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Universidad Politécnica de Madrid (Spain) Universidad Politécnica de Madrid (Spain)
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Abstract

This paper presents an in-depth study, implementation, and validation of Fast Fourier Transform

(FFT) pipelined architectures suitable for broadband digital channelized receivers. The implemen-

tation of the FFT algorithm has as a first goal to maximize throughput and to optimize area on

Field-Programmable Gate Array (FPGA) platforms. Feedback and feedforward architectures have

been analized regarding key design parameters: Radix, bitwidth, number of points and stage scaling.

Moreover, a simplification of the FFT algorithm, the monobit FFT, has been implemented in order

to get faster real time in broadband digital receivers. To support the signal processing designer when

implementing this kind of systems on FPGA platforms we have developed a design space exploration

tool for FFT architectures.

1 Introduction

Following the Moore’s Law, current sub-micron technologies have allowed extraordinary integration den-

sities in digital circuits. However, as processes scale down, incertainty increases (voltage, temperature,

noise, coupling etc.), there is higher interconnect delay and the design process is more complicated, espe-

cially for ASICs (Application Specific Integrated Circuit), where margins are too tight and the “time to

market” preassure is tremendous. Moreover, masks costs have reached a critical point, dominating the

manufacturing process and requiring high finantial risk.

In this context, Field-Programmable Gate Arrays (FPGAs) offer significant advantages at a suitable

low cost [1]. First, the well-known flexibility of FPGAs allows the implementation of different generations
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of a given application and provide space to designers to modify implementations until the very last

moment, or even correct mistakes once the product has been released. Second, the verification of a design

mapped into an FPGA is very simple, contrasting with the huge verification effort requited by ASICs.

Finally, even though FPGAs are not so efficient as ASICs in terms of performance, area or power, it is

true that nowadays they can provide better performance than standard or digital signal processor (DSP)

based systems. This fact, in conjunction with the enormous logic capacity allowed by today’s technologies,

makes FPGAs an attractive choice for implementation of complex digital systems, as they are signal

processing applications. Moreover, with their newly acquired digital signal processing capabilities [2],

FPGAs are now expanding their traditional prototyping roles to help offload computationally intensive

digital signal processing functions from the processor.

In the signal processing field, Electronic Warfare (EW) receivers are a good example of complex

systems with hard constraints. The requirements for EW receivers are wide band frequency coverage,

high sensitivity and dynamic range, high probability of intercept, simultaneous signal detection, frequency

resolution and real time operation. A classical receiver which accomplishes these requirements is a

channelized receiver [3] which separates signals according to their frequencies. Recent advancements

in Analog-to-Digital Converters (ADC) technology and in the speed of digital processors have made it

possible to design relatively wide band digital channelized receivers [4–7]. The use of digital channelization

in comparison with the analog approach allows to improve the imbalance between filters, which is one of

the fundamental problems in analog receivers (digital circuitry is inherently reproducible, reliable, and

accurate). However, broadband digital channelized receivers, mainly based on Fast Fourier Transform-

related processing, require intensive computation for real time applications. FPGAs can play a key

role in the implementation of these receivers, changing the traditional method of implementing military

devices using commercial off-the-shelf (COTS) platforms, which conventionally comprise arrays of DSP

microprocessors. FPGAs have grown over the past decade to the point where broadband real-time

operation digital channelized receivers can be implemented on a single FPGA device.

Typically, the system throughput of many signal processing algorithms can be improved by exploit-

ing concurrency in the form of parallelism and pipelining [8]. FPGAs allow for true parallel processing,

supporting multiple simultaneous threads of execution. This provides significant opportunities to exploit

FPGAs to create very high performance processing circuits, through the use of multiple processing ele-

ments operating in a concurrent manner. FPGAs provide room for two-dimensional parallel architectures,

where multiple parallel processing threads can be implemented in a pipelined manner.
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As has been described, FPGAs offer new possibilities to the system designer, but additional support

is required because the design cycle presents now more degrees of freedom. Design space exploration

includes typical hardware variables such as area, clock frequency or power dissipation, together with

classical signal processing issues: Throughput, detection performance, dynamic range, etc. Low level

hardware details should be hidden to the system designer by high level design exploration tools, as

proposed in this work.

In this paper we present an in-depth study, implementation, and validation of FFT pipelined archi-

tectures suitable for broadband digital channelized receivers with continuous flow of input samples. Our

purpose is twofold. First, to accelerate the execution of FFT algorithms using FPGA platforms. Second,

to allow the system designer to explore a broad variety of posibilities in a quick and easy way.

The structure of the paper is the following. Section 2 presents a review of related works on hardware

implementations of the FFT and support tools. A general description of the FFT algorithm and its

basic implementation is described in section 3, while section 4 describes the selected architectures in this

work: Feedback and feedforward. Next, a monobit implementation will be introduced and compared to

the classical FFT in section 5. Section 6 describes the high level design tool developed for design space

exploration. Experimental results for the implemented architectures are analyzed in sections 7 and 8.

Finnaly, the implementation of EW receivers based on the proposed architectures will be described in

section 9 and some conclusions will be drawn.

2 Related work

Important work has been carried out on hardware FFT architectures, but this work represents a partial

approach to the problem. As was noted before, pipelined architectures provide high throughput and

allow working with continuous data flow, what results in real time processing rates. Basic pipelined

implementations can be classified as feeback and feedforward architectures [9] and will be deeply described

in this paper. A different approach to this kind of architectures is shown in [10], where a complex

architecture that mixes feedback and feedforward implementations is presented to maximize the use of

hardware and to reduce the size of the memory for the rotation angles.

In-place architectures [11] are based on the use of a single memory with several blocks to read and

store samples in an iterative way, providing a slow structure with no pipeline. In [12] we can see a

variation of in-place architectures based on the use of buffers instead of memories. This structure may

provide a higher throughput but it requires more hardware components.
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Another important issue to be taken into account when studying FFT implementations is the radix,

which can play a key role in the performance-area trade-off. The most common value of radix is 4 [9–

11,13], because the number of rotators required is minimum. Actually, radix 8 requires extra rotators in

the butterflies, what makes more expensive its implementation when considering hardware area. Other

approaches use Radix 22 [14, 15], which is quite similar to radix 4, and whose only difference is that the

radix 4 butterfly is implemented using two radix 2 butterflies.

An added value of any design is the possibility of parameterizing the architecture. This is one of the

key goals of the work described here. Previous works have focused on allowing the variation of simple

parameters, as they are the number of bits of the rotation angles and the input and output samples [14].

Other schemes can modify the radix (in order to change the parallelism) or the kind of memory that

is used [16]. In this sense, the architectures described in this paper allow the modification of all those

parameters (number of points, input bitwidth, truncation, radix... ) in order to obtain a versatile design

that can be easily adapted to the user requirements.

When reviewing FPGA-based implementations, there is a large number of FPGA-based FFT designs.

However, the published designs usually focus on explaining their implemented hardware architecture [10]

and, at most, the area and speed of the circuit [14], while the performance accuracy is not analyzed. A

recent work [17] describes an area-efficient architecture based on the use of a CORDIC operator [18] to

perform the rotations, as we do in our work, but it does not target parallel implementations. A closer

approach is the one presented in [19], but no comparison to other architectures is provided. In [20] a

parallel architecture is presented based on the use of a parallel multiplier and extended exploitation of

the memory structure of the FPGA, lacking the generality of the architectures we present here. In [13]

an architecture to process a high number of points is presented. However, the speed processing of this

approach is significantly limited by the use of external memory. Other recent works pay special attention

to particular design characteristics, as is the case of power minimization [16].

