
Implementing Gentry’s Fully-Homomorphic

Encryption Scheme

Craig Gentry� and Shai Halevi�

IBM Research

Abstract. We describe a working implementation of a variant of Gen-
try’s fully homomorphic encryption scheme (STOC 2009), similar to
the variant used in an earlier implementation effort by Smart and Ver-
cauteren (PKC 2010). Smart and Vercauteren implemented the underly-
ing “somewhat homomorphic” scheme, but were not able to implement
the bootstrapping functionality that is needed to get the complete scheme
to work. We show a number of optimizations that allow us to implement
all aspects of the scheme, including the bootstrapping functionality.

Our main optimization is a key-generation method for the underlying
somewhat homomorphic encryption, that does not require full polyno-
mial inversion. This reduces the asymptotic complexity from Õ(n2.5) to
Õ(n1.5) when working with dimension-n lattices (and practically reduc-
ing the time from many hours/days to a few seconds/minutes). Other
optimizations include a batching technique for encryption, a careful anal-
ysis of the degree of the decryption polynomial, and some space/time
trade-offs for the fully-homomorphic scheme.

We tested our implementation with lattices of several dimensions, cor-
responding to several security levels. From a “toy” setting in dimension
512, to “small,” “medium,” and “large” settings in dimensions 2048,
8192, and 32768, respectively. The public-key size ranges in size from
70 Megabytes for the “small” setting to 2.3 Gigabytes for the “large”
setting. The time to run one bootstrapping operation (on a 1-CPU 64-
bit machine with large memory) ranges from 30 seconds for the “small”
setting to 30 minutes for the “large” setting.

1 Introduction

Encryption schemes that support operations on encrypted data (aka homomor-
phic encryption) have a very wide range of applications in cryptography. This
concept was introduced by Rivest et al. shortly after the discovery of public key
cryptography [12], and many known public-key cryptosystems support either
addition or multiplication of encrypted data. However, supporting both at the
same time seems harder, and until very recently all the attempts at constructing
so-called “fully homomorphic” encryption turned out to be insecure.

In 2009, Gentry described the first plausible construction of a fully homomor-
phic cryptosystem [3]. Gentry’s construction consists of several steps: He first

� Supported by DARPA grant DARPA-BAA 10-81.

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 129–148, 2011.
c© International Association for Cryptologic Research 2011

130 C. Gentry and S. Halevi

constructed a “somewhat homomorphic” scheme that supports evaluating low-
degree polynomials on the encrypted data, next he needed to “squash” the de-
cryption procedure so that it can be expressed as a low-degree polynomial which
is supported by the scheme, and finally he applied a “bootstrapping” transforma-
tion to obtain a fully homomorphic scheme. The crucial point in this process is
to obtain a scheme that can evaluate polynomials of high-enough degree, and at
the same time has decryption procedure that can be expressed as a polynomial of
low-enough degree. Once the degree of polynomials that can be evaluated by the
scheme exceeds the degree of the decryption polynomial (times two), the scheme
is called “bootstrappable” and it can then be converted into a fully homomorphic
scheme.

Toward a bootstrappable scheme, Gentry described in [3] a somewhat homo-
morphic scheme, which is roughly a GGH-type scheme [6,8] over ideal lattices.
Gentry later proved [4] that with an appropriate key-generation procedure, the
security of that scheme can be (quantumly) reduced to the worst-case hardness
of some lattice problems in ideal lattices.

This somewhat homomorphic scheme is not yet bootstrappable, so Gentry
described in [3] a transformation to squash the decryption procedure, reducing
the degree of the decryption polynomial. This is done by adding to the public
key an additional hint about the secret key, in the form of a “sparse subset-
sum” problem (SSSP). Namely the public key is augmented with a big set of
vectors, such that there exists a very sparse subset of them that adds up to the
secret key. A ciphertext of the underlying scheme can be “post-processed” using
this additional hint, and the post-processed ciphertext can be decrypted with a
low-degree polynomial, thus obtaining a bootstrappable scheme.

Stehlé and Steinfeld described in [14] two optimizations to Gentry’s scheme,
one that reduces the number of vectors in the SSSP instance, and another that
can be used to reduce the degree of the decryption polynomial (at the expense
of introducing a small probability of decryption errors). We mention that in
our implementation we use the first optimization but not the second1. Some
improvements to Gentry’s key-generation procedure were discussed in [9].

1.1 The Smart-Vercauteren Implementation

The first attempt to implement Gentry’s scheme was made in 2010 by Smart
and Vercauteren [13]. They chose to implement a variant of the scheme using
“principal-ideal lattices” of prime determinant. Such lattices can be represented
implicitly by just two integers (regardless of their dimension), and moreover
Smart and Vercauteren described a decryption method where the secret key
is represented by a single integer. Smart and Vercauteren were able to imple-
ment the underlying somewhat homomorphic scheme, but they were not able
to support large enough parameters to make Gentry’s squashing technique go
through. As a result they could not obtain a bootstrappable scheme or a fully
homomorphic scheme.
1 The reason we do not use the second optimization is that the decryption error

probability is too high for our parameter settings.

Implementing Gentry’s Fully-Homomorphic Encryption Scheme 131

One obstacle in the Smart-Vercauteren implementation was the complexity
of key generation for the somewhat homomorphic scheme: For one thing, they
must generate very many candidates before they find one whose determinant
is prime. (One may need to try as many as n1.5 candidates when working with
lattices in dimension n.) And even after finding one, the complexity of computing
the secret key that corresponds to this lattice is at least Θ̃(n2.5) for lattices in
dimension n. For both of these reasons, they were not able to generate keys in
dimensions n > 2048.

Moreover, Smart and Vercauteren estimated that the squashed decryption
polynomial will have degree of a few hundreds, and that to support this procedure
with their parameters they need to use lattices of dimension at least n = 227(≈
1.3×108), which is well beyond the capabilities of the key-generation procedure.

1.2 Our Implementation

We continue in the same direction of the Smart-Vercauteren implementation
and describe optimizations that allow us to implement also the squashing part,
thereby obtaining a bootstrappable scheme and a fully homomorphic scheme.

For key-generation, we present a new faster algorithm for computing the secret
key, and also eliminate the requirement that the determinant of the lattice be
prime. We also present many simplifications and optimizations for the squashed
decryption procedure, and as a result our decryption polynomial has degree
only fifteen. Finally, our choice of parameters is somewhat more aggressive than
Smart and Vercauteren (which we complement by analyzing the complexity of
known attacks).

Differently from [13], we decouple the dimension n from the size of the integers
that we choose during key generation. Decoupling these two parameters lets
us decouple functionality from security. Namely, we can obtain bootstrappable
schemes in any given dimension, but of course the schemes in low dimensions
will not be secure. Our (rather crude) analysis suggests that the scheme may be
practically secure at dimension n = 213 or n = 215, and we put this analysis to
the test by publishing a few challenges in dimensions from 512 up to 215.

