
Implementing Global Memory Management in a Workstation Cluster

Michael J, Feeley, Wdliam E. Morgan, t Frederic H. Pighin, Anna R. Karlin, Henry M. Levy

Department of Computer Science and Engineering

University of Washington

and

Chandramohan A. Thekkath

DEC Systems Research Center

Abstract

Advances in network and processor technology have greatly

changed the communication and computational power of local-area

workstation clusters. However, operating systems still treat work-

station clusters as a collection of loosely-connected processors,

where each workstation acts as an autonomous and independent

agent. This operating system structure makes it difficult to exploit

the characteristics of current clusters, such as low-latency commu-

nication, huge primary memories, and high-speed processors, in

order to improve the performance of cluster applications.

This paper describes the design and implementation of global

memory management in a workstation cluster. Our objective is to

use a single, unified, but distributed memory management algo-

rithm at the lowest level of the operating system. By managing

memory globally at this level, all system- and higher-level soft-

ware, including VM, file systems, transaction systems, and user

applications, can benefit from available cluster memory. We have

implemented our algorithm in the OSF/1 operating system running

on an ATM-connected cluster of DEC Alpha workstations. Our

measurements show that on a suite of memory-intensive programs,

our system improves performance by a factor of 1.5 to 3.5. We also

show that our algorithm has a performance advantage over others

that have been proposed in the past.

1 Introduction

This paper examines global memory management in a workstation

cluster. By a cluster, we mean a high-speed local-area network

with 100 or so high-performance machines operating within a sin-

gle administrative domain. Our premise is that a single, unified,

memory management algorithm can be used at a low-level of the

operating system to manage memory cluster-wide. In contrast,

each operating system in today’s clusters acts as an autonomous

tAuthor’s current address: DECwest Engineering, Bellevue, WA.

This work was supported in part by the N~tlontd Science Foundation (Grants no

CDA-9 123308, CCR-9200832, tmd GER-9450075), ARPA Cumegie Mellon Uni-

versity Subcontract #38 1375-50196, the Wmhington Technology Center, md Digital

Equipment Corpomtion. M. Feeley was supported in part by a fellowship from Intel

Co~oration, W. Morgan was supported in p~rt by Digital Equipment Corpomtion

Permission to make digitahwd copy of part or all of this work for personaJ
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the mpyright notice, the
title of the publication and its date appear, and notice is given that
~PYin9 i$ by permission of ACM, Inc. To oopy otherwise, to republish, to
post on servers, or to redistribute to Ma, reqtares prior specific permission
andfor a fee.

SIGOPS ’95 12/95 CO, USA

CI 1995 ACM 0-89791-71 5-4/95/0012...$3.50

agent, exporting services to other nodes, but not acting in a co-

ordinated way. Such autonomy has advantages, but results in an

underutilization of resources that could be used to improve per-

formance. For example, global memory management allows the

operating system to use cluster-wide memory to avoid many disk

accesses; this becomes more important with the widely growing

disparity between processor speed and disk speed. We believe that

as processor performance increases and communication latency

decreases, workstation or personal computer clusters should be

managed more as a multicomputer than as a collection of indepen-

dent machines.

We have defined a global memory management algorithm and

implemented it in the OSF/1 operating system, running on a collec-

tion of DEC Alpha workstations connected by a DEC AN2 ATM

network [1]. By inserting a global memory management algorithm

at the lowest OS level, our system integrates, in a natural way, all

cluster memory for use by all higher-level functions, including VM

paging, mapped files, and file system buffering. Our system can

automatically reconfigure to allow machines to join and in most

cases, to depart the cluster at any time. In particular, with our

algorithm and implementation, no globally-managed data is lost

when a cluster node crashes.

