
Implementing Data Cubes Efficiently*

Venky Harinarayan Anand Rajaraman Jeffrey D. U1lman

Stanford University Stanford University Stanford IJniversity

venky@cs. st anford. edu anand@cs. st anford. edu ullman@cs .st anford. edu

Abstract

Decision support applications involve complex queries

on very large databases. Since response times should

be small, query optimization is critical. Users typically

view the data as multidimensional data cubes. Each cell

of the data cube is a view consisting of an aggregation

of interest, like total sales. The values of many of these

cells are dependent on the values of other cells in the

data cube. .A common and powerful query optimization

technique is to materialize some or all of these cells

rather than compute them from raw data each time.

Commercial systems differ mainly in their approach to

materializing the data cube. In this paper, we investigate

the issue of which cells (views) to materialize when it

is too expensive to materialize all views. A lattice

framework is used to express dependencies among views.

We present greedy algorithms that work off this lattice

and determine a good set of views to materialize. The

greedy algorithm performs within a small constant factor

of optimal under a variety of models. We then consider

the most common case of the hypercube lattice and

examine the choice of materialized views for hypercubes

in detail, giving some good tradeoffs between the space

used and the average time to answer a query.

1 Introduction

Decision support systems (DSS) are rapidly becom-

ing a key to gaining competitive advantage for busi-

nesses. DSS allow businesses to get at data that is

locked away in operational databases and turn that

data into useful information. Many corporations

have built or are building unified decision-support

*Work supported by NSF grant IRI-92-23405, by ARO

grant DAAH04–95–1–O192, and by Air Force Contract

F33615-93-1-1339

Permission to make digitakhard copy of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the
title of the publication and its date appear, and notice is given that
copying is by permission of ACM, Inc. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

SIGMOD ’96 6/96 Montreal, Canada

@ 1996 ACM 0-89791 -794-419610006.. .$3.50

databases called data warehouses on which users can

carry out their analysis.

While operational databases maintain state infor-

mation, data warehouses typically maintain histori-

cal information. As a result, data warehouses tend

to be very large and to grow over time. LTsers of

DSS are typically interested in identifying trends

rather than looking at individual records in isola-

tion. Decision-support queries are thus much more

complex than OLTP queries and make heavy use of

aggregations.

The size of the data warehouse and the complexity

of queries can cause queries to take very long to

complete. This delay is unacceptable in most DSS

environments, as it severely limits productivity. The

usual requirement is query execution times of a few

seconds or a few minutes at the most.

There are many ways to achieve such perfor-

mance goals. Query optimizers and query evalua-

tion techniques can be enhanced to handle aggre-

gations better [CS94], [GHQ95], to use different in-

dexing strategies like bit-mapped indexes and join

indexes [OG95], and so on.

A commonly used technique is to materialize

(recompute) frequently-asked queries. The data

warehouse at the Mervyn’s department-store chain,

for instance, has a total of 2400 precomputed ta-

bles [Rad95] to improve query performance. Picking

the right set of queries to materialize is a nontrivial

task, since by materializing a query we may be able

to answer other queries quickly. For example, we

may want to materialize a query that is relatively

infrequently asked if it helps us answer many other

queries quickly. In this paper, we present a frame-

work and algorithms that enable us to pick a good

set of queries to materialize. Our framework also

lets us infer in what order these queries are to be

materialized.

1.1 The Data Cube

Users of data warehouses work in a graphical

environment and data are usually presented to them

205

as a multidimensional ‘(data cube” whose 2-D, 3-D,

or even higher-dimensional sub cubes they explore

trying to discover interesting information. The

values in each cell of this data cube are some

“measures” of interest. As an example consider the

TPC-D decision-support benchmark.

EXAMPLE 1.1 The TPC-D benchmark models

a business warehouse. Parts are bought from

suppliers and then sold to customers at a sale price

SP. The database has information about each such

transaction over a period of 6 years.

There are three dimensions we are interested in:

part, supplier, and customer. The “measure” of

interest is the total sales: sales. So for each cell

(p, s, c) in this 3-D data cube, we store the sales

of part p that was bought from supplier s, and

sold to customer c. We use the terms dimension

and attribute interchangeably in this section. In

the general case, a given dimension may have many

attributes as we shall see in Section 2.

Users are also interested in consolidated sales: for

example, what is the total sales of a given part p

to a given customer c? [GBLP95] suggests adding

an additional value “ALL” to the domain of each

dimension to achieve this. In the question above

we want the total sales of a given part p to a

given customer c for “ALL” suppliers. The query is

answered by looking up the value in cell (p, ALL, c).

u

We use the TPC-D database of size lGB as a

running example throughout this paper. For more

details on this benchmark refer to [Raa95].

We have only discussed the presentation of the

data set as a multi-dimensional data cube to the

user. The following implementation alternatives are

possible:

1. Physically materialize the whole data cube. This

approach gives the best query response time.

However, precomputing and storing every cell is

not a feasible alternative for large data cubes,

as the space consumed becomes excessive. It

should be noted that the space consumed by the

data cube is also a good indicator of the time it

takes to create the data cube, which is important

in many applications. The space consumed also

impacts indexing and so adds to the overall cost.

2. Materialize nothing. In this case we need to go to

the raw data and compute every cell on request.

This approach punts the problem of quick query

response to the database system where the raw

data is stored. No extra space beyond that for

the raw data is required.

3. Materialize only part of the data cube. We

consider this approach in this paper. In a data

cube, the values of many cells are computable

from those of other cells in the data cube.

This dependency is similar to a spreadsheet

where the value of cells can be expressed as

a function of the values of other cells. We

call such cells “dependent” cells. For instance,

in Example 1.1, we can compute the value of

cell (p, ALL, c) as the sum of the values of

(cells of (p, sl, c))..., P,SN
supplier’

c), where

‘supplier is the number of suppliers. The

more cells we materialize, the better query

performance is. For large data cubes however, we

may be able to materialize only a small fraction

of the cells of the data cube, due to space and

other constraints. It is thus important that we

pick the right cells to materialize.