In this work we will provide a global view of the problem, paying attention not only to the design

of the FFT architectures, but also analyzing the performance they provide from the detection point of

view.

3 The FFT algorithm

The N -point Discrete Fourier Transform (DFTN ), XN (k) for a given sequence xN (n) is defined as:

4



XN(k) =

N−1
∑

n=0

xN (n) · W−nk

N
with k = 0, 1, . . .N − 1 (1)

where W−nk
N = exp(−j 2πkn

N ) is the so called DFT kernel.

The Fast Fourier Transform (FFT) is based on the decomposition of a sequence of the DFT into lower

order computations, what results in a reduction in the number of operations. In this way the complexity

of the computations is reduced from O(N2) to O(Nlog2N).

There are many algorithms that compute the FFT. One of the most widely used was proposed by

Cooley-Tukey [21] and is based on the successive decomposition of a DFT with length N into R DFTs

with length N/R. R, known as Radix, is a power of 2 and as consequence the length of the transform

will have a set of discrete values N = RS, where S corresponds to the set of successive decompositions

required for the whole transform (S stages). The decomposition continues until the length of the sub-DFT

matches the radix (the lowest order sub-DFT).

There are two basic approaches to implement the algorithm: Decimation in time (DIT) or decimation

in frequency (DIF). The difference between them is the way the algorithm performs the decomposition of

the DFT into lower order DFTs, resulting in a different sequence of operations. For example, in the case

of radix 2, the FFT of a sequence with length N (N = 2S) can use the decomposition of this sequence

into two sets with odd and even samples (DIT implementation) or two sets with the first and the second

half of the samples (DIF implementation).

In the case of a DIF implementation with radix 2 the resulting decomposition is the following:

XN (2k′) =

N/2−1
X

n=0

[[xN(n) + xN (n + N/2)] · T 0

N (n)] · W−k′n
N/2

=

N/2−1
X

n=0

x0

N/2(n) · W−k′n
N/2

with k′ = 0, 1, . . . N/2 − 1

XN (2k′ + 1) =

N/2−1
X

n=0

[[xN (n) − xN(n + N/2)] · T 1

N (n)] · W−k′n
N/2

=

N/2−1
X

n=0

x1

N/2(n) · W−k′n
N/2

with k′ = 0, 1, . . . N/2 − 1

(2)

which is the decomposition of the DFT into two sub-DFTs with lower order. Successives decompositions

can be carried out until no decomposition is possible. In these equations Tm
N (n) are called twiddle terms

and follow the expression:

Tm
N (n) = exp

−j2πm

N
n with m = 0..(R − 1) (3)

These terms are not general multiplications because only a discrete set of angles is used and conse-
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Figure 1: Data flow in a 8-point FFT with radix 2 (DIF implementation).
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Figure 2: Pipelined implementation of the FFT.

quently they can be implemented as rotations of the vectors defined by the input samples.

Several issues can be outlined when analyzing equations 2. First, the input samples can be complex

numbers. Second, the most internal operands of the middle equations (between brackets) represent a

mixture of components known as butterfly, named from the shape of its flowgram. Third, we need to

implement after that mixture the rotation of samples made by the corresponding twiddle terms. Once the

samples are suitably mixed and rotated we obtain two half length sequences with independent samples,

being therefore ready to operate separately. The previous decomposition procedure can be repeatedly

applied to both sequences until the sub-DFT with the lowest order is reached (order 2 in this case) and

the algorithm is completed. To illustrate how the FFT algorithm works, figure 1 shows the way data are

processed in an 8-point DIF FFT with radix 2. As can be seen, three stages are required since log2(8) = 3.

An analogous process can be done with a sequence of N = 4S , consequently implemented with Radix

4, providing similar results. In this case the DFT is decomposed into four lower order sub-DFT instead

of two, requiring a smaller number of decompositions to obtain the lowest order (in this case log4N).

Theoretically, DIT and DIF implementations only differ in the order followed by the previous oper-

ations and the order of samples. The analysis that we have carried out in this work is focused on DIF

implementations, but can be inmediately applied to DIT implementations.
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Figure 3: Structure of a stage of the proposed architectures.

4 Hardware Architectures for the FFT

There are many hardware implementations for both DIF and DIT algorithms. For instance, we can choose

between serial or parallel arithmetic, or we can select between pipelined or iterative implementations. In

general, the designer only focuses on two different goals: optimize area or maximize speed. In this work

we present a wider approach in which the design of FFT-based architectures is automated and important

issues like area, throughput or power can be easily explored by user defined combinations of parameters

like bitwidth, radix, number of stages, etc.

In the case of data oriented applications presenting a continuous flow of samples, the best architectures

will be those that potentiate speed instead of area. The implementations that better fit these requirements

are both parallel and pipelined architectures, where the processing is performed in several cascaded

stages, as can be seen in figure 2. We have chosen two main groups of FFT architectures, representing

opposite points in the design space: Feedback (FB) and feedforward (FF) architectures. Architectures

with feedback provide the output flow at the clock frequency (one sample per clock cycle), because

the feedback structure allows the reuse of some elements present in every stage. This reuse provides a

small area implementation. On the other hand, our feedforward structures provide a higher throughput

because reuse is not applied and higher concurrency can be obtained, paying the price of a significant

area overhead.

The general architecture of a pipelined implementation is based on a set of stages (S in section 3) and

each stage performs the decomposition of the input sequence into sub DFTs, which will be implemented

in later stages. Every stage is characterized by the radix, which also sets the number of required stages

to process an input sequence of length N .

There are three basic elements in each stage of both architectures, depicted in figure 3: A memory

where data between stages are stored, a butterfly where the mixture of samples is accomplished and

finally an element to multiply samples by the corresponding twiddles. The architectures differ in the way
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these elements are interconnected and how the sample flow is controlled. The dashed line that appears

in figure 3 represents the feedback loop of the FB architecture.

Once all stages have been accomplished (finishing the lowest order sub-DFT, which is of size radix ),

the processing can be considered finished, even though there is still a re-ordering phase left. This is an

optional task, because output samples are not completely unordered, but they have a known sequence

that can be considered as input for the next processing step.

In the following we will describe in detail the basic elements used in both architectures: Butterfly

and rotators.

4.1 Butterfly

In pipelined architectures, butterflies can be implemented as a set of log2(R) stages of adders and constant

multipliers. The simplest implementation of this element is the radix-2 butterfly, which only requires two

components: An adder and a subtracter, both complex. In this case, the twiddle terms are trivial and,

consequently, there is no need of extra components to perform the rotation after the mixture of samples.

