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Abstract This paper provides a framework for implementing and comparing sev-
eral solution concepts for transferable utility cooperative games. We construct bidding
mechanisms where players bid for the role of the proposer. The mechanisms differ in
the power awarded to the proposer. The Shapley, consensus and equal surplus values
are implemented in subgame perfect equilibrium outcomes as power shifts away from
the proposer to the rest of the players. Moreover, an alternative informational structure
where these solution concepts can be implemented without imposing any conditions
of the transferable utility game is discussed as well.
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1 Introduction

Cooperation among individuals, firms or countries generates benefits to be shared
and costs to be imputed. The analysis of these problems proceeded both axiomat-
ically, studying the implications of normative issues and strategically, deriving the
likely outcomes of maximizing behavior by the parties involved. The merging of both
approaches lies at the core of the Nash (1953) program calling for a non-cooperative
(strategic) foundation to cooperative (normative) solution concepts.

We provide a non-cooperative foundation to several cooperative solution concepts
by using a class of bidding mechanisms that differ in the power awarded to the pro-
poser chosen through a bidding process. The mechanisms constructed are related to the
bidding mechanisms first constructed by Pérez-Castrillo and Wettstein (2001, 2002).
The bidding for the role of the proposer is the same as in the previous mechanisms,
however the role itself varies from one mechanism to another. Whereas previously
the proposer was the only player allowed to make offers and once declined she was
removed from the game, we now allow for a second round of offers. In this manner
we are able to implement a continuum of cooperative solution concepts.

We construct explicit mechanisms implementing the Shapley (1953) value, the
equal surplus value (cf. Driessen and Funaki 1991; Moulin 2003) and the consensus
value (Ju et al. 2007). In all mechanisms, the players first participate in a bidding
procedure to determine a proposer. The proposer announces an offer to all the other
players. If the offer is accepted, the proposer pays out according to it and collects the
value generated by the grand coalition. If the offer is rejected the other players engage
again in the same game. The difference between the mechanisms is in what happens
when the other players have finished the game. In all the mechanisms we construct
the proposer and the other players have the right to make, accept and reject a second
set of offers. The precise rules as to who makes the offer and who has a right to reject
or accept vary according to the solution implemented.

The Shapley value is implemented when the proposer chosen first can make a sec-
ond offer to the other players. The equal surplus value emerges as an equilibrium
outcome when the other players can make the proposer (who was “left out”) an offer
to join them. The consensus value is the equilibrium outcome when the proposer and
the rest of the players bid for the right to make another offer. These, and actually
a whole continuum of values, are the equilibrium outcomes of the variants of one
basic bidding mechanism. This approach does not use the structure of any specific
value to generate a specific mechanism tailored for it. The mechanism, through the
bidding, allows players to consider the payoffs to all possible sub-coalitions, unlike
a mechanism where only the grand coalition or singletons matter, which would, not
surprisingly, implement the equal surplus value. The emergence of a solution concept,
not directly related to the mechanism, serves to highlight intriguing features of the
solution concept. The consensus value, for example, is “the result” of having players
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compete for the right to make a second offer rather than arbitrarily assigning it to a
particular player.

This option of “re-entering” the game after being rejected is very reasonable. Even
in the absence of such an explicit option, players in any “real-life” situation may try to
exercise it through a mutual agreement, given the existence of potential benefits. This
argument leads to the study of implementation with renegotiation (Maskin and Moore
1999; Baliga and Brusco 2000). Clearly, suitably modified versions of the general
constructions in these papers as well as those in the usual implementation literature
using sequential mechanisms (Moore and Repullo 1988; Maniquet 2003) would pro-
vide a non-cooperative foundation to the solution concepts we discuss. However, these
mechanisms appropriate for general environments would be highly complex, requir-
ing the transmission of large amounts of information, compared to our, as well as,
previous mechanisms constructed to realize cooperative solution concepts.

Furthermore, following the same spirit as in Serrano (1995) and Dagan et al. (1997),
we offer an alternative specification of the cooperative environment, where a coalition
can, if necessary, prove what is the amount it can generate for its members to share.
One such instance is the situation where the players have to share among themselves a
given estate with well documented claims on the part of every coalition (the strategic
analysis with such an informational structure has been surveyed by Thomson 2003). In
this setting we show that suitably defined generalized bidding mechanisms implement
the solution concepts, previously discussed, for any transferable utility (TU) game.

Several previous papers have indeed dealt with providing non-cooperative foun-
dations to cooperative solution concepts. Gul (1989, 1999) suggested a bargaining
procedure that leads to the Shapley value. Hart and Mas-Colell (1996) constructed a
bargaining procedure that leads to the Shapley value in TU games and the Nash bar-
gaining solution for pure bargaining problems. Krishna and Serrano (1995) provided
further results regarding this procedure. Vidal-Puga (2005) generalized this procedure
to allow for a coalition structure among players, which led to the Owen (1977) value
in TU games and a generalization of the Nash bargaining solution. Hart and Moore
(1990), Winter (1994), Dasgupta and Chiu (1998) and Vidal-Puga (2004) constructed
games that lead to the Shapley value.1 Vidal-Puga and Bergantiños (2003) introduced
a coalitional bidding mechanism, as an extension of the bidding mechanism defined
by Pérez-Castrillo and Wettstein (2001), and implemented the Owen (1977) value . By
considering the possibility of the breakdown of negotiations when rejecting an offer, Ju
et al. (2007) designed a two-level bidding mechanism and provided an implementation
of the consensus value.

The generalized bidding approach, using the same basic game with different
“end-games” appended to it to implement a variety of values, highlights the different
“non-cooperative” rationales underlying the various values. This approach provides
a structured algorithm to design mechanisms for implementing cooperative solution
concepts. It should be noted that the generalized bidding mechanisms introduced in this

1 An extensive discussion of these implementations of the Shapley value can be found in Pérez-Castrillo and
Wettstein (2001) which implements the Shapley value via a bidding mechanism. For the implementations
of other cooperative solutions and a general view of the research area, we refer to Serrano (2005).
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paper yield the actual values implemented rather than implementing them in expected
terms.

Moreover, this approach can be used to implement solution concepts in other coop-
erative environments such as partition function form games, games with a coalition
structure and primeval games (cf. Ju and Borm 2008). Being able to apply the same
extensive form to varied domains of cooperative games is one of the objectives of the
Nash program as stated in Hart and Mas-Colell (1996) and Serrano (2005).

In the next section, we present the environment and the solution concepts to be
implemented. In Sect. 3, we describe the basic mechanism and show that suitably
defined variants of it implement the different value concepts. Section 4 presents the
alternative interpretation of the environment and the modified mechanisms. The last
section concludes by discussing several possible extensions and applications of the
approach, which suggests further directions of research.

2 The cooperative model and the values

We denote by N = {1, . . . , n} the set of players, and let S ⊆ N denote a coali-
tion of players. A cooperative game in characteristic form is denoted by (N , v) where
v : 2N → R is a characteristic function satisfying v(∅) = 0. Throughout the paper, |S|
denotes the cardinality of S, and in particular, when no confusion arises, let |N | = n.
For a coalition S, v(S) is the total payoff that the members in S can obtain if S forms.
For notational simplicity, given i ∈ N , we use v(i) instead of v({i}) to denote the
stand-alone payoff of player i . A value is a mapping f which associates with every
game (N , v) a vector in R

n . A value determines the payoffs for every player in the
game.

Given a cooperative game (N , v) and a subset S ⊆ N , we define the subgame
(S, v|S) by assigning the value v|S(T ) ≡ v(T ) for any T ⊆ S.

We denote by φ the Shapley value for game (N , v) which is defined by

φi (N , v) =
∑

S⊆N\{i}

|S|!(n − |S| − 1)!
n! [v(S ∪ {i})− v(S)]

for all i ∈ N . It is the unique value that satisfies efficiency, additivity, symmetry and
the null player property.