1.3 Organization

We give some background in Section 2, and then describe our implementation
of the underlying “somewhat homomorphic” encryption scheme in Sections 3
through 7. A description of our optimizations that are specific to the bootstrap-
ping functionality appears in the full version of this report [5].

2 Background

Notations. Throughout this report we use ‘·’ to denote scalar multiplication and
‘×’ to denote any other type of multiplication. For integers z, d, we denote the
reduction of z modulo d by either [z]d or 〈z〉d. We use [z]d when the operation

132 C. Gentry and S. Halevi

maps integers to the interval [−d/2, d/2), and use 〈z〉d when the operation maps
integers to the interval [0, d). We use the generic “z mod d” when the specific
interval does not matter (e.g., mod 2). For example we have [13]5 = −2 vs.
〈13〉5 = 3, but [9]7 = 〈9〉7 = 2.

For a rational number q, we denote by �q� the rounding of q to the nearest
integer, and by [q] we denote the distance between q and the nearest integer.
That is, if q = a

b then [q] def= [a]b
b and �q� def= q − [q]. For example,

⌈
13
5

⌋
= 3

and [135] = −2
5 . These notations are extended to vectors in the natural way:

for example if q = 〈q0, q1, . . . , qn−1〉 is a rational vector then rounding is done
coordinate-wise, �q� = 〈�q0� , �q1� , . . . , �qn−1�〉.

2.1 Lattices

A full-rank n-dimensional lattice is a discrete subgroup of R
n, concretely repre-

sented as the set of all integer linear combinations of some basis B=(b1, . . . , bn)∈
R

n of linearly independent vectors. Viewing the vectors bi as the rows of a matrix
B ∈ R

n×n, we have: L = L(B) = {y ×B : y ∈ Z
n} .

Every lattice (of dimension n > 1) has an infinite number of lattice bases. If
B1 and B2 are two lattice bases of L, then there is some unimodular matrix U
(i.e., U has integer entries and det(U) = ±1) satisfying B1 = U ×B2. Since U is
unimodular, | det(Bi)| is invariant for different bases of L, and we may refer to
it as det(L). This value is precisely the size of the quotient group Z

n/L if L is an
integer lattice. To basis B of lattice L we associate the half-open parallelepiped
P(B)← {∑n

i=1 xibi : xi ∈ [−1/2, 1/2)}. The volume of P(B) is precisely det(L).
For c ∈ R

n and basis B of L, we use c mod B to denote the unique vector
c′ ∈ P(B) such that c − c′ ∈ L. Given c and B, c mod B can be computed
efficiently as c−	c×B−1
×B = [c×B−1]×B. (Recall that 	·
 means rounding
to the nearest integer and [·] is the fractional part.)

Every full-rank lattice has a unique Hermite normal form (HNF) basis where
bi,j = 0 for all i < j (lower-triangular), bj,j > 0 for all j, and for all i > j bi,j ∈
[−bj,j/2, +bj,j/2). Given any basis B of L, one can compute HNF(L) efficiently
via Gaussian elimination. The HNF is in some sense the “least revealing” basis
of L, and thus typically serves as the public key representation of the lattice [8].

Short vectors and Bounded Distance Decoding. The length of the shortest nonzero
vector in a lattice L is denoted λ1(L), and Minkowski’s theorem says that for any
n-dimensional lattice L (n > 1) we have λ1(L) <

√
n·det(L)1/n. Heuristically, for

random lattices the quantity det(L)1/n serves as a threshold: for t� det(L)1/n

we don’t expect to find any nonzero vectors in L of size t, but for t det(L)1/n

we expect to find exponentially many vectors in L of size t.
In the “bounded distance decoding” problem (BDDP), one is given a basis B of

some lattice L, and a vector c that is very close to some lattice point of L, and the
goal is to find the point in L nearest to c. In the promise problem γ-BDDP, we
have a parameter γ > 1 and the promise that dist(L, c) def= minv∈L{‖c− v‖} ≤
det(L)1/n/γ. (BDDP is often defined with respect to λ1 rather than with respect
to det(L)1/n, but the current definition is more convenient in our case.)

Implementing Gentry’s Fully-Homomorphic Encryption Scheme 133

Gama and Nguyen conducted extensive experiments with lattices in dimen-
sions 100-400 [2], and concluded that for those dimensions it is feasible to solve
γ-BDDP when γ > 1.01n ≈ 2n/70. More generally, the best algorithms for solving
the γ-BDDP in n-dimensional lattices take time exponential in n/ log γ. Specif-
ically, currently known algorithms can solve dimension-n γ-BDDP in time 2k

up to γ = 2
µn

k/ log k , where μ is a parameter that depends on the exact details of
the algorithm. (Extrapolating from the Gama-Nguyen experiments, we expect
something like μ ∈ [0.1, 0.2].)

2.2 Ideal Lattices

Let f(x) be an integer monic irreducible polynomial of degree n. In this paper,
we use f(x) = xn + 1, where n is a power of 2. Let R be the ring of integer
polynomials modulo f(x), R

def= Z[x]/(f(x)). Each element of R is a polynomial
of degree at most n − 1, and thus is associated to a coefficient vector in Z

n.
This way, we can view each element of R as being both a polynomial and a
vector. For v(x), we let ‖v‖ be the Euclidean norm of its coefficient vector.
For every ring R, there is an associated expansion factor γMult(R) such that
‖u×v‖ ≤ γMult(R) · ‖u‖ ·‖v‖, where × denotes multiplication in the ring. When
f(x) = xn+1, γMult(R) is

√
n. However, for “random vectors” u, v the expansion

factor is typically much smaller, and our experiments suggest that we typically
have ‖u× v‖ ≈ ‖u‖ · ‖v‖.

Let I be an ideal of R – that is, a subset of R that is closed under addition
and multiplication by elements of R. Since I is additively closed, the coefficient
vectors associated to elements of I form a lattice. We call I an ideal lattice to
emphasize this object’s dual nature as an algebraic ideal and a lattice2. Ideals
have additive structure as lattices, but they also have multiplicative structure.
The product IJ of two ideals I and J is the additive closure of the set {v ×
w : v ∈ I, w ∈ J}, where ‘×’ is ring multiplication. To simplify things, we
will use principal ideals of R – i.e., ideals with a single generator. The ideal
(v) generated by v ∈ R corresponds to the lattice generated by the vectors
{vi

def= v × xi mod f(x) : i ∈ [0, n − 1]}; we call this the rotation basis of the
ideal lattice (v).

Let K be a field containing the ring R (in our case K = Q[x]/(f(x))). The
inverse of an ideal I ⊆ R is I−1 = {w ∈ K : ∀v ∈ I, v ×w ∈ R}. The inverse
of a principal ideal (v) is given by (v−1), where the inverse v−1 is taken in the
field K.