Any cell that has an “ALL” value as one of the

components of its address is a dependent cell. The

value of this cell is computable from those of other

cells in the data cube. If a cell has no “ALL”s

in its components, its value cannot be computed

from those of other cells, and we must query the

raw data to compute its value. The number of cells

with “ALL” as one of their components is usually

a large fraction of the total number of cells in the

data cube. The problem of which dependent cells of

to materialize, is a very real one. For example, in

the TPC-D database (Example 1.1), seventy percent

of all the cells in the data cube are dependent.

There is also the issue of where the materialized

data cube is stored: in a relational system or

a proprietary MDDB (multi-dimensional database)

system. In this paper, we assume that the data cube

is stored in “summary” tables in a relational system.

Sets of cells of the data cube are assigned to different

tables.

The cells of the data cube are organized into

different sets based on the positions of “ALL” in

their addresses. Thus, for example, all cells whose

addresses match the address (., ALL,-) are placed in

the same set. Here, “-” is a placeholder that matches

any value but ‘(ALL”. Each of these sets corresponds

to a

cells

different SQL query. The values in the set of

(., ALL,-) is output by the SQL query:

SELECT Part, Customer, SUM(SP) AS Sales

FROM R

GROUP BY Part, Customer;

Here, R refers to the raw-data relation. The queries

corresponding to the different sets of cells, differ only

in the GROUP-BY clause. In general, attributes with

206

“ALL” values in the description of the set of cells, do

not appear in the GROUP-BY clause of the SQL query

above. For example, supplier has an “ALL” value

in the set description (-, ALL,.). Hence it does not

appear in the GROUP-BY clause of the SQL query.

Since the SQL queries of the various sets of cells

differ only in the grouping attributes, we use the

grouping attributes to identify queries uniquely.

Deciding which sets of cells to materialize is

equivalent to deciding which of the corresponding

SQL queries (views) to materialize. In the rest of

this paper we thus work with views rather than with

sets of cells,

1.2 Mot ivat ing Example

The TPC-D database we considered in Example 1.1

has 3 attributes: part, supplier, cus%omer. We

thus have 8 possible groupings of the attributes. We

list all the queries (views) possible below with the

number of rows in their result – “M” denotes million.

Note again it suffices to only mention the attributes

in the GROUP-BY clause of the view.

1. part, supplier, customer (6M rows)

2. part, customer (6M)

3. part, supplier (0.8M)

4. supplier, customer (6M)

5. part (0.2M)

6. supplier (0. OIM)

7. customer (0.lM)

8. none (1)

none indicates that there are are no attributes in the

GROUP-BY clause. Figure 1 shows these eight views

organized as a lattice of the type we shall discuss in

Section 2. In naming the views in this diagram, we

use the abbreviation p for part, s for supplier, and

c for customer.

ox 6M

/l\
pc 6M ps (),8M Sc 6M

1~1

D().2M sOOIM c O.lM

“--d-’-
none 1

Figure 1: The eight TPC-D views

One possible user query is a request for an entire

view. For example, the user may ask for the sales

grouped by part. If we have materialized the view

that groups only by part (view 5), we only need

scan the view and output the answer. We can also

answer this query using the view that groups by part

and customer (view 2). In this case, since we have

the total sales for each customer, for each part we

need to sum the saies across all customers to get the

result.

In this paper we assume the cost of answering

a querY 1s Proportional to the number of rows

examined. Thus, the cost of finding the total sales

grouped by part, if (view 5) is materialized, is the

cost of processing 0.2 million rows (the size of this

view). To answer the same query using the part,

customer view we would need to process 6 million

rows.

Another kind of user query would ask only for the

sales for a single part, say “widgets.” To answer this

query, we still have to scan the entire view (or half

on the average). Thus. the same comparison, O.2M

rows for view 5 versus 6M rows for view 2, would

apply to this query. Note, in this paper, we do not

consider indexes on the views. We shall discuss the

cost model in more detail in Section 3.

There are some interesting questions we can now

ask:

1.

2.

In

How many views must we materialize to get

reasonable performance?

Given that we have space S, what views do we

materialize so that we minimize average query

cost?

this paper, we provide algorithms that help us

answer the above questions and provide near optimal

results.

In the above example, a fully materialized data

cube would have all the views materialized and thus

have slightly more than 19 million rows.

Now let us see if we can do better. To avoid

going to the raw data, we need to materialize the

view grouping by part, supplier, and customer

(view 1), since that view cannot be constructed

from any of the other views. Now consider the

view grouping by part and customer (view 2).

Answering any query using this view will require

us to process 6 million rows. The same query

can always be answered using the view grouping

by part, supplier, and customer, which again

requires processing of 6 million rows. Thus there

is no advantage to materializing the view grouping

by part and customer. By similar reasoning, there

is no advantage materializing the view grouping by

supplier and customer (view 4). Thus we can get

almost the same average query cost using only 7

million rows, an improvement of more than 60$’10 in

terms of space consumed and thus in the cost, of

creating the data cube.

Thus by cleverly choosing what parts of the data

cube to materialize, we can reap dramatic benefits.

207

1.3 Related Work

Multi-dimensional data processing (also known as

OLAP) has enjoyed spectacular growth of late.

There are two basic implementation approaches that

facilitate OLAP. The first approach is to eschew

SQL and relational databases and to use proprietary

multi-dimensional database (MDDB) systems and

APIs for OLAP. So while the raw data is in relational

data warehouses, the data cube is materialized in

an MDDB. Users query the data cube, and the

MDDB efficiently retrieves the value of a cell given

its address. To allocate only space for those cells

present in the raw data and not every posstble cell of

the data cube, a cell-address hashing scheme is used.

