so that the relaxed memory executions reduce to executions under stronger
memory models [Margalit and Lahav 2021]. Such reductions, although automatic, are limited to
finite state systems, and a small number of threads. Furthermore, it is currently unclear how they
would handle client-library synchronisation or relaxed (non-SC) specifications.

Correctness conditions under relaxed memory. Following the extensive literature on the semantics
of relaxed memory architectures, a natural next question has been the development of library
abstractions for relaxed memory. One aim has been to ensure observational refinement and com-

positionality of the implemented objects. A series of works have considered reformulations of
linearizability [Doherty et al. 2018; Dongol et al. 2018b; Raad et al. 2019a] by presenting suitable
weakenings fine-tuned to the underlying memory model. This includes extensions of linearizability,
e.g., so that it is defined in terms of axiomatic (aka declarative) relaxed memory models [Dongol

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 189. Publication date: October 2022.

189:24 Sadegh Dalvandi and Brijesh Dongol

et al. 2018b; Raad et al. 2019a] and those that are based on the more abstract concept of execution
structures [Doherty et al. 2018]. Recent works have covered verification of relaxed memory concur-
rent data structures that have been developed to satisfy the conditions described above [Dalvandi
and Dongol 2021; Krishna et al. 2020; Raad et al. 2019a], but none of these cover transactions.
Khyzha and Lahav [2022] have recently developed notions of abstraction for crash resilient

libraries, providing correctness conditions (extending linearizability) that ensure contextual refine-
ment for concurrent objects executed over the PSC (persistent sequential consistency) model. They
do so by exposing the internal synchronisation mechanisms that are used to implement an object
in the history (in addition to the invocations and responses). Our work differs since we consider
transactional memory libraries as opposed to concurrent objects, use a different memory model and
focus on verification of contextual refinement directly. Nevertheless, in future work, it would be
interesting to see if their methods provide an alternative method for specifying concurrent object
and transactional memory libraries in C11.
Several papers have revisited transaction semantics in the context of relaxed memory mod-

els [Chong et al. 2018; Dongol et al. 2018a, 2019; Raad et al. 2019b]. Raad et al have considered
relaxed memory and snapshot isolation [Raad et al. 2018, 2019b], which is a weaker condition than
serializability (and hence opacity and TMS2). The question of whether snapshot isolation can be
fully exploited by implementations in a relaxed memory setting remains a topic of future research,
with most transactional implementations aiming to support at least serializability [Zardoshti et al.
2019]. Dongol et al. [2018a] and Chong et al. [2018] have provided axiomatic a transactional se-
mantics integrated with relaxed memory models, focussing on hardware memory models and
hardware transactions. Chong et al. [2018] additionally propose a model for C11 transactions, but
these models are focused on transactions within the compiler, as opposed to STMs. Finally, the
axiomatic models proposed in these earlier works [Chong et al. 2018; Dongol et al. 2018a] are not
suitable for operational verification, e.g., as supported by TARO, where we require an operational
semantics as provided by TMS2-ra.
Another set of works has focussed on distributed (relaxed) transactions [Beillahi et al. 2021a,b;

Xiong et al. 2020]. Although there are analogues between transactions in distributed systems and
relaxed memory, constraints such as replication consistency and session order are not factors in
shared memory, and hence the underlying issues are fundamentally different. Xiong et al. [2020]
describe a taxonomy of distributed transactional models supported by an operational semantics.
It would be interesting to investigate whether TARO can be adapted to cope with client-object
systems in their models.

Relaxed memory TM implementations. There is a set of recent works on implementing TM
algorithms in C11 [Spear et al. 2020; Zardoshti et al. 2019]. The focus here has been real-world
implementability of STMs via compiler support. Since the focus is on benchmarks and real-world
workflows, these works neither consider a formal semantics nor provide a verification framework.
Our work can thus be seen as providing a formal basis to support to these efforts. In particular, we
show how the serialisability specifications assumed by Spear et al. [2020]; Zardoshti et al. [2019]
can be relaxed, without impacting correctness, while improving performance.

8 CONCLUSIONS

In this paper, we have presented a new approach to release-acquire transactions for RC11 RAR (a
fragment of C11 that supports relaxed as well as release-acquire atomics). We have developed a
new TM specification, TMS2-ra, that extends TMS2 to a relaxed memory context by describing the
interactions between transactions and their clients. We implement TMS2-ra by TML-ra, which is

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 189. Publication date: October 2022.