2.3 GGH-Type Cryptosystems

We briefly recall Micciancio’s “cleaned-up version” of GGH cryptosystems [6,8].
The secret and public keys are “good” and “bad” bases of some lattice L. More
specifically, the key-holder generates a good basis by choosing Bsk to be a basis of

2 Alternative representations of an ideal lattice are possible – e.g., see [11,7].

134 C. Gentry and S. Halevi

short, “nearly orthogonal” vectors. Then it sets the public key to be the Hermite
normal form of the same lattice, Bpk

def= HNF(L(Bsk)).
A ciphertext in a GGH-type cryptosystem is a vector c close to the lattice

L(Bpk), and the message which is encrypted in this ciphertext is somehow em-
bedded in the distance from c to the nearest lattice vector. To encrypt a mes-
sage m, the sender chooses a short “error vector” e that encodes m, and then
computes the ciphertext as c← e mod Bpk. Note that if e is short enough (i.e.,
less than λ1(L)/2), then it is indeed the distance between c and the nearest
lattice point.

To decrypt, the key-holder uses its “good” basis Bsk to recover e by setting
e ← c mod Bsk, and then recovers m from e. The reason decryption works is
that, if the parameters are chosen correctly, then the parallelepiped P(Bsk) of
the secret key will be a “plump” parallelepiped that contains a sphere of radius
bigger than ‖e‖, so that e is the point inside P(Bsk) that equals c modulo L. On
the other hand, the parallelepiped P(Bpk) of the public key will be very skewed,
and will not contain a sphere of large radius, making it useless for solving BDDP.

2.4 Gentry’s Somewhat-Homomorphic Cryptosystem

Gentry’s somewhat homomorphic encryption scheme [3] can be seen as a GGH-
type scheme over ideal lattices. The public key consists of a “bad” basis Bpk of
an ideal lattice J , along with some basis BI of a “small” ideal I (which is used
to embed messages into the error vectors). For example, the small ideal I can
be taken to be I = (2), the set of vectors with all even coefficients.

A ciphertext in Gentry’s scheme is a vector close to a J-point, with the
message being embedded in the distance to the nearest lattice point. More specif-
ically, the plaintext space is {0, 1}, which is embedded in R/I = {0, 1}n by en-
coding 0 as 0n and 1 as 0n−11. For an encoded bit m ∈ {0, 1}n we set e = 2r+m
for a random small vector r, and then output the ciphertext c← e mod Bpk.

The secret key in Gentry’s scheme (that plays the role of the “good basis” of
J) is just a short vector w ∈ J−1. Decryption involves computing the fractional
part [w × c]. Since c = j + e for some j ∈ J , then w × c = w× j + w × e. But
w × j is in R and thus an integer vector, so w × c and w × e have the same
fractional part, [w × c] = [w × e]. If w and e are short enough – in particular,
if we have the guarantee that all of the coefficients of w × e have magnitude
less than 1/2 – then [w × e] equals w × e exactly. From w × e, the decryptor
can multiply by w−1 to recover e, and then recover m ← e mod 2. The actual
decryption procedure from [3] is slightly different, however. Specifically, w is
“tweaked” so that decryption can be implemented as m ← c − [w × c] mod 2
(when I = (2)).

The reason that this scheme is somewhat homomorphic is that for two ci-
phertexts c1 = j1 + e1 and c2 = j2 + e2, their sum is j3 + e3 where j3 =
j1 + j2 ∈ J and e3 = e1 + e2 is small. Similarly, their product is j4 + e4 where
j4 = j1 × (j2 + e2) + e1 × j2 ∈ J and e4 = e1 × e2 is still small. If fresh en-
crypted ciphertexts are very very close to the lattice, then it is possible to add and

Implementing Gentry’s Fully-Homomorphic Encryption Scheme 135

multiply ciphertexts for a while before the error grows beyond the decryption
radius of the secret key.

The Smart-Vercauteren Variant. Smart and Vercauteren [13] work over
the ring R = Z[x]/fn(x), where fn(x) = xn + 1 and n is a power of two. The
ideal J is set as a principal ideal by choosing a vector v at random from some
n-dimensional cube, subject to the condition that the determinant of (v) is
prime, and then setting J = (v). It is known that such ideals can be implicitly
represented by only two integers, namely the determinant d = det(J) and a root
r of fn(x) modulo d. (An easy proof of this fact “from first principles” can be
derived from our Lemma 1 below.) Specifically, the Hermite normal form of this
ideal lattice is

HNF(J) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢⎢
⎣

d 0 0 0 0
−r 1 0 0 0
−[r2]d 0 1 0 0
−[r3]d 0 0 1 0

. . .
−[rn−1]d 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥⎥
⎦

(1)

It is easy to see that reducing a vector a modulo HNF(J) consists of evaluat-
ing the associated polynomial a(x) at the point r modulo d, then outputting
the vector 〈[a(r)]d, 0, 0, . . . , 0〉 (see Section 5). Hence encryption of a vector
〈m, 0, 0, . . . , 0〉 with m ∈ {0, 1} can be done by choosing a random small polyno-
mial u(x) and evaluating it at r, then outputting the integer c← [2u(r) + m]d.

Smart and Vercauteren also describe a decryption procedure that uses a single
integer w as the secret key, setting m← (c−�cw/d�) mod 2. Jumping ahead, we
note that our decryption procedure from Section 6 is very similar, except that
for convenience we replace the rational division cw/d by modular multiplication
[cw]d.

3 Key Generation

We adopt the Smart-Vercauteren approach [13], in that we also use principal-
ideal lattices in the ring of polynomials modulo fn(x) def= xn+1 with n a power of
two. We do not require that these principal-ideal lattices have prime determinant,
instead we only need the Hermite normal form to have the same form as in
Equation (1). During key-generation we choose v at random in some cube, verify
that the HNF has the right form, and work with the principal ideal (v). We have
two parameters: the dimension n, which must be a power of two, and the bit-
size t of coefficients in the generating polynomial. Key-generation consists of the
following steps:

1. Choose a random n-dimensional integer lattice v, where each entry vi is
chosen at random as a t-bit (signed) integer. With this vector v we associate
the formal polynomial v(x) def=

∑n−1
i=0 vix

i, as well as the rotation basis:

136 C. Gentry and S. Halevi

V =

⎡

⎢⎢
⎢
⎢
⎢
⎣

v0 v1 v2 vn−1

−vn−1 v0 v1 vn−2

−vn−2 −vn−1 v0 vn−3

. . .
−v1 −v2 −v3 v0

⎤

⎥⎥
⎥
⎥
⎥
⎦

(2)

The i’th row is a cyclic shift of v by i positions to the right, with the “overflow
entries” negated. Note that the i’th row corresponds to the coefficients of the
polynomial vi(x) = v(x) × xi (mod fn(x)). Note that just like V itself, the
entire lattice L(V) is also closed under “rotation”: Namely, for any vector
〈u0, u1, . . . , un−1〉 ∈ L(V), also the vector 〈−un−1, u0, . . . , un−2〉 is in L(V).