Arbor’s Essbase [Arb] and many other MDDBs are

implemented this way. Note, this approach still

materializes all the cells of the data cube present

in raw data, which can be very large.

The other approach is to use relational database

systems and let users directly query the raw data.

The issue of query performance is attacked us-

ing smart indexes and other conventional relational

query optimization strategies. There are many prod-

ucts like BusinessObjects and Microstrategy ’s DSS

Agent that take this tack. However, MDDBs retain

a significant performance advantage. Performance in

relational database systems though can be improved

dramatically by materializing parts of the data cube

into summary tables.

The relational approach is very scalable and can

handle very large data warehouses. MDDBs on the

other hand have much better query performance,

but are not very scalable. By materializing only

selected parts of the data cube, we can improve

performance in the relational database, and improve

scalability in MDDBs. There are products in both

the relational world [STG], and the MDDB world

(Sinper’s Spreadsheet Connector) that materialize

only parts of the data cube. [STG] also appears to

use a simple greedy algorithm, similar to that given

in this paper. We believe however that this paper is

the first to investigate this fundamental problem in

such detail.

[GBLP95] generalizes the SQL GROUP-BY operator

to a data cube operator. They introduce the notion

of “ALL” that we mention. However, they claim the

size of the entire data cube is not much larger than

the size of the corresponding GROUP-BY. We believe

differently. 1 As we saw in the TPC-D database, the

1The ~nalysis in [GBLP95], assumes that every Possible

cell of the data cube exists. However, in many cases, data

cubes are sparse: only a small fraction of all possible cells are

present. In such cases, the size of the data cube can be much

larger than the corresponding GROUP-BY. In fact, the sparser

data cube is usually much larger: more than three

times larger than the corresponding GROUP-BY psc.

1.4 Paper Organization

The paper is organized as follows. In Section 2 we in-

troduce the lattice framework to model dependency

among views. We also show how the lattice frame-

work models more complex groupings that involve

arbitrary hierarchies of attributes. Then in Sec-

tion 3, we present the query-cost model that we use

in this paper. Section 4 presents a general technique

for producing near-optimal selections of materialized

views for problems based on arbitrary lattices. In

Section 5, we consider the important special case of

a “hypercube” lattice, where the views are each as-

sociated with a set of attributes on which grouping

occurs. The running example of Section 1.2 is such

a hypercube.

2 The Lattice Framework

In this section we develop the notation for describing

when one data-cube query can be answered using the

results of another. We denote a view or a query

(which is the same thing) by giving its grouping

attributes inside parenthesis. For example the query

with grouping attributes part and customer is

denoted by (part, customer). In Section 1.2 we

saw that views defined by supersets can be used to

answer queries involving subsets.

2.1 The Dependence Relation on Queries

We may generalize the observations of Section 1.2

as follows. Consider two queries Q1 and Q2.

We say Q 1 ~ Q2 if Q 1 can be answered us-

ing only the results of Q2. We then say that

QI is dependent on Qz. For example, in Sec-

tion 1.2, the query (part), can be answered us-

ing only the results of the query (part, customer).

Thus (part) ~ (part, customer). There are certain

queries that are not comparable with each other

using the < operator. For example: (part) -&

(customer) and (customer) & (part).

The < operator imposes a partial ordering on the

queries. We shall talk about the views of a data-

cube problem as forming a lattice. In order to be

a lattice, any two elements (views or queries) must

have a least upper bound and a greatest lower bound

according to the < ordering. However, in practice,

we only need the assumptions that ~ is a partial

order, and that there is a top element, a view upon

which every view is dependent.

the data cube, the larger is the ratio of the size of the data

cube to the size of the corresponding GROUP-BY.

208

2.2 Lattice Notation

We denote a lattice with set of elements (queries or

views in this paper) L and dependence relation ~

by (L, <). For elements a, b of the lattice, b is an

ancestor of a, if and only if a < b. It is common to

represent a lattice by a lattice chagram, a graph in

which the lattice elements are nodes, and there is a

path downward from a to b if and only if a ~ b. The

hypercube of Fig. 1 is the lattice diagram of the set

of views discussed in Section 1.2.

2.3 Hierarchies

In most real-life applications. dimensions of a data

cube consist of more than one attribute, and the

dimensions are organized as hierarchies of these

attributes. A simple example is organizing the time

dimension into the hierarchy: day, month, and year.

Hierarchies are very important, as they underlie two

very commonly used querying operations: “drill-

down” and “roll-up.” Drill-down is the process of

viewing data at progressively more detailed levels.

For example. a user drills down by first looking at the

total sales per year and then total sales per month

and finally, sales on a given day. Roll-up is just

the opposite: it is the process of viewing data in

progressively less detail. In roll-up, a user starts

with total sales on a given day, then looks at the

total sales in that month and finally the total sales

in that year.

In the presence of hierarchies, the dependency lat-

tice (L, <) is more complex than a hypercube lat-

tice. For example, consider a query that groups on

the time dimension and no other. When we use the

time hierarchy given earlier, we have the following

three queries possible: (day), (month), (year), each

of which groups at a different granularity of the time

dimension. Further, (year) ~ (month) ~ (day). In

other words, if we have total sales grouped by month,

for example, we can use the results to compute the

total sales grouped by year. Hierarchies introduce

query dependencies that we must account for when

determining what queries to materialize.

To make things more complex, hierarchies often

are not total orders but partial orders on the

attributes that make up a dimension. Consider the

time dimension with the hierarchy day, week, month,

and year. Since months and years cannot be divided

evenly into weeks, if we do the grouping by week we

cannot determine the grouping by month or year. In

other words: (month) # (week), (week) f (month),

and similarly for week and year. When we include

the none view corresponding to no time grouping at

all, we get the lattice for the time dimension shown

in the diagram of Fig. 2.