Implementing and Verifying Release-Acquire Transactional Memory in C11 189:25

an adaptation of an existing eager algorithm, TML. We show that TML-ra outperforms TML-sc

using the STAMP benchmarks.
Our second set of contributions covers the verification of release-acquire TM implementations.We

focus on proofs at two levels: (i) correctness of client programs that use TMS2-ra, and (ii) correctness
of implementations of TMS2-ra. For (i), we have developed a logic, TARO, extending [Dalvandi and
Dongol 2021], and used this logic to prove that TMS2-ra does indeed guarantee the desired client-
side synchronisation properties. For (ii), we have applied a simulation method, similar to [Dalvandi
and Dongol 2021] and proved a forward simulation between TML-ra and TMS2-ra. All proofs
for (i) and (ii) as well as all meta-level soundness results are fully mechanised in the Isabelle/HOL
proof assistant, providing a high level of assurance to our results.

Our motivation for using TML as the main implementation case study was to start with a simple
algorithm with an existing proof in SC [Derrick et al. 2018]. TML performs a global synchronisation
through a CAS on a single location, which degrades performance on write-heavy workloads.
For improved scalability, there are more sophisticated algorithms like TL2 [Dice et al. 2006] that
offer per-location locking as well as hybrid TM implementations [Matveev and Shavit 2015] that
combine hardware and software TM. TMS2 is known to be a sufficient abstraction for hybrid TMs in
SC [Armstrong and Dongol 2017], so it is likely that TMS2-ra also provides a basis for developing
and verifying relaxed and release-acquire versions of these more sophisticated algorithms. We
leave such studies for future work.

ACKNOWLEDGMENTS

The authors would also like to thank the Eleni Vafeiadi Bila and anonymous referees for their
valuable comments and helpful suggestions. Dalvandi and Dongol are supported by EPSRC Grant
EP/R032556/1. Dongol is additionally supported by EPSRC Grant EP/V038915/1, EPSRC Grant
EP/R025134/2, ARC Grant DP190102142 and VeTSS.

REFERENCES

P. A. Abdulla, J. Arora, M. F. Atig, and S. N. Krishna. 2019. Verification of programs under the release-acquire semantics. In

PLDI, K. S. McKinley and K. Fisher (Eds.). ACM, 1117ś1132. https://doi.org/10.1145/3314221.3314649

J. Alglave and P. Cousot. 2017. Ogre and Pythia: an invariance proof method for weak consistency models. In POPL,

G. Castagna and A. D. Gordon (Eds.). ACM, 3ś18.

J. Alglave, L. Maranget, and M. Tautschnig. 2014. Herding Cats: Modelling, Simulation, Testing, and Data Mining for Weak

Memory. ACM Trans. Program. Lang. Syst. 36, 2 (2014), 7:1ś7:74.

A. Armstrong and B. Dongol. 2017. Modularising Opacity Verification for Hybrid Transactional Memory. In FORTE (LNCS,

Vol. 10321), A. Bouajjani and A. Silva (Eds.). Springer, 33ś49.

A. Armstrong, B. Dongol, and S. Doherty. 2017. Proving Opacity via Linearizability: A Sound and Complete Method. In

FORTE (LNCS, Vol. 10321), A. Bouajjani and A. Silva (Eds.). Springer, 50ś66.

G. Assa, H. Meir, G. Golan-Gueta, I. Keidar, and A. Spiegelman. 2020. Nesting and composition in transactional data structure

libraries. In PPoPP ’20, R. Gupta and X. Shen (Eds.). ACM, 405ś406. https://doi.org/10.1145/3332466.3374514

G. Assa, H. Meir, G. Golan-Gueta, I. Keidar, and A. Spiegelman. 2021. Using Nesting to Push the Limits of Transactional

Data Structure Libraries. In OPODIS (LIPIcs, Vol. 217), Q. Bramas, V. Gramoli, and A. Milani (Eds.). Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 30:1ś30:17. https://doi.org/10.4230/LIPIcs.OPODIS.2021.30

H. Attiya, A. Gotsman, S. Hans, and N. Rinetzky. 2018. Characterizing Transactional Memory Consistency Conditions Using

Observational Refinement. J. ACM 65, 1 (2018), 2:1ś2:44.