Using our system, which we call GMS (for Global Memory

Service), we have conducted experiments on clusters of up to 20

machines using a suite of real-world application programs. Our

results show that the basic costs for global memory management

operations are modest and that application performance improve-

ment can be significant, For example, we show a 1.5- to 3.5-fold

speedup for a collection of memory-intensive applications running

with GMS; these speedups are close to optimal for these applica-

tions, given the relative speeds of remote memory and disk.

The paper is organized as follows. Section 2 compares our

work to earlier systems. In Section 3 we describe our algorithm

for global memory management. Section 4 details our OSF/1

implementation. We present performance measurements of the

implementation in Section 5. Section 6 discusses limitations of

our algorithm and implementation, and possible solutions to those

limitations. Finally, we summarize and conclude in Section 7.

2 Comparison With Previous Work

Several previous studies have examined various ways of using

remote memory. Strictly theoretical results related to this problem

include [2, 3, 7, 24]. Leach et al. describe remote paging in the

context of the Apollo DOMAIN System [15]. Each machine in

201

the network has a paging server that accepts paging requests from

remote nodes. This system allowed local users to statically restrict

the amount of physical memory available to the paging server.

Comer and Griffioen described a remote memory model in which

the cluster contains workstations, disk servers. and remote memory

servers [8]. The remote memory servers were dedicated machines

whose large primary memories could be allocated by workstations

with heavy paging activity. No client-to-client resource sharing

occurred, except through the servers. Felten and Zahorj an gener-

alized this idea to use memory on idle client machines as paging

backing store [12]. When a machine becomes idle, its kernel acti-

vates an otherwise dormant memory server, which registers itself

for remote use. Whenever a kernel replaces a VM page, it queries

a central registry to locate active memory servers, picking one at

random to receive the replacement victim. Felten and Zahorj an

used a simple queueing model to predict performance.

In a different environment, Schilit and Duchamp have used re-

mote paging to enhance the performance of mobile computers [18].

Their goal is to permit small memory-starved portable computers to

page to the memories of larger servers nearby: pages could migrate

from server to server as the portables migrate.
.

Franklin et al. examine the use of remote memory in a client-

server DBMS system [13]. Their system assumes a centralized

database server that contains the disks for stable store plus a large

memory cache. Clients interact with each other via a central server.

On a page read request, if the page is not cached in the server’s

memory, the server checks whether another client has that page

cached; if so, the server asks that client to forward its copy to the

workstation requesting the read. Franklin et al. evaluate several

variants of this algorithm using a synthetic database workload.

Dahlin et al. evaluate the use of several algorithms for utilizing

remote memory, the best of which is called N-chance forward-

ing [10]. Using N-chance forwarding, when a node is about to

replace a page, it checks whether that page is the last copy in

the cluster (a “singlet”); if so, the node forwards that page to a

randomly-picked node, otherwise it discards the page. Each page

sent to remote memory has a circulation count, N, and the page is

discarded after it has been forwarded to N nodes. When a node

receives a remote page, that page is made the youngest on its LRU

list, possibly displacing another page on that node; if possible,

a duplicate page or recirculating page is chosen for replacement.

Dahlin et al. compare a~gorithms using a simulator running one

two-day trace of a Sprite workload; their analysis examines file sys-

tem data pages only (i.e., no VM paging activity and no program

executable).

Our work is related to these previous studies, but also differs in

significant ways. First, our algorithm is integrated with the lowest

level of the system and encompasses all memory activity: VM

paging, mapped files, and explicit file access. Second, in previous

systems, even where client-to-client sharing occurs, each node acts

as an autonomous agent. In contrast, we manage memory globally,

attempting to make good choices both for the faulting node and the

cluster as a whole (we provide a more detailed comparison of the

global vs. autonomous scheme following the presentation of our

algorithm in the next section). Third, our system can gracefully

handle addition and deletion of nodes in the cluster without user

intervention. Finally, we have an implementation that is well

integrated into a production operating system: OSF/1.