The equal surplus value, denoted by φes , is a more straightforward value and allo-
cates to each player, besides her stand-alone payoff generated by her singleton coa-
lition, an equal share of the surplus (in excess of the sum of all players’ stand-alone
payoffs) generated by the grand coalition. Formally, it is defined by

φes
i (N , v) = v(i)+ 1

n

⎛

⎝v(N )−
∑

j∈N

v( j)

⎞

⎠

for all i ∈ N . The equal surplus value fails to satisfy the null player property. How-
ever, this solution concept can be well motivated from an egalitarian perspective. For
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axiomatizations of the equal surplus value, we refer to van den Brink and Funaki
(2004).

Ju et al. (2007) proposed a recursive two-sided negotiation procedure to establish
cooperation and share the payoff of the grand coalition. This procedure leads to a new
value, the consensus value, denoted by ψ . It is shown that the consensus value equals
the middle point between the Shapley value and the equal surplus value. That is,

ψi (N , v) = 1

2
φi (N , v)+ 1

2
φes

i (N , v)

for all i ∈ N . The consensus value is the unique solution concept that satisfies effi-
ciency, additivity, symmetry and the neutral null player property. Alternative charac-
terizations for this value using an equal welfare loss property or by means of individual
rationality and a type of monotonicity can be found in Ju et al. (2007) and van den
Brink et al. (2005), respectively.

From a cooperative (normative) point of view, the applications and suitability of
these solution concepts in different contexts can be further elaborated on based upon
the four fundamental principles of distributive justice discussed in Moulin (2003):
compensation, reward, exogenous rights, and fitness.

3 The generalized bidding mechanisms

In this section, we construct the family of bidding mechanisms that will implement the
various cooperative solutions. These mechanisms provide a convenient benchmark to
evaluate and compare these values from a non-cooperative perspective.

The basic bidding mechanism can be described informally as follows: At stage 1
the players bid to choose a proposer. Each player bids by submitting an (n − 1)-tuple
of numbers (positive or negative), one number for each player (excluding herself).
The player for whom the net bid (the difference between the sum of bids made by the
player and the sum of bids the other players made to her) is the highest, is chosen as
the proposer. Before moving to stage 2, the proposer pays to each player the bid she
made. So at this stage, the net bids are used to measure players’ willingness to become
the proposer. As a reward to the chosen proposer for her effort (represented by her net
bid), she has the right to make a scheme how to split v(N ) among all the players at
the next stage.

At stage 2 the proposer offers a vector of payments to all other players in exchange
for joining her to form the grand coalition. The offer is accepted if all the other play-
ers agree. In case of acceptance the grand coalition indeed forms and the proposer
receives v(N ) out of which she pays out the offers made. In case of rejection the
proposer “waits” while all the other players go again through the same game.

The mechanism described thus far implements the Shapley value2 as shown in
Pérez-Castrillo and Wettstein (2001). We now add further bidding and offer stages,
in case of rejection of one proposer but followed by acceptance of the offer made by

2 In the case where the rejected proposer gets her stand-alone payoff instead of “waiting”.
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the next proposer, to obtain what we term a generalized bidding mechanism. In these
additional stages the two proposers (the one rejected and the one following her but
whose offer was accepted) bid and accept further offers (note that these stages are also
present in the game played by any remaining group of players).

The first variant implementing the Shapley value has the rejected proposer (denoted
for simplicity by a) make an offer to the proposer whose offer was accepted (denoted
for simplicity by b). The offer is for a to form the coalition rather than b. If the offer is
accepted the coalition forms, a receives the value of the coalition and pays the offer, b
receives the offer from a and pays all the commitments made by him, and all the other
players in the colaition receive what they were promised. In this variant a retains the
right to make offers.

The second variant implementing the equal surplus value has b make an offer to a.
If the offer is accepted the coalition forms, a receives the offer, b receives the value of
the coalition and pays the offer to a as well as what he owes to the remaining players.
In this variant a loses the right to make offers.

In the third variant implementing the consensus value a and b bid for the right to
make an offer. If a wins the game proceeds as in the first variant and if b wins the
second variant goes into effect.

We now formally describe the bidding games and start by describing the mecha-
nism implementing the Shapley value.3

Mechanism A1 If there is only one player {i}, she simply receives v(i). When the
player set N = {1, . . . , n} consists of two or more players, the mechanism is defined
recursively.

Stages 1 to 3 provide for any set of (active) players S a proposer in S, chosen via a
bidding procedure (stage 1), an offer made by the proposer to the rest of the players in
S (stage 2), and an acceptance or rejection (stage 3). If stage 3 ends with a rejection,
all players in S other than the rejected proposer proceed again through stages 1 to 3
where the set of active players is reduced by excluding the rejected proposer. If stage
3 ends with acceptance, for S = N the game ends; but for a coalition S smaller than
N , the game moves to stage 4 and then ends with stage 5. At stage 4 the last rejected
proposer makes an offer to the accepted proposer, and at stage 5, the offer is either
accepted or rejected and final payoffs are realized.

The mechanism starts with S = N .

Stage 1: Each player i ∈ S makes s−1 (where s = |S|) bids bi
j ∈ R with j ∈ S\{i}.

For each i ∈ S, define the net bid of player i by Bi = ∑
j∈S\{i} bi

j − ∑
j∈S\{i} b j

i .

Let is = argmaxi∈S(B
i ) where an arbitrary tie-breaking rule is used in case of a

non-unique maximizer. Once the winner is has been chosen, player is pays every
player j ∈ S\{is} her bid bis

j .

Stage 2: Player is makes a vector of offers xis
j ∈ R to every player j ∈ S\{is}. (This

offer is additional to the bids paid at stage 1.)

3 The presentation of the mechanisms and the corresponding proofs of the relevant theorems have been
substantially improved following the referees’ very helpful comments.
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Stage 3: The players in S other than is , sequentially, either accept or reject the offer.
If at least one player rejects it, then the offer is rejected. Otherwise, the offer is
accepted.
If the offer made at stage 3 is rejected, all players in S other than is proceed again
through the mechanism from stage 1 where the set of active players is S\{is}.4
Meanwhile, player is waits for the negotiation outcome of S\{is}. Dependent upon
whether or not player is−1, the proposer of S\{is}, can have his offer be accepted
within S\{is}, player is will either be called for renegotiation with is−1 or be left
alone. The renegotiation will follow a similar process as specified below in stages
4 and 5. If being left alone, player is will receive payoff v(is) at this stage and her
final payoff will be v(is)− ∑

j∈S\{is } bis
j + ∑n

t=s+1 bit
is

.
If the offer is accepted, we have to distinguish between two cases where S = N
and S �= N . In the case where S = N , which means that all players agree with
the proposer on the scheme of sharing v(N ), the game ENDS. Then, at this stage,
each player j ∈ N\{in} receives xin

j , and player in receives v(N )− ∑
j∈N\{in} xin

j .

Hence, the final payoff to player j �= in is xin
j + bin

j while player in receives

v(N ) − ∑
j∈N\{in} xin

j − ∑
j∈N\{in} bin

j . In the case where S �= N , stages 4 and 5
are reached.

Stage 4: The rejected proposer preceding is , who is denoted by is+1, makes an offer
x̃ is+1

is
in R, to player is . (The offer is to let is+1 form the coalition S ∪ {is+1}.)

Stage 5: Player is accepts or rejects the offer and the game ENDS.
The payoffs to all the players who proposed before is+1 and to all the players in
S\{is} are the same independent of whether there was a rejection or an acceptance
at stage 5.
All proposers before is+1 receive their stand-alone payoffs in addition to all the
payments received and paid out in the bidding stages they participated in. Hence the
final payoff to player im for m > s +1 is v(im)−∑

l∈N\(∪n
k=mik )

bim
l +∑n

t=m+1 bit
im

.

Every player j ∈ S\{is} receives xis
j and the overall payoff to the player is derived

by adding to it all the bids received, which were made by all previously rejected
proposers. Hence, the final payoff to player j ∈ S\{is} is xis

j + ∑n
t=s bit

j .
The payoffs to the players is and is+1 depend on whether or not there was an accep-
tance at stage 5.
If the offer at stage 5 is accepted then at this stage player is receives x̃ is+1

is
minus the

bids and offers she made to the players in S, while player is+1 receives v(S∪{is+1})−
x̃ is+1

is
. The overall payoffs to these two players are given by adding to these amounts

the sum of bids received and made in all the preceding stages, respectively. Hence,
the final payoff to player is is x̃ is+1

is
−∑

j∈S\{is } bis
j −∑

j∈S\{is } xis
j +∑n

t=s+1 bit
is

, and

the final payoff to player is+1 is v(S ∪{is+1})− x̃ is+1
is

−∑
j∈S bis+1

j +∑n
t=s+2 bit

is+1
.

