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Abstract
In this paper, we show that frequency-warping (including
VTLN) can be implemented through linear transformation
of conventional MFCC. Unlike the Pitz-Ney [1] continu-
ous domain approach, we directly determine the relation be-
tween frequency-warping and the linear-transformation in the
discrete-domain. The advantage of such an approach is that
it can be applied to any frequency-warping and is not lim-
ited to cases where an analytical closed-form solution can be
found. The proposed method exploits the bandlimited inter-
polation idea (in the frequency-domain) to do the necessary
frequency-warping and yields exact results as long as the cep-
stral coefficients are que-frency limited. This idea of quefrency-
limitedness shows the importance of the filter-bank smoothing
of the spectra which has been ignored in [1, 2]. Furthermore,
unlike [1], since we operate in the discrete domain, we can also
apply the usual discrete-cosine transform (i.e. DCT-II) on the
logarithm of the filter-bank output to get conventional MFCC
features. Therefore, using our proposed method, we can lin-
early transform conventional MFCC cepstra to do VTLN and
we do not require any recomputation of the warped-features.
We provide experimental results in support of this approach.

1. Introduction
Vocal tract length normalization (VTLN) is an impor-
tant approach to reduce inter-speaker variability in speaker-
independent speech recognition. One of the most common
approaches to VTLN involves appropriately warping the fre-
quency axis and then obtaining the corresponding normalized
features after application of mel-warping (motivated by psy-
choacoustic arguments) and DCT which approximates decor-
relation of the features. The parameters of the warping func-
tion are usually estimated using a maximum-likelihood (ML)
criterion. Since the ML estimation of warp-factor usually in-
volves a grid-search, the features need to be recomputed as
many times and this is expensive. If we can directly transform
the original non-VTLN features for different warp-factors then
this would be much more computationally efficient. Further-
more, the knowledge of the linear transformation would help us
to compensate for the Jacobian of the linear transformation dur-
ing warp factor estimation. In [3], the linear-transform for each
warp-factor is itself estimated using a maximum-likelihood cri-
terion. In [4], a different approach to frequency-warping is pre-
sented; and in this approach too, we can express the frequency-
warping as a linear-transformation of the original features.
However, the focus of this paper is on the approach proposed
by Pitz and Ney [1], where they present a method for analyti-
cal computation of the linear-transformation in the continuous
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1: Figure shows that in discrete implementation, equally
d frequencies in warped domain, often do not correspond
of the equally-spaced frequencies in un-warped domain.

ncy domain.
e first briefly review their method.

he cepstral coefficients ck, k = 0, . . . , (N − 1) of a spec-
(ω) are defined by:

1

2π

πZ
−π

dωeiωk ln |X(ω)|2 =
sk

π

πZ
0

dω cos(ωk) ln |X(ω)|2 ,

(1)
sk is appropriate scaling of either 1

2
or 1.

he transformation for spectral warping is defined as ω →
gα(ω), where gα : [0, π] → [0, π] and is assumed to
ertible. Since gα is invertible, the value of the warped
um at any warped-frequency ω̃ can be found from the un-

d spectrum, i.e.
˛̨˛X̃α(ω̃)

˛̨˛ :=
˛̨
˛X “

g
(−1)
α (ω̃)

”˛̨˛.
ence, the n−th cepstral coefficient c̃n(α), n =
, (N − 1) of the warped spectrum is given by

c̃n(α) =
sk

π

πZ
0

dω̃ ln
˛̨̨
X

“
g(−1)

α (ω̃)
”˛̨˛2 cos(ω̃n) . (2)

pectrum ln
˛̨˛X “

g
(−1)
α (ω̃)

”˛̨̨2
is expanded in terms of the

ped cepstrum, ck, using the inverse of the relation of Eq. 1
serted into Eq. (2), to obtain c̃n(α) =

PK
k=0 Ank(α) ck

Ank(α) =
2sk

π

πZ
0

dω̃ cos(ω̃n) cos(g(−1)
α (ω̃)k) . (3)

owever, when operating in the discrete domain, the re-
between discrete-warped spectra and discrete-original

a is not so straightforward and can only be made by mak-
me additional assumption on the que-frency property of
pstra.