Several other efforts, while not dealing directly with remote

paging. relate to our work, Most fundamental is the work of

Li and Hudak, who describe a number of alternative strategies for

managing pages in a distributed shared virtual memory system [16].

Similar management issues exist at the software level in single

address space systems such as Opal [6], and at the hardware level

in NUMA and COMA architectures [9, 21], Eager et al. [11]

describe strategies for choosing target nodes on which to offload

tasks in a distributed load sharing environment.

3 Algorithm

This section describes the basic algorithm used by GMS. The de-

scription is divided into two parts. First, we present a high-level de-

scription of the global replacement algorithm. Second, we describe

the probabilistic process by which page information is maintained

and exchanged in the cluster.

3.1 The Basic Algorithm

As previously stated, our goal is to globally coordinate memory

management, We assume that nodes trust each other but may crash

at any time. All nodes run the same algorithm and attempt to make

choices that are good in a global cluster sense, as well as for the

local node. We classify pages on a node P as being either local

pages, which have been recently accessed on P, or global pages,

which are stored in P’s memory on behalf of other nodes. Pages

may also be private or shared, shared pages occur because two or

more nodes might access a common file exported by a file server.

Thus, a shared page may be found in the active local memories

of multiple nodes; however, a page in global memory is always

private.

In general, the algorithm changes the local/global memory bal-

ance as the result of faults caused by an access to a nonresident

page. Node P, on a fault, performs the following global replace-

ment algorithm, which we describe in terms of 4 possible cases:

Case 1: The faulted page is in the global memory of another node,

Q, We swap the desired page in Q’s global memory with any

global page in P’s global memory. Once brought into P’s

memory, the faulted page becomes a local page, increasing

the size of P’s local memory by 1. Q’s local/global memory

balance is unchanged. This is depicted in Figure 1.

Case 2: The faulted page is in the global memory of node Q,

but P’s memory contains only local pages. Exchange the

LRU local page on P with the faulted page on Q. The size

of the global memory on Q and the local memory on P are

unchanged.

Case 3: The page is on disk. Read the faulted page into node P’s

memory, where it becomes a local page. Choose the oldest

page in the cluster (say, on node Q) for replacement and write

it to disk if necessary. Send a global page on node P to node

Q where it continues as a global page. If P has no global

pages, choose P’s LRU local page instead. This is shown in

Figure 2.

Case 4: The faulted page is a shared page in the local memory

of another node Q, Copy that page into a frame on node P,

leaving the original in local memory on Q. Choose the oldest

page in the cluster (say, on node R) for replacement and write

it to disk if necessary. Send a global page on node P to node

R where it becomes a global page (if P has no global pages,

choose P’s LRU local page).

The behavior of this algorithm is fairly straightforward. Over

time, nodes that are actively computing and using memory will

202

Figure 1: Global replacement with hit in the global cache,

d
H(M1P

n

L(XI.I Cache

Gk)b,l C,l’hc

Any
P,gc P

Hml Q

L4ud C’,’hc

Gk)h,lly
Ohlcst

Gh)h<tl C,,LhC P<,g,

w
Figure 2: Global replacement showing miss in the global cache.

The faulted page is read from disk, and the oldest page in the

network is either discarded (if clean) or written back to disk.

fill their memories with local pages and will begin using remote

memory in the cluster; nodes that have been idle for some time and

whose pages are old will begin to fill their memories with global

pages. The balance between local and global storage on a node is

thus dynamic and depends on its workload and the workload in the

cluster. The basic issue is when to change the amount of global

store and local storage, both on a node and in the cluster overall. In

general, on a fault requiring a disk read, the (active) faulting node

grows its local memory, while the cluster node with the oldest page

(an “idle” node) loses a page to disk. Global memory grows when

the faulting node has no global pages and the oldest page in the

network is a local page (i.e., the oldest local page on the faulting

node becomes a global page, replacing the oldest cluster page.)