2. Next we compute the scaled inverse of v(x) modulo fn(x), namely an integer
polynomial w(x) of degree at most n− 1, such that w(x) × v(x) = constant
(mod fn(x)). Specifically, this constant is the determinant of the lattice
L(V), which must be equal to the resultant of the polynomials v(x) and
fn(x) (since fn is monic). Below we denote the resultant by d, and denote
the coefficient-vector of w(x) by w = 〈w0, w1, . . . , wn−1〉. It is easy to check
that the matrix

W =

⎡

⎢⎢
⎢
⎢
⎢
⎣

w0 w1 w2 wn−1

−wn−1 w0 w1 wn−2

−wn−2 −wn−1 w0 wn−3

. . .
−w1 −w2 −w3 w0

⎤

⎥⎥
⎥
⎥
⎥
⎦

(3)

is the scaled inverse of V , namely W × V = V ×W = d · I. One way to
compute the polynomial w(x) is by applying the extended Euclidean-GCD
algorithm (for polynomials) to v(x) and fn(x). See Section 4 for a more
efficient method of computing w(x).

3. We also check that this is a good generating polynomial. We consider v to be
good if the Hermite-Normal-form of V has the same form as in Equation (1),
namely all except the leftmost column equal to the identity matrix. See below
for a simple check that the v is good, in our implementation we test this
condition while computing the inverse.

It was observed by Nigel Smart that the HNF has the correct form when-
ever the determinant is odd and square-free. Indeed, in our tests this condi-
tion was met with probability roughly 0.5, irrespective of the dimension and
bit length, with the failure cases usually due to the determinant of V being
even.

Checking the HNF. In Lemma 1 below we prove that the HNF of the lattice
L(V) has the right form if and only if the lattice contains a vector of the form
〈−r, 1, 0, . . . , 0〉. Namely, if and only if there exists an integer vector y and an-
other integer r such that

y × V = 〈−r, 1, 0, . . . , 0〉

Implementing Gentry’s Fully-Homomorphic Encryption Scheme 137

Multiplying the last equation on the right by W , we get the equivalent condition

y × V ×W = 〈−r, 1, 0 . . . , 0〉 ×W (4)
⇔ y×(dI)=d · y = −r · 〈w0, w1, w2, . . . , wn−1〉+ 〈−wn−1, w0, w1, . . . , wn−2〉

In other words, there must exists an integer r such that the second row of W
minus r times the first row yields a vector of integers that are all divisible by d:

−r · 〈w0, w1, w2, . . . , wn−1〉+ 〈−wn−1, w0, w1, . . . , wn−2〉 = 0 (mod d)
⇔ −r · 〈w0, w1, w2, . . . , wn−1〉 = 〈wn−1,−w0,−w1, . . . ,−wn−2〉 (mod d)

The last condition can be checked easily: We compute r := w0/w1 mod d (as-
suming that w1 has an inverse modulo d), then check that r ·wi+1 = wi (mod d)
holds for all i = 1, . . . , n− 2 and also −r · w0 = wn−1 (mod d) . Note that this
means in particular that rn = −1 (mod d). (In our implementation we actually
test only that last condition, instead of testing all the equalities r · wi+1 = wi

(mod d).)

Lemma 1. The Hermite normal form of the matrix V from Equation (2) is
equal to the identity matrix in all but the leftmost column, if and only if the lattice
spanned by the rows of V contains a vector of the form r = 〈−r, 1, 0 . . . , 0〉.

Proof. Let B be the Hermite normal form of V . Namely, B is lower triangular
matrix with non-negative diagonal entries, where the rows of B span the same
lattice as the rows of V , and the absolute value of every entry under the diagonal
in B is no more than half the diagonal entry above it. This matrix B can be
obtained from V by a sequence of elementary row operations, and it is unique.
It is easy to see that the existence of a vector r of this form is necessary: indeed
the second row of B must be of this form (since B is equal the identity in all
except the leftmost column). We now prove that this condition is also sufficient.

It is clear that the vector d·e1 = 〈d, 0, . . . , 0〉 belongs to L(V): in particular we
know that 〈w0, w1, . . . , wn−1〉 × V = 〈d, 0, . . . , 0〉. Also, by assumption we have
r = −r · e1 + e2 ∈ L(V), for some integer r. Note that we can assume without
loss of generality that −d/2 ≤ r < d/2, since otherwise we could subtract from
r multiples of the vector d · e1 until this condition is satisfied:

〈−r 1 0 . . . 0〉
−κ· 〈 d 0 0 . . . 0〉
= 〈[−r]d 1 0 . . . 0〉

For i = 1, 2, . . . , n− 1, denote ri
def= [ri]d. Below we will prove by induction that

for all i = 1, 2, . . . , n− 1, the lattice L(V) contains the vector:

ri
def= − ri · e1 + ei+1 = 〈−ri, 0 . . . 0, 1, 0 . . .0〉

︸ ︷︷ ︸
1 in the i+1′st position

.

138 C. Gentry and S. Halevi

Placing all these vectors ri at the rows of a matrix, we got exactly the matrix B
that we need:

B =

⎡

⎢⎢
⎢
⎢
⎢
⎣

d 0 0 0
−r1 1 0 0
−r2 0 1 0

. . .
−rn−1 0 0 1

⎤

⎥⎥
⎥
⎥
⎥
⎦

. (5)

B is equal to the identity except in the leftmost column, its rows are all vectors
in L(V) (so they span a sub-lattice), and since B has the same determinant as
V then it cannot span a proper sub-lattice, it must therefore span L(V) itself.

It is left to prove the inductive claim. For i = 1 we set r1
def= r and the

claim follow from our assumption that r ∈ L(V). Assume now that it holds for
some i ∈ [1, n− 2] and we prove for i + 1. Recall that the lattice L(V) is closed
under rotation, and since ri = −rie1+ei+1 ∈ L(V) then the right-shifted vector
si+1

def= −rie2 + ei+2 is also in L(V)3. Hence L(V) contains also the vector

si+1 + ri · r = (−rie2 + ei+2) + ri(−re1 + e2) = = −rir · e1 + ei+2

We can now reduce the first entry in this vector modulo d, by adding/subtracting
the appropriate multiple of d·e1 (while still keeping it in the lattice), thus getting
the lattice vector

[−r · ri]d · e1 + ei+2 = − [ri+1]d · e1 + ei+2 = ri+1 ∈ L(V)

This concludes the proof.

Remark 1. Note that the proof of Lemma 1 shows in particular that if the Her-
mite normal form of V is equal to the identity matrix in all but the leftmost
column, then it must be of the form specified in Equation (5). Namely, the first
column is 〈d,−r1,−r2, . . . ,−rn−1〉t, with ri = [ri]d for all i. Hence this matrix
can be represented implicitly by the two integers d and r.

3.1 The Public and Secret Keys

In principle the public key is the Hermite normal form of V , but as we explain
in Remark 1 and Section 5 it is enough to store for the public key only the two
integers d, r. Similarly, in principle the secret key is the pair (v, w), but as we
explain in Section 6.1 it is sufficient to store only a single (odd) coefficient of w
and discard v altogether.