For implementations with other radices, most samples do not need rotations since their corresponding

twiddle is 0o, as is the case of radix-2 computation. Other rotations may be easy to compute, as is the case

of radix-4 where the angle to rotate is −90o and can be implemented as a swap of the sample components

with sign change. Other angles like −45o or −135o, which are present in radix-8 architectures, can be

implemented by two multipliers by real constants. For radix R > 8 butterflies, non trivial twiddles

appear, with the number of these non-trivial twiddles increasing with the radix. In these cases complex

multipliers must be used and the butterfly implementation requires bigger area. Actually, there is an

exponential increase of area with the radix, as can be seen in figure 4. In a general way, we can say that

the area required by a radix-R butterfly is the area of the basic butterfly multiplied by R/2· log2(R). This

value does not consider the area of the pipeline registers or the multipliers. This area increase precludes

us to implement FFTs with radix bigger than 8, even though higher radix values reduce the number of

stages.

Radix 4 presents the twofold advantage of including simple components and presenting a reduction

of the number of stages regarding radix 2 implementations. This combination of advantages makes this

value of radix the optimum for most applications.

An additional important issue to consider in the butterfly structure is that for every new stage we

should decide the bitwidth to manage the overflow. This is due to the adders included in the butterflies.
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If we keep fixed the bitwidth, the easiest approach is to truncate the output of the adders removing the

less significant bit. This divides the output by 2. With this approach the final area is reduced, but the

performance of the total FFT is affected by a clear degradation. This fact will be deeply analyzed in

sections 7 and 8.

4.2 Rotators

Rotators are critical components in the FFT architecture because of their area. They are mainly composed

of a first element that multiplies data by the twiddles and a memory that stores the twiddles. In our

case we have implemented the rotator using the algorithm Cordic [18]. This algorithm performs the

rotation of a complex vector by means of a series of shifts and additions. Every shift rotates the vector

components a given angle from a set of elemental angles. This algorithm presents an intrinsic gain of

approximately 1.647. Therefore, to keep the dynamic range of the input samples, this element would

have to increase the data bitwidth in one bit. As was explained for the butterfly, this extra bit can be

truncated after rotation takes place or it can be kept. It is important to remark that overflow is avoided

in any case.

The Cordic algorithm takes as inputs both the data coming from the butterfly and the rotation angle.

Given that the set of elemental angles that will be used by the twiddles is actually known, we compute

in advance the rotations that will be performed by the Cordic algorithm. These values can be stored
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in the memory instead of the angles, consuming approximately the same memory size, what results in a

great improvement in the implementation of the algorithm in terms of area and speed. Finally, we have

decomposed the implementation of the Cordic into a set of steps. For every step the vector is rotated by

one of the pre-defined elemental angles, allowing the pipelined implementation of the algorithm.

4.3 Feedback Architecture

The feedback (FB) architecture, shown in figure 5, is composed of a first memory that stores the input

samples, followed by a butterfly whose output is connected to a single rotator that multiplies by the

twiddles. In this implementation, given that the rotator is a shared component, part of the butterfly

outputs will be fed back to the memories to allow the use of the rotator all the time. Therefore, there

will be two working modes, depicted in figure 6. A first mode is related to the arrival of samples from
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the previous stage while samples coming from previous processing are extracted from memory (mode

1). During mode 2 the samples are processed and simultaneously data coming from the butterfly are

stored in the memory because the rotator is busy. This working procedure is illustrated in figure 6,

where we can see how two input sequences of 1024 samples (xy0 and xy1) enter the FB architecture and

are sequentially processed by the memory, butterfly and rotator of the first stage. A similar processing

is accomplished for the lower order sub-DFTs generated through the different stages (xy0.1, xy0.2...).

Output results are labelled as XY 0. It is important to remark that the 1024 samples need 1024 clock

cycles to be processed.

A feedback implementation of the FFT with radix R requires R − 1 blocks of dual port memory to

store samples both coming from the input or fed back from the butterfly. Following this structure, every

memory is designed to store N/R samples with N being the samples coming from the previous processing

phase. During the first processing mode (Mode 1 in figure 6) data coming from the previous stage are

loaded through one port while the other port is used to dump the currently processed data. When sample

N(R − 1)/R arrives, the second phase starts, dumping a piece of data from each block to be processed

in the butterfly while feedback data are loaded from the butterfly to be processed later in the rotator

(Mode 2). This particular memory management does not only allow temporary storage of data, but also

the re-ordering of samples to be processed in the current stage.

4.4 Feedforward Architecture

In the FF architecture the samples can go ahead once a stage is processed because there are several

rotators (see figure 7). Following the memory a butterfly implements every low order DFT, and next an

array of rotators (one per sub-DFT produced at the output) is required. Their outputs will feed the next

stage in the chain. Actually, the performance provided by this architecture is R samples/clk, being R

the radix. As can be seen in figure 8, the concurrent execution performed by this architecture allows the

processing of an N-point FFT in N/4 cycles because a radix 4 is used in this example (in the figure, a 1024
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points FFT is processed in 256 cycles). In this case, since data coming from the different sub-DFTs are

passed in parallel, a different memory scheme is necessary, because parallel storage is required together

with a re-ordering of data.

This architecture requires R ordered input samples. Moreover, the different sub-DFTs generated at

the output will be processed by the rotators in parallel, and will be sent as a block to the following stage.

That kind of concurrency in the implementation can only be obtained through a memory structure

able of simultaneously storing all input samples, re-ordering data and providing data to process the sub-

DFT. We have used a matrix memory of R × R with ping-pong structure. As can be seen in figure 8,

a memory called A is used to store input samples while a second memory, B, extracts data to feed

the butterfly. During the next time slot, memories A and B exchange their roles allowing continous

processing.

Additionally, in this architecture every Cordic element (R − 1 in a radix R implementation) requires

a memory with the sequence of rotations to perform per twiddle.

4.5 Overview of the proposed architectures

To summarize the description of the designed FFT architectures, table 1 shows their requirements in

terms of basic elements (memory, butterfly and rotators). Memory size is measured by the number of

samples that it holds. As can be seen, the resource requirements are higher for the FF architecture
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Table 1: Hardware resources required by FB and FF architectures.

Architecture Radix Rotators Adders
Memory

Data Rotations

Feedback (FB)
2 S − 2 2 × S N N
4 S − 1 8 × S N N
8 S − 1 24 × S N N

feedforward (FF)
2 S − 2 2 × S 6 × N N
4 3 × (S − 1) 8 × S 4.6 × N N
8 7 × (S − 1) 24 × S 4.3 × N N

than for the FB one. This is due to the higher degree of parallelism presented by this architecture,

which additionally provides better performance. We should remember that the FB architecture is able

to process a sample per clock cycle, while the FF architecture processes R samples per clock cycle, being

R the Radix.

5 Monobit FFT Implementation

To maximize the throughput of the implemented FFT-based channelized receivers, measured as processed

Msamples/s, the simplification of the computational complexity of the FFT is required. This can be

accomplished by avoiding complex multiplications: Using a monobit kernel for the FFT [22, 23]. This

algorithm can be further simplified by reducing the number of bits to represent the input samples. The

increase in the throughput is obtained at expense of degradation in the dynamic range of the channelized

receiver (see [23] for more details).

In the monobit FFT the twiddle terms are rounded using the function:

G(ejφ) =











































1 if −π
4

≤ φ < π
4

j if π
4
≤ φ < 3π

4

−1 if 3π
4

≤ φ < 5π
4

−j if −3π
4

≤ φ < −π
4

(4)

This approximation of the rotation angles allows the hardware implementation of the monobit FFT to

follow the structure of the previously described architectures, with the only difference that rotators always

use the following angles: 0, π/2, π, or −π/2. Actually, those values make unnecessary any multiplier or

rotator, what results in a clear reduction of the final area and a significant improvement in speed, as will

be shown in section 7.
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To perform the simplified rotations, the rotator present in every stage is implemented using a reduced

set of multiplexers and adders. This particular rotator consumes less area, can work at a higher clock

frequency and requires no memory.

