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Abstract—During forensic database investigations, audit
records become a crucial evidential element; particularly, when
certain events can be attributed to insider activity. However,
traditional reactive forensic methods may not be suitable, urging
the adoption of proactive approaches that can be used to ensure
accountability through audit records whilst satisfying Chain of
Custody (CoC) requirements for forensic purposes.

In this paper, role segregation, evidence provenance, event time-
liness and causality are considered as CoC requirements in order
to implement a forensically ready architecture for the proactive
generation, collection and preservation of database audit records
that can be used as digital evidence for the investigation of
insider activity. Our proposal implements triggers and stored
procedures as forensic routines in order to build a vector-clock-
based timeline for explaining causality in transactional events
recorded in audit tables. We expect to encourage further work
in the field of proactive digital forensics and forensic readiness;
in particular, for justifying admissibility of audit records under
CoC restrictions.

Index Terms—database forensics, proactive, chain of custody,
admissibility, architecture, audit, trigger, stored procedure, role
segregation, provenance, timeline, causality, vector clock.

I. INTRODUCTION

Database Forensics allows investigating malicious activities

performed by trusted employees or insiders who, motivated

by financial gain, could misuse their privileged access [1] in

order to disclose or contaminate [2] transactional databases.

Since audit records may be considered legal evidence [3],

accountability and forensics become crucial investigation

elements for analysing and justifying insider behaviour [4].

However, there is a difficulty in considering audit records

as legally relevant or admissible if the lack of accountability

and forensic features, within the database environment, enables

malicious insiders to cover up their activities, and eventually

make them appear as authorised [5]. For instance, unauthorised

payments were made by malicious employees of a public

institution in Ecuador 1, who used privileged system credentials

for making them look legitimate. Although evidence could

have been retrieved from the database, its audit records were

inconsistent as it was reported to be inadequate and vulnerable.

On the other hand, ensuring admissibility also requires

forensic practitioners to establish an unbroken accountability

trail in order to show ‘due dilligence’ when handling any

1As reported in 2012 by local newspapers Ecuador Inmediato

[https://goo.gl/08KHsi] and El Comercio [https://goo.gl/aOCyBp].

form of data and records. This requirement is known as Chain

of Custody (CoC), which basically describes the ‘evidence

continuum’, delivering proof of adequate handling, and justifi-

cation of actions performed on any evidential item. Nonetheless,

when investigating databases, initiating and maintaining CoC

is difficult because, unlike proactive forensics, the generally

accepted reactive approach [6] may not be able to properly

analyse and justify insider actions.

First of all, reactive database forensics is comprised of

bottom-up methods that adapt traditional digital forensics

techniques for recovering scattered pieces of evidence in

order to reconstruct the database state [7]. Examples of

these methods are table-relationship analysis [8] and data file

carving [9]. However, these methods either lack formalisation

and scientific background [10], or may not be suitable for

investigating databases [11]. As a consequence, ad hoc database

investigations over rely on the practitioner’s knowledge and

expertise, leading to conjectures about insider behaviour since

the only available evidence to fully explain such actions may

be partially recovered or unavailable.

Alternatively, the proactive approach is an emerging top-

down method which is based on the premise that databases

per se were designed with forensically ready features, such as

triggers [12], for auditing insider activities [10]. Hence, audit

records can be generated, collected and preserved in order

to draw conclusions based on more generalistic behavioural

traces than those which may (or may not) be present within

reactively recovered evidence. This research takes on this

approach, introducing a proactive architecture for database

forensics so that the generation, collection and preservation of

audit records can be done under CoC restrictions.

In section II, role segregation, evidence provenance, event

timeliness and causality are considered as Chain of Custody

(CoC) requirements for the proactive investigation of databases.