4 Inverting the Polynomial v(x)

The fastest known methods for inverting the polynomial v(x) modulo fn(x) =
xn + 1 are based on FFT: We can evaluate v(x) at all the roots of fn(x) (either
3 This is a circular shift, since i ≤ n − 2 and hence the rightmost entry in ri is zero.

Implementing Gentry’s Fully-Homomorphic Encryption Scheme 139

over the complex field or over some finite field), then compute w∗(ρ) = 1/v(ρ)
(where inversion is done over the corresponding field), and then interpolate w∗ =
v−1 from all these values. If the resultant of v and fn has N bits, then this
procedure will take O(n log n) operations over O(N)-bit numbers, for a total
running time of Õ(nN). This is close to optimal in general, since just writing out
the coefficients of the polynomial w∗ takes time O(nN). However, in Section 6.1
we show that it is enough to use for the secret key only one of the coefficients of
w = d · w∗ (where d = resultant(v, fn)). This raises the possibility that we can
compute this one coefficient in time quasi-linear in N rather than quasi-linear
in nN . Although polynomial inversion is very well researched, as far as we know
this question of computing just one coefficient of the inverse was not tackled
before. Below we describe an algorithm for doing just that.

The approach for the procedure below is to begin with the polynomial v
that has n small coefficients, and proceed in steps where in each step we halve
the number of coefficients to offset the fact that the bit-length of the coefficients
approximately doubles. Our method relies heavily on the special form of fn(x) =
xn + 1, with n a power of two. Let ρ0, ρ1, . . . , ρn−1 be roots of fn(x) over the
complex field: That is, if ρ is some primitive 2n’th root of unity then ρi = ρ2i+1.
Note that the roots ri satisfy that ρi+ n

2
= −ρi for all i, and more generally for

every index i (with index arithmetic modulo n) and every j = 0, 1, . . . , log n, if
we denote nj

def= n/2j then it holds that

(
ρ

i+ nj/2

)2j

=
(
ρ2i+nj+1

)2j

=
(
ρ2i+1

)2j

· ρn = − (ρ 2j

i
) (6)

The method below takes advantage of Equation (6), as well as a connection be-
tween the coefficients of the scaled inverse w and those of the formal polynomial

g(z) def=
n−1∏

i=0

(
v(ρi)− z

)
.

We invert v(x) mod fn(x) by computing the lower two coefficients of g(z), then
using them to recover both the resultant and (one coefficient of) the polyno-
mial w(x), as described next.

Step one: the polynomial g(z). Note that although the polynomial g(z) is defined
via the complex numbers ρi, the coefficients of g(z) are all integers. We begin by
showing how to compute the lower two coefficients of g(z), namely the polynomial
g(z) mod z2. We observe that since ρi+ n

2
= −ρi then we can write g(z) as

g(z) =

n
2 −1∏

i=0

(v(ρi) − z)(v(−ρi) − z)

=

n
2 −1∏

i=0

(
v(ρi)v(−ρi)
︸ ︷︷ ︸

a(ρi)

−z(v(ρi) + v(−ρi)
︸ ︷︷ ︸

b(ρi)

) + z2

)
=

n
2 −1∏

i=0

(
a(ρi) − zb(ρi)

)
(mod z2)

140 C. Gentry and S. Halevi

We observe further that for both the polynomials a(x) = v(x)v(−x) and b(x) =
v(x) + v(−x), all the odd powers of x have zero coefficients. Moreover, the
same equalities as above hold if we use A(x) = a(x) mod fn(x) and B(x) =
b(x) mod fn(x) instead of a(x) and b(x) themselves (since we only evaluate these
polynomials in roots of fn), and also for A, B all the odd powers of x have zero
coefficients (since we reduce modulo fn(x) = xn + 1 with n even).

Thus we can consider the polynomials v̂, ṽ that have half the degree and only
use the nonzero coefficients of A, B, respectively. Namely they are defined via
v̂(x2) = A(x) and ṽ(x2) = B(x). Thus we have reduced the task of computing
the n-product involving the degree-n polynomial v(x) to computing a product of
only n/2 terms involving the degree-n/2 polynomials v̂(x), ṽ(x). Repeating this
process recursively, we obtain the polynomial g(z) mod z2. The details of this
process are described in Section 4.1 below.

Step two: recovering d and w0. Recall that if v(x) is square free then d =
resultant(v, fn) =

∏n−1
i=0 v(ρi), which is exactly the free term of g(z), g0 =

∏n−1
i=0 v(ρi).
Recall also that the linear term in g(z) has coefficient g1 =

∑n−1
i=0

∏
j �=i v(ρi).

We next show that the free term of w(x) is w0 = g1/n. First, we observe that g1

equals the sum of w evaluated in all the roots of fn, namely

g1 =
n−1∑

i=0

∏

j �=i

v(ρj) =
n−1∑

i=0

∏n−1
j=0 v(ρj)
v(ρi)

(a)
=

n−1∑

i=0

d

v
(
ρi

) (b)
=

n−1∑

i=0

w
(
ρi

)

where Equality (a) follows since v(x) is square free and d = resultant(v, fn), and
Equality (b) follows since v(ρi) = d/w(ρi) holds in all the roots of fn. It is left
to show that the constant term of w(x) is w0 = n

∑n−1
i=0 w(ρi). To show this, we

write

n−1∑

i=0

w
(
ρi

)
=

n−1∑

i=0

n−1∑

j=0

wjρ
j
i =

n−1∑

j=0

wj

n−1∑

i=0

ρj
i

(�)
=

n−1∑

j=0

wj

n−1∑

i=0

(ρj)2i+1 (7)

where the Equality (�) holds since the i’th root of fn is ρi = ρ2i+1 where ρ is a
2n-th root of unity. Clearly, the term corresponding to j = 0 in Equation (7) is
w0 ·n, it is left to show that all the other terms are zero. This follows since ρj is
a 2n-th root of unity different from ±1 for all j = 1, 2, . . . , n− 1, and summing
over all odd powers of such root of unity yields zero.

Step three: recovering the rest of w. We can now use the same technique to
recover all the other coefficients of w: Note that since we work modulo fn(x) =
xn + 1, then the coefficient wi is the free term of the scaled inverse of xi × v
(mod fn).

In our case we only need to recover the first two coefficients, however, since
we are only interested in the case where w1/w0 = w2/w1 = · · · = wn−1/wn−2 =
−w0/wn−1 (mod d), where d = resultant(v, fn). After recovering w0, w1 and

Implementing Gentry’s Fully-Homomorphic Encryption Scheme 141

d = resultant(v, fn), we therefore compute the ratio r = w1/w0 mod d and verify
that rn = −1 (mod d). Then we recover as many coefficients of w as we need
(via wi+1 = [wi · r]d), until we find one coefficient which is an odd integer, and
that coefficient is the secret key.