M. Batty, A. F. Donaldson, and J. Wickerson. 2016. Overhauling SC atomics in C11 and OpenCL. In POPL. ACM, 634ś648.

M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. 2011. Mathematizing C++ concurrency. In POPL, T. Ball and M. Sagiv

(Eds.). ACM, 55ś66.

S. M. Beillahi, A. Bouajjani, and C. Enea. 2021a. Checking Robustness Between Weak Transactional Consistency Models. In

ESOP (LNCS, Vol. 12648), N. Yoshida (Ed.). Springer, 87ś117. https://doi.org/10.1007/978-3-030-72019-3_4

S. M. Beillahi, A. Bouajjani, and C. Enea. 2021b. Robustness Against Transactional Causal Consistency. Log. Methods Comput.

Sci. 17, 1 (2021). https://lmcs.episciences.org/7149

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 189. Publication date: October 2022.

https://doi.org/10.1145/3314221.3314649
https://doi.org/10.1145/3332466.3374514
https://doi.org/10.4230/LIPIcs.OPODIS.2021.30
https://doi.org/10.1007/978-3-030-72019-3_4
https://lmcs.episciences.org/7149

189:26 Sadegh Dalvandi and Brijesh Dongol

E. Vafeiadi Bila, B. Dongol, O. Lahav, A. Raad, and J. Wickerson. 2022. View-Based Owicki-Gries Reasoning for Persistent x86-

TSO. In ESOP (Lecture Notes in Computer Science, Vol. 13240), I. Sergey (Ed.). Springer, 234ś261. https://doi.org/10.1007/978-

3-030-99336-8_9

S. Böhme and T. Nipkow. 2010. Sledgehammer: Judgement Day. In IJCAR (LNCS, Vol. 6173). Springer, 107ś121.

N. G. Bronson, J. Casper, H. Chafi, and K. Olukotun. 2010. Transactional predication: high-performance concurrent sets and

maps for STM. In PODC, A. W. Richa and R. Guerraoui (Eds.). ACM, 6ś15. https://doi.org/10.1145/1835698.1835703

N. Chong, T. Sorensen, and J. Wickerson. 2018. The semantics of transactions and weak memory in x86, Power, ARM, and

C++. In PLDI, J. S. Foster and D. Grossman (Eds.). ACM, 211ś225. https://doi.org/10.1145/3192366.3192373

cppreference.com. 2022. std::atomic_compare_exchange. https://en.cppreference.com/w/cpp/atomic/atomic_compare_

exchange Accessed 18 July, 2022.

L. Dalessandro, D. Dice, M. L. Scott, N. Shavit, and M. F. Spear. 2010. Transactional Mutex Locks. In Euro-Par (2) (LNCS,

Vol. 6272). Springer, 2ś13.

S. Dalvandi, S. Doherty, B. Dongol, and H. Wehrheim. 2020a. Owicki-Gries Reasoning for C11 RAR. In ECOOP (LIPIcs,

Vol. 166), R. Hirschfeld and T. Pape (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 11:1ś11:26. https:

//doi.org/10.4230/LIPIcs.ECOOP.2020.11

S. Dalvandi, S. Doherty, B. Dongol, and H. Wehrheim. 2020b. Owicki-Gries Reasoning for C11 RAR (Artifact). Dagstuhl

Artifacts Ser. 6, 2 (2020), 15:1ś15:2. https://doi.org/10.4230/DARTS.6.2.15

S. Dalvandi and B. Dongol. 2021. Verifying C11-style weak memory libraries. In PPoPP, J. Lee and E. Petrank (Eds.). ACM,

451ś453. https://doi.org/10.1145/3437801.3441619

S. Dalvandi and B. Dongol. 2022a. Implementing and Verifying Release-Acquire Transactional Memory (Artifact). https:

//doi.org/10.5281/zenodo.6899919

S. Dalvandi and B. Dongol. 2022b. Implementing and Verifying Release-Acquire Transactional Memory (Extended Version).

https://doi.org/10.48550/ARXIV.2208.00315

S. Dalvandi, B. Dongol, S. Doherty, and H. Wehrheim. 2022. Integrating Owicki-Gries for C11-Style Memory Models into

Isabelle/HOL. J. Autom. Reason. 66, 1 (2022), 141ś171. https://doi.org/10.1007/s10817-021-09610-2

H.-H. Dang, J. Jung, J. Choi, D.-T. Nguyen, W. Mansky, J. Kang, and D. Dreyer. 2022. Compass: strong and compositional

library specifications in relaxed memory separation logic. In PLDI, R. Jhala and I. Dillig (Eds.). ACM, 792ś808. https:

//doi.org/10.1145/3519939.3523451

W. P. de Roever and K. Engelhardt. 1998. Data Refinement: Model-oriented Proof Theories and their Comparison. Cambridge

Tracts in Theoretical Computer Science, Vol. 46. Cambridge University Press.