Day

/\

Week Month

\

I

Y ar

/

Figure 2: Hierarchy of time attributes

2.4 Composite Lattices for Multiple,

Hierarchical Dimensions

We are faced with query dependencies of two types:

query dependencies caused by the interaction of the

different dimensions with one another (the example

in Section 1.2 and the corresponding 1attice in Fig. 1

is an example of this sort of dependency) and query

dependencies within a dimension caused by attribute

hierarchies.

If we are allowed to create views that indepen-

dently group by any or no member of the hierarchy

for each of n dimensions, then we can represent each

view by an n-tuple (al, a2, . . , an), where each a, is

a point in the hierarchy for the ith dimension. This

lattice is called the dzrect product of the dimensional

lattices. We directly get a ~ operator for these views

by the rule

(a~, az,..., a~)<(b~, bz, b~)ifandonlyiflyif

ai j bi for all i

We illustrate the building of this direct-product

lattice in the presence of hierarchies using an

example based on the TPC-D benchmark.

EXAMPLE 2.1 In Example 1.1, we mentioned

the TPC-D benchmark database. In this example

we focus further on two dimensions: part and

customer. Each of these dimensions is organized

into hierarchies. The dimensional lattices for the

dimension queries are given in Fig. 3. These

dimension lattices have already been modified to

include the attribute (none) as the lowest element.

(/’\
n

I ‘\On{’
,10?)?

(a)Cummer (b) Put

Figure 3: Hierarchies for the customer and part

dimensions

The customer dimension is organized into the

following hierarchy. We can group by individual

209

customers c. Customers could also be grouped more

coarsely based on their nation n. The coarsest level

of grouping is none at all — none. For the part

dimension, individual parts p maybe grouped based

on their size s or based on their type t.Note neither

ofs and t is < the other. The direct-product lattice

is shown in Fig. 4. Note, when a dimension’s value

is none in a query, we do not specify the dimension

in the query. Thus for example, (s,none) is written

as (s). ❑

6M

599M

Figure 4: Combining two hierarchical dimensions

The lattice framework, we present and advocate

in this paper, is advantageous for several reasons:

1.

2.

3.

3

In

It provides a clean framework to reason with

dimensional hierarchies, since hierarchies are

themselves lattices. As can be seen in Fig. 4, the

direct-product lattice is not always a hypercube

when hierarchies are not simple.

We can model the common queries asked by users

better using a lattice framework. Users usually

do not jump between unconnected elements in

this lattice, they move along the edges of the

lattice. In fact, drill-down is going up (going

from a lower to higher level) a path in this lattice,

while roll-up is going down a path.

The lattice approach also tells us in what order

to materialize the views. By using views that

have already been materialized to materialize

other views, we can reduce access to the raw

data and so decrease the total materialization

time. A simple descending-order topological sort

on the ~ operator gives the required order of

materialization. The details are in [HRU95].

The Cost Model

this section, we review and justify our assump-

tions about, the “linear cost model,” in which the

time to answer a query is taken to be equal to the

space occupied by the view from which the query is

answered. We then consider some points about es-

timating sizes of views without materializing them

and give some experimental validation of the linear

cost model.

3.1 The Linear Cost Model

Let (L, ~) be a lattice of queries (views). To answer

a query Q we choose an ancestor of Q, say QA, that

has been materialized. We thus need to process the

table corresponding to QA to answer Q. The cost

of answering Q is a function of the size of the table

for QA. In this paper, we choose the simplest cost-

model:

● The cost of answering Q is the number of rows

present in the table for that query QA used to

construct Q.

As we discussed in Section 1.2, not all queries ask

for an entire view, such as a request for the sales of

all parts, It is at least as likely that the user would

like to see sales for a particular part or for a few

parts. If we have the appropriate index structure,

and the view (part) is materialized,. then we can

get our answer in O(1) time. If there is not an

appropriate index structure, then we would have to

search the entire (part) view, and the query for a

single part takes almost as long as producing the

entire view.

If, for example, we need to answer a query about

a single part from some ancestor view such as (part,

supplier) we need to examine the entire view. It

can be seen that a single scan of the view is sufficient

to get the sales of a particular part. On the other

hand, if we wish to find the sales for each part from

the ancestor view (part, supplier), we need to do

an aggregation over this view. We can use either

hashing or sorting (with early aggregation) [Gra93]

to do this aggregation. The cost of doing the

aggregation is a function of the amount of memory

available and the ratio of the number of rows in the

input to that in the output. In the best case, a single

pass of the input is sufficient (for example, when the

hash table fits in main memory). In practice, it has

been observed that most aggregations take between

one and two passes of the input data.

While the actual cost of queries that ask for single

cells, or small numbers of cells, rather than a com-

plete view, is thus complex, we feel it is appropriate

to make an assumption of uniformity. We provide a

rationale for this assumption in [HRU95]. Thus:

● We assume that all queries are identical to some

element (view) in the given lattice,

210

Clearly there are other factors, not considered

here, that influence query cost. Among them are

the clustering of the materialized views on some

attribute, and the indexes that may be present.

More complicated cost models are certainly possible,

but we believe the cost model we pick, being both

simple and realistic, enables us to design and analyze

powerful algorithms. Moreover, our analysis of the

algorithms we develop in Sections 4 and 5 reflects

their performance under other cost models as well as

under the model we use here. [C~HRU96] investigates

a more detailed model incorporating indexes.

3.2 Experimental Examination of the

Linear Cost Model

An experimental validation of our cost model is

shown in Fig. 5. On the TPC-D data, we asked

for the total sales for a single supplier, using views

of four different granularities. We find an almost

linear relationship between size and running time of

the query. This linear relationship can be expressed

by the formula: T = m * S+c. Here T is the running

time of the query on a view of size S, c gives the fixed

cost (the overhead of running this query on a view of

negligible size), and m is the ratio of the query time

to the size of the view, after accounting for the fixed

cost. As can be seen in Fig. 5 this ratio is almost

the same for the different views.