4.1 The Gory Details of Step One

We denote U0(x) ≡ 1 and V0(x) = v(x), and for j = 0, 1, . . . , log n we de-
note nj = n/2j. We proceed in m = log n steps to compute the polynomials
Uj(x), Vj(x) (j = 1, 2, . . . , m), such that the degrees of Uj, Vj are at most nj−1,
and moreover the polynomial gj(z) =

∏nj−1
i=0 (Vj(ρ2j

i) − zUj(ρ2j

i)) has the same
first two coefficients as g(z). Namely,

gj(z) def=
nj−1∏

i=0

(
Vj(ρ2j

i)− zUj(ρ2j

i)
)

= g(z) (mod z2). (8)

Equation (8) holds for j = 0 by definition. Assume that we computed Uj, Vj

for some j < m such that Equation (8) holds, and we show how to compute

Uj+1 and Vj+1. From Equation (6) we know that
(
ρi+nj/2

)2j

= −ρ2j

i , so we can
express gj as

gj(z) =

nj/2−1∏

i=0

(
Vj(ρ

2j

i) − zUj(ρ
2j

i)
) (

Vj(−ρ2j

i) − zUj(−ρ2j

i)
)

=

nj/2−1∏

i=0

(
Vj(ρ

2j

i)Vj(−ρ2j

i)
︸ ︷︷ ︸

=Aj(ρ2j
i)

−z
(
Uj(ρ

2j

i)Vj(−ρ2j

i) + Uj(−ρ2j

i)Vj(ρ
2j

i)
︸ ︷︷ ︸

=Bj(ρ2j
i)

)
)

(mod z2)

Denoting fnj (x) def= xnj + 1 and observing that ρ 2j

i is a root of fnj for all i, we
next consider the polynomials:

Aj(x)
def
= Vj(x)Vj(−x) mod fnj (x) (with coefficients a0, . . . , anj−1)

Bj(x)
def
= Uj(x)Vj(−x) + Uj(−x)Vj(x) mod fnj (x) (with coefficients b0, . . . , bnj−1)

and observe the following:

– Since ρ 2j

i is a root of fnj , then the reduction modulo fnj makes no difference
when evaluating Aj , Bj on ρ 2j

i . Namely we have Aj(ρ2j

i) = Vj(ρ2j

i)Vj(−ρ2j

i)
and similarly Bj(ρ2j

i) = Uj(ρ2j

i)Vj(−ρ2j

i) + Uj(−ρ2j

i)Vj(ρ2j

i) (for all i).
– The odd coefficients of Aj , Bj are all zero. For Aj this is because it is obtained

as Vj(x)Vj(−x) and for Bj this is because it is obtained as Rj(x) + Rj(−x)
(with Rj(x) = Uj(x)Vj(−x)). The reduction modulo fnj (x) = xnj + 1 keeps
the odd coefficients all zero, because nj is even.

142 C. Gentry and S. Halevi

We therefore set

Uj+1(x) def=
nj/2−1∑

t=0

b2t
· xt, and Vj+1(x) def=

nj/2−1∑

t=0

a2t
· xt,

so the second bullet above implies that Uj+1(x2) = Bj(x) and Vj+1(x2) = Aj(x)
for all x. Combined with the first bullet, we have that

gj+1(z) def=
nj/2−1∏

i=0

(
Vj+1(ρ2j+1

i)− z · Uj+1(ρ2j+1

i)
)

=
nj/2−1∏

i=0

(
Aj(ρ2j

i)− z · Bj(ρ2j

i)
)

= gj(z) (mod z2).

By the induction hypothesis we also have gj(z) = g(z) (mod z2), so we get
gj+1(z) = g(z) (mod z2), as needed.

5 Encryption

To encrypt a bit b ∈ {0, 1} with the public key B (which is implicitly repre-
sented by the two integers d, r), we first choose a random 0,±1 “noise vector”
u

def= 〈u0, u1, . . . , un−1〉, with each entry chosen as 0 with some probability q

and as ±1 with probability (1 − q)/2 each. We then set a
def= 2u + b · e1 =

〈2u0 + b, 2u1, . . . , 2un−1〉, and the ciphertext is the vector

c = a mod B = a− (⌈
a×B−1

⌋×B
)

=
[
a×B−1

]

︸ ︷︷ ︸
[·] is fractional part

× B

We now show that also c can be represented implicitly by just one integer. Recall
that B (and therefore also B−1) are of a special form

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢⎢
⎣

d 0 0 0 0
−r 1 0 0 0
−[r2]d 0 1 0 0
−[r3]d 0 0 1 0

. . .
−[rn−1]d 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥⎥
⎦

, and B−1 =
1
d
·

⎡

⎢
⎢
⎢
⎢
⎢
⎢⎢
⎣

1 0 0 0 0
r d 0 0 0

[r2]d 0 d 0 0
[r3]d 0 0 d 0

. . .
[rn−1]d 0 0 0 d

⎤

⎥
⎥
⎥
⎥
⎥
⎥⎥
⎦

.

Denote a = 〈a0, a1, . . . , an−1〉, and also denote by a(·) the integer polyno-
mial a(x) def=

∑n−1
i=0 aix

i. Then we have a × B−1 =
〈

s
d , a1, . . . , an−1

〉
for

some integer s that satisfies s = a(r) (mod d). Hence the fractional part of
a × B−1 is

[
a×B−1

]
=

〈
[a(r)]d

d , 0, . . . , 0
〉
, and the ciphertext vector is

c =
〈

[a(r)]d
d , 0, . . . , 0

〉
× B = 〈[a(r)]d, 0, . . . , 0〉. Clearly, this vector can

Implementing Gentry’s Fully-Homomorphic Encryption Scheme 143

be represented implicitly by the integer c
def=

[
a(r)

]
d

=
[
b + 2

∑n−1
i=1 uir

i
]
d
.

Hence, to encrypt the bit b, we only need to evaluate the noise-polynomial u(·)
at the point r, then multiply by two and add the bit b (everything modulo d).
We now describe an efficient procedure for doing that.

5.1 An Efficient Encryption Procedure

The most expensive operation during encryption is evaluating the degree-(n−1)
polynomial u at the point r. Polynomial evaluation using Horner’s rule takes
n − 1 multiplications, but it is known that for small coefficients we can reduce
the number of multiplications to only O(

√
n), see [1,10]. Moreover, we observe

that it is possible to batch this fast evaluation algorithm, and evaluate k such
polynomials in time O(

√
kn).

We begin by noting that evaluating many 0,±1 polynomials at the same
point x can be done about as fast as a naive evaluation of a single polynomial.
Indeed, once we compute all the powers (1, x, x2, . . . , xn−1) then we can evaluate
each polynomial just by taking a subset-sum of these powers. As addition is
much faster than multiplication, the dominant term in the running time will be
the computation of the powers of x, which we only need to do once for all the
polynomials.