In discrete implementation, the value of the discrete
unwarped-spectra, ln |X(ω)|2, is known only at a set of equally
spaced frequencies ωq = 2πq

N
. In order to compute the warped

cepstrum, c̃n(α), we need to know the value of warped spectra,

ln
˛̨
˛X̃α(ω̃)

˛̨
˛2, at equally spaced set of frequencies, ω̃l = 2πl

N
.

As seen in Fig. 1, ω̃l may not correspond to any of the known
discrete un-warped frequencies, i.e. g

(−1)
α (ω̃l) may not corre-

spond to any of the discrete frequencies ωq . It is, therefore,
important to understand the conditions under which we can we

exactly recover ln
˛̨̨
X̃α(ω̃)

˛̨̨2
with the knowledge of ln |X(ω)|2,

at equally spaced frequencies ωq = 2πj
N

. There is an approach
suggested in [2], which uses un-warped ln |X(ω)|2 to directly
obtain the warped spectrum, but this is basically non-uniform
DFT and is only an approximation.

If ln |X(ω)|2 and ck are thought of as a discrete-time
Fourier transform (DTFT) pair, then sampling of ln |X(ω)|2
would result in periodic repetition of ck. As long as ck is strictly
que-frency limited and the sampling rate is sufficiently high,
then there is no aliasing in the cepstral domain. In such a case,
the value of ln |X(ω)|2 at any frequency (including g

(−1)
α (ω̃l))

can be found from its discrete samples through bandlimited in-
terpolation. This is basically exploiting the sampling theorem,
where a signal (in this case frequency-domain signal) can be re-
constructed from its samples by using sinc-interpolation. This
relationship can be seen by inserting Eq. 4 into Eq.7.

With this motivation, we address the following issues:

• In the discrete case, with proper assumptions, linear
transformation matrices can be found between original
cepstra and the warped cepstra without the need for ana-
lytical calculation of the matrix.

• In [1], the front-end signal processing is based on the
work in [2], and the cepstra is obtained without any
smoothing of the spectra. Therefore, in case of voiced
frames, the unwarped plain cepstra would have a pe-
riodic high que-frency component which may violate
the assumption of que-frency limitedness in the dis-
crete case. And further, in the case of mel-warping
(or any non-linear VTLN warping), the pitch harmon-
ics are no longer equally spaced and may manifest in
“broad que-frency” components. Therefore, to imple-
ment frequency-warping through linear transformation
of cepstra, we show that spectral smoothing is necessary.
This can be in the form of filter-bank prior to the compu-
tation of the cepstra and would serve an “anti-aliasing”
function.

• Note that, in [1, 2], the cepstral coefficients are obtained
by using the inverse Fourier transform (IFT). The fact
that ln |X(ω)|2 is a real and even function reduces the
IFT to be expressed in terms of the cosine basis func-
tions. However, this is not the usual discrete-cosine
transform (DCT), even when operating in the discrete
domain, because of the crucial half-sample shift. Nor-
mally, in speech recognition, the DCT (with half-sample
shift) is used due to their approximate de-correlating
properties. In this paper, we use this conventional DCT
(with half-sample shift) and show a direct linear rela-
tion between conventional MFCC and VTLN-warped
MFCC.
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Linear Transformation of plain Cepstra
s section, we present the discrete implementation of the

transformation required for warping the “plain” cep-
.e. without any filter-bank smoothing or DCT. Given a
of speech (with appropriate pre-emphasis and window-

x[m]}N−1
m=0, the corresponding DFT is computed to get

N−1
q=0 . The corresponding cepstra is computed by taking

garithm of the magnitude of X[q], i.e.

Ĉk =
1

N

N−1X
q=0

ln |X[q]|2 e+j 2π
N

qk. (4)

hat x[m] and the continuous spectra X(ω) (without mag-
and logarithm) form a DTFT pair. In conventional im-

ntation, to get the warped spectra X̃α(ω̃l = 2π
N

l), we can
e DTFT relation, i.e.