J. Derrick, S. Doherty, B. Dongol, G. Schellhorn, O. Travkin, and H. Wehrheim. 2018. Mechanized proofs of opacity: a

comparison of two techniques. Formal Aspects Comput. 30, 5 (2018), 597ś625. https://doi.org/10.1007/s00165-017-0433-3

D. Dice, O. Shalev, and N. Shavit. 2006. Transactional Locking II. In DISC (Lecture Notes in Computer Science, Vol. 4167),

S. Dolev (Ed.). Springer, 194ś208. https://doi.org/10.1007/11864219_14

S. Doherty, B. Dongol, J. Derrick, G. Schellhorn, and H. Wehrheim. 2016. Proving Opacity of a Pessimistic STM. In OPODIS

(LIPIcs, Vol. 70), P. Fatourou, E. Jiménez, and F. Pedone (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,

35:1ś35:17.

S. Doherty, B. Dongol, H. Wehrheim, and J. Derrick. 2018. Making Linearizability Compositional for Partially Ordered

Executions. In iFM (LNCS, Vol. 11023), C. A. Furia and K. Winter (Eds.). Springer, 110ś129. https://doi.org/10.1007/978-3-

319-98938-9_7

S. Doherty, B. Dongol, H. Wehrheim, and J. Derrick. 2019. Verifying C11 programs operationally. In PPoPP, Jeffrey K.

Hollingsworth and Idit Keidar (Eds.). ACM, 355ś365.

S. Doherty, L. Groves, V. Luchangco, and M. Moir. 2013. Towards formally specifying and verifying transactional memory.

Formal Asp. Comput. 25, 5 (2013), 769ś799.

M. Doko and V. Vafeiadis. 2017. Tackling Real-Life Relaxed Concurrency with FSL++. In ESOP. 448ś475.

S. Dolan, KC Sivaramakrishnan, and A. Madhavapeddy. 2018. Bounding Data Races in Space and Time. In PLDI (Philadelphia,

PA, USA) (PLDI 2018). ACM, New York, NY, USA, 242ś255.

B. Dongol and L. Groves. 2016. Contextual Trace Refinement for Concurrent Objects: Safety and Progress. In ICFEM (Lecture

Notes in Computer Science, Vol. 10009), K. Ogata, M. Lawford, and S. Liu (Eds.). 261ś278. https://doi.org/10.1007/978-3-

319-47846-3_17

B. Dongol, R. Jagadeesan, and J. Riely. 2018a. Transactions in relaxed memory architectures. PACMPL 2, POPL (2018),

18:1ś18:29.

B. Dongol, R. Jagadeesan, and J. Riely. 2019. Modular transactions: bounding mixed races in space and time. In PPoPP, J. K.

Hollingsworth and I. Keidar (Eds.). ACM, 82ś93. https://doi.org/10.1145/3293883.3295708

B. Dongol, R. Jagadeesan, J. Riely, and A. Armstrong. 2018b. On abstraction and compositionality for weak-memory

linearisability. In VMCAI (LNCS, Vol. 10747). Springer, 183ś204.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 189. Publication date: October 2022.

https://doi.org/10.1007/978-3-030-99336-8_9
https://doi.org/10.1007/978-3-030-99336-8_9
https://doi.org/10.1145/1835698.1835703
https://doi.org/10.1145/3192366.3192373
https://en.cppreference.com/w/cpp/atomic/atomic_compare_exchange
https://en.cppreference.com/w/cpp/atomic/atomic_compare_exchange
https://doi.org/10.4230/LIPIcs.ECOOP.2020.11
https://doi.org/10.4230/LIPIcs.ECOOP.2020.11
https://doi.org/10.4230/DARTS.6.2.15
https://doi.org/10.1145/3437801.3441619
https://doi.org/10.5281/zenodo.6899919
https://doi.org/10.5281/zenodo.6899919
https://doi.org/10.48550/ARXIV.2208.00315
https://doi.org/10.1007/s10817-021-09610-2
https://doi.org/10.1145/3519939.3523451
https://doi.org/10.1145/3519939.3523451
https://doi.org/10.1007/s00165-017-0433-3
https://doi.org/10.1007/11864219_14
https://doi.org/10.1007/978-3-319-98938-9_7
https://doi.org/10.1007/978-3-319-98938-9_7
https://doi.org/10.1007/978-3-319-47846-3_17
https://doi.org/10.1007/978-3-319-47846-3_17
https://doi.org/10.1145/3293883.3295708