Next, we observe that evaluating a single degree-(n − 1) polynomial at a
point x can be done quickly given a subroutine that evaluates two degree-
(n/2−1) polynomials at the same point x. Namely, given u(x) =

∑n−1
i=0 uix

i, we
split it into a “bottom half” ubot(x) =

∑n/2−1
i=0 uix

i and a “top half” utop(x) =
∑n/2−1

i=0 ui+ d/2x
i. Evaluating these two smaller polynomials we get ybot = ubot(x)

and ytop = utop(x), and then we can compute y = u(x) by setting y = xn/2ytop +
ybot. If the subroutine for evaluating the two smaller polynomials also returns
the value of xn/2, then we need just one more multiplication to get the value of
y = u(x).

These two observations suggest a recursive approach to evaluating the 0,±1
polynomial u of degree n − 1. Namely, we repeatedly cut the degree in half
at the price of doubling the number of polynomials, and once the degree is
small enough we use the “trivial implementation” of just computing all the
powers of x. Analyzing this approach, let us denote by M(k, n) the number
of multiplications that it takes to evaluate k polynomials of degree (n − 1).
Then we have M(k, n) ≤ min(n − 1, M(2k, n/2) + k + 1). To see the bound
M(k, n) ≤M(2k, n/2)+k+1, note that once we evaluated the top- and bottom-
halves of all the k polynomials, we need one multiplication per polynomial to
put the two halves together, and one last multiplication to compute xn (which is
needed in the next level of the recursion) from xn/2 (which was computed in the
previous level). Obviously, making the recursive call takes less multiplications
than the “trivial implementation” whenever n− 1 > (n/2− 1) + k + 1. Also, an
easy inductive argument shows that the “trivial implementation” is better when
n− 1 < (n/2− 1) + k + 1. We thus get the recursive formula

144 C. Gentry and S. Halevi

M(k, n) =
{

M(2k, n/2) + k + 1 when n/2 > k + 1
n− 1 otherwise.

Solving this formula we get M(k, n) ≤ min(n−1,
√

2kn). In particular, the num-
ber of multiplications needed for evaluating a single degree-(n− 1) polynomial
is M(1, n) ≤ √2n.

We comment that this “more efficient” batch procedure relies on the assump-
tion that we have enough memory to keep all these partially evaluated polynomi-
als at the same time. In our experiments we were only able to use it in dimensions
up to n = 215, trying to use it in higher dimension resulted in the process being
killed after it ran out of memory. A more sophisticated implementation could
take the available amount of memory into account, and stop the recursion earlier
to preserve space at the expense of more running time. An alternative approach,
of course, is to store partial results to disk. More experiments are needed to
determine what approach yields better performance for which parameters.

5.2 The Euclidean Norm of Fresh Ciphertexts

When choosing the noise vector for a new ciphertext, we want to make it as sparse
as possible, i.e., increase as much as possible the probability q of choosing each
entry as zero. The only limitation is that we need q to be bounded sufficiently
below 1 to make it hard to recover the original noise vector from c. There are two
types of attacks that we need to consider: lattice-reduction attacks that try to
find the closest lattice point to c, and exhaustive-search/birthday attacks that try
to guess the coefficients of the original noise vector (and a combination thereof).
Pure lattice-reduction attacks should be thwarted by working with lattices with
high-enough dimension, so we concentrate here on exhaustive-search attacks.

Roughly, if the noise vector has � bits of entropy, then we expect birthday-type
attacks to be able to recover it in 2�/2 time, so we need to ensure that the noise
has at least 2λ bits of entropy for security parameter λ. Namely, for dimension n
we need to choose q sufficiently smaller than one so that 2(1−q)n · (n

qn

)
> 22λ.

Another “hybrid” attack is to choose a small random subset of the powers of r
(e.g., only 200 of them) and “hope” that they include all the noise coefficients.
If this holds then we can now search for a small vector in this low-dimension
lattice (e.g., dimension 200). For example, if we work in dimension n = 2048 and
use only 16 nonzero entries for noise, then choosing 200 of the 2048 entries, we
have probability of about (200/2048)16 ≈ 254 of including all of them (hence we
can recover the original noise by solving 254 instances of SVP in dimension 200).
The same attack will have success probability only ≈ 2−80 if we use 24 nonzero
entries.

For our public challenges we chose a (somewhat aggressive) setting where the
number of nonzero entries in the noise vector is between 15 and 20. We note that
increasing the noise will have only moderate effect on the performance numbers
of our fully-homomorphic scheme, for example using 30 nonzero entries is likely
to increase the size of the key (and the running time) by only about 5-10%.

Implementing Gentry’s Fully-Homomorphic Encryption Scheme 145

6 Decryption

The decryption procedure takes the ciphertext c (which implicitly represents
the vector c = 〈c, 0, . . . , 0〉) and in principle it also has the two matrices V, W .
The vector a = 2u + b · e1 that was used during encryption is recovered as
a← c mod V =

[
c × W/d

]
, and then outputs the least significant bit of the

first entry of a, namely b := a0 mod 2.
The reason that this decryption procedure works is that the rows of V (and

therefore also of W) are close to being orthogonal to each other, and hence the
operator l∞-norm of W is small. Namely, for any vector x, the largest entry
in x × W (in absolute value) is not much larger than the largest entry in x
itself. Specifically, the procedure from above succeeds when all the entries of
a ×W are smaller than d/2 in absolute value. To see that, note that a is the
distance between c and some point in the lattice L(V), namely we can express
c as c = y × V + a for some integer vector y. Hence we have

[
c × W/d

]× V =
[
y × V ×W/d + a×W/d

] (�)
=

[
a × W/d

]× V

where the equality (�) follows since y×V ×W/d is an integer vector. The vector[
a × W/d

]×V is supposed to be a itself, namely we need
[
a × W/d

]×V = a =(
a ×W/d

)×V . But this last condition holds if and only if [a×W/d
]

= (a×W/d),
i.e., a ×W/d is equal to its fractional part, which means that every entry in
a×W/d must be less than 1/2 in absolute value.

6.1 An Optimized Decryption Procedure

We next show that the encrypted bit b can be recovered by a significantly
cheaper procedure: Recall that the (implicitly represented) ciphertext vector
c is decrypted to the bit b when the distance from c to the nearest vector in
the lattice L(V) is of the form a = 2u + be1, and moreover all the entries in
a ×W are less than d/2 in absolute value. As we said above, in this case we
have [c ×W/d] = [a ×W/d] = a ×W/d, which is equivalent to the condition
[c×W]d = [a×W]d = a×W. Recall now that c = 〈c, 0, . . . , 0〉, hence

[c×W]d = [c · 〈w0, w1, . . . , wn−1〉]d = 〈[cw0]d, [cw1]d, . . . , [cwn−1]d〉 .
On the other hand, we have

[c×W]d = a×W = 2u×W + be1×W = 2u×W + b · 〈w0, w1, . . . , wn−1〉 .
Putting these two equations together, we get that any decryptable ciphertext c
must satisfy the relation

〈[cw0]d, [cw1]d, . . . , [cwn−1]d〉 = b · 〈w0, w1, . . . , wn−1〉 (mod 2)

In other words, for every i we have [c · wi]d = b · wi (mod 2). It is therefore
sufficient to keep only one of the wi’s (which must be odd), and then recover the
bit b as b := [c · wi]d mod 2.