The final performance of the monobit implementation is not only related to the previous modifica-

tions. For the classical FFT, the capacity of the parallel processing is limited by the radix used in the

architecture, due to the high cost in area required to replicate the critical components. Also the area re-

quired to implement the butterfly grows exponentially with the radix (see figure 4), consequently, radix-8

butterflies are the largest that can be implemented in practice for conventional FFT architectures. Nev-

ertheless, the monobit simplification allows the implementation of butterflies with a higher radix without

an exponential growth of the area, by means of the transformation of the non-trivial twiddles into trivial

twiddle terms. Again, architectures with greater radix result in a higher degree of parallelization, what

translates into increasing processing speed.

6 The FFT Generation tool

To help the system designer to explore the possibilities offered by the different architectures described

above we have developed an FFT generation tool. This tool has been implemented in Java using as in-

ternal description language xHDL [24], a VHDL-based metalanguage that simplifies the specification and

parameterization of designs. The tool generates synthesizable VHDL taking as input the configuration

options selected by the user.

The tool provides support to select and configure from among the many parameters that characterize

every single FFT architecture. Once a given architecture has been selected, the tool provides quick

estimates on basic parameters and functions that help the user in the design space exploration phase. As

can be seen in figure 9, the user may select the following input parameters:

• Parameters related to the transform. The transform length (number of points, N) which is related

to the parameters RADIX (R) and number of STAGES, S (remember that S = logRN). A special

parameter related to the transform output is OUTPUT ORDER MEM, which selects the use of a last

stage memory to reorder the output samples.

• Parameters which define the WIDTH of the input samples and the bit growth of data through the

different components: BUTTERFLY GROWTH and ROTATION GROWTH.

• Parameters which drive the implementation to the physical device. If the FPGA where the design

14



Figure 9: User interface of the FFT generation tool when selecting a Radix 4 FF architecture with 16
input bits, 1024 points and no growth.

will be mapped includes specific blocks (multipliers, RAM, etc.) these parameters allow the use

and configuration of this kind of built-in elements. For example, MEM BRAM TH is the percentage of

use of a RAM block that should be filled by a given implementation to allow its use. The RAM

can also be configured to be single or dual port (MEM DPRAM).

The tool also provides the limits within which the value of those parameters can range. As quick help

for the design exploration process, the tool computes or estimates the following functions:

• General functions which are directly computed from parameters as is the case of Number of stages

of the FFT (FFT POINTS=Radix
Stages) or the bitwidth of the output results (OUT WIDTH).

• Area estimators: Number of LUTs1 required (AREA LUTS), Number of flip-flops (AREA FFS) and

Area of the FFT in slices (AREA SLICES)2.

1Look up Table, basic implementation element in the FPGAs for combinational logic.
2A slice is a basic implementation element in the FPGAs that holds two LUTs
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• Estimators of usage of special resources: Number of RAM blocks (AREA BRAM) and Number of

multipliers (AREA MULT).

With this tool, the system designer can explore the design space in a quick and easy way. Moreover,

the tool provides the final code that will be synthesized into the FPGA, what makes the designer to get

ride of low level implementation details, out of the scope of a signal processing engineer.

There are other appoaches that develop a tool to generate FFTs cores or similar. The Xilinx LogiCore

is a well-known example [25], but the degree of parameterization of this tool is significantly reduced when

compared to our approach. Other interesting approach, SPIRAL [26], is based on a different DFT

architecture, the Pease FFT, which provides a parallelized implementation that can be considered in

between the architectures presented here. Next section will outline the main differences among our

approach and these implementations.

7 Experimental Results

All experimental results have been obtained targeting Xilinx FPGAs, (in particular the VIRTEX-II

xc2v4000-6), using as development environment Xilinx ISE 7.1.

The various proposed FFT architectures and the large parameter set that can be used for their

configuration provide a very wide experimental outcome. The key parameters under analysis in all these

architectures are:

• Bitwidth of the input samples.

• Number of stages.

• Radix of the implementation (power of 2).

• Stage scaling (truncation in the butterflies).

The performance of the different solutions will be analyzed in terms of:

• Area (slices and BRAM used ).

• Latency, time to process an FFT (from start to end).

• Clock speed (MHz) and throughput (Msamples/s).
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• Power.

• Detection performance.

In order to organize the analysis of the experimental results we will perform it in three different

scenarios. First and second scenarios will be devoted to the analysis of FB and FF architectures for both

conventional and monobit FFTs, respectively. The third scenario will study the power dissipation of all

architectures. Finally a last scenario will be devoted to analyzing the results provided by the FPGA

implementation of the FFT when used in a digital channelized receiver, and due to the importance

of these results, section 8 will be devoted to this analysis. But previously to the description of the

above mentionned scenarios we consider that it is important to describe the influence that the target

architecture, FPGAs, presents in all the results. This will be done in next subsection.

7.1 FPGA-based Implementation

An important issue to consider when designing FPGA-based systems is the physical device on which the

design will be mapped. Most FPGAs are composed of several configurable blocks called slices. Every

slice includes multiplexors, flip-flops and two 4-input Lookup tables (LUTs) to implement logic functions,

which are the most common low level configurable components in the FPGAs. Additionally, some FPGAs

include special resources as they can be memory blocks (BRAMs) or built-in multipliers. There are three

basic memory structures: Distributed flip-flops, distributed memory (based on the aggregation of LUTs)

and memory blocks.

Taking the final platform into account is very advantageous from the design point of view, because

every particular device biases the implementation with a set of constraints as they are the available

blocks, the speed, etc. The design must exploit the configuration options offered by these programmable

devices. Even though we have targeted Xilinx FPGAs, the specification of the different FFT descriptions

has been done as open as possible, exploiting common components to all the families (from Spartan-II

to the latest Virtex-4 devices). Moreover, our designs are based on parameters that allow to use and

exploit particular components when avaliable (built-in multipliers3 and BRAM memories) and configure

available Input/Output resources.

A critical point in the FFT design is the mapping of memory resources because this will clearly

impact the final performance. Given the FFT algorithm structure (memory requirements scale down as

3When avaliable, built-in multipliers can been used. It is important to remark that their number is limited and they
implement fixed-size multiplications (18x18).
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Table 2: Experimental results for the FB and FF architectures for the conventional FFT.