4 To make it clearer, here we explicitly explain the amount of payoff that players in S\{is } will bargain for,
although it is incorporated in the description of the following stages provided below. Because of the chance
of renegotiation at stages 4 and 5, players in S\{is } bid for becoming the proposer is−1 so as to win the

offer x̃ is
is−1

made by is at stage 4. In equilibrium, it equals v(S\{is }).
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If the offer at stage 5 is rejected then at this stage player is receives v(S) minus the
bids and the offers she made to the players in S, while player is+1 receives his stand-
alone payoff v(is+1). The overall payoff to these two players are given by adding to
these amounts the sum of bids received and made in all the preceding stages, respec-
tively. Hence, the final payoff to player is is v(S)− ∑

j∈S\{is } bis
j − ∑

j∈S\{is } xis
j +

∑n
t=s+1 bit

is
, and the final payoff to player is+1 is v(is+1) − ∑

j∈S bis+1
j +

∑n
t=s+2 bit

is+1
.

We note that in the case the mechanism reaches the situation where the set of active
players consists of one player only, i.e. |S| = 1, the corresponding stages 1 to 3 are
redundant and this single player is considered as the proposer for herself whose offer is
accepted immediately and the game moves to stages 4 and 5 where she will renegotiate
with the previously rejected proposer i2.

We will show that for any zero-monotonic game (N , v) (i.e., v(S) ≥ v(S\{i}) +
v({i}) for all S ⊆ N and i ∈ S), the subgame perfect equilibrium (SPE) outcomes of
Mechanism A1 coincide with the payoff vector φ(N , v) as prescribed by the Shapley
value.

Theorem 3.1 Mechanism A1 implements the Shapley value of a zero-monotonic game
(N , v) in SPE.

Proof 5 Let (N , v) be a zero-monotonic game. The proof proceeds by induction on
the number of players n. The induction assumption precisely stated is that whenever
the mechanism is used by n players with a given characteristic function (satisfying
zero-monotonicity), it implements the Shapley value corresponding to this character-
istic function. It is easy to see that the theorem holds for n = 1. We assume that it
holds for all m ≤ n − 1 and show that it is satisfied for n.

First we show that the Shapley value is an SPE outcome. We explicitly construct an
SPE that yields the Shapley value as an SPE outcome. Consider the following strate-
gies, which the players would follow in any game they participate in (we describe it
for the whole set of players, N , but these are also the strategies followed by any player
in a subset S that is called upon to play the game, with S replacing N ):

At stage 1, each player i ∈ N announces bi
j = φ j (N , v) − φ j (N\{i}, v|N\{i}) for

every j ∈ N\{i}.
At stage 2, a proposer, player in , offers xin

j = φ j (N\{in}, v|N\{in}) to every j ∈
N\{in}.
At stage 3, any player j ∈ N\{in} accepts any offer which is greater than or equal
to φ j (N\{in}, v|N\{in}) and rejects any offer strictly less than φ j (N\{in}, v|N\{in}).
At stage 4, player in makes an offer x̃ in

in−1
= v(N\{in}) to any selected proposer

in−1 ∈ N\{in}.
At stage 5, player in−1, the proposer of the set of players N\{in}, accepts any offer
greater than or equal to v(N\{in}) and rejects any offer strictly less than it.

5 The proof is similar to the proof of Theorem 1 in Pérez-Castrillo and Wettstein (2001). We write it out
explicitly since the strategies and types of equilibria, while also leading to the Shapley payoffs vector, are
different. The proofs of the other theorems of the paper can be constructed along similar lines.
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Clearly the combination of these strategies of all players in N leads to acceptance
at stage 3, which yields the Shapley value for any player who is not the proposer,
since the game ends following the acceptance at stage 3 and bin

j + xin
j = φ j (N , v),

for all j �= in . Moreover, given that following the strategies the offer is accepted by
all players and the grand coalition is formed, the proposer also obtains her Shapley
value.

To check that the above strategies constitute an SPE, note first that the given
strategy profile yields subgame perfection at stages 2, 3, 4 and 5 because the cor-
responding actions are best responses by zero-monotonicity: In case of rejection at
stage 3, proposer in can obtain v(N ) − v(N\{in}) in the end (it pays her to make
an offer that is accepted at stage 4, by zero-monotonicity). Also following the rejec-
tion at stage 3, it is obvious that players within N\{in} will obtain v(N\{in}) by
accepting the offer at stage 4. This subgame, with respect to N\{in} after stage 3
with in waiting outside, is equivalent to a game with player set N\{in} bargain-
ing over v(N\{in}) using the same rule as specified in the mechanism, without in

being involved. Then we can apply the induction hypothesis, by which we have
the Shapley value as the outcome of this game. That is, each player j ∈ N\{in}
gets φ j (N\{in}, v|N\{in}). To verify the actions at stage 1, i.e. the bids, complete
an SPE, note that all net bids equal zero by the balanced contributions property for
the Shapley value (Myerson 1980). To show that a change in the bids made by a
player i cannot increase that player’s payoff we consider the following two cases:
First, player i may change the vector of her bids so that another player becomes
the proposer, this will not change her payoff, which would still equal her Shapley
value. Second, if she changes the vector of her bids and following it she is still the
proposer, it must be that her total bid (

∑
j∈N\{i} bi

j ) did not decline, which again
means her payoff cannot improve. That is, any deviation of the bidding strategy
of player i specified at stage 1 cannot improve the payoff of player i . Hence, no
player has an incentive to change its bid, showing that the given strategy profile is an
SPE.

The proof that any SPE yields the Shapley value proceeds by a series of claims.
Claim (a). If v(N ) > v(N\{in})+ v(in) then the only SPE strategies at stages 4 and
5 are as follows: At stage 5, any player in−1 (the proposer from the set of players
N\{in}) accepts any offer greater than or equal to v(N\{in}) and rejects any offer
strictly less than it, and at stage 4 player in offers exactly v(N\{in}) to player in−1.
If v(N ) = v(N\{in}) + v(in) then there exists another SPE strategy configuration
(besides the above one): At stage 5, any player in−1 accepts any offer strictly greater
than v(N\{in}) and rejects any offer less or equal to it, and at stage 4 player in makes
an offer to player in−1 that is less than or equal to v(N\{in}). Hence, in any SPE, at
stages 4 and 5, players in and in−1 will end up with receiving v(N )− v(N\{in}) and
v(N\{in}), respectively.

The two types of SPE specified in the claim can be readily verified due to zero-
monotonicity.
Claim (b). In any SPE, at stage 3, all players other than the proposer in accept the offer if
xin

j > φ j (N\{in}, v|N\{in}) for every j �= in . Otherwise, if xin
j < φ j (N\{in}, v|N\{in})

for at least some j �= in , then the offer is rejected.
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Note that if an offer made by the proposer in is rejected at stage 3, all other players
N\{in} will, by Claim (a), bid over the right to share exactly v(N\{in}). Conse-
quently, in case of rejection at stage 3, by the induction hypothesis, the payoff to a
player j �= in is φ j (N\{in}, v|N\{in}). We denote the last player that has to decide
whether to accept or reject the offer by β. If the game reaches β, i.e. there has been
no previous rejection, her optimal strategy involves accepting any offer higher than
φβ(N\{in}, v|N\{in}) and rejecting any offer lower than φβ(N\{in}, v|N\{in}). The sec-
ond to last player, denoted by β − 1, anticipates the reaction of player β. So, β − 1
will accept the offer when the game reaches him with xin

β−1 > φβ−1(N\{in}, v|N\{in})
and xin

β > φβ(N\{in}, v|N\{in}). If xin
β−1 < φβ−1(N\{in}, v|N\{in}) and xin

β >

φβ(N\{in}, v|N\{in}), player β − 1 will reject the offer. If β − 1 observes xin
β <

φβ(N\{in}, v|N\{in}), he will be indifferent to accepting or rejecting any offer xin
β−1.