Ultimately, our goal is to minimize the total cost of all memory

references within the cluster. The cost of a memory reference

depends on the state of the referenced page: in local memory, in

global memory on another node, or on disk. A local hit is over

three orders of magnitude faster than a global memory or disk

access, while a global memory hit is only two to ten times faster

than a disk access. Therefore, in making replacement decisions,

we might choose to replace a global page before a local page of the

same age, because the cost of mistakenly replacing a local page is

substantially higher. Which decision is better depends on future

behavior. To predict future behavior, a cost function is associated

with each page. This cost function is related to LRU, but is based on

both the age of the page and its state. Our current implementation

boosts the ages of global pages to favor their replacement over

local pages of approximately the same age.

3.2 Managing Global Age Information

When a faulted page is read from disk (Cases 3 and 4), our al-

gorithm discards the oldest page in the cluster. As described so

far, we assume full global information about the state of nodes

and their pages in order to locate this oldest page. However, it N

obviously impossible to maintain complete global age information

at every instant; therefore, we use a variant in which each node has

only approximate information about global pages. The objective

of our algorithm is to provide a reasonable tradeoff between the ac-

curacy of information that is available to nodes and the efficiency

of distributing that information. The key issue is guaranteeing

the validity of the age information and deciding when it must be

updated.

Our algorithm divides time into epochs, Each epoch has a maxi-

mum duration, 7’, and a maximum number of cluster replacements,

M, that will be allowed in that epoch. The values of T and M vary

from epoch to epoch, depending on the state of global memory and

the workload. A new epoch is triggered when either(1) the dura-

tion of the epoch, T, has elapsed, (2) M global pages have been

replaced, or (3) the age information is detected to be inaccurate.

Currently, each epoch is on the order of 5–10 seconds.

Our system maintains age information on every node for both

local and global pages. At the start of each epoch, every node sends

a summary of the ages of its local and global pages to a designated

initiator node. Using this information, the initiator computes a

weight, w;, for each node Z, such that out of the M oldest pages in

the network, w, reside in node i’s memory at the beginning of the

epoch. The initiator also determines the minimum age, MinAge,

that will be replaced from the cluster (i e., sent to disk or discarded)

in the new epoch. The initiator sends the weights w, and the value

A4irulge to all nodes in the cluster. In addition, the initiator selects

the node with the most idle pages (the largest w,) to be the initiator

for the following epoch.

During an epoch, when a node P must evict a page from its

memory to fault in a page from disk (Cases 3 and 4), it first checks

if the age of the evicted page is older than &finAge. If so, it simply

discards the page (since this page is expected to be discarded

sometime during this epoch). If not, P sends the page to node i,

where the probability of choosing node i is proportional to w,. In

this case, the page discarded from P becomes a global page on

node i, and the oldest page on i is discarded.

Our algorithm is probabilistic: on average, during an epoch, tbe

ith node receives w, /M of the evictions in that epoch, replacing its

oldest page for each one. This yields two useful properties. First,

our algorithm approximates LRU in the sense that if M pages are

discarded by global replacement during the epoch, they are the

globally oldest M pages in the cluster. Second, it yields a simple

way to determine statistically when M pages have been replaced;

i.e., when the node with the largest w~ receives w, pages, it declares

an end to the epoch.

To reduce the divergence from strict LRU, it is thus important to

keep the duration of the epoch T and the value of M appropriate

for the current behavior of the system. The decision procedure for

choosing these values considers (1) the distribution of global page

ages, (2) the expected rate at which pages will be discarded from the

cluster, and (3) the rate at which the distributed age information is

expected to become inaccurate. t The latter two rates are estimated

from their values in preceding epochs. Roughly speaking, the more

old pages there are in the network, the longer T should be (and the

larger M and A4inAge are); similarly, if the expected discard rate

is low, T can be larger as well. When the number of old pages

in the network is too small, indicating that all nodes are actively

using their memory, MinAge is set to O, so that pages are always

discarded or written to disk rather than forwarded.

fThe age distribution on a node ch~nges when Its global pages me consumed due

to m mcreme in Its local ciiche size.