LATENCY LATENCY LATENCY

SLICES BRAM usec MHz MSsec SLICES BRAM usec MHz MSsec SLICES BRAM usec MHz MSsec

2 16 638 0 0,128 274 274 806 0 0,139 267 267 2 16 1342 0 0,171 251 251

3 64 1128 0 0,365 274 274 1604 0 0,405 262 262 3 64 2452 0 0,462 251 251

4 256 1903 0 1,128 274 274 2914 0 1,254 256 256 4 256 4086 0 1,327 251 251

5 1024 2589 3 3,996 274 274 4328 3 4,442 251 251 5 1024 7956 0 4,486 251 251

LATENCY LATENCY

SLICES BRAM usec MHz MSsec SLICES BRAM usec MHz MSsec

4 16 1133 0 0,225 254 507 1354 0 0,256 246 492

6 64 1816 0 0,640 236 472 2475 0 0,704 236 471

8 256 4533 0 2,031 227 454 6401 0 2,154 227 454

9 512 8683 0 4,652 184 368 12478 0 4,482 199 398

9 512 4471 8 3,754 228 456 7418 8 3,894 227 454

10 1024 15440 0 8,790 186 372 20873 0 9,032 186 372

10 1024 3862 12 7,182 228 455 6627 12 7,380 228 455

LATENCY LATENCY LATENCY

SLICES BRAM usec MHz MSsec SLICES BRAM usec MHz MSsec SLICES BRAM usec MHz MSsec

2 16 1235 0 0,103 244 975 1532 0 0,112 242 967 2 16 3578 0 0,149 235 940

3 64 2830 0 0,271 244 975 3815 0 0,300 240 960 3 64 7591 0 0,362 235 940

4 256 4586 0 0,810 236 943 6703 0 0,861 236 943 4 256 12034 0 0,932 235 940

5 1024 13031 0 2,929 223 890 17751 0 3,030 222 887 5 1024 27702 0 3,235 213 852

LATENCY LATENCY

SLICES BRAM usec MHz MSsec SLICES BRAM usec MHz MSsec

2 64 4716 0 0,170 230 1840 5920 0 0,275 153 1224

3 512 10988 0 0,761 230 1840 15009 0 1,586 116 928
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the stage number increases in DIF FFTs), we have assigned memory blocks to the very first stages of the

algorithm. Once memory requirements are lower, we can use distributed memory, which is more flexible

than memory blocks but can hold less samples. Finally, flip-flops will map the pipeline registers.

As multipliers, memory blocks constitute a limited resource, but their use can result in important area

savings while avoiding the big size of distributed memory. The design exploration tool depicted in figure 9

allows the designer to choose the most convenient memory option to a particular implementation. For

instance, the designer may choose the % of minimum usage that is required to change from distributed

memories to block memories (RAM THRESHOLD).

7.2 Scenario 1: Comparing the FB and FF Architectures

In the first scenario we will present a comparative study of the implementation of the FB and FF

architectures for the conventional FFT.

Table 2 summarizes the results we have obtained for different implementations when exhaustively

exploring the design space with our tool. In this way, we have generated 16, 64, 256 and 1024 point FFTs

with both FB and FF architectures. The bitwidth was initially fixed to 8 and 16 bits and we considered

both truncation and no truncation through the stages. Additionally, given that the FF architecture allows

the parameterization of the radix, we have implemented radix 2, 4 and 8, while the FB architecture has
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Figure 10: Area-performance plot for FB and FF
architectures (8 bits, with truncation).
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Figure 11: Area-performance plot for FB and FF
architectures (8 bits, without truncation).

been implemented for radix 4. Moreover, large implementations have been generated with and without

usage of BRAM.

In figures 10 and 11 we can see the area-performance trade-off that can be obtained for 8-bit designs

in the FF and FB architectures. From a first analysis of table 2 and these graphs we can draw the

following conclusions:

1. It can be clearly seen that the FB architecture requires lower area than the FF implementation

due to resource sharing, especially when computing the FFT with a high number of points. On

the other hand, the FF architecture processes several samples in parallel, which leads to a higher

throughput.

2. As expected, all implementations with no truncation of bits in intermediate stages always present

bigger area and lower speed than the ones with truncation.

3. The influence of the radix can be analyzed studying the FF architecture. As can be seen in

Table 2, except for the 1024 points implementation, the area of architectures with radix 2 and 4 is

more or less the same. However, performance results are completely different. Even though radix 2

implementation presents a slightly higher working frequency, radix 4 implementations have a higher

throughput (almost double), due to the higher parallelization of the operations.

4. The latency values of Table 2 refer to the total computation of an FFT. Other computations can

run simultaneously in the FPGA, what cannot be done in a DSP [27].

5. The use of BRAM blocks has only been worthwhile in those examples that require large memory
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Table 3: Results for different 16 Bit 1024 point FFTs (radix 4).

Num EqSlices Num EqSlice

XILINX 2744 7 5950 24 7680 16374 214 214 13,070

FF 21707 0 0 0 0 27702 213 852 30,756

FB 7956 0 0 0 0 7956 251 251 31,549

SPIRAL P4_TH2 1509 64 54400 16 5120 61029 167 668 10,946

SPIRAL P4_TH128 3287 16 13600 16 5120 22007 167 668 30,354
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Figure 12: Comparison of FB and FF architectures with Spiral and Xilinx in terms of Ks/slice.

sizes: 512 and 1024 point FFTs. Actually, the FB architecture obtains clear benefits from the

use of BRAMS, but the FF architecture can only take advantage of them for radix 2, when the

required memory size is bigger than the threshold established to use of BRAM instead of distributed

memory4.

7.2.1 Comparative study with other implementations

As mentioned previously, there are two tools that can be used to generate FFT cores: Xilinx Core

Generator [25], and Spiral [26]. We have generated with these tools different implementations of a 1024

points FFT with 16 input bits and no growth through the stages. In table 3, we can see the experimental

results obtained from Xilinx Core Generator (Xilinx), our FB and FF architectures and two experimental

results from Spiral (Spiral P4 TH2 and P4 TH128, with different degree of paralellism).

As can be seen in table 3 these architectures have very few common points and take advantage of the

FPGA resources in different ways. All implementations make use of slices to implement logic functions,

which could be a general measure of area. However, specific components can also be used, as is the case of

BRAM memories or built-in multipliers, what results in important slice savings. It is therefore necessary

to have a uniform measure to compare the different area and performance results. We have decided to

4We have considered in our results that BRAMs should be filled more than 50%, otherwise they could be used by other
computations in the FPGAs. Nevertheless, the user of the design exploration tool can modify this threshold.
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measure all area related issues in slices, which is the only component present in all FPGA families. To

carry out this measurement, we need to know the equivalence of built-in components into slices. In this

sense, to establish the area required by a built-in multiplier we have implemented with logic a 16x16

pipelined multiplier, which occupies around 350 slices. We have not implemented the 18x18 multiplier

integrated in the Xilinx devices because it is not always fully exploited.

Regarding BRAMs, since they are large memory blocks that can be configured with different utiliza-

tion, we have established a capacity value of 50% to find out the equivalent measure in slices. With this

capacity value we have obtained an area use of 850 slices.

Finally, the best way to qualify a given architecture is to consider not only area, but also performance.

In this sense we have defined a new measure called KSsec/slice which provides a ratio between perfor-

mance (Ksamples per second) and area (slices). This new measure has been plotted in figure 12 to better

compare all architectures. Xilinx implementations do an intensive use of BRAMs and multipliers, with

the subsequent low count of slices. However, if we map these components into equivalent slices, the area

measurement grows significantly (see column T SLICES in table 3), but with a performance comparable

with our FB implementation. Consequently, the metric shows that this implementation is characterized

by a poor performance-area ratio. Regarding the Spiral architectures, SPIRAL P4 TH2 shows an intensive

use of BRAM components with the corresponding reduced number of slices. The second architecture,

SPIRAL P4 TH128, performs a more efficient BRAM mapping. The performance-area ratio shows for the

first architecture a similar behaviour to the Xilinx implementation, whereas the second implementation

improves this ratio significantly. We can conclude that FF and FB architectures provide the best im-

plementation option, together with one of the Spiral architectures. In this sense, the FB architecture

presents the best results in terms of area and the FF architecture shows the best performance figures,

while SPIRAL P4 TH128 provides a solution that can be placed in between.