Following this argument till the first player, Claim (b) is proved.
Claim (c). For the game that starts at stage 2 there exist several types of SPE, which,
however, are all equivalent in terms of payoffs to the players. An obvious SPE restricted
to stages 2 and 3 is as follows: At stage 2, player in offers xin

j = φ j (N\{in}, v|N\{in}) to

all j �= in ; at stage 3, every player j �= in accepts any offer xin
j ≥ φ j (N\{in}, v|N\{in})

and rejects the offer otherwise. In addition, there are other equilibrium configurations
where some player(s) j in N\{in} reject any offer xin

j ≤ φ j (N\{in}, v|N\{in}) and
player in offers to some of these players j in N\{in} something less than or equal
to φ j (N\{in}, v|N\{in}). In all of these equilibria, player in “recovers” the amount
v(N ) − v(N\{in}) at stages 4 and 5, whereas each player j in N\{in} receives
φ j (N\{in}, v|N\{in}) from the stage 3 play. We note that we need not distinguish here
between the cases v(N ) > v(N\{in})+ v(in) and v(N ) = v(N\{in})+ v(in), since
the fear of rejection at stage 2, which does not matter in the case of equality, does not
play a role even in the case of strict inequality since in can recover v(N )− v(N\{in})
at stages 4 and 5. Hence, the payoffs (ignoring the stage 1 bids) resulting from stages
2 − 5 are v(N ) − v(N\{in}) to the proposer in and φ j (N\{in}, v|N\{in}) to every
j ∈ N\{in}.

One can readily see that the proposed strategies constitute SPE. For all the can-
didate SPE the final payoffs to the proposer in and every other player j �= in are
v(N )− v(N\{in})− ∑

j∈N\{in} bin
j and φ j (N\{in}, v|N\{in})+ bin

j , respectively. This
implies that the proposer has no incentive to increase any offer. If the new offers were
accepted it will diminish the proposer’s payoff; if they were rejected it will leave the
proposer’s payoff unchanged. Decreasing an offer, which leads to rejection will again
not change the payoff to the proposer. Moreover, we like to note that in the case where
v(N ) > v(N\{in}) + v(in) it cannot be part of SPE that an offer is rejected at stage
3 and, furthermore, the offer made at stage 4 is also rejected. If this were to happen,
the player who made an offer at stage 4 can obtain, due to zero-monotonicity, a better
outcome by making instead an offer that must be accepted.
Claim (d). In any SPE, Bi = B j for all i, j ∈ N , and hence Bi = 0 for all i ∈ N .

Denote � = {i ∈ N |Bi = max j∈N (B j )}. If � = N the claim is satisfied since∑
i∈N Bi = 0. Otherwise, we can show that any player i in � has the incentive to

change her bids so as to decrease the sum of payments in case she wins. Furthermore,
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these changes can be made without altering the set�. Hence, the player maintains the
same probability of winning and obtains a higher expected payoff. Take some player
j /∈ �. Let player i ∈ � change her strategy by announcing b′

k
i = bi

k + ε for all

k ∈ �\{i}, and b′
j
i = bi

j − |�|ε for j , and b′
l
i = bi

l for all l /∈ �∪ { j}. Then, the new

net bids are B ′i = Bi − ε, B ′k = Bk − ε for all k ∈ �\{i}, B ′ j = B j + |�|ε and
B ′l = Bl for all l /∈ � ∪ { j}. If ε is small enough so that B j + |�|ε < Bi − ε, then
B ′l < B ′i = B ′k for all l /∈ � (including j) and for all k ∈ �. Therefore, � does not
change. However,

∑
h∈N\{i} bi

h − ε <
∑

h∈N\{i} bi
h .

Claim (e). In any SPE, each player’s final payoff is the same regardless of whom is
chosen as the proposer.

This claim can be readily proved by contradiction. If some player can get extra
payoff given a specific identity of the proposer, then this player will have incentive to
adjust her bids accordingly, which contradicts Claim (d).
Claim (f) In any SPE, the final payment received by each of the players coincides with
each player’s Shapley value.

We know that if player i is the proposer, her final payoff will be v(N )−v(N\{i})−∑
j∈N\{i} bi

j . In case of player j �= i becoming the proposer, player i’s final payoff

will be φi (N\{ j}, v|N\{ j})+ b j
i . Then, the sum of payoffs to player i over all possible

choices of the proposer is (note that all net bids are zero)

v(N )− v(N\{i})−
∑

j∈N\{i}
bi

j +
∑

j∈N\{i}

(
φi (N\{ j}, v|N\{ j})+ b j

i

)

= v(N )− v(N\{i})+
∑

j∈N\{i}
φi (N\{ j}, v|N\{ j})

= n · φi (N , v).

Since the payoffs are the same regardless of who is the proposer (by Claim (e)), we
see that the payoff of each player in any equilibrium must coincide with her Shapley
value. ��

In order to arrive at the Shapley value the proposer chosen through bidding at stage
1 has the power to make another offer, following the rejection of her initial offer, before
the conclusion of the game. An equally plausible scenario is that the proposer chosen
at stage 1 forfeits the right to make another offer once rejected. It is the proposer
chosen in the following stage who has the right to make a second offer before the
game ends. Hence we have a new generalized bidding mechanism, described in what
follows, which is shown to implement the equal surplus value.

Mechanism A2 The mechanism is identical structure-wise to Mechanism A1. Stages
1, 2 and 3 are in effect the same as in Mechanism A1. Below we will mainly describe
stages 4 and 5 where the difference from Mechanism A1 lies in. The mechanism starts
with S = N .
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Stages 1, 2, and 3: Same as in Mechanism A1.
If the offer made at stage 3 is rejected, all players in S other than is proceed again
through stages 1 to 3 where the set of active players is S\{is}.6 Meanwhile, player
is waits for the negotiation outcome of S\{is}. Dependent upon whether or not the
player is−1, the proposer of S\{is}, can make his offer be accepted within S\{is},
player is will either be called for renegotiation with is−1 or be left alone. The rene-
gotiation will follow the rules as specified below in stages 4 and 5 of the current
mechanism.
If the offer is accepted, we have to distinguish between two cases where S = N and
S �= N . In the case where S = N , the game ends as in Mechanism A1. In the case
where S �= N , stages 4 and 5 are reached.
Stage 4: Proposer is makes an offer x̃ is

is+1
in R to the previously rejected proposer

is+1. (The offer is to let is form the coalition S ∪ {is+1}.)
Stage 5: Player is+1 accepts or rejects the offer and the game ENDS.
The payoffs to all the players who proposed before is+1 and to all the players in
S\{is} are the same independent of whether there was a rejection or an acceptance
at stage 5, and are identical to the payoffs in Mechanism A1.
The payoffs to the players is and is+1 depend on whether or not there was an accep-
tance at stage 5.
If the offer at stage 5 is accepted then at this stage player is receives v(S ∪{is+1})−
x̃ is

is+1
minus the bids and offers she made to the players in S, while player is+1 receives

x̃ is
is+1

. The overall payoffs to these two players are given by adding to these amounts
the sum of bids received and made in all the preceding stages, respectively. Hence,
the final payoff to player is is v(S ∪{is+1})− x̃ is

is+1
−∑

j∈S\{is } bis
j −∑

j∈S\{is } xis
j +

∑n
t=s+1 bit

is
, and the final payoff to player is+1 is x̃ is

is+1
−∑

j∈S bis+1
j +∑n

t=s+2 bit
is+1

.
If the offer at Stage 5 is rejected then at this stage player is receives v(S) minus the
bids and the offers she made to the players in S, while player is+1 receives his stand-
alone payoff v(is+1). The overall payoff to these two players are given by adding to
these amounts the sum of bids received and made in all the preceding stages, respec-
tively. Hence, the final payoff to player is is v(S)− ∑

j∈S\{is } bis
j − ∑

j∈S\{is } xis
j +

∑n
t=s+1 bit

is
, and the final payoff to player is+1 is v(is+1)−∑

j∈S bis+1
j +∑n

t=s+2 bit
is+1

.