Implementing and Verifying Release-Acquire Transactional Memory in C11 189:27

M. Emmi and C. Enea. 2019. Weak-consistency specification via visibility relaxation. Proc. ACM Program. Lang. 3, POPL

(2019), 60:1ś60:28. https://doi.org/10.1145/3290373

A. Gotsman and H. Yang. 2011. Liveness-Preserving Atomicity Abstraction. In ICALP (Lecture Notes in Computer Science,

Vol. 6756), L. Aceto, M. Henzinger, and J. Sgall (Eds.). Springer, 453ś465. https://doi.org/10.1007/978-3-642-22012-8_36

R. Guerraoui and M. Kapalka. 2010. Principles of Transactional Memory. Morgan & Claypool Publishers.

M. He, V. Vafeiadis, S. Qin, and J. F. Ferreira. 2016. Reasoning about Fences and Relaxed Atomics. In PDP. IEEE Computer

Society, 520ś527.

M. Herlihy and J. E. B. Moss. 1993. Transactional Memory: Architectural Support for Lock-Free Data Structures. In ISCA,

A. J. Smith (Ed.). ACM, 289ś300.

M. Herlihy and J. M. Wing. 1990. Linearizability: A Correctness Condition for Concurrent Objects. ACM TOPLAS 12, 3

(1990), 463ś492.

R. Jagadeesan, A. Jeffrey, and J. Riely. 2020. Pomsets with preconditions: a simple model of relaxed memory. Proc. ACM

Program. Lang. 4, OOPSLA (2020), 194:1ś194:30. https://doi.org/10.1145/3428262

J.-O. Kaiser, H.-H. Dang, D. D., O. Lahav, and V. Vafeiadis. 2017. Strong Logic for Weak Memory: Reasoning About Release-

Acquire Consistency in Iris. In ECOOP (LIPIcs, Vol. 74), P. Müller (Ed.). Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,

17:1ś17:29.

J. Kang, C.-K. Hur, O. Lahav, V. Vafeiadis, and D. Dreyer. 2017. A promising semantics for relaxed-memory concurrency. In

POPL. ACM, 175ś189.

A. Khyzha and O. Lahav. 2022. Abstraction for Crash-Resilient Objects. In ESOP (Lecture Notes in Computer Science, Vol. 13240),

Ilya Sergey (Ed.). Springer, 262ś289. https://doi.org/10.1007/978-3-030-99336-8_10

M. Kokologiannakis, A. Raad, and V. Vafeiadis. 2019. Model checking for weakly consistent libraries. In PLDI, K. S. McKinley

and K. Fisher (Eds.). ACM, 96ś110. https://doi.org/10.1145/3314221.3314609

S. Krishna, M. Emmi, C. Enea, and D. Jovanovic. 2020. Verifying Visibility-Based Weak Consistency. In ESOP (LNCS,

Vol. 12075), P. Müller (Ed.). Springer, 280ś307. https://doi.org/10.1007/978-3-030-44914-8_11

O. Lahav, E. Namakonov, J. Oberhauser, A. Podkopaev, and V. Vafeiadis. 2021. Making weak memory models fair. Proc. ACM

Program. Lang. 5, OOPSLA (2021), 1ś27. https://doi.org/10.1145/3485475

O. Lahav and V. Vafeiadis. 2015. Owicki-Gries Reasoning for Weak Memory Models. In ICALP (LNCS, Vol. 9135), M. M.

Halldórsson, K. Iwama, N. Kobayashi, and B. Speckmann (Eds.). Springer, 311ś323.

O. Lahav, V. Vafeiadis, J. Kang, C.-K. Hur, and D. Dreyer. 2017. Repairing sequential consistency in C/C++11. In PLDI. ACM,

618ś632.

L. Lamport. 1979. How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs. IEEE Trans.

Computers 28, 9 (1979), 690ś691.