7.3 Scenario 2: Analysis of the monobit FFT Implementation

In this scenario we will study the results obtained for the FB and FF architectures when implementing the

monobit FFT. The monobit architectures have been implemented with different bitwidths of the input

samples to observe the benefits in terms of area and performance obtained with the monobit simplification.

Both truncation and no truncation options have been considered again. Table 4 summarizes these results.

Additionally, given that the FF architecture allows the parameterization of the radix, we have explored

implementations with other radices, as can be seen in table 5.
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Table 4: Experimental Results for the monobit FFT
Implementations.

LATENCY LATENCY

SLICES BRAM usec MHz MSsec SLICES BRAM usec MHz MSsec

2 16 933 0 0,080 299 299 2326 0 0,083 242 968

3 64 1585 0 0,261 299 299 4929 0 0,227 242 968

4 256 2636 0 0,926 299 299 7814 0 0,719 242 968

5 1024 3100 3 3,515 299 299 21678 0 2,885 218 872

LATENCY LATENCY

SLICES BRAM usec MHz MSsec SLICES BRAM usec MHz MSsec

2 16 498 0 0,072 332 332 1167 0 0,083 242 968

3 64 862 0 0,235 332 332 2468 0 0,227 242 968

4 256 1430 0 0,868 319 319 3914 0 0,719 242 968

5 1024 1730 3 3,295 319 319 10708 0 2,885 218 872

LATENCY LATENCY

SLICES BRAM usec MHz MSsec SLICES BRAM usec MHz MSsec

2 16 597 0 0,074 323 323 1352 0 0,082 245 980

3 64 1122 0 0,248 314 314 3070 0 0,224 245 980

4 256 1980 0 0,902 306 306 5192 0 0,710 245 980

5 1024 2599 3 3,527 298 298 13845 0 2,859 220 880

LATENCY LATENCY

SLICES BRAM usec MHz MSsec SLICES BRAM usec MHz MSsec

2 16 377 0 0,070 341 341 774 0 0,082 245 980

3 64 754 0 0,235 332 332 1817 0 0,224 245 980

4 256 1358 0 0,865 319 319 3257 0 0,710 245 980

5 1024 1899 3 3,347 314 314 8436 0 2,859 220 880

LATENCY LATENCY

SLICES BRAM usec MHz MSsec SLICES BRAM usec MHz MSsec

2 16 264 0 0,068 351 351 457 0 0,082 245 980

3 64 563 0 0,229 341 341 1214 0 0,224 245 980

4 256 1048 0 0,865 319 319 2252 0 0,710 245 980

5 1024 1535 3 3,295 319 319 5712 0 2,859 220 880
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Table 5: Analysis of the influence of the radix.

LATENCY

SLICES BRAM usec MHz MSsec

16 256 7783 0 0,225 240 3840

8 512 5552 0 0,683 240 1920

32 1024 27409 0 0,500 180 5760

8 4096 21790 0 4,974 228 1824

16 4096 26903 0 2,342 240 3840
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If we compare tables 2 and 4 we can observe how the monobit implementations present a significant

increase in speed and a clear reduction in area and latency. Figure 13 shows the results of the design

exploration performed with our tool for conventional and monobit FFTs in different points of the design

space.

All monobit architectures present a performance increase obtained by means of a higher clock fre-

quency. This is due to the substitution of the complex rotator in the conventional FFT by a monobit one,

which is faster. FB architectures exhibit a better benefit from the monobit simplification because the

rotators were in the critical path. On the other hand, the FF architecture hides these benefits because the

limiting speed element is not the rotator but the memory. In terms of area, as expected, larger monobit

FFTs save more area.

Regarding the radix variations, the benefits of the monobit implementation can be clearly seen in

the case of 2 input bits (see table 5). The FF monobit architecture allows implementations with higher
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Figure 13: Conventional vs. monobit FFTs (with and without truncation).

radix (16, 32), with the corresponding performance improvement. These results cannot be obtained by

conventional FF FFTs. In this case the clock frequency is more or less the same, because the critical

path is related to the complex memory structure, but the higher the radix, the higher the performance

can be achieved (up to GS/s).

7.4 Scenario 3: Power Consumption

A key parameter in most data processing applications is the power consumption of the resulting im-

plementation. It is due to two main reasons. First, the power density in current FPGAs may produce

an uneven distribution of temperature on the surface of the device with the corresponding hot-spots.

This may produce a malfunctioning of the particular device or even of the whole system. Second, many

current systems may be battery powered, what makes the power dissipation a new design dimension to

be considered during the design cycle.

We have evaluated the power dissipation that our FFT architectures present. Actually, with the

FFT generation tool a quick power estimator has been included. Figure 14 depicts the main results we

have obtained when analyzing power dissipation. As can be seen, the power dissipation of FB and FF

architectures has been evaluated for different clock frequencies. It is well known that dynamic power

is directly proportional to the frequency, as can be observed in that plot. Of higher interest is the

comparison that can be carried out between FB and FF architectures and between conventional and

monobit FFTs. As expected, the monobit implementation exhibits the lowest power dissipation, mainly

due to its lower complexity. Moreover, when comparing FB and FF architectures, the the FF architecture

presents a higher power consumption due to its higher complexity.

As expected, the power consumption is directly related to the area of the implementation (including
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Figure 14: Dynamic Power Dissipation for different FFT architectures (8 bits, Radix 4, with truncation).

both logic and interconnection area). We should remark that most dynamic power in FPGAs is con-

sumed in the interconnection resources (70%, as studied by [28]). For FFTs of the same length, the

FF architecture always presents greater power consumption than the FB. Moreover, the monobit sim-

plification obtained in terms of area can be also observed in terms of power. Even though the power

results plotted in figure 14 are very high, recent advances in FPGA technology [29] include process and

architecture innovations to reduce both static and dynamic power. For instance, the dynamic power

consumption measured in the new Virtex-5 FPGAs presents a 55 % reduction when compared to the

previous implementation family (Virtex4). Therefore, we expect that the power consumption of the FB

and FF architectures will be reduced orders of magnitude with respect to the values plotted in figure 14,

which correspond to VirtexII FPGAs, the family previous to Virtex4.

Regarding the influence of the input signals on the power consumption, we have evaluated our imple-

mentations with both gaussian noise and sinusoids with different amplitudes, and we have observed that

the power consumption is similar. The reason for this performance is that the activity rates of the input

signals are in all cases very similar, due to the two’s complement representation of the input signal.

8 Analysis of a Channelized Receiver Performance based on the pro-

posed FFT architectures

In this section we will study the proposed architectures from the signal detection point of view, assum-

ing that the input is a sinusoidal signal with its associated real, additive, white, Gaussian noise with

standard deviation, σ. False alarm probability, detection probability and dynamic range of several FFT

implementations have been analyzed in order to determine under which circumstances the results of the
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Figure 15: Pfa of a 1024-point FFT without truncation.

algorithm are similar to the ones obtained by ideal FFTs, depending on the finite arithmetic effects and

the hardware parameters of the N-FFT: Input data bitwidth, truncation along the FFT stages, radix,

and number of points, N . It is important to point out that FB and FF implementations have the same

performance regarding detection capabilities.