= X̃α(ω̃l) = X
“
g(−1)

α (ω̃l)
”

=

N−1X
m=0

x[m]e−jg
(−1)
α (ω̃l)m.

(5)
en apply the magnitude and the logarithm operation on
to get the warped cepstra as

Ĉn(α) =
1

N

N−1X
l=0

ln
˛̨̨
X̃α[l]

˛̨̨2
e+j 2π

N
ln. (6)

fore, for every warp factor, we have to compute the
d spectra X̃α[l] = X̃α(ω̃l) and then find the correspond-
arped-cepstra Ĉn(α) through an inverse DFT (IDFT).
ver, it would be computationally efficient if we could ob-
n(α) directly from Ĉk. Note that knowledge of Ĉk im-
nowledge of ln |X[q]|2 since they form a DFT pair. How-
ith this knowledge we cannot recover x[m] or X[q] be-

of the magnitude operation, and therefore we cannot com-
˜

α[l]. However, since our interest is only in ln |X̃α[l]|2, if
sume that Ĉk is que-frency limited and unaliased, then we
actly determine ln |X̃α[l]|2 from ln |X[q]|2}N−1

q=0 through

nterpolation. Or, we can directly determine it from Ĉk by

|X̃α[l]|2 = ln |X̃α(ω̃l)|2 = ln |X
“
g(−1)

α (ω̃l)
”
|2

=

N−1X
k=0

Ĉke−j 2π
N

g
(−1)
α (ω̃l)k (7)

that this equation will not be exact if there is aliasing, in
case the values will only match at ln |X(ωq)|2. Now,

tuting Eq.7 in Eq.6, we get the linear transformation rela-
etween Ĉn(α) and Ĉk, i.e.

(α) =

N−1X
k=0

Ĉk
1

N

N−1X
l=0

e−j 2π
N

g
(−1)
α (ω̃l)ke+j 2π

N
ln

=

N−1X
k=0

An,kĈk (8)

bove equations reveal the benefit of using the discrete
ach. The basic approach is to start with equally spaced
es in the warped domain, and then map it back to cor-
ding discrete values in the physical frequency or ω do-
From these discrete values, the matrices can be formed

wn in Eq. 8. This is in contrast to the continuous domain



approach of [1], where we have to use the analytical formula for
the warping function and then analytically solve for the linear
transformation through (3).

In practice, piece-wise linear-warping associated with
VTLN is normally applied first, followed by mel-warping to
get the final VTL-normalized mel-warped cepstra, i.e.

ω̃mel,α = gmel(λ) = gmel(gα(ω)) = gmel,α(ω). (9)

As the above equation indicates, we start from equally spaced
samples in the ω̃mel,α, do inverse-mel warping, followed
by inverse scaling to get the corresponding non-uniformly
spaced discrete frequencies. Using these discrete frequen-
cies, the transformation between plain cepstral coefficients and
mel+linear-warped cepstral coefficients can be found as

Ĉn(mel, α) =

N−1X
k=0

Ĉk
1

N

N−1X
l=0

e−j 2π
N

gα
mel

(−1)( 2π
N

l)ke+j 2π
N

ln

=

N−1X
k=0

Dmel,α
n,k Ĉk. (10)

Of course, what is of practical importance is the relation be-
tween mel-warped cepstra and VTLN-warped-mel-warped cep-
stra, i.e.

Ĉn(mel, α) =

N−1X
k=0

Dmel,α
n,k

N−1X
m=0

F−1mel
k,mĈm(mel), (11)

where we make use of the relation Ĉk =PN−1
m=0 F−1mel

k,mĈm(mel).