Figure 5: Query response time and view size

3.3 Determining View Sizes

Our algorithms require knowledge of the number

of rows present in each view. There are many

ways of estimating the sizes of the views without

materializing all the views. One commonly used

approach is to run our algorithms on a statistically

representative but small subset of the raw data. In

such a case, we can get the sizes of the views by

actually materializing the views. We use this subset

of raw data to determine which views we want to

materialize.

lf’e can use sampling and analytical methods to

compute the sizes of the different views if we only

materialize the largest element vi m the lattice

(the view that groups by the largest attribute in

each dimension). For a view, if we know that the

grouping attributes are st artistically independent, }ve

can estimate the size of the view analytically, given

the size of VI. Otherwise we can sample vl (or the

raw data) to estimate the size of the other views.

The size of a given view is the number of distinct

values of the attributes it groups by, There are

many well-known sampling techniques that we can

use to determine the number of distinct values of

attributes in a relation [HNSS95].

4 Optimizing Data-Cube Lattices

Our most important objective is to develop tech-

niques for optimizing the space-time tradeoff when

implementing a lattice of views. The problem can

be approached from many angles, since we may in

one situation favor time, in another space, and in a

third be willing to trade time for space as long as

we get good “value” for what we trade away. In this

section, we shall begin with a simple optimization

problem. in which

1.

2.

We wish to minimize the average time taken to

evaluate the set of queries that are identical to

the views.

We are constrained to materialize a fixed number

of views, regardless of the space they use.

Evidently item (2) does not minimize space, but

in Section 4.5 we shall show how to adapt our

techniques to a model that does optimize space

utilization.

Even in this simple setting, the optimization prob-

lem is NP-complete: there is a straightforward reduc-

tion from Set-Cover. Thus, we are motivated to look

at heuristics to produce approximate solutions. The

obvious choice of heuristic is a “greecly” algorithm,

where we select a sequence of views, each of which

is the best choice given what has gone before. We

shall see that this approach is always fairly close to

optimal and in some cases can be shown to produce

the best possible selection of views to materialize.

4.1 The Greedy Algorithm

Suppose we are given a data-cube lattice with space

costs associated with each view. In this paper,

the space cost is the number of rows in the view.

Let C(v) be the cost of view v. The set of views

we materialize should always include the top view,

because there is no other view that can be used

to answer the query corresponding to that view.

Suppose there is a limit k on the number of views. in

addition to the top view, that we may select. After

selecting some set S of views, the benejit of view

loo

v relative to S, denoted by B(v, S), is defined as

follows.

1. For each w <v, define the quantity BW by:

(a) Let ubetheview ofleast cost in Ssuch that

w s u. Note that since the top view is in S,

there must be at least one such view inS.

(b) If C(v) < C(u), then BW = C(v) –C(u).

Otherwise, BW =0.

2. Define B(v,S) = ~WxU B~.
.

That is, we compute the benefit of v by consider-

ing how it can improve the cost of evaluating views,

including itself. For each view w that v covers, we

compare the cost of evaluating w using v and using

whatever view from S offered the cheapest way of

evaluating w. If v helps, z.e., the cost of v is less

than the cost of its competitor, then the difference

represents part of the benefit of selecting v as a ma-

terialized view. The total benefit B(v, s) is the sum

over all views w of the benefit of using v to evaluate

w, providing that benefit is positive.

Now, we can define the Greedy Algorithm for

selecting a set of k views to materialize. The

algorithm is shown in Fig. 6.

S = {top view};

for i=l to k do begin

select that view v not in S such

that B(v, S) 1s maximized;

S = S union {v};

end;

resulting S is the greedy selection;

Figure6: The Greedy Algorithm

EXAMPLE 4.1 Consider the lattice of Fig. 7.

Eight views, named a through hhavespace costs as

indicated on the figure. The top view a, with cost

100, must be chosen. Suppose we wish to choose

three more views.

To execute the greedy algorithm on this lattice,

we must make three successive choices of view to

materialize. The column headed “First Choice)’ in

Fig. 8 gives us the benefit of each of the views besides

a. When calculating the benefit, we begin with the

assumption that each view is evaluated using a, and

will therefore have a cost of 100.

If we pick view b to materialize first, then we

reduce by 50 its cost and that of each of the views

d, e, g, and h below it. The benefit is thus 50 times

I \[1

Figure 7: Example lattice with space costs

5, or 250, as indicated in the row b and first column

of Fig. 8. As another example, if we pick e first then

it and the views below it — g and h — each have

their costs reduced by 70, from 100 to 30. Thus, the

benefit of e is 210.

Choice 1 Choice 2 Choice 3

b 50x5=250

c 25x5=125 25x2=50 25x1=25

d 80x2=160 30x2=60 30x2=60

e 7OX3=21O 20x3=60 2x2 O+1O=5O

f 60x2=120 60+10=70

Q 99X1=99 49X1=49 49X1=49

i 90X1=90 40X1=40 30X1=30

Figure 8: Benefits of possible choices at each round

Evidently, the winner in the first round is b, so

we pick that view as one of the materialized views.

Now, we must recalculate the benefit of each view

V, given that the view will be created either from b,

at a cost of 50, if b is above V, or from a at a cost

of 100, if not. The benefits are shown in the second

column of Fig. 8.

For example, the benefit of c is now 50, 25 each for

itself and ~. Choosing c no longer improves the cost

of e, g, or h, so we do not count an improvement of

25 for those views. As another example, choosing ~

yields a benefit of 60 for itself, from 100 to 40. For

h, ityields a benefit of 10, from 50 to 40, since the

choice of b already improved the cost associated with

h to 50. The winner of the second round is thus f,

with a benefit of 70. Notice that f wasn’t even close

to the best choice at the first round.