S.-H. Lee, M. Cho, A. Podkopaev, S. Chakraborty, C.-K. Hur, O. Lahav, and V. Vafeiadis. 2020. Promising 2.0: global

optimizations in relaxed memory concurrency. In PLDI, A. F. Donaldson and E. Torlak (Eds.). ACM, 362ś376. https:

//doi.org/10.1145/3385412.3386010

M. Lesani, V. Luchangco, and M. Moir. 2012. Putting Opacity in Its Place. InWTTM.

M. Lesani, L. Xia, A. Kaseorg, C. J. Bell, A. Chlipala, B. C. Pierce, and S. Zdancewic. 2022. C4: verified transactional objects.

Proc. ACM Program. Lang. 6, OOPSLA (2022), 1ś31. https://doi.org/10.1145/3527324

N. A. Lynch. 1996. Distributed Algorithms. Morgan Kaufmann.

R. Margalit and O. Lahav. 2021. Verifying Observational Robustness against a C11-Style Memory Model. Proc. ACM Program.

Lang. 5, POPL, Article 4 (Jan. 2021), 33 pages. https://doi.org/10.1145/3434285

A. Matveev and N. Shavit. 2015. Reduced Hardware NOrec: A Safe and Scalable Hybrid Transactional Memory. In ASPLOS,

Ö. Ö., K. Ebcioglu, and S. Dwarkadas (Eds.). ACM, 59ś71. https://doi.org/10.1145/2694344.2694393

C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun. 2008. STAMP: Stanford Transactional Applications for Multi-

Processing. In IISWC, D. Christie, A. Lee, O. Mutlu, and B. G. Zorn (Eds.). IEEE Computer Society, 35ś46. https:

//doi.org/10.1109/IISWC.2008.4636089

S. S. Owicki and D. Gries. 1976. An Axiomatic Proof Technique for Parallel Programs I. Acta Inf. 6 (1976), 319ś340.

M. Paviotti, S. Cooksey, A. Paradis, D. Wright, S. Owens, andM. Batty. 2020. Modular Relaxed Dependencies inWeakMemory

Concurrency. In ESOP (LNCS, Vol. 12075), P. Müller (Ed.). Springer, 599ś625. https://doi.org/10.1007/978-3-030-44914-8_22

A. Podkopaev, I. Sergey, and A. Nanevski. 2016. Operational Aspects of C/C++ Concurrency. CoRR abs/1606.01400 (2016).

arXiv:1606.01400

A. Raad, M. Doko, L. Rozic, O. Lahav, and V. Vafeiadis. 2019a. On library correctness under weak memory consistency:

specifying and verifying concurrent libraries under declarative consistency models. Proc. ACM Program. Lang. 3, POPL

(2019), 68:1ś68:31. https://doi.org/10.1145/3290381

A. Raad, O. Lahav, and V. Vafeiadis. 2018. On Parallel Snapshot Isolation and Release/Acquire Consistency. In ESOP (LNCS,

Vol. 10801), A. Ahmed (Ed.). Springer, 940ś967. https://doi.org/10.1007/978-3-319-89884-1_33

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 189. Publication date: October 2022.

https://doi.org/10.1145/3290373
https://doi.org/10.1007/978-3-642-22012-8_36
https://doi.org/10.1145/3428262
https://doi.org/10.1007/978-3-030-99336-8_10
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1007/978-3-030-44914-8_11
https://doi.org/10.1145/3485475
https://doi.org/10.1145/3385412.3386010
https://doi.org/10.1145/3385412.3386010
https://doi.org/10.1145/3527324
https://doi.org/10.1145/3434285
https://doi.org/10.1145/2694344.2694393
https://doi.org/10.1109/IISWC.2008.4636089
https://doi.org/10.1109/IISWC.2008.4636089
https://doi.org/10.1007/978-3-030-44914-8_22
https://arxiv.org/abs/1606.01400
https://doi.org/10.1145/3290381
https://doi.org/10.1007/978-3-319-89884-1_33

189:28 Sadegh Dalvandi and Brijesh Dongol

A. Raad, O. Lahav, and V. Vafeiadis. 2019b. On the Semantics of Snapshot Isolation. In VMCAI (LNCS, Vol. 11388), C. Enea

and R. Piskac (Eds.). Springer, 1ś23. https://doi.org/10.1007/978-3-030-11245-5_1