In section III, the previous requirements are implemented

as functional features of a distributed architecture for the

generation, collection and preservation of audit records that can

be used to explain insider activity. A vector clock mechanism

is implemented in a stored procedure for recording causality

and timeliness every time Data Manipulation Language (DML)

events are triggered. In section IV, experimental results are

presented, regarding the construction of DML event timeliness,

the relationship between causality and provenance, and the



architectural performance. Finally, related and future work

along with conclusions are given in sections V and VI,

respectively.

II. CHAIN OF CUSTODY REQUIREMENTS IN PROACTIVE

DATABASE FORENSICS

Traditionally, digital forensics has been known as a scientific ap-

proach for the identification, collection, validation, preservation,

and subsequent analysis of digital evidence [13]. This life cycle

has a slight variation during proactive investigations, where

evidence must be generated, collected and preserved before the

analysis phase [14]. However, regardless the approach, Chain

of Custody (CoC) must be initiated and maintained according

to the generally accepted 4 principles of digital evidence 2 [15]:

• Principle 1: No action taken by [any insider] should

change [evidence].

• Principle 2: In circumstances where ... [accessing] original

data [is required], ... [evidence must be provided] explain-

ing the relevance and implications of [such] actions.

• Principle 3: An audit trail [or similar record] of all [events]

... should be [generated, collected] and preserved. An

independent third party should be able to examine [those

events] and achieve the same [conclusion].

• Principle 4: The person in charge of the investigation

[must ensure the application of these principles].

When applying the proactive approach, accountability and

forensics are important elements for investigating databases

since audit records become digital evidence for explaining

the occurrence of insertions, deletions and updates which, in

the context of this article, are referred as Data Manipulation

Language (DML) events. Hence, DML event attributability can

be explained when tuples in audit tables capture changes in

transactional data [16] with their corresponding actor (insider

causing the event). However, in order to guarantee the applica-

bility of these principles as established in Principle 4, Chain of

Custody (CoC) must be initiated and maintained, considering

that the generation, collection and preservation of audit records

must be performed whilst transactional database operations

are also being executed. This brings on the consideration

of role segregation, evidence provenance, event timeliness

and causality as CoC requirements so that reproducibility

and verification of insider activity can be ensured within a

forensically ready environment.

A. Separation of Concerns

As established by Principle 1, a clear functional separation

of concerns [17] is required in order to prevent potential

changes in audit records whilst avoiding overlapping functional

responsibilities. Although the administrator role (DBA) is

normally in charge of managing audit functions [18], a

explicit forensic role and a corresponding forensic database

should be created for preventing discretionary violations of

administrative functions, such as disabling audit mechanisms

on convenience [19].

2Where necessary, bracketed text denote paraphrasing for adapting the
concept of the principles to the article’s context.

Definition II.1. Role Segregation

Let S be the set of database users, A and F the set of

administrator and forensic roles, respectively:

segregation = {usr, role|usr ∈ S ∧ role /∈ A ∩ F}

The function segregation prevents a database user having

administrator and forensic permissions at the same time.

By placing transactional event accountability, and controlling

access to audit functionally [3], Def. II.1 follows Principle 2,

allowing monitoring insider actions in order to justify that audit

records were produced without negligent insider intervention.

B. Evidence Provenance

Principle 3 states that audit records should reflect a trail of

events in order to ensure third-party verification; specially, after

an insider security violation [3]. Thus, provenance becomes

a CoC requirement during the generation of audit records,

allowing investigators to relate DML events with their actors.

Definition II.2. Provenance

Let provenance be a 6-attribute tuple representing the

description level of audit records:

provenance = {pn : n ∈ N
+ ∧ 1 ≤ n ≤ 6}

In Table I, the required granularity provenance description

level [20] on audit records is described in order to explain

DML events:

TABLE I: The 6-Attribute Provenance Tuple

Attr. Value Description

p1
What audit record has been
generated.

Audit record identifier (Id)

p2
When the audit record was
generated.

Real (Hardware) Clock

Timestamp.

p3
Why the audit record was
generated.