All false alarm probability calculations have been obtained using Monte Carlo simulations with 106

independent trials. Regarding detection probabilities, 103 independent trials have been used. Channels

0 and N/2 are not considered in the calculations because noise statistics are different in these channels.

8.1 False Alarm Probability

8.1.1 Impact of rotator error

The first design under study is a 1024-point FFT, radix 4, 8 input bits, without truncation in the

butterflies. As the input is represented with 8 bits, the signal amplitude ranges form -128 to 127. In this

context, the false alarm probability per channel, Pfa has been calculated. The theoretical false alarm

probability per channel for a linear detector is:

Pfa = exp(
−T 2

σ2Nk2
) (5)

where T is the threshold of the detector, N stands for the number of points of the FFT, and k represents

the intrinsic global gain due to the Cordic rotators [18].

Figure 15 shows the false alarm probability for different values of noise standard deviation, σ. As can
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Figure 16: Pfa of a 1024-point radix-4 FFT without
truncation and σ = 3.
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Figure 17: Pfa of a 1024-point, radix 2 FFT, with-
out truncation and σ = 3.

be seen, when σ ≥ 5 the experimental and the theoretical results are quite similar. As σ decreases, the

discrepancies between theory and implementations increase. As there is no truncation in the butterflies

and the quantization error of the input signal is not significant for σ > 1, this problem only depends on

the error in the rotators. This effect is more significant at the lowest channels of the FFT output. This

is shown in figure 16, where the curve between the calculated Pfa and the theoretical one represents the

Pfa per channel when channels 1 to 3 are not considered.

Radix. The rotator error effect is more pronounced for radix 2 than for radix 4. This is related to the

fact that the number of rotators in a radix 2 architecture is almost double and consequently, there exist

more sources of error.

It can be noted that the effect presented before appears at a higher value of σ: Pfa calculated for

σ = 10 does not follow the theoretical expression, unless channels 1 to 3 are eliminated in the calculations.

This was not the performance for the radix 4 implementation and σ = 10, figure 15. Results for radix

2 and σ = 3 are depicted in figure 17. It can be noted the effects of the different statistics at the the

first channels are more pronounced: Channels 1 to 16 must be eliminated instead of channels 1 to 3 in

figure 16.

Number of points. When the number of points of the FFT increases, two circumstances must be

considered. Firstly, the FFT has more stages, so more rotators are used. Secondly, the difference
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Figure 18: Pfa of a 4096-point FFT, radix 4, with-
out truncation and σ = 3.
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Figure 19: Pfa of a 1024-point FFT with trunca-
tion, 16 input bits, σ = 256.

between two rotation angles is smaller, so that more accurate rotations must be performed.

Figure 18 shows the Pfa of a 4096-point FFT, without truncation, radix = 4, and 8 input bits. For

σ = 10 the calculated Pfa is similar to the theoretical one, as it happens with the 1024-point FFT.

However, for σ = 3 the rotator error affects the results of the FFT, and the effect on the first four

channels is more dramatic than in the 1024-point FFT (figure 16).

8.1.2 Impact of the butterfly truncation

If an input bitwidth of 8 bits and a 1024-point FFT with butterfly truncation are considered, it must be

realized that altogether 10 bits are removed through the FFT (2 bits per stage for a radix-4 implemen-

tation), which leads to a lower performance. For example, a Pfa = 10−3 cannot be achieved for σ = 10.

Thus, in order to study the influence of the butterfly truncations, a 1024-point FFT with truncation and

16 input bits has been chosen, which is a widely used architecture.

Firstly, if σ is high, the Pfa is similar to the theoretical one, so neither the butterfly nor the multiplier

truncations are significant. Figure 19 shows the difference between the theoretical and the calculated Pfa

curves when σ = 256.5 For lower values of σ, the butterfly truncation modifies the probability density

functions of the noise samples. As a consequence, there appear big discrepancies between the calculated

Pfa and the theoretical one deduced for continous gaussian noise samples.

5It can be observed that the calculated curve has steps due to the fact that both the real and the imaginary parts of the
output are integers, so that the module range is not continuous.
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Figure 20: Typical curves of SNRmin and DR.
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Figure 21: Sensitivity and dynamic range of
1024-point FFTs.

8.2 Detection probability and dynamic range

The sensitivity, S = A2

min/2, is defined as the power of a sinusoid of amplitude Amin at the input that

assures certain detection probability, Pd, for a fixed false alarm probability, Pfa. According to this, the

minimum signal to noise ratio, SNRmin, is the quotient between the sensitivity and the input noise

power: SNRmin =
A2

min/2

σ2 .

The theoretical SNRTmin may be calculated from the required SNR at the output, SNRO, for

given Pd and Pfa [30] and the FFT processing gain for a centered sinusoidal signal, G = N
2
. Thus, the

theoretical SNRTmin can be obtained as:

SNRTmin =
SNROmin

G
=

SNROmin

N/2
(6)

On the other hand, the maximum signal to noise ratio, SNRTmax, is the quotient between the most

powerful input sinusoid without truncation at the output of an ADC with b bits and the input noise

power:

SNRTmax =
A2

max/2

σ2
=

(2b−1 − 1)
2
/2

σ2
(7)

Finally, the dynamic range, DR, is the quotient between the SNRmax and the SNRmin.

Figure 20 shows a schematic diagram with the behaviour of our FFT implementations (SNRmin and

DR) versus the input noise standard deviation, σ. In this figure, three main regions can be distinguished.
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When a high value of σ is selected (region C), the SNRmin remains constant (Amin decreases when σ

decreases) and is independent of σ as in the theoretical case. This happens because, as studied before,

the truncation effects are not relevant for high values of σ. Likewise, the DR follows the theoretical

behavior: It increases 6 dB per octave. Therefore, the best performance is obtained for decreasing values

of σ.

On the contrary, in region A the truncation effects are present because σ is low and both signal

and noise may occupy a few quantification levels. Under these circumstances, the dynamic range is

approximately constant because a significant reduction of σ hardly modifies the sensitivity, Amin , making

the SNRmin get worse. As a result, the higher σ is, the better performance is obtained.

The performance of some 1024-point designs is depicted in figure 21, which shows the SNRmin and

dynamic range in dB for a detection probability Pd = 90% and Pfa = 10−3 depending on the input noise6.

Under these circumstances, SNROmin = 11 dB according to [30], and, therefore, SNRTmin(dB) =

−16.09 dB. Following this, the theoretical DR is obtained as:

DRT (dB) = SNRmax − SNRTmin = 10 · log
(2b−1 − 1)2

2σ2
+ 16.09 (8)

In order to be able to compare 8 and 16-bit architectures, σ for the 16-bit architecture is normalized

by 28 in figure 21. From the analysis of this plot important conclusions can be drawn.

First of all, all FFTs with the same number of points have the same performance for high values of

σ due to the fact that the truncation effects are not significant in this part of the curves. Moreover, the

minimum reachable sensitivity of all designs is similar to the theoretical one and only depends on the

number of points of the FFT. Therefore, the SNRmin decreases 3 dB and the dynamic range increases

3 dB when the number of points is doubled.