Our third choice is summarized in the last column

of Fig. 8. The winner of the third round is d, with

a benefit of 60, gained from the improvement to its

own cost and that of g.

The greedy selection is thus b, d, and f. These,

together with a, reduces the total cost of evaluating

all the views from 800, which would be the case if

only a was materialized, to 420. That cost is actually

optimal. ❑

212

EXAMPLE 4.2 Let us now examine the lattice

suggested by Fig. 9. This lattice is, as we shall see,

essentially as bad as a lattice can be for the case

k = 2. The greedy algorithm, starting with only the

top view a, first picks c, whose benefit is 4141. That

is, c and the 40 views below it are each improved

from 200 to 99, when we use c in place of a.

7(M7

&
20 0 2(1 o 20 0 20 0.00.s ncd.s ,Mldcs nmks

[Old o tout o lIWI o [old o
IO(K1~ I(XM)o IO(Ko IOX o

0000

Figure 9: A lattice where the greedy does poorly

For our second choice, we can pick either b or

d. They both have a benefit of 2100. Specifically,

consider b. It improves itself and the 20 nodes at

the far left by 100 each. Thus, with k = 2, the

greedy algorithm produces a solution with a benefit

of 6241.

However, the optimal choice is to pick b and d.

Together, these two views improve, by 100 each,

themselves and the 80 views of the four chains.

Thus, the optimal solution has a benefit of 8200. the

ratio of greedy/optimal is 6241/8200, which is about

3/4. In fact, by making the cost of c closer to 100,

and by making the four chains have arbitrarily large

numbers of views, we can find examples for k = 2

with ratio arbitrarily close to 3/4, but no worse. O

4.2 An Experiment With the Greedy

Algorithm

We ran the greedy algorithm on the lattice of

Fig. 4, using the TPC-D database described earlier.

Figure 10 shows the resulting order of views, from

the first (top view, which is mandatory) to the

twelfth and last view. The units of Benefit, Total

Time and Total Space are number of rows. Note,

the average query time is the total time divided by

the number of views (12 in this case).

This example shows why it is important to

materialize some views and also why materializing

all views is not a good choice. The graph in Fig. 11

has the total time taken and the space consumed

on the Y-axis, and the number of views picked on

the X-axis. It is clear that for the first few views

we pick, with minimal addition of space, the query

time is reduced substantially. After we have picked

5 views however, we cannot improve total query

time substantially even by using up large amounts

1.

2.

3.

4.

5.

6.

7.

8.

9.

10

11.

12.

Selection

CP

ns

nt

c

P

Cs

w

Ct

t

n

.s

none

Benefit

infinite

24M

12M

5.9M

5.8M

lM

lM

o.oIM

small

small

small

small

Time
—-——

72M

48M

36M

30.lM

24.3M

23.3M

22.3M

22.3M

22.3M

22.3M

22.3M

22.3M

Space

6M

6M

6M

6. lM

6.3M

11.3M

16.3M

22.3M

22.3M

22.3M

22.3M

22.3M

Figure 10: Greedy order of view selection for TPC-

D-based example

Figure 11: Time and Space versus number of views

selected by the greedy algorithm

of space. For this example, there is a clear choice of

when to stop picking views. If we pick the first five

views — cp, ns, nt, c, and p — (i. e., k = 4, since

the top view is included in the table), then we get

almost the minimum possible total time, while the

tot al space used is hardly more than the mandatory

space used for just the top view.

4.3 A Performance Guarantee for the

Greedy Algorithm

We can show that no matter what lattice we

are given, the greedy algorithm never performs

too badly. Specifically, the benefit of the greedy

algorithm is at least 63~o of the benefit of the optimal

algorithm. The precise fraction is (e — 1)/e, where e

is the base of the natural logarithms.

To begin our explanation, we need to develop some

notation. Let m be the number of views in the

lattice. Suppose we had no views selected except for

213

the top view (which is mandatory). Then the time

to answer each query is just the number of rows in

the top view. Denote this time by To. Suppose that

in addition to the top view, we choose a set of views

V. Denote the average time to answer a query by

Tv The benejit of the set of views V is the reduction

in average time to answer a query, that is, TO – TV.

Thus minimizing the average time to answer a query

is equivalent to maximizing the benefit of a set of

views.

Letvl, vz, ..., Vk be the k views selected in order

by the greedy algorithm. Let a~ be the benefit

achieved by the selection of vi, for i = 1, 2, k.

That is, a~ is the benefit of v,, with respect to the

set consisting of the top view and V1, V2, . . ., V!.-l.

Let V= {vi, v2,vk}.

Let W = {UJl, W2, Wk} be an optimal set of

k views, Z.e., those that give the maximum total

benefit. The order in which these views appear

is arbitrary, but we need to pick an order. Given

the w’s in order WI, Wzj wh, define b%to be the

benefit of w~ with respect to the set consisting of the

top view plus WI, WZ, Wt.l. Define A = ~~=1 ai

and B = ~~=1 b%.

It is easy to show that the benefit of the set V

chosen by the greedy algorithm, Bgreedy, is To –Tv =

A/m, and the benefit of the optimal choice W is

BOPt = TO – TW = B/m. In the full version of this

paper [HRU95], we show that:

k–lk
Bg,..(iy/Bopt = AIB 21 – (~)

For example, for k = 2 we get A/B ~ 3/4; z.e.,

the greedy algorithm is at least 3/4 of optimal.

We saw in Example 4.2 that for k = 2 there were

specific lattices that approached 3/4 as the ratio of

the benefits of the greedy and optimal algorithms.

In [HRU95] we show how for any k we can construct

a lattice such that the ratio A/B = 1 – (&)k.