Type of DML Event: Insert,

Update or Delete.

p4 Who the actor is. User identifier.

p5 Which the DB actor role is.
Type of DB role: DBadmin,

DBforensics, DBuser.

p6
Where the DML event was
triggered.

Originating IP Address.

C. Event Timeliness

Principle 3 implies considering timeliness as an important CoC

requirement in order to monitor insider behaviour by applying

time constraints to audit records. Subsequently, building a

timeline of DML events can be useful not only to explain their

global ordering in the entire computation, but also to keep an

audit trail during their generation, collection and preservation:

a. Generating Audit Records: Audit records are generated

every time a DML event is ‘triggered’ in a transactional

table. At the same time, provenance of DML events is

also possible to capture by retrieving DML event-related

attributes (Table I) during the generation of such records.
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computation.
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Fig. 2: A de-normalised forensic database collects DML events

in tables ti, and constructs a causal timeline in table Tl.

b. Collecting Audit Records: When a DML event is triggered

in a transactional table, its corresponding 6-attribute audit

table ti in the forensic database (Fig. 2) collects its audit

record, along with its provenance attributes (Def. II.2).

c. Preserving Audit Records: Whilst audit records are

generated and collected in audit tables, their temporal

occurrence can be preserved and ordered in a timeline

using causal audit records stored in a causal table Tl

within the forensic database (Fig. 2).

By using causal audit records preserved in the causal table not

only losing sequentiality of DML events can be prevented, but

also their temporal occurrence can be explained. For example,

if an insider inserts data in a transactional table, a DML

event is triggered. A corresponding audit record is generated

along with its provenance attributes, which is later collected

inside an audit table, and finally, the corresponding causal

audit record is preserved in the causal table. In Fig. 1a, these

interactions are represented from the perspective of an ideal

external observer [21] who is in charge of receiving, recording

and ordering DML event-related audit records eji in a causal

table Tl. Then, a timeline is built using causal audit records per

each DML event-related audit record generated and collected in

a finite number of audit tables ti. In the following definitions,

these event timeliness characteristics are formalised for better

understanding:

Definition II.3. Evidence Sources

Let D be the set of i evidence sources, then:

D = {ti : i ∈ N
+}

where ti is the ith audit table considered as evidence source.

Definition II.4. Evidential Events

Following from Def.II.3, let E be a set of audit records

registering DML events in their corresponding audit tables,

then:

E = {eji : i, j ∈ N
+} (1)

where eji is the jth audit record generated by the ith audit table.

Each audit record eji in ti is denoted using canonical

enumeration, where j denotes the jth audit record generated

in the ith audit table. For example, some audit records in the

1st and 4th audit tables can be identified as:

e11, e
2
1, e

3
1, . . .

e54, e
6
4, . . . , e

10
4 , . . .

From the vector clock definition in [21], in Fig. 1b, the

logical order of audit records generated in an audit table ti
and recorded into a timeline Tl, is a vector clock mechanism

which is used to track audit record order values, making them

causally consistent. I.e., a vector clock is a simple logical order



of DML event occurrence represented by the Cartesian power

V n of the corresponding audit record timestamps vi:

V n = {(v1, v2, v3, . . . , vn)|vi ∈ N, i ∈ N
+} (2)

From (1) and (2), timestamps vi can be expressed in terms of

audit records eji in order to explicitly identify the audit table

ti which they belong to:

vi = Ts(e)[i] (3)

The index i is sufficient to represent the n-tuple of the vector

clock V n since an audit table ti must be identified for assigning

its corresponding timestamp Ts. Whereas the index j becomes

irrelevant as it denotes local ordering of the audit record e in

its corresponding audit table ti.

Definition II.5. Event Timestamps

For building a DML event timeline Tl as shown in Fig. 1b,

and following from (3) in Def.II.4, the timestamp Ts of an

audit record e registered in the ith audit table can be defined

as follows:

Ts(e)[i] :=































(a)

Ts[i] + 1, if e = sendti(Ts)

(b)

max{Ts[i], sendti(Ts)}, if e = receiveti(Ts)

Where:

(a) if an audit record e is being generated or ’sent’, then

the local vector clock component in its audit table ti is

incremented.