M. Rodriguez and M. F. Spear. 2020. Brief Announcement: On Implementing Software Transactional Memory in the C++

Memory Model. In PODC, Y. Emek and C. Cachin (Eds.). ACM, 224ś226. https://doi.org/10.1145/3382734.3405746

S. Scargall. 2020. Programming Persistent Memory: A Comprehensive Guide for Developers. APress. https://doi.org/10.1007/978-

1-4842-4932-1_8

G. Sela, M. Herlihy, and E. Petrank. 2021. Brief Announcement: Linearizability: A Typo. In PODC, A. Miller, K. Censor-Hillel,

and J. H. Korhonen (Eds.). ACM, 561ś564. https://doi.org/10.1145/3465084.3467944

N. Shavit and D. Touitou. 1997. Software Transactional Memory. Distributed Computing 10, 2 (1997), 99ś116.

M. Spear, H. Boehm, V. Luchangco, M. L. Scott, and M. Wong. 2020. Transactional Memory Lite Support in C++. Technical

Report. isocpp.

A. J. Summers and P. Müller. 2018. Automating Deductive Verification for Weak-Memory Programs. In TACAS (LNCS,

Vol. 10805), D. Beyer and M. Huisman (Eds.). Springer, 190ś209.

K. Svendsen, J. Pichon-Pharabod, M. Doko, O. Lahav, and V. Vafeiadis. 2018. A Separation Logic for a Promising Semantics.

In ESOP (LNCS, Vol. 10801), A. Ahmed (Ed.). Springer, 357ś384.

J. Tassarotti, D. Dreyer, and V. Vafeiadis. 2015. Verifying read-copy-update in a logic for weak memory. In PLDI, D. Grove

and S. Blackburn (Eds.). ACM, 110ś120. https://doi.org/10.1145/2737924.2737992

A. Turon, V. Vafeiadis, and D. Dreyer. 2014. GPS: navigating weak memory with ghosts, protocols, and separation. In

OOPSLA, A. P. Black and T. D. Millstein (Eds.). ACM, 691ś707.

V. Vafeiadis and C. Narayan. 2013. Relaxed separation logic: A program logic for C11 concurrency. In OOPSLA. 867ś884.

D. Wright, M. Batty, and B. Dongol. 2021. Owicki-Gries Reasoning for C11 Programs with Relaxed Dependencies. 13047

(2021), 237ś254. https://doi.org/10.1007/978-3-030-90870-6_13

S. Xiong, A. Cerone, A. Raad, and P. Gardner. 2020. Data Consistency in Transactional Storage Systems: A Centralised

Semantics. In ECOOP (LIPIcs, Vol. 166), R. Hirschfeld and T. Pape (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

21:1ś21:31. https://doi.org/10.4230/LIPIcs.ECOOP.2020.21

P. Zardoshti, T. Zhou, P. Balaji, M. L. Scott, and M. F. Spear. 2019. Simplifying Transactional Memory Support in C++. ACM

Trans. Archit. Code Optim. 16, 3 (2019), 25:1ś25:24. https://doi.org/10.1145/3328796

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 189. Publication date: October 2022.

https://doi.org/10.1007/978-3-030-11245-5_1
https://doi.org/10.1145/3382734.3405746
https://doi.org/10.1007/978-1-4842-4932-1_8
https://doi.org/10.1007/978-1-4842-4932-1_8
https://doi.org/10.1145/3465084.3467944
https://doi.org/10.1145/2737924.2737992
https://doi.org/10.1007/978-3-030-90870-6_13
https://doi.org/10.4230/LIPIcs.ECOOP.2020.21
https://doi.org/10.1145/3328796

	Abstract
	1 Introduction
	2 Transactional guarantees in C11
	2.1 Release-Acquire Synchronisation
	2.2 Transactional Message Passing

	3 Release-acquire TM specification
	3.1 View-Based Operational Semantics
	3.2 TMS2
	3.3 TMS2-ra
	3.4 Modular Operational Semantics

	4 A C11 STM implementation
	4.1 TML
	4.2 TML-ra
	4.3 Benchmarking

	5 TARO: A logic for release-acquire TM
	5.1 View-Based Assertions
	5.2 TARO: Transactional Owicki-Gries Reasoning

	6 Proving correctness of TML-ra
	6.1 Refinement and Simulation for Weak Memory
	6.2 Forward Simulation for TML-ra

	7 Related work
	8 Conclusions
	Acknowledgments
	References