On the other hand, radix 4 architectures offer better performance than the radix 2 ones due to the

larger number of rotators used in the radix 2 designs. Additionally, radix 4 architectures almost always

take up less area than the radix 2 ones, so radix 4 is usually the best choice.

The ratio in dB between the maximum amplitude at the input of an ADC without truncation and

the quantization level for an ADC with b bits is 6 × b dB. Thus, a maximum DR of 48 dB could be

expected for an 8-bit FFT. However, as is shown in figure 21, a dynamic range of about 54 dB may be

obtained with an 8-bit FFT without truncation. Consequently, signals with an amplitude lower than a

quantization level can be detected. On the other hand, the results for a 16-bit FFT with truncation are

6Channels with different noise statistics due to the rotator error have not been included in the calculations.
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better than the 8-bit implementations without truncation. However, it must be considered that a 16-bit

FFT could achieve a DR higher than 6 × b = 96 dB and, due to the butterfly truncation, it can only

obtain a DR of 62 dB and the lowest detectable signal has an amplitude Amin ≈ 25. Therefore, five of

the less significant bits are misused. As a result, instead of using a large number of bits and truncation,

it may be more interesting to use an FFT with less bits and without truncation.

8.2.1 Monobit FFT

Rotators are the only difference between the implementations of the conventional and monobit FFTs. In

the monobit FFT the rotations are accomplished by swapping the real and imaginary components of the

signal and/or changing the sign of the components. Consequently, although the rotation angles are an

approximation to the ones in the FFT, there exist no error in the rotations, and the gain of the monobit

rotator is always k = 1 in Eq. 5.

On the other hand, the processing gain of the monobit FFT for centered sinusoids depends on the

frequency bin and is always lower than the one of the conventional FFT, as is shown in figure 22 for the

case of 1024 points and radix 4. This point was discussed in detail in [23]. The monobit implementation

of the FFT algorithm also produces a degradation in the sidelobe levels which cannot be improved by

windowing. The average of the highest sidelobe level is 9-10 dB below the mainlobe independent of the

implementation and the number of points of the FFT (number of filters in the filter bank). This has a

direct impact on the instantaneous dynamic range [4, 23].

Fig. 23 represents the sensitivity and the dynamic range for a 1024-point FFT and two frequency

bins (bin 127 with processing gain G=24 dB, and bin=128 with G=26 dB). Two different implementa-

tions are analyzed: An FFT without truncation and 8-bit input bitwidth and an FFT with truncation

and 16-bit input bitwith7. The same comments for Fig. 21 apply here. However, additional features

appear in the monobit implementations. On the one hand, the discrepancies for high σ are due to the

non-constant processing gains throughout the filter bank generated with the FFT. On the other hand,

the improvement in the dynamic range and the lower deterioration in the sensitivity compared to the

conventional implementation is related to the gain of the monobit rotator: k = 1.

7In order to be able to compare 8 and 16-bit architectures, σ for the 16-bit architecture is normalized by 28.
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Figure 24: System diagram with the FB architecture.

9 Implementation of FFT-based digital channelized receivers

Even though the basic implementation of digital channelized receivers is based on the FFT algorithm,

additional elements are required. This section is devoted to the analysis and design of the whole system,

because the configuration and implementation of all the elements involved can significantly influence the

final performance of the receiver. In this sense, windowing or ADCs may play an important role in the

system because some FPGA resources may be required for its implementation.

Figure 24 illustrates the way the FB architecture can be used in a digital channelized receiver. In this

case, a 1024 radix-4 FB FFT without (with) truncation can process 251 (274) MS/s, what requires an

input data rate limited to 250 MS/s. Given that the FB FFT can process a sample per clock cycle, the

input flow could be digitalized with a simple ADC (from x(t) to x(n)). However, in the figure we can see
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how two analog signals come into the structure, x(t) and y(t), to produce two flows of real samples. This

is due to the computation of the FFT for complex data sequences, that can process two real FFTs with

a single architecture. After windowing, the two flows are mixed (xyw(n) in figure 24) and an additional

deinterleaving stage is needed to split the FFT output flows and order the complex transforms (X(k),

Y (k)).

Figure 25 illustrates how the FF architecture can be used in a digital channelized receiver, in a similar

way to the FB architecture but with a higher degree of parallelism. The FF FFT can process several

samples per clock cycle, and the throughput depends basically on the radix. For a radix 4 implementation

four samples must be input to the structure per clock cycle, as shown in figure 25. The clock speed can

be 222 MHz for both implementations with and without truncation, providing a processing speed of 888

MS/s. In this case, the input flow must be digitalized with a fast ADC and a demultiplexor has to be

used, in addition to a parallelization stage. With this, the input flow, x(t), can provide the four digital

samples required by the FF architecture, x(n). Again, we can see in the figure two sample flows coming

into the structure taking advantage of the complex processing.

Finally, it is well known that the Input/Output data rate may be a serious bottleneck in current

signal processing systems. In this sense, Xilinx FPGAs Virtex-II and Virtex-II Pro families can reach a

maximum clock frecuency of 420 MHz. This clock frequency is also the limit for the frequency of the

standart I/O on FGPAs (420 Mbps). However, it is possible to duplicate the I/O data rate to 820 Mbps

using DDR signaling, what means that data can change on each edge of the clock, or differential signaling
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(LVDS). The new Virtex-4 family, with a maximum internal clock of 500 MHz, provides IO data rates

that are even higher. This family provides up to 600 MHz for standart IO (HSTL & SSTL), and up to

1 Gbps with DDR and differential signaling.

With these I/O data rates it is not possible to interconnect directly an FPGA with a high performance

ADC. For example, the ADC TS83102G0B [31] can produce samples of 10 bits up to 2 GS/s. In this

case, we can solve this problem by using a demultiplexor (DMUX) between the ADC and the FPGA, for

instance the AT84CS001, as was depicted in figure 25. This component allows configurations of 1:4 (what

results in 500 Mbps in each pin, being therefore necessary to use DDR and LVDS in the FPGA) or 1:8

(250 Mbps in each pin, data rate in the limit of the FPGA standart I/O). Actually, the last commercial

version of this ADC integrates the DMUX to simplify the interface with FPGAs. For example the part

AT84AS004 [31] is an ADC of 10 bits and 2GS/s with and integrated DMUX of 1:4.

10 Conclusions

We have presented a comparative study of parallel pipelined architectures of the FFT algorithm targeting

FPGA devices for the implementation of digital channelized receivers. The in-depth exploration of the

FFT design space has been carried out with the help of a developed automatic tool. Both the digital

circuit designer point of view -where area, throughput, and latency are the main targets- and the system

designer perpective - where signal processing capabilities and power consumption are the main concerns-

are taken into account for a joint assessment. From our analysis we can conclude that the FF architecture

offers the optimum throughput at the expense of a higher power consumption, which will be reduced in

the new generation of FPGAs. On the other hand, the FB architecture is the optimum solution if the

area and power requirements are critical. A monobit version of both architectures can improve area,

throughput, and consumption with a degradation of the detection capabilities: It is suitable for the

detection of a single signal.

The experimental results have shown how the FB architecture requieres lower area than the FF

architecture but the last one allows to parallelize samples, which increases the throughput. Consequently,

FB structures can be used for large number of points FFTs, while feedforward architectures are better

suited for applications with hard real-time constraints.
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