(b) if an audit record e is being ’received’ for registration in

the timeline Tl, then the value of the reporting component

of the vector clock in Tl is updated to the maximum value,

obtained by comparing the corresponding previous vector

clock value in Tl with the received timestamp Ts from the

corresponding audit table ti.

Definition II.6. Causal Audit Record

Following from Def. II.5, in order to represent the n-tuple

vector clock V n in Def. II.4 (2), let a causal audit record, in a

causal table Tl, be an array of timestamps Ts(e)[i], recording

the occurrence of a DML event e collected in its corresponding

audit table ti:

record : ti 7→ Ts(e)[i]

Definition II.7. Event Timeline

Following from Def. II.6, let Tl be a sequence of records,

representing the global occurrence of DML events in their

corresponding audit records e, considering the timestamps Ts,

as reported by each audit table ti:

Tl = [(ti, Ts(e)[i]) | ti ∈ D, e ∈ E]

Hence, the timestamp values of each component of the vector

clock can be registered on the timeline Tl and retrieved when

required.

D. Event Causality

Form the forensic point of view, applying Principle 3 not only

enables the construction of a timeline (section II-C), but also

allows sequencing DML events in order to identify and explain

their interactions [22]. Likewise, for accountability purposes,

timeliness allows the generation and collection of audit records

with time restrictions, so they can be stored and reviewed in

later investigation stages [3]. As shown in Def. II.7, the global

history of audit records in a timeline initiates and maintains

CoC requirements by introducing an element of causality [23]

for explaining the sequential relationship or their corresponding

DML events. Since audit records in databases are strictly bound

to timestamps, sequencing them requires establishing a ‘happen-

before’ relation (represented by →) with a strong timestamp

condition [21][24].

Definition II.8. Event Sequentiality Property

Being ea (sending) and eb (receiving), two sequential DML

events recorded in their corresponding audit records; then, the

timestamp Ts of ea must be less than the timestamp value

Ts(eb)[a] of the vector clock corresponding to the receiving

DML event eb:

∀ea, eb ∈ E • (ea → eb ⇒ sendta(Ts) < Ts(eb)[a])

Definition II.9. Event Transitive Property

Similarly, by transitivity, having three evidential DML events

registered in their corresponding audit records ea, eb, and ec,

if ea ‘happens before’ eb, and eb ‘happens before’ ec, then

ea precedes ec, and the timestamp Ts of the sending event ea
is less than the timestamp value Ts(ec)[a] of the vector clock

corresponding to the receiving event ec:

∀ea, eb, ec ∈ E •
(ea → eb ∧ eb → ec ⇒ ea → ec ∧ sendta(Ts) < Ts(ec)[a])

Definition II.10. Event Concurrency Property

Since concurrency explains the occurrence of DML events

that are not affected by a “happen-before” relation [24], they

can be defined in a more general perspective as they are not

restricted by a timestamp condition.

Given two DML events e and e′, if they are not sequential

with each other then they are concurrent:

∀e, e′ ∈ E • (e||e′ ⇒ ¬(e → e′ ∧ e′ → e))

From the transitive property in Def. II.9 and its implication

in concurrent events (Def. II.10), one can infer that an ideal

external observer must be “informed” of the existence of an

intermediate event eb [21] as concurrent events are not bound

to timestamp restrictions. However, determining whether or

not such an event actually ‘happened before’ a receiving event

ec is a concurrency challenge for building the timeline Tl.

This requires the introduction of an asynchronous method

for preventing inconsistent observations, and therefore make

an intermediate event ‘wait’ if an ongoing event has not

been registered yet (Fig. 1c). The solution to this problem

is explained later in section III-C3.