Theorem 3.2 Mechanism A2 implements the equal surplus value of a zero-monotonic
game (N , v) in SPE.

Proof The proof is similar to that of Theorem 3.1. The differences are in the construc-
tion of the SPE strategies and in Claim (f). Hence, we explicitly construct an SPE that
yields the equal surplus value as an SPE outcome and show that the counterpart of
Claim (f) (that payoffs must coincide with the equal surplus value) holds as well.

To construct an SPE, consider the following strategies, which the players would
follow in any game they participate in (we describe it for the whole set of players, N ,

6 In this mechanism, players in S\{is } actually compete for becoming the proposer is−1 so as to win the

right of making offer x̃
is−1
is

to is at stage 4. Hence, in equilibrium, the amount of payoff that players in
S\{is } bargain for equals v(S)− v(is ).
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but these are also the strategies followed by any player in a subset S that is called upon
to play the game, with S replacing N ):

At stage 1, each player i ∈ N , announces bi
j = φes

j (N , v) − φes
j (N\{i}, v−i ), for

every j ∈ N\{i}. Note that the game (N\{i}, v−i ) is defined by v−i (N\{i}) =
v(N )− v(i) and v−i (S) = v(S), for any S ⊂ N\{i}.
At stage 2, a proposer, player in , offers xin

j = φes
j (N\{in}, v−in ) to every j ∈ N\{in}.

At stage 3, any player j ∈ N\{in} accepts any offer which is greater than or equal
to φes

j (N\{in}, v−in ) and rejects any offer strictly less than φes
j (N\{in}, v−in ).

At stage 4, a proposer within N\{in}, player in−1 makes an offer x̃ in−1
in

= v(in) to
in .
At stage 5, player in , the rejected and “waiting” proposer for the set of players N ,
accepts any offer greater than or equal to v(in) and rejects any offer strictly less than
it.

One can readily verify that these strategies yield the equal surplus value for any player
and constitute an SPE. Note that the induction assumption used here is basically the
same as that in Theorem 1: whenever the mechanism is used by n players with a given
characteristic function (satisfying zero-monotonicity) it implements the equal surplus
value corresponding to this characteristic function. Following a rejection at stage 3,
all other players will eventually get v(N )−v(in), rather than v(N\{in}), as this entity
is what the chosen proposer among them will obtain at stages 4 and 5 by making the
appropriate renegotiation offer to in . Hence, the corresponding subgame is equivalent
to a game (N\{in}, v−in )with player set N\{in} bargaining over v(N )−v(in)whereas
all other coalitional values are unchanged: v−in (S) = v(S) for all S ⊂ N\{in}. Then,
the induction hypothesis implies that each player j ∈ N\{in} gets the equal surplus

value, v( j)+ v(N )−v(in)−∑
k∈N\{in } v(k)

n−1 , as the outcome of this game.
To show that in any SPE the final payment received by each of the players coincides

with each player’s equal surplus value, we note that if i is the proposer, her final payoff
will be v(N )− (v(N )− v(i))− ∑

j �=i bi
j , whereas if j �= i is the proposer, i will get

final payoff φes
i (N\{ j}, v− j ) + b j

i = (v(i) + v(N )−v( j)−∑
k �= j v(k)

n−1 ) + b j
i . Hence the

sum of the payoffs to player i over all possible choices is (recall that all net bids are
zero)

v(N )− (v(N )− v(i))−
∑

j �=i

bi
j +

∑

j �=i

(
v(i)+ v(N )− v( j)− ∑

k �= j v(k)

n − 1
+ b j

i

)

= nv(i)+
(
v(N )−

∑

l∈N

v(l)

)

= n · φes
i (N , v).

Since the payoffs are the same regardless of who is the proposer (by the same reason
as discussed in Claim (e) of the proof for Theorem 3.1) we see that the payoff of each
player in any equilibrium must coincide with the equal surplus value. ��

123



320 Y. Ju, D. Wettstein

The fact that Mechanism A2 implements the equal surplus value is quite surpris-
ing since in this mechanism the payoffs to all sub-coalitions play a role. Moreover,
the change in the roles of the rejected proposer and the current proposer between
mechanisms A1 and A2 led to a striking difference in the equilibrium outcome from
the Shapley to the equal surplus value. To gain some intuition for the reason to this
change,7 we offer the following observation. The main difference between the two
values is that the Shapley value assigns zero payoff to a null-player, whereas the equal
surplus value does not. This is reflected in the fact that in Mechanism A1, a null player
can by no means obtain a positive payoff no matter whether he is a proposer or a
non-proposer who chooses to reject an offer. On the other hand in Mechanism A2 a
null player can obtain the role of a proposer when rejecting the first chosen proposer,
in that capacity he may be able to extract some surplus from the previously rejected
proposer. More precisely, the null player can extract the marginal contribution of a
non-null player by rejecting the latter’s unfavorable offer and then offering him the
stand-alone payoff in renegotiation. This implies that the offer made to the null-player
should be strictly positive. Thus, a null player might obtain a strictly positive payoff
in Mechanism A2.

One might, of course, consider a more “direct” mechanism that simply requires the
game to breakdown so that each player obtains her stand-alone value in case of the
rejection of the offer made by the proposer. This will also implement the equal surplus
value. However, this result seems to be “dictated” by the rules of the mechanism by
focusing only on the grand coalition and the singletons. The use of Mechanism A2
allows us to compare the implementation of the equal surplus value to that of other
values, within the same framework where all sub-coalitions are involved, and shows
it hinges upon leaving much less power at the hands of the “first” proposer chosen by
the bidding.

The Shapley and equal surplus values resulted from a “zero-one” decision, either
the first stage proposer or the subsequently chosen proposer have the right to make a
second offer. It is also of interest to know what happens if the power to make a second
offer is somehow shared between the two. One could randomize giving each an equal
probability to have the right to make another offer. Alternately the two could bargain
via a Rubinstein alternating offer game (Rubinstein 1982). We adopt again a bidding
approach letting the two bid for the right to make a further offer. The mechanism is
formally described in what follows and is shown to implement the consensus value.

Mechanism A3 The rules of stages 1, 2 and 3 are the same as before. Below we will
mainly describe stages 4 and 5 where the difference from mechanisms A1 and A2 lies
in. The mechanism starts with S = N .

Stages 1, 2, and 3: Same as in Mechanism A1.
Here we like to note that if the offer made at stage 3 is rejected, all players in S
other than is proceed again through stages 1 to 3 where the set of active players is
S\{is}. In the current mechanism, players in S\{is} actually compete for becoming
the proposer is−1 so as to win the right of renegotiating with is . The renegotiation

7 We are grateful to Andreu Mas-Colell for an insightful discussion and comments regarding this issue.
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between is−1 and is is in fact a 2-player bidding game. That is, both of them simul-
taneously make bids at stage 4 and the winner will have the right to make a new
offer to the other player at stage 5 while the other player accepts or rejects the offer.
Hence, in equilibrium, the amount of payoff that players in S\{is} bargain for equals
1
2 (v(S\{is})+ (v(S)− v(is))).
Stage 4: Players is and is+1 bid for the right to take the role of the proposer (hence,
the game played, in fact, coincides with the stage 1 game for 2 players). Players is

and is+1 simultaneously submit bids b̃is
is+1

and b̃is+1
is

in R. The player with the larger
net bid pays the bid to the other player and assumes the role of the proposer. In case
of identical bids the proposer is chosen randomly.
Stage 5: Depending on whether the proposer is is+1 or is , the game proceeds as
in Mechanism A1 (when is+1 is the proposer) or Mechanism A2 (when is is the
proposer).
The payoffs to all the players who proposed before is+1 and to all the players in
S\{is} are the same independent of whether there was a rejection or an acceptance
at stage 5, and are the same as in mechanism A1.
In the case where the proposer is is+1, in stage 5, the payoffs of is and is+1 are derived
by adding to the payoffs in Mechanism A1 the bid from stage 4. Hence, if the offer
at stage 5 is accepted, the final payoff to player is is b̃is+1

is
+ x̃ is+1

is
− ∑

j∈S\{is } bis
j −

∑
j∈S\{is } xis

j + ∑n
t=s+1 bit

is
, and the final payoff to player is+1 is v(S ∪ {is+1}) −

b̃is+1
is

− x̃ is+1
is

−∑
j∈S bis+1

j +∑n
t=s+2 bit

is+1
. If the offer at stage 5 is rejected, the final

payoff to player is is b̃is+1
is

+ v(S) − ∑
j∈S\{is } bis

j − ∑
j∈S\{is } xis

j + ∑n
t=s+1 bit

is
,

and the final payoff to player is+1 is v(is+1)− b̃is+1
is

− ∑
j∈S bis+1

j + ∑n
t=s+2 bit

is+1
.