As k + cm, (~)k approaches I/e, so A/B >

1 – ~ = (e – 1)/e = 0.63. That is, for no lattice

whatsoever does the greedy algorithm give a benefit

less than 63% of the optimal benefit. Conversely,

the sequence of bad examples we can construct

shows that this ratio cannot be improved upon. We

summarize our results in the following theorem:

Theorem 4.1 For any lattice, let Bg,e.dy be the

benefit of k views chosen by the greedy algorithm

and let BOPt be the benefit of an optimal set of k

views. Then Bg,..dY /BOP, >1 – ~. Moreover, this

bound is tight: that is, there are lattices such that

Bgr,,dV /BOPt is arbitrarily close to 1 – ~. ❑

An interesting point is that the greedy algorithm

does as well as we can hope any polynomial-time

algorithm to do. Chekuri [Che96] has shown,

using the recently published result of Feige [Fei96],

that unless P = NP, there is no deterministic

polynomial-time algorithm that can guarantee a

better bound than the greedy.

4.4 Cases Where Greedy is Optimal

The analysis of Section 4.3 also lets us discover

certain cases when the greedy approach is optimal,

or very close to optimal. Here are two situations

where we never have to look further than the greedy

solution.

1. If al is much larger than the other a’s, then

greedy is close to optimal.

2. If all the a‘s are equal then greedy is optimal.

The justifications for these claims are based on the

proof of Theorem 4.1 and appear in [HRU95].

4.5 Extensions to the Basic Model

There are at least two ways in which our model fails

to reflect reality.

1

2

The views in a lattice are unlikely to have

the same probability of being requested in a

query. Rather, we might be able to associate

some probability with each view, representing

the frequency with which it is queried.

Instead of asking for some fixed number of views

to materialize, we might instead allocate a fixed

amount of space to views (other than the top

view, which must always be materialized).

Point (1) requires little extra thought. When

computing benefits, we weight each view by its

probability. The greedy algorithm will then have

exactly the same bounds on its performance: at least

63% of optimal.

Point (2) presents an additional problem. If

we do not restrict the number of views selected

but fix their total space, then we need to consider

the benefit of each view per unzt space used by a

materialization of that view. The greedy algorithm

again seems appropriate, but there is the additional

complication that we might have a very small view

with a very high benefit per unit space, and a very

large view with almost the same benefit per unit

space. Choosing the small view excludes the large

view, because there is not enough space available for

the large view after we choose the small. However,

we can prove the following theorem [HRU95], which

214

says that if we ignore “boundary cases” like the

one above, the performance guarantee of the greedy

algorithm is the same as in the simple case. The

theorem assumes that we use the benefit per unit

space in the greedy algorithm as discussed above.

Theorem 4,2 Let Bg,.,dv be the benefit and S the

space occupied by some set of views chosen using

the greedy algorithm, and let BoPt be the benefit of

an optimal set of views that occupy no more than S

units of space. Then Bg,.edY/BOPt > 1 – ~ and this

bound is tight. D

5 The Hypercube Lattice

Arguably, the most important class of lattices are

the hypercubes, in which the views are vertices of

an n-dimensional cube for some n. The intuition is

that there are n attributes AI, Az, An on which

grouping may occur and an (n + l)st attribute B

whose value is aggregated in each view. Figure 1

was an example of a hypercube lattice with n = 3,

taken from the TPC-D benchmark database.

The top view groups on all n attributes. We can

visualize the views organized by ranks, where the ith

rank from the bottom is all those views in which we

group on i attributes. There are (~) views of rank i.

5.1 The Equal-Domain-Size Case

We can, of course, apply the greedy algorithm to

hypercube lattices, either looking for a fixed number

of views to materialize, or looking for a fixed amount

of space to allocate to views. However, because

of the regularity of this lattice, we would like to

examine in more detail some of the options for

selecting a set of views to materialize.

In our investigations, we shall first make an

assumption that is unlikely to be true in practice:

all attributes Al, A2, An have the same domain

size, which we shall denote r. The consequence of

this assumption is that we can easily estimate the

size of any view. In Section 5.3, we shall consider

what happens when the domain sizes vary. It will

be seen that the actual views selected to materialize

will vary, but the basic techniques do not change to

accommodate this more general situation.

When each domain size is r, and data in the

data cube is distributed randomly, then there is

a simple way to estimate the sizes of views. The

combinatorics involved is complex, but the intuition

should be convincing. Suppose only m cells in the

top element of our lattice appear in the raw data. If

we group on i attributes, then the number of cells

in the resulting cube is #. To a first approximation,

if ri ~ m, then each cell will contain at most one

data point, and m of the cells will be nonempty. We

can thus use m as the size of any view for which

ri > m. On the other hand, if ri < m, then almost

all ri cells will have at least one data point. Since

we may collapse all the data points in a cell into

one aggregate value, the space cost of a view with

ri < m will be approximately ri. The view size as

a function of the number of grouped attributes is

shown in Fig. 12.

—n

Number of group.by

Atlnbutes

Figure 12: How the size of views grows with number

of grouped attributes

The size of views grows exponentially, until it

reaches the size of the raw data at rank [log. ml

(the “cliff in Fig. 12), and then ceases to grow.

Notice that the data in Fig. 1 almost matches this

pattern. The top view and the views with two

grouping attributes have the same, maximum size,

except that the view ps has fewer rows, since the

benchmark explicitly sets it to have fewer rows.

5.2 The Space-Optimal and Time-Optimal

Solutions

One natural question to ask when investigating the

time/space tradeoff for the hypercube is what is the

average time for a query when the space is minimal.

Space is minimized when we materialize only the top

view. Then every query takes time m, and the total

time cost for all 2n queries is m2n.