III. IMPLEMENTING A DISTRIBUTED ENVIRONMENT FOR

PROACTIVE DATABASE FORENSICS
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Fig. 3: Experimental Architecture

In a proactive forensics approach audit records must be

generated, collected and preserved within a forensically ready

environment. However, for making them admissible, the Chain

of Custody (CoC) requirements explained in section II must

be considered as functional specifications. In Fig. 3, an

experimental architecture is outlined in order to proactively

generate and collect audit records, and at the same time,

preserve a timeline of their occurrence (sections II-C and II-D).

In the following sections, these architectural components are

explained in detail.

A. Separation of Concerns

For achieving role segregation (section II-A), separation of

concerns is implemented by using a transactional and a

forensics database (Fig. 3-A). Whilst the transactional database

(and its corresponding roles) is in charge of transactional

operation and administration, the forensics database with a

explicit forensic role deploys the forensic routines for the

generation, collection and generation of DML event-related

audit records (section II-C, lit. a - c). As a result, an event

timeline can be created based on the causal relation of

sequential events with timestamp restrictions, as explained

in section II-D.

B. Concurrent DML Event Generation

For experimental purposes, in order to generate concurrent

events, synthetic workload is produced by means of a Master

Event Generation Server (MeGen) and two Event Generation

Clients (CeGen) (Fig. 3-B). MeGen is a master terminal coordi-

nating concurrent activity using threaded database connections

to emulate transactional behaviour in a distributed environment.

Meanwhile, CeGen is comprised of two slave terminals which

are in charge of passing concurrent DML requests from MeGen

to the transactional database.

C. Proactive Database Forensics Routines

Triggers and stored procedures are implemented as external

forensic routines (Fig. 4) with explicit enable/disable

permissions assigned to a specific forensic database role

(section II-A). This prevents them to be easily accessed, or

conveniently disabled by malicious insiders with administrator

privileges. Additionally, abstraction can be provided by

obscuring their implementation particularities from normal

database roles, achieving access control for ensuring Chain

of Custody compliance during the generation, collection and

preservation of audit records:

1) Evidence Generation - Fig. 4-1: Every time DML

requests are sent from CeGen to the transactional database, a

corresponding evidence generation trigger in a receiving table

is executed. These triggers not only generate audit records,

but also automatically capture specific provenance descriptive

attributes (section II-B) related to the occurrence of a DML

event in the transactional database.

2) Evidence Collection - Fig. 4-2: Data tables within

the transactional database have their corresponding audit

tables in the forensic database (Fig. 2). Then, evidence

generation triggers in the transactional database execute

evidence collection stored procedures in the forensic database

for storing audit records and their provenance descriptive

attributes in the audit tables (Def. II.2).

3) Evidence Preservation - Fig. 4-3: A causal table in the

forensic database (Fig. 2) is used to build an event timeline Tl

(Def. II.7). Whilst audit records are generated and collected in

the audit tables ti, their corresponding evidence preservation

triggers execute an evidence preservation stored procedure

in order to create a causal audit record, assigning timestamp

values Ts to build a timeline Tl in the causal table. The

implementation of this stored procedure, following the vector

clock mechanism specification in Def. II.5, is shown in the

following pseudo code (List. 1):

1 # b e g i n c a u s a l S t o r e d P r o c e d u r e
2 p u b l i c s t a t i c vo i d spLogCausa lEven t ( t imes t amp Ts ,

i d e n t i f i e r t i ) }
3 # b e g i n s e r i a l i s e d T r a n s a c t i o n
4 /∗ 1 . Get t h e number o f a u d i t t a b l e s t i ∗ /
5 numTables := a u d i t t a b l e s . getNumber ( ) ;
6 /∗ 2 . Get t h e t i m e l i n e Tl o f e v e n t s ∗ /
7 t i m e l i n e := e v e n t r e c o r d s . g e t S e q u e n c e ( ) ;
8 /∗ 3 . I f t h e r e a r e no e v e n t s r e p o r t e d ∗ /
9 i f t i m e l i n e . g e t R e c o r d s ( ) = [ ] t h e n