In the case where the proposer is is , in stage 5, the payoffs of is and is+1 are
derived by adding to the payoffs in Mechanism A2 the bid from stage 4. Hence, if
the offer at stage 5 is accepted, the final payoff to player is is v(S ∪ {is+1})− b̃is

is+1
−

x̃ is
is+1

−∑
j∈S\{is } bis

j −∑
j∈S\{is } xis

j +∑n
t=s+1 bit

is
, and the final payoff to player is+1

is b̃is
is+1

+ x̃ is
is+1

− ∑
j∈S bis+1

j + ∑n
t=s+2 bit

is+1
. If the offer at stage 5 is rejected, the

final payoff to player is is v(S)− b̃is
is+1

− ∑
j∈S\{is } bis

j − ∑
j∈S\{is } xis

j + ∑n
t=s+1 bit

is
,

and the final payoff to player is+1 is v(is+1)+ b̃is
is+1

− ∑
j∈S bis+1

j + ∑n
t=s+2 bit

is+1
.

Theorem 3.3 Mechanism A3 implements the consensus value of a zero-monotonic
game (N , v) in SPE.

Proof The proof is again similar to that of Theorem 3.1. The differences are once
more in the construction of the SPE strategies and in Claim (f). Hence, we explicitly
construct an SPE that yields the consensus value and show that Claim (f) (that payoffs
must coincide with the consensus value) also holds.

To construct an SPE yielding the consensus value consider the following strategies,
which the players would follow in any game they participate in (we describe it for the
whole set of players, N , but these are also the strategies followed by any player in a
subset S that is called upon to play the game, with S replacing N ):
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At stage 1, each player i ∈ N announces bi
j = ψ j (N , v) − ψ j (N\{i}, v̂−i ), for

every j ∈ N\{i}. Note that the game (N\{i}, v̂−i ) is defined by v̂−i (N\{i}) =
v(N\{i})+ v(N )−v(N\{i})−v(i)

2 and v̂−i (S) = v(S), for all S ⊂ N\{i}.
At stage 2, a proposer, player in , offers xin

j = ψ j (N\{in}, v̂−in ) to every j ∈ N\{in}.
At stage 3, any player j ∈ N\{in} accepts any offer which is greater than or equal
to ψ j (N\{in}, v̂−in ) and rejects any offer strictly less than ψ j (N\{in}, v̂−in ).

At stage 4, player in announces b̃in
in−1

= v(N\{in}) + v(N )−v(N\{in})−v(in)
2 −

v(N\{in}) = v(N )−v(N\{in})−v(in)
2 while player in−1 announces b̃in−1

in
= v(in) +

v(N )−v(in)−v(N\{in})
2 − v(in) = v(N )−v(in)−v(N\{in})

2 .

At stage 5, player in makes an offer x̃ in
in−1

= v(N\{in}) to in−1 and player in−1

makes an offer x̃ in−1
in

= v(in) to in . Moreover, in accepts any offer greater than or
equal to v(in) and rejects any offer strictly less than it. Similarly, in−1 accepts any
offer greater than or equal to v(N\{in}) and rejects any offer strictly less than it.

One can readily verify that these strategies yield the consensus value for any player
and constitute an SPE. Similar to the previous two theorems, the induction assumption
used here is that whenever the mechanism is used by n players with a given character-
istic function (satisfying zero-monotonicity) it implements the consensus value corre-
sponding to this characteristic function. In order to apply the induction hypothesis, we
observe that following the rejection at stage 3, all other players will get v(N\{in})+
v(N )−v(N\{in})−v(in)

2 at stages 4 and 5 because the two parties have equal power of
making the renegotiation offer. Hence, the corresponding subgame is equivalent to
a game (N\{in}, v̂−in ) defined by v̂−in (N\{in}) = v(N\{in}) + v(N )−v(N\{in})−v(in)

2
and v̂−in (S) = v(S), for all S ⊂ N\{in}. Then, the induction hypothesis implies that
each player j ∈ N\{in} gets the consensus value of the game v̂−in .

To show that in any SPE each player’s final payoff coincides with her consensus
value, we note that if i is the proposer her final payoff is given by v(N )− (v(N\{i})+
v(N )−v(N\{i})−v(i)

2 )−∑
j �=i bi

j whereas if j �= i is the proposer, the final payoff of i is

ψi (N\{ j}, v̂− j )+ b j
i . Hence the sum of payoffs to player i over all possible choices

of the proposer is (note that all net bids are zero)

v(N )−
(
v(N\{i})+ v(N )− v(N\{i})− v(i)

2

)

−
∑

j �=i

bi
j +

∑

j �=i

(
ψi (N\{ j}, v̂ − j )+ b j

i

)

= v(N )− v(N\{i})+ v(i)

2
+

∑

j �=i

(
1

2
φi (N\{ j}, v̂ − j )+ 1

2
φes

i (N\{ j}, v̂ − j )

)

= v(N )− v(N\{i})+ v(i)

2

+1

2

∑

j �=i

(
φi (N\{ j}, v|N\{ j})+

v(N )−v(N\{ j})−v( j)
2

n − 1

)
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+1

2

∑

j �=i

(
v(i)+

v(N )+v(N\{ j})−v( j)
2 − ∑

k∈N\{ j} v(k)
n − 1

)

= 1

2

⎛

⎝v(N )− v(N\{i})+
∑

j �=i

φi (N\{ j}, v|N\{ j})

⎞

⎠

+1

2

(
nv(i)+

(
v(N )−

∑

l∈N

v(l)

))

= n

(
1

2
φi (N , v)+ 1

2
φes

i (N , v)

)

= nψi (N , v).

Since the payoffs are the same regardless of who is the proposer, the payoff of each
player in any equilibrium must coincide with the consensus value. ��

As discussed earlier Mechanism A3 requires both proposers to compete for the
right to make a further proposal and a priori both have equal power. However, what
happens if the mechanism treats the players asymmetrically: bids made by one player
are “worth more” than those made by the other. Such a mechanism implements the
α-consensus value (cf. Ju et al. 2007) of a zero-monotonic game in SPE. We also note
that the bidding stage for the right to make a further proposal can be replaced by a
random stage where the rejected proposer has probability α of making the further offer
while the other proposer has probability 1 − α to propose, which will also implement
the α-consensus value.8

The mechanisms constructed can be adapted in several ways. One option is to vary
the treatment of a proposer in case she makes an offer that is rejected. We could make
it less attractive to make an offer that is rejected, steering the players to end the game
sooner rather than later. In the mechanisms to implement the Shapley value, the new
rule would allow for any arbitrary payoff θ is ≤ v(is) to be given to the proposer
is at stage 5 in case no agreement is reached, whereas the rest of the players still
obtain v(S\{is}) if coalition S\{is} forms. The difference between v(is) and θ is may
be interpreted as a punishment. This mechanism would encourage the players to make
acceptable offers and lead to larger coalitions similar to Moldovanu and Winter (1994)
where it is stated that “we assume that each player prefers to be a member of large
coalitions rather than smaller ones provided that he earns the same payoff in the two
agreements” and Hart and Mas-Colell (1996) “both proposers and respondents break
ties in favor of quick termination of the game”.

The extreme case is where the proposer receives zero in case an offer is rejected
and stages 4 and 5 are the same as in Mechanism A2. This mechanism implements
the egalitarian solution.9 Moreover, one can implement any convex combination of

8 We thank a referee for suggesting this random version. This idea is further applied in Sect. 4.
9 For a TU game (N , v), the egalitarian solution, denoted by φeg, is defined by φeg

i (N , v) = v(N )
n for all

i ∈ N .
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the egalitarian solution and the Shapley value using a construction similar to that
implementing the α-consensus value.