3. Effect of Spectral Smoothing on warped
coefficients obtained by Linear

Transformation
In this section, we show the importance of pre-smoothing of
spectra. To begin with, we will adopt the front-end signal pro-
cessing discussed in [2], where there is no smoothing of spectra
and the logarithm is directly applied on the magnitude of spectra
followed by inverse Fourier transform. Since there is no spectral
smoothing, the corresponding cepstra is not strictly que-frency
limited, especially when pitch harmonics are present. In fact,
if there is some warping of the frequency-axis, then the pitch
periodicity is also destroyed and the cepstra will be smeared by
the effect of the broad-quefrency effect of the pitch. In Table 1,
we compare the warped-cepstral coefficients obtained by our
method with the coefficients obtained by actual spectral warp-
ing using (5) and (6). In this example, we have used both mel-
warping and VTLN warping with a warp-factor of 0.90. For
this case, a closed-form solution can be found for the method
in [1] and therefore the linear-transformation matrices are iden-
tical. From Table 1, we can see that, for the un-smoothed case,
the linearly transformed cepstra corresponding to mel-warping
with VTLN-warping are significantly different from the values
of the cepstra obtained by directly warping the spectra.

Next, we smoothed the spectra so that the corresponding
cepstra becomes que-frency limited. We have adopted the pro-
cedure described in [5], which essentially involves smoothing
the spectra with filters that have a hamming-window like shape.
These filters are uniformly spaced and have uniform bandwidth
in the physical frequency domain. We then applied the loga-
rithm on the magnitude of the filter-bank output and computed
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Un-Smoothed Smoothed
Co.# Warp L.T. Warp L.T.
c0 3.277 3.242 5.054 5.054
c1 0.391 0.341 0.246 0.246
c2 0.063 -0.049 -0.078 -0.078
c3 0.188 0.183 0.519 0.519
c4 -0.026 -0.006 -0.071 -0.071
c5 -0.115 -0.102 -0.386 -0.386
c6 -0.028 -0.008 -0.087 -0.087
c7 -0.029 -0.006 0.007 0.007
c8 -0.063 -0.035 -0.082 -0.082
c9 -0.005 -0.001 -0.007 -0.007
c10 -0.011 0.009 -0.062 -0.062
c11 0.009 0.008 0.061 0.061
c12 0.008 0.002 0.017 0.017

1: Warped cepstral coefficients with and without smooth-
spectra for a frame of voiced speech. As seen, when

is no spectral-smoothing, the cepstra from the linear-
ormation approach differ from the cepstra obtained by ac-
ectral-warping. Here “Warp” indicates the use of actual

al warping while “L.T.” indicates cepstral coefficients ob-
by linear-transformation method

pstra. In Table 1, we can see that, for the smoothed case,
pstra obtained by linear-transformation and that obtained
ly by spectral-warping are identical.
this section we have shown that, with smoothing of spec-

e can assure that the cepstra is que-frency limited and in
se, the cepstra obtained by actual spectral-warping and by
er-transformation method are identical. In the next sec-
e will extend the idea of linear transformation of cepstra

case where DCT has been applied on the logarithm of the
bank smoothed spectra.

4. Linear Transformation of cepstra
obtained by applying DCT

st automatic speech recognition systems, diagonal covari-
atrices are used based on the assumption that the features
proximately decorrelated. This is often approximately
d by the application of discrete-cosine transform (DCT)
computing the cepstral coefficients.
herefore, in this section, the cepstra (without mel-
ng) is obtained by applying the DCT on the logarithm of
ter-bank smoothed spectra, ln |XFB [q]|2, i.e. :

dk =

M−1X
q=0

ln |XFB [q]|2 cos

„
(2q + 1) k π

2M

«
, (12)

M is the number of outputs of filter-bank. Similarly, we
rite the “plain” cepstra of filter-bank output (with abuse
ation) as

=
1

2(M − 1)

M−1X
q=0

βq ln |XFB [q]|2 cos(
π

M − 1
qk),

(13)
βq = 2 for q �= 0, (M − 1). This relation will be clear
look at the analogy with Eq.4 and set M = N

2
+ 1.

the above two equations, we can write the linear trans-
tion relation between dk and Ĉk. But, from Section 2,
itself related through linear transformation to Ĉm(mel)

n(mel, α). Using inverse DCT relations, we can write
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Figure 2: The signal processing blocks in our linear transforma-
tion approach to computing warped features.
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Figure 3: Figure shows the uniformly spaced but varying band-
width filters that are used for smoothing the spectra.

the linear transformation between Ĉm(mel) and dm(mel), and
Ĉn(mel, α) and dn(mel, α). Therefore, with the knowledge
of dk and assuming proper smoothing, we can do any type of
frequency-warping and obtain the corresponding MFCC coeffi-
cients.