10 t b l i n d e x := 0 ;
11 /∗ 3 . 1 Timestamp Ts i s a s s i g n e d t o t h e

s e n d i n g t a b l e t i ∗ /
12 w h i l e t b l i n d e x < numTables do
13 i f t i = t b l i n d e x t h e n
14 e v e n t r e c o r d [ t b l i n d e x ] := Ts ;
15 e l s e
16 e v e n t r e c o r d [ t b l i n d e x ] := 0 ;
17 end i f
18 end w h i l e
19 /∗ 4 . I f a t l e a s t one e v e n t has been r e p o r t e d ∗ /
20 e l s e
21 /∗ 4 . 1 R e t r i e v e l a s t e v e n t r e c o r d ∗ /
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public static void trgAudt_Tbl_1()

Evidence.Collection.StoredProceduresEvidence.Collection.StoredProceduresEvidence.Collection.StoredProcedures

public static void spLogAudtEvt_Tbl_1()

public static void spLogAudtEvt_Tbl_2()

public static void spLogAudtEvt_Tbl_n()

SQL Server 2014
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<<inserts_audit_on>>

Evidence.Preservation.TriggersEvidence.Preservation.TriggersEvidence.Preservation.Triggers

public static void trgLogCauslEvt_Tbl_1()

public static void trgLogCauslEvt_Tbl_2()

public static void trgLogCauslEvt_Tbl_n()

<<depends>><<depends>><<depends>>

<<deployed_in>>

Evidence.Preservation.StoredProceduresEvidence.Preservation.StoredProceduresEvidence.Preservation.StoredProcedures

public static void spLogCausalEvent 

(timestamp Ts, identifier tbl_id)

<<depends>><<depends>><<depends>>

<<inserts_causal_event_on>>

...

...

...

1
2 3

Fig. 4: Architecture of Proactive DB Forensic Components implemented as CLR C# Static Methods

22 e v e n t r e c o r d := t i m e l i n e . g e t L a s t R e c o r d ( ) ;
23 t b l i n d e x := 0 ;
24 /∗ 4 . 2 Ass ign t i m e s t a m p s t o r e c e i v i n g e v e n t s

∗ /
25 w h i l e t b l i n d e x < numTables do
26 /∗ 4 . 3 The s e n d i n g t imes t amp Ts i s compared

wi th i t s p r e v i o u s Ts v a l u e ∗ /
27 i f t i = t b l i n d e x t h e n
28 /∗ 4 . 4 The max Ts v a l u e i s a s s i g n e d t o

t h e c o r r e s p o n d i n g s e n d i n g t a b l e t i ∗ /
29 e v e n t r e c o r d [ t i ] := max ( e v e n t r e c o r d [

t b l i n d e x ] , Ts ) ;
30 e l s e
31 /∗ 4 . 5 P r e v i o u s t imes t amp v a l u e s o f non−

s e n d i n g t a b l e s a r e m a i n t a i n e d ∗ /
32 e v e n t r e c o r d [ t b l i n d e x ] := e v e n t r e c o r d [

t b l i n d e x ] ;
33 end i f
34 end w h i l e
35 end i f
36 /∗ 5 . Add r e p o r t e d e v e n t t o t h e t i m e l i n e ∗ /
37 t i m e l i n e . add ( e v e n t r e c o r d ) ;
38 # commit s e r i a l i s e d T r a n s a c t i o n
39 }# end c a u s a l S t o r e d P r o c e d u r e

Listing 1: Causal Event Registration Pseudo code

Since the construction of a timeline Tl must be accurate with

no ‘events lost’ due concurrent user activity (Def. II.10), in

List. 1, causal event registration is executed using serialised

transactions. This prevents the occurrence of concurrent

intermediate events (Fig. 1c) which, due to incorrect transitivity

(Def. II.9), may be recorded before an ongoing sending event

is received.