Moreover, we like to stress that one can further generalize the renegotiation idea
to design alternative mechanisms to implement these values. One can observe that in
the current mechanisms described above, following a rejection of the offer made by
is , although is−1 can renegotiate with is after the offer made by is−1 was immediately
accepted within S\{is}, neither is−1 nor is can renegotiate with the previously rejected
proposer is+1. Then, one may think about another scenario: so long as a coalition can
be formed either through immediate acceptance of the offer or via renegotiation, the
corresponding proposer or the one making renegotiation acceptable becomes the repre-
sentative of the coalition. This representative player can then “move on” to renegotiate
with the previously rejected proposer. Once an agreement is made in the renegotia-
tion, the new coalition is formed and the (possibly new) representative player can then
go on renegotiating in the same fashion until either the grand coalition is formed or
a renegotiation fails. Dependent upon which player makes an offer in renegotiation,
various mechanisms parallel to those described in the paper can be constructed and
will implement the corresponding solution concepts as well. This further shows that
our implementation results are robust with respect to changes in the renegotiation
protocol.

The addition of the renegotiation stage provides the players, bargaining over the
division of the benefits, with more options. Hence, these bidding mechanisms might
be more attractive to participants than simple take-it-or-leave-it mechanisms. While
the addition of one stage of renegotiation makes a great difference, adding more stages
is redundant in that it leads basically to the same results.

4 Implementation in “verifiable” environments

The literature of non-cooperative implementation of cooperative solutions generally
imposes technical assumptions on the game environments in order to provide incen-
tives to players to behave in a desirable way, e.g. monotonicity being adopted in Hart
and Mas-Colell (1996) and zero-monotonicity in Pérez-Castrillo and Wettstein (2001).
The mechanisms discussed in the above section follow the same spirit and require the
corresponding games are zero-monotonic. Then, it is natural to ask: Can we design
non-cooperative games to generate these solutions as equilibrium outcomes without
imposing any technical condition on the games?

To attain this target, we introduce a different informational structure, similar to
that Serrano (1995) used when implementing the nucleolus (Schmeidler 1969) for
bankruptcy problems. Such an informational structure is also adopted in Dagan et al.
(1997) to implement consistent and monotonic bankruptcy rules. In the previous sec-
tion the players were fully informed as regards the characteristic function v, whereas
the “designer” of the mechanism had no knowledge of what different coalitions can
achieve. In this section, the different informational structure requires that the players
in addition to being fully informed with respect to the characteristic function, can
also, if necessary, prove what each coalition of players can obtain. Put differently,
the value of each coalition cannot only be observed but also verified by an outside
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authority if needed. One such conceivable scenario is where a set of players (heirs),
N = {1, . . . , n}, have to divide a sum (estate) of known size, v(N ). Furthermore,
each subset of the players can prove what part of the sum they are entitled to (have
documented claims regarding their part of the estate).10 This informational structure
and the relevant strategic analysis of the claim problems have been discussed and
surveyed by Thomson (2003). For a more recent study, we refer to García-Jurado et
al. (2006).

Introducing such an informational structure serves two purposes. The first is that
it provides a much wider scope for applying our mechanisms and shows how they
can be easily adapted to handle versatile environments. The second is that as more
information is made potentially available, the solution concepts we discussed can be
implemented without imposing any further conditions, such as zero-monotonicity, on
the environment.

The bidding mechanism we now construct, can be informally described as follows:
Stages 1, 2 and 3 are the same as in previous mechanisms up to the point where an
offer is rejected at stage 3. In case of rejection all the players other than the proposer
play a similar game with one player less. The mechanism can implement different
solution concepts by introducing a parameter that will affect the size of the pie to be
shared within this reduced game (and of course, the effect will be carried on to all the
following games if the corresponding offers are rejected).

While it is sufficient to provide a parameterized mechanism to implement any
α-consensus value that is a convex combination of the Shapley value and equal sur-
plus value, below we explain the three focal cases to highlight the motivation and
justification.

In the first case, yielding the Shapley value, the players other than the rejected pro-
poser in bargain over their prescribed coalitional payoff v(N\{in}), and the rejected
proposer receives what remains in v(N ), i.e. v(N )− v(N\{in}).

As one can see, the key feature of the first case is that it specifies a rule such that
in case of the offer made by in being rejected, the rest of the players are guaranteed to
bargain over v(N\{in}), which is the payoff they can achieve without in , whereas in

receives what remains in v(N ). If such a rule can be justified, then an opposite choice
can be supported as well, which results in the second case: In return to the highest net
bid made by proposer in , she should be guaranteed with her stand-alone payoff v(in)

in case of the offer rejected so that the remaining players bargain over the residual,
i.e. v(N )− v(in).

The third case takes, as before, a less extreme approach and shares the benefits
generated by the grand coalition between the rejected proposer and the other players.
Once an offer is rejected, we move from the status-quo outcome where proposer in

gets v(in) and the remaining players bargain over v(N\{in}) to a new starting point
where the rejected proposer receives v(in)+ 1

2 (v(N )− v(in)− v(N\{in})), and the
remaining players bargain over v(N\{in}) + 1

2 (v(N )− v(in)− v(N\{in})). Hence
each obtains half of the surplus generated by the grand coalition.

10 If we define the coalitional claims simply as the sum of the corresponding individual claims, then we
obtain the conventional claim problems, also known as bankruptcy problems.
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Below we formally describe the bidding game (parameterized by α), focusing only
on the rules in case where the offer made by a proposer (chosen in the bidding stage)
has been rejected.

Mechanism B If there is only one player {i}, she simply receives v(i). When the
player set N = {1, . . . , n} consists of two or more players, the mechanism is defined
recursively, and starts with the set of active players S = N . Goto stage 1.

Stages 1 and 2: Same as in Mechanism A1.
Stage 3: The players in S other than is , sequentially, either accept or reject the
offer. If at least one player rejects it, then the offer is rejected. Otherwise, the offer is
accepted. The whole game ENDS whenever an offer made by a proposer is accepted.
If the offer made at stage 3 is rejected, all players in S other than is proceed again
through the mechanism from stage 1 to stage 3 with the set of active players being
S\{is} and bargain over vα(S\{is}) = v(S\{is})+(1−α)(vα(S)−v(S\{is})−v(is)),
where vα(N ) = v(N ) and α ∈ [0, 1]. As the rejected proposer, player is leaves the
game with v(is) + α(vα(S) − v(S\{is}) − v(is)). Hence, the final payoff of is is
v(is)+ α(vα(S)− v(S\{is})− v(is))− ∑

j∈S\{is } bis
j + ∑n

t=s+1 bit
is

.
If the offer is accepted, we have to distinguish between two cases where S = N
and S �= N . In the case where S = N , which means that all players agree with
the proposer on the scheme of sharing v(N ), the game ENDS. Then, at this stage,
each player j ∈ N\{in} receives xin

j , and player in receives v(N )− ∑
j∈N\{in} xin

j .

Hence, the final payoff to player j �= in is xin
j +bin

j while player in receives v(N )−
∑

j∈N\{in} xin
j − ∑

j∈N\{in} bin
j . In the case where S �= N , the game also ENDS

while the final payoff of the proposer is is vα(S)− ∑
j∈S\{is } xis

j − ∑
j∈S\{is } bis

j +
∑n

t=s+1 bit
is

, and the final payoff to player j ∈ S\{is} is xis
j + ∑n

t=s bit
j .

Note that in case the mechanism reaches the situation where the set of active play-
ers consists of one player only, the corresponding stages 1 to 3 are redundant and this
single player becomes the proposer for herself whose offer is accepted and the game
ends.

Theorem 4.1 Mechanism B implements the α-consensus value ψα of an arbitrary
cooperative game (N , v) in SPE.