At the other extreme, we could minimize time by

materializing every query. However, we will not gain

much by materializing any view above the cliff in

Figure 12, so we might as well avoid materializing

those views. The nature of the time-optimal solution

depends on the rank k = [logr ml at which the cliff

occurs, and the rank j such that r~ (’?) is maximized.

Figure 13 summarizes the time an i! space used for

the three tradeoff points studied. A more detailed

discussion of the tradeoff points is in [HRU95].

5.3 Extension to Varying Domain Sizes

Suppose now that the domains of each attribute

do not each have r equally-likely values. The next

simplest model is to assume that for each dimension,

values are equally likely, but the number of values

215

k, J, and 71 Space Time

k>j (2r’/(’+’))” (2r’/(’+’))“

ls<jandk <n/2 m rn 2 “

k<jancik> n/2 ?n (;)r’

Figure 1;3: Time-optimal strategies for the hyper-

(’u be

varies, with rz values in the ith dimension for i =

1,2,...,71.

Now, the “cliff” suggested in Fig. 12 does not oc--

cur at a particular rank, but rather the cliff is dis-

tributed among ranks. However, the fundamental

behavior suggested by Fig. 12 is unchanged. The

details are in [H R[J95].

6 Conclusions and Future Work

In this paper we have investigated the problem of

deciding which set of cells (views) in the data cube

to materialize in order to minimize query response

times. Materialization of views is an essential

query optimization strategy for decision-support

applications. In this paper, we make the case that

the right selection of the views to materialize is

critical to the success of this strategy. We use the

TP(~-D benchmark database as an example database

in showing why it is important to materialize some

part of the data cube but not all of the cube.

(>ur second contribution is a lattice framework

that models multidimensional analysis very well.

our greedy algorithms work on this lattice and pick

the right views to materialize, subject to various

constraints. The greedy algorithm we give performs

within a small constant factor of the optimal

solution for many of the constraints considered.

Moreover, [(-!he96] has shown that no polynomial-

time algorithm can perform better than the greedy.

Finally, we looked at the most common case of the

hypercube lattice and investigated the time-space

trade-off in detail.

The views, in some sense, form a memory hier-

archy with differing access times. In conventional

memory hierarchies, data is usually assignecl to clif-

fereut memory stores (like cache, or main memory)

dynamically hasecl on the run time access patterns.

We are currently investigating similar dynamic mat-

erialization strategies for the data cube,

Acknowledgement s

We thank E3ala Iyer and Piyush Goel at IBM for

help with the experiments, and Chandra Chekuri

and l%ajeev Motwani for comments on the paper.

References

[Arb] Arbor Software. Multidimensional Analysis: (o,,-

verting (~orporate Data into Strategic hlforma-

tion. White Paper. At http: //www.arborsoft. conl,/

papers/ multiTO (; .html

[(l~e96] (.;. Cheklu-i. Personal communication, 1996.

[(;S94] S. Cbauclhuri and K. Shim. Including (.+roup-

By in Query Optimization. In Proceedings oj the

Twentteth Intrrnataonal Conference on Very Laryt

Databases (VLDB), pages 354-366, Santiago, (“llile,

1994.

[Fei96] (J. Feige, A threshold of in n for approximating

set cover. To appear in Proceedings oj the With A (7M

.SymposZun, on the ‘i%eory of (~on,pdtng (STO[!),

1996.

[(3 BLP95] J. (+ray, A. E30sworth, A. Layman, H. F’ira-

hesh Data (’~ube: A Relational Aggregation Oper-

at or C+eneralizing (iroul>- B y, Cross-Tab, ancl Sui}-

Totals. Microsoft Technical ‘Report No. MSR-TR-

95-22.

[(+HQ95] A. (;upta, V. Harinarayau, and D. Qllass.

.4ggregate-Query Processing in Data Warehousing

Environments In Proceedings oj the 2fst ~nterna-

tional VLDB Conference, pages 358-369, 1995.

[GHR.lJ96] H. (;upta, V, Harinarayan, A. Rajaraman,

and J. D. Ulhnan. Index Selection for OLAP. SIIh-

mitted for publication, At http://clb. Stanford. eclu/

pub/hgupta/1996 /CubeIndex.ps

[(lra93] (1. Graefe. Query Evaluation Techniques for

Large Databases. In ACM (70n~puting SurVey.S, Vol.

25, No. 2, June 1993.

[HRLJ95] V. Harinarayan, A. Rajaraman, and J. D. IJll-

man. Implementing Data Cubes Efficiently. A f~dl

version of this paper. At http: //clb.stanford. edu/

pllb/harinarayan /199,5/cube.ps

[HNSS95] P. J. Haas, J. F. Naughtou, S. Seshaclri,

L. Stokes. Sanlplin~-Basecl Estimation of the Nlm-

ber of Distinct Values of an Attribute. In Proceeclzngs

of the ?Ist International VLDB C’onferencr, pages

:311-320, 1995.

[OG95] P. O’Neill and G. Graefe. Multi-Table Joins

Through Bitmapped Join Indexes. In SI(7M0D

Record, pages 8-11, September 1995.

[Raa95] F. Raab, editor. TP(; Benchmark D (De-

cision Support), Proposed Revision 1.0. Transac-

tion Processing Performance (’;ouncil, San Jose, (;A

95112, 4 April 1995.

[Rac195] A. Radding. Support Decision Makers With a

Data Warehouse. In Datamat!on, March 1.5, 1995.

[ST(;] Stanford Technology Oroup, Inc. Designing the

Data Warehouse On Relational Databases. White

Paper.

[Xen94] J. Xenakis, editor. Multidimensional Datab-

ases. In Application Development Strategies, April

1994.

216

	Abstract
	Introduction
	The Lattice Framework
	The Cost Model
	Optimizing Data-Cube Lattices
	The Hypercube Lattice
	Conclusions and Future Work
	References