IV. EXPERIMENTAL RESULTS

The technical specifications of the forensically ready environ-

ment depicted on Fig. 3 are briefly explained as follows:

a. A transactional and a forensics database (Fig. 3-A)

were implemented in MSSQL Server 2014 with oper-

ative (DBUser), administrative (DBAdmin) and forensic

(DBForenics) roles enabled.

b. For concurrent DML event generation, both MeGen

and CeGen implement JMeter 3 in master-slave mode,

respectively (Fig. 3-B).

c. Proactive DB forensic routines (Fig. 3-C) are implemented

using Common Language Runtime (CLR) C# Assemblies,

and deployed in their respective databases, following the

deployment architecture shown in Fig. 4.

720 concurrent DML request samples were modelled and

executed in MeGen and CeGen, and captured using the forensic

routines. This allowed analysing timeliness, the relationship

amongst causality and provenance, and finally, measuring the

architectural performance.

TABLE II: Vector Clock Components in the Causal Table Tl

seq Ts[1] Ts[2] Ts[3] RTs[seq]

... ... ... ... ...

17 5 5 [7] 2017-03-06 16:51:49.000

18 [6] 5 7 2017-03-06 16:51:49.263

19 6 [6] 7 2017-03-06 16:51:49.283

... ... ... ... ...

24 [7] 6 11 2017-03-06 16:51:49.360

25 7 6 [12] 2017-03-06 16:51:49.367

26 7 [7] 12 2017-03-06 16:51:49.370

Sequences of events recorded in audit table t1
Sequences of events recorded in audit table t2
Sequences of events recorded in audit table t3

3JMeter official site explains its deployment in master-salve mode
[https://goo.gl/qK1tCt].



A. Analysing Timeliness

In Table II, a sample of captured DML event sequences shows

the timestamps Ts[i] assigned to them in the causal table Tl. The

causal relationship amongst the 17th, 18th and 19th sequence

can be proved using Def. II.9:

Being sendt3(Ts[2]) := 5 ∧ Ts(e19)[2] := 6
As 5 < 6 (true) ⇒ e17 → e19

∴

e73 → e61 ∧ e61 → e62 by transitivity.

If real clock timestamps RTs[seq] are assigned, then:

RTs[17] < RTs[18] ∧RTs[18] < RTs[19]

This proves that using hardware and logical clock timestamps is

equivalent since the causal relationship between the 17th, 18th

and 19th sequence remains. This is very useful considering that

auditors and forensic practitioners usually rely on timestamps

associated with hardware clock values for explaining DML

event sequencing; i.e., date and time of a particular DML event.

However, if these values are tampered with by a malicious

insider, audit record integrity can be compromised. Also, if

hardware clocks were used, they have to be synchronised which

is transactionally expensive if the database is geographically

distributed.

B. Relation of Provenance and Causality

Using the causal timestamps Ts[i] as conditions, provenance

descriptive attributes can be queried on their corresponding

audit tables ti as shown in List. 2:

1 use f o r e n s i c s ;
2 s e l e c t t 1 . t 1 I d as ’ Ts [ t 1 ] ’ , t 1 . t 1 e v t t i m e ,
3 t 1 . t 1 e v t t y p e , t 1 . t 1 e v t a c t o r ,
4 t 1 . t 1 e v t d b u s e r , t 1 . t 1 e v t i p a d d r
5 from dbo . t 1 where t 1 . E v t r i u s = 7 ;
6 s e l e c t t 3 . E v t r i t r a s ’ Ts [ t 3 ] ’ , t 3 . t 3 e v t t i m e ,
7 t 3 . t 3 e v t t y p e , t 3 . t 3 e v t a c t o r ,
8 t 3 . t 3 e v t d b u s e r , t 3 . t 3 e v t i p a d d r
9 from dbo . t 3 where t 3 . E v t r i t r = 1 2 ;