Proof Since the proof follows the same line as that of Theorem 3.1, we will skip
most of it and stress just two aspects to illustrate the way the proof proceeds. First, to
construct an SPE yielding the α-consensus value, consider the following strategies,
which the players would follow in any game they participate in (we describe it for the
whole set of players, N , but these are also the strategies followed by any player in a
subset S that is called upon to play the game, with S replacing N ):

At stage 1, each player i ∈ N announces bi
j = ψαj (N , v)− ψαj (N\{i}, vα|−i ), for

every j ∈ N\{i}. Note that the game (N\{i}, vα|−i ) is defined by vα|−i (N\{i}) =
v(N\{i})+(1−α)(v(N )−v(N\{i})−v(i)) andvα|−i (S) = v(S), for all S ⊂ N\{i}.
At stage 2, a proposer, player in , offers xin

j = ψαj (N\{i}, vα|−in ) to every j ∈
N\{in}.
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At stage 3, any player j ∈ N\{in} accepts any offer which is greater than or equal
to ψαj (N\{in}, vα|−in ) and rejects any offer strictly less than ψαj (N\{in}, vα|−in ).

Second, we explicitly provide Claim (c) below to describe the full set of SPE and show
that the Claim (f) (that payoffs must coincide with the α-consensus value) also holds.
Claim (c). For the game that starts at stage 2 there exist two types of SPE. One is that
at stage 2 player in offers xin

j = ψαj (N\{in}, vα|−in ) to all j �= in and, at stage 3,

every player j �= in accepts any offer xin
j ≥ ψαj (N\{in}, vα|−in ) and rejects the offer

otherwise. The other is that at stage 2 the proposer offers xin
j ≤ ψαj (N\{in}, vα|−in )

to some players j �= i∗ and, at stage 3, any player j ∈ N\{i∗} rejects any offer
xin

j ≤ ψαj (N\{in}, vα|−in ).
To show Claim (f), we note that if i is the proposer her final payoff is given by

v(N )− (v(N\{i})+ (1 − α)(v(N )− v(N\{i})− v(i)))−∑
j �=i bi

j whereas if j �= i

is the proposer, the final payoff of i is ψαi (N\{ j}, vα|− j ) + b j
i . Hence the sum of

payoffs to player i over all possible choices of the proposer is (note that all net bids
are zero)

v(N )− (v(N\{i})+ (1 − α)(v(N )− v(N\{i})− v(i)))−
∑

j �=i

bi
j

+
∑

j �=i

(
ψαi (N\{ j}, vα|− j )+ b j

i

)

= α(v(N )− v(N\{i}))+ (1 − α)v(i)

+
∑

j �=i

(
αφi (N\{ j}, vα|− j )+ (1 − α)φes

i (N\{ j}, vα|− j )
)

= α(v(N )− v(N\{i}))+ (1 − α)v(i)

+α
∑

j �=i

(
φi (N\{ j}, v|N\{ j})+ (1 − α)(v(N )− v(N\{ j})− v( j))

n − 1

)

+ (1 − α)
∑

j �=i

⎛

⎜⎝v(i)+
αv(N\{ j})+ (1 − α)(v(N )− v( j))− ∑

k∈N\{ j}
v(k)

n − 1

⎞

⎟⎠

= α

⎛

⎝v(N )− v(N\{i})+
∑

j �=i

φi (N\{ j}, v|N\{ j})

⎞

⎠

+ (1 − α)

(
nv(i)+

(
v(N )−

∑

l∈N

v(l)

))

= n
(
αφi (N , v)+ (1 − α)φes

i (N , v)
)

= nψαi (N , v).

Since the payoffs are the same regardless of who is the proposer, the payoff of each
player in any equilibrium must coincide with the α-consensus value. ��
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One can readily see that Mechanism B implements the Shapley value, the equal
surplus value and the consensus value when α equals 1, 0, and 0.5, respectively.

Note that the relationship between mechanisms and the solution concepts to be
implemented is not straightforward. For example, consider a very close variation of
Mechanism B as follows. If the offer made by in is rejected at stage 3, player in leaves
the game and receives v(N ) − v(N\{in}) from this stage, whereas all other players
proceed to play a similar game with player set N\{in} bargaining over v(N\{in}). So
far the rules are the same as in Mechanism B where α = 1. However, the difference
lies in the game played by N\{in}. Here it requires the next rejected proposer, in−1,
also obtains the marginal contribution to the grand coalition, i.e., v(N )−v(N\{in−1}),
whereas N\{in, in−1} will bargain over v(N\{in})− (v(N )− v(N\{in−1})). That is,
any future rejected proposer still get his marginal contribution with respect to the grand
coalition. One can check that such a mechanism implements the ENSC (egalitarian
nonseparable contribution) value (cf. Driessen and Funaki 1991), which is regarded as
a simple version of the well known SCRB (separable contributions remaining benefits)
method that is widely used in cost allocation in water field resources (cf. Young et al.
1982). Formally, it is defined by

φensc = (v(N )− v(N\{i}))+ 1

n

⎛

⎝v(N )−
∑

j∈N

(v(N )− v(N\{ j}))
⎞

⎠

for all i ∈ N .
It is noted that, by suitable modifications, other results in Sect. 3 can be obtained

in this environment as well.

5 Conclusion

In this paper we provided a unified framework to implement and study values for
transferable utility environments. The main building block is a bidding mechanism
that starts by having the players bid for the role of the proposer. The proposer makes
an offer to all the remaining players, if the offer is accepted the game ends. In case of
rejection the remaining players play the same game again. Once this process ends, the
first proposer “re-enters” the game, to play against the proposer (“second proposer”)
chosen from the remaining players. From here onwards the mechanisms differ. In order
to implement the Shapley value the original proposer has the right to make another
offer before the game ends. To achieve the equal surplus value the second proposer is
awarded that right. The consensus value is implemented when the two proposers bid
for the right to make another offer. In effect, any average of the Shapley and equal
surplus values can be achieved by suitably adjusting the rules of the mechanism for
the two proposers’ interaction. These results are valid for any transferable utility game
satisfying zero-monotonicity. We also showed that in the case where the payoffs that
different coalitions can obtain are verifiable by an outside party, the mechanism can
be modified to implement the above solution concepts in any transferable utility envi-
ronment. The usefulness of the generalized bidding approach is further illustrated by
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discussing the mechanisms to implement other solution concepts like the egalitarian
value and the ENSC value.

The design of a single basic mechanism to implement several cooperative solu-
tion concepts serves twin purposes. On one hand it provides a robust non-cooperative
foundation for the application of various solutions and on the other hand it makes
it possible to examine them critically by the rules needed to implement them. This
might provide important insights as the rules of the game are “quite detached” from
the axioms generating these values.

There are several possible extensions of the “generalized bidding” approach to other
cooperative environments and solution concepts. For games in partition function form,
the use of similar mechanisms can complement results obtained by Maskin (2003)
and Macho-Stadler et al. (2006) by implementing values proposed by Pham Do and
Norde (2007) and Ju (2007). For games with a coalition structure, these mechanisms
can serve as an alternative way of implementing the Owen (1977) value which was
implemented by Vidal-Puga and Bergantiños (2003) for strictly superadditive games.
Recently, Ju and Borm (2008) introduced a new class of games, primeval games, to
model inter-individual externalities and analyze compensation rules from a norma-
tive point of view. The implementability of these compensation rules via generalized
bidding mechanisms is another interesting direction of research. Moreover, with the
same bidding design but varying the other details of the bargaining protocols, one
can expect alternative equilibrium outcomes, which may result in new cooperative
solution concepts.

The class of mechanisms suggested also possesses several features that render them
appealing for experimental studies. The bidding stage gives the subjects an added
incentive to carefully consider their decisions. They have to weigh the effects of bids
they make in determining who will be the proposer and how much they will have
to pay. The presence of the renegotiation stage makes it possible to correct previous
mistakes and incorporate insights obtained in previous stages.

These features not present in previous mechanisms also serve to enhance the attrac-
tiveness of our mechanism and make it easier to convince potential players to use it
in order to reach the values discussed.

Moving away from general cooperative environments, the mechanisms constructed
in this paper can also resolve distributional problems in many concrete settings such
as cost-sharing environments, bankruptcy disputes and dissolution of partnerships.
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