In conventional MFCC implementation, the mel-warping
and the filter-bank are integrated to have a mel-warped filter-
bank. Any frequency-warping operation that is necessary
is therefore done by appropriate modification of the filter-
bank. However, here (see Fig.2) we have separated the filter-
bank smoothing and the frequency-warping operation, and any
frequency-warping operation (including mel) can be imple-
mented by either (i) integrating warping into sinc-interpolation
of log-filter bank output or (ii) as a linear-transformation of the
DCT cepstra.

5. Recognition Experiments
We demonstrate this linear transformation approach to warping
on a large vocabulary speech recognition task. In conventional
MFCC, we take M equally-spaced and uniform bandwidth tri-
angular filters in the mel domain. This corresponds to non-
uniformly spaced (because of mel-warping) and non-uniform
bandwidth filters in the physical frequency domain. We then
apply DCT on the logarithm of the filter-bank output to get
MFCC features. In our linear-transformation approach, we have
M uniformly spaced but non-uniform bandwidth filters in the
physical frequency domain as seen in Fig. 3. This is because
the filters are matched to have the same uniform bandwidth in
the mel-domain as conventional MFCC. The warping (includ-
ing mel) is implemented by appropriate linear transformation as
seen in Fig. 2. The linear transformation, therefore, implicitly
does the warping of filter-bank center-frequencies.

The triangular filters are not very “smooth” filters, and the
cepstra do not sufficiently decay when we use only 20 filters in
the standard RWTH implementation of MFCC. Therefore, we
have increased the number of filters to 33, and have appropri-
ately increased the filter-width to substantially reduce the alias-
ing effects. Under these “alias-free’ conditions, conventional
MFCC obtained by integrated mel-warped filter-bank and our
linear transformation approach should yield the same results.

In this paper, as an illustration of our method, we show the
results for mel-warped cepstra obtained by using linear transfor-
mation between dk and dm(mel). This approach is compared
with conventional MFCC with the integrated mel-warped filter-
bank. In both cases, we use 33 filters and similar filter-widths.
We have used 16 MFCC features and the corresponding first
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2: We compare the word-error rates (WERs) on English
development set – dev05. As we can see that the WERs
mparable, with the minor difference being due to the cep-
eing not completely que-frency limited due to the use of
ular filters.

tives and also the second derivative of zeroth cepstral co-
nt to form a 33 dimensional feature vector. We have used
on-tree state clustering and the tree contains 4500 states.
gle global variance vector is used and the cross-word tri-

HMM models have been trained using 41 hours of En-
European Parliamentary (EPPS) data. The system was
ted using about 4 hours of development data – dev05. We

om Table 2 that the word-error rates are almost identical
ng that conventional MFCC can be implemented either by
ated mel-warped filter-bank or by our approach.
he issue of VTLN warping through linear transformation
ventional MFCC, i.e. from dm(mel) to dn(mel, α), and
ue of Jacobian will be discussed in future work using the

ormations derived in this paper.

6. Discussion
s paper, we have shown that we can linearly transform
a obtained from filter-bank smoothed spectra to obtain
ent warping operations. This has the advantage that the
a need not be recomputed for each warping operation but
linearly transformed from the original cepstra as long as

pstra is que-frency limited. This illustrates the necessity
smoothing of the spectra before the computation of cep-

nd serves as an “anti-aliasing” function. In all our experi-
we have attempted to mimic the signal processing used in

ntional MFCC and have shown that similar results can be
ed either by linear-transformation approach or frequency-
ng approach.
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