10 s e l e c t t 2 . E v t r i p y as ’ Ts [ t 3 ] ’ , t 2 . t 2 e v t t i m e ,
11 t 2 . t 2 e v t t y p e , t 2 . t 2 e v t a c t o r ,
12 t 2 . t 2 e v t d b u s e r , t 2 . t 2 e v t i p a d d r
13 from dbo . t 2 where t 2 . E v t r i p y = 7 ;

Listing 2: Provenance Queries on Audit Tables

TABLE III: Querying Provenance Descriptive Attributes

Ts Time Type Actor ID DB User IP Addr

[7] 16:51:49.360 Insert 1705997013 DBUser 192.168.0.2

[12] 16:51:49.363 Insert 1705997013 DBAdmin 192.168.0.4

[7] 16:51:49.367 Insert 1705997013 DBUser 192.168.0.2

Description of event e7 recorded in audit table t1
Description of event e12 recorded in audit table t2
Description of event e7 recorded in audit table t3

Table III shows the resulting provenance queries, providing

a fine grained description of the 24th, 25th, and 26th event

recorded in the causal table Tl. If a DBUser role has been

assigned to external application users for interacting with the

transactional database, the provenance attributes can detect

misuse, for example when the DBAdmin has performed an

insertion with the same Actor ID as the one used by a DBUser.

C. Measuring Architectural Performance
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Fig. 5: Latency Graph of DML Requests

Fig. 5 shows three stress test scenarios (Table IV) used to

measure the database response latency per each one of the 720

DML Request samples: Despite having some latency, the values

TABLE IV: DML Requests Latency Results (Seconds)

Maximum Minimum Average

Audit & Forensics 1.263 0.005 0.24404

Only Audit 0.797 0.003 0.17255

None 0.223 0.000 0.02750

in Table IV are acceptable for a concurrent scenario, where

using rudimentary audit features may even increase latency

beyond the shown thresholds. For avoiding adding throughput

on the database, our featured audit and forensic components

(Fig. 4) perform serialised operations in relays so that a causal

record can be produced only after its corresponding audit event

has been recorded, adding 3 to 5 ms. of latency, when enabling

‘only audit’ and ‘audit & forensics’ features, respectively.

V. RELATED AND FUTURE WORK

An early attempt to capture a notion of timeliness was

developed in [25]. Later, in [23], research on separation of

concerns in NoSQL databases was conducted whilst the usage

of de-normalised tables for handling evidence was introduced

in [26]. On the contrary, despite not being strictly related

to databases, [27] recently introduced timeline construction

based on audit trails. Our research considers these contributions

in order to formalise Chain of Custody requirements, and

implement a forensically ready architecture for the generation,

collection and preservation of database audit records. Our



findings have established a relationship between provenance

and causality for databases, also inspired by the approach used

in [28]. Future work is expected to be developed for capturing

provenance during the occurrence of SELECT events, which

cannot be done using database triggers.

VI. CONCLUSIONS

For justifying Chain of Custody (CoC) requirements in proac-

tive database forensics, role segregation, provenance, timeliness

and causality must be captured within a forensically ready

architecture.

Regarding role segregation, although trigger auditing func-

tionality can be used, conventional SQL implementations

cannot prevent them to be disabled by malicious or negligent

insiders. We use an explicit forensic database role to deploy

CLR C# triggers and stored procedures, obscuring implemen-

tation details and restricting their access from operational and

administrative database roles (Section III-C).

With regard to provenance, the implemented forensic

database uses de-normalised audit tables to capture provenance

descriptive attributes (Section II-B) along with audit records.

This enables capturing time and type of DML events along

with information about their actors.

Finally, timeliness and causality are mutually related CoC

requirements because one cannot be explained without the

other. Although auditors and forensic investigators may rely

in hardware clock timestamps for explaining DML event

sequentiality, we have proved that vector clock logic timestamps

are equivalent to hardware clock timestamps. Thus, DML

events become independent of hardware clock failures and

manipulations because their occurrence real time becomes a

descriptive provenance attribute rather than an element for

explaining their causality.
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