146 C. Gentry and S. Halevi

7 How Homomorphic Is This Scheme?

We ran some experiments to get a handle on the degree and number of monomials
that the somewhat homomorphic scheme can handle, and to help us choose
the parameters. In these experiments we generated key pairs for parameters n
(dimension) and t (bit-length), and for each key pair we encrypted many bits,
evaluated on the ciphertexts many elementary symmetric polynomials of various
degrees and number of variables, decrypted the results, and checked whether or
not we got back the same polynomials in the plaintext bits.

80 100 120 140 160 180 200 220 240
0

10

20

30

40

50

60

70

80

Number of variables

La
rg

es
t s

up
po

rt
ed

 d
eg

re
e

Number of variables vs. degree

bitlength=64
bitlength=128
bitlength=256

64 128 256 384
10

16

32

64

128

bit−length of coefficients in generating polynomial

La
rg

es
t s

up
po

rt
ed

 d
eg

re
e

bit−length vs. degree

128 variables
256 variables

m =#-of-variables m = 64 m = 96 m = 128 m = 192 m = 256
t =bit-length

t = 64 13 12 11 11 10

t = 128 33 28 27 26 24

t = 256 64 76 66 58 56

t = 384 64 96 128 100 95

Cells contain the largest supported degree for every m, t combination

Fig. 1. Supported degree vs. number of variables and bit-length of the generating
polynomial, all tests were run in dimension n = 128

More specifically, for each key pair we tested polynomials on 64 to 256 vari-
ables. For every fixed number of variables m we ran 12 tests. In each test we
encrypted m bits, evaluated all the elementary symmetric polynomials in these
variables (of degree up to m), decrypted the results, and compared them to the
results of applying the same polynomials to the plaintext bits. For each setting
of m, we recorded the highest degree for which all 12 tests were decrypted to the
correct value. We call this the “largest supported degree” for those parameters.

Implementing Gentry’s Fully-Homomorphic Encryption Scheme 147

In these experiments we used fresh ciphertexts of expected Euclidean length
roughly 2 ·√20 ≈ 9, regardless of the dimension. This was done by choosing each
entry of the noise vector u as 0 with probability 1− 20

n , and as ±1 with proba-
bility 10

n each. With that choice, the degree of polynomials that the somewhat-
homomorphic scheme could evaluate did not depend on the dimension n: We
tested various dimensions from 128 to 2048 with a few settings of t and m,
and the largest supported degree was nearly the same in all these dimensions.
Thereafter we tested all the other settings only in dimension n = 128.

The results are described in Figure 1. As expected, the largest supported de-
gree grows linearly with the bit-length parameter t, and decreases slowly with the
number of variables (since more variables means more terms in the polynomial).

These results can be more or less explained by the assumptions that the de-
cryption radius of the secret key is roughly 2t, and that the noise in an evaluated
ciphertext is roughly cdegree×√#-of-monomials, where c is close to the Euclidean
norm of fresh ciphertexts (i.e., c ≈ 9). For elementary symmetric polynomials,
the number of monomials is exactly

(
m
deg

)
. Hence to handle polynomials of degree

deg with m variables, we need to set t large enough so that 2t ≥ cdeg×
√(

m
deg

)
, in

order for the noise in the evaluated ciphertexts to still be inside the decryption
radius of the secret key.

Trying to fit the data from Figure 1 to this expression, we observe that c
is not really a constant, rather it gets slightly smaller when t gets larger. For
t = 64 we have c ∈ [9.14, 11.33], for t = 128 we have c ∈ [7.36, 8.82], for t = 256
we get c ∈ [7.34, 7.92], and for t = 384 we have c ∈ [6.88, 7.45]. We speculate
that this small deviation stems from the fact that the norm of the individual
monomials is not exactly cdeg but rather has some distribution around that size,
and as a result the norm of the sum of all these monomials differs somewhat
from

√
#-of-monomials times the expected cdeg.

Acknowledgments. We thank Nigel Smart for many excellent comments. We also
thank the CRYPTO reviewers for their helpful comments and Tal Rabin, John
Gunnels, and Grzegorz Swirszcz for interesting discussions.

References

1. Avanzi, R.M.: Fast evaluation of polynomials with small coefficients modulo an
integer. Web document (2005),
http://caccioppoli.mac.rub.de/website/papers/trick.pdf

2. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.) EU-
ROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)

3. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the 41st ACM Symposium on Theory of Computing – STOC 2009, pp. 169–178.
ACM, New York (2009)

4. Gentry, C.: Toward basing fully homomorphic encryption on worst-case hard-
ness. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 116–137. Springer,
Heidelberg (2010)

http://caccioppoli.mac.rub.de/website/papers/trick.pdf

148 C. Gentry and S. Halevi

5. Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption
scheme. Cryptology ePrint Archive, Report 2010/520 (2010),
http://eprint.iacr.org/

6. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice
reduction problems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 112–131. Springer, Heidelberg (1997)

7. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010)

8. Micciancio, D.: Improving lattice based cryptosystems using the hermite normal
form. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 126–145. Springer,
Heidelberg (2001)

9. Ogura, N., Yamamoto, G., Kobayashi, T., Uchiyama, S.: An improvement of key
generation algorithm for gentry’s homomorphic encryption scheme. In: Echizen, I.,
Kunihiro, N., Sasaki, R. (eds.) IWSEC 2010. LNCS, vol. 6434, pp. 70–83. Springer,
Heidelberg (2010)

10. Paterson, M.S., Stockmeyer, L.J.: On the number of nonscalar multiplications nec-
essary to evaluate polynomials. SIAM Journal on Computing 2(1), 60–66 (1973)

11. Peikert, C., Rosen, A.: Lattices that admit logarithmic worst-case to average-case
connection factors. In: Proceedings of the 39th Annual ACM Symposium on Theory
of Computing – STOC 2007, pp. 478–487. ACM, New York (2007)

12. Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomor-
phisms. In: Foundations of Secure Computation, pp. 169–177. Academic Press,
London (1978)

13. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small
key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 420–443. Springer, Heidelberg (2010)

14. Stehlé, D., Steinfeld, R.: Faster fully homomorphic encryption. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 377–394. Springer, Heidelberg (2010)

http://eprint.iacr.org/

	Implementing Gentry’s Fully-Homomorphic Encryption Scheme
	Introduction
	The Smart-Vercauteren Implementation
	Our Implementation
	Organization

	Background
	Lattices
	Ideal Lattices
	GGH-Type Cryptosystems
	Gentry's Somewhat-Homomorphic Cryptosystem

	Key Generation
	The Public and Secret Keys

	Inverting the Polynomial $v(x)$
	The Gory Details of Step One

	Encryption
	An Efficient Encryption Procedure
	The Euclidean Norm of Fresh Ciphertexts

	Decryption
	An Optimized Decryption Procedure

	How Homomorphic Is This Scheme?
	References