203

3.3 Node Failures and Coherency

Node failures in the cluster do not cause data loss in global memory,

because all pages sent to global memory are clean; i.e., a dirty page

moves from local to global memory only when it is being written

to disk. We do not change the number of disk writes that occur;

our system allows a disk write to complete as usual but promotes

that page into the global cache so that a subsequent fetch does not

require a disk read. If a node housing a requested remote page is

down, the requesting node simply fetches the data from disk.

Likewise, since our algorithm deals with only clean pages, co-

herence semantics for shared pages are the responsibility of the

higher-level software that creates sharing in the first place. For

instance, in our system shared pages occur when nodes access a

common NFS tile, e.g., an executable. Thus, the coherence seman-

tics seen by the users of our system are no stronger and no weaker

than what NFS provides.

3.4 Discussion

The goal of a global memory management system is to utilize

network-wide memory resources in order to minimize the total

cost of all memory references. At the same time, it should avoid

impacting programs not using global memory, To meet these

goals, we believe that the memory management algorithm must

use global, rather than local knowledge to choose among the var-

ious possible states that a page might assume: local, global, or

disk. This knowledge must be efficient to maintain, distribute, and

evaluate. In practice, the algorithm must operate without complete

information, and must be able to determine when information is

out of date.

Our algorithm is intended to meet these needs by using

periodically-distributed cluster-wide page age information in or-

der to: (1) choose those nodes most likely to have idle memory

to house global pages, (2) avoid burdening nodes that are actively

using their memory, (3) ultimately maintain in cluster-wide pri-

mary memory the pages most likely to be globally reused, and (4)

maintain those pages in the right places.

4 Implementation

We have modified the OSF/1 operating system on the DEC Alpha

platform to incorporate the algorithm described above. This section

presents the details of our implementation.

Figure 3 shows a simplified representation of the modified

OSF/1 memory management subsystem. The boxes represent

functional components and the arrows show some of the control

relationships. The two key components of the basic OSF/ 1 mem-

ory system are (1) the VM system, which supports cmonymou.s

pages devoted to process stacks and heaps, and (2) the Unified

Buffer Cache (UBC), which caches file pages. The UBC contains

pages from both mapped tiles and files accessed through normal

read/write calls and is dynamically-sized; this is similar in some

ways to the Sprite tile system [17]. At the same level as VM

and UBC, we have added the GMS module, which holds global

pages housed on the node. Page-replacement decisions are made

by the pageout daemon and GMS. A custom TLB handler provides

information about the ages of VM and UBC pages for use by GMS,

We modified the kernel to insert calls to the GMS at each point

where pages were either added to or removed from the UBC.

Similarly, we inserted calls into the VM swapping code to keep

track of additions and deletions to the list of anonymous pages.

Fuults

VM
. ___— —— _ .

Red
Wntc Fre

Gq)uge
PutpaRe

Y w-------,
: Diiiii

1
&

I .
-J

.

. J

Figure 3: Structure of Modified OSF/1 Memory Management

System

Inserting these calls into the UBC and VM modules allows us to

track the collection of pages on the node. It also allows us to

forward disk reads to the GMS. Disk writes occur exactly as in the

original OSF/1 system.

4.1 Basic Data Structures

Our algorithm manages pages in the cluster, which are ultimately

backed by secondary storage: either a local disk or an NFS server’s

disk. Each page of data must be uniquely identified, so that we can

track the physical location of that page (or the multiple locations

for a shared page). We uniquely identify a page in terms of the file

blocks that back it. In OSF/1, pages are a fixed multiple of disk

blocks; entire pages, rather than blocks, are transferred between

the disk driver and the rest of the kernel. Thus, to identify the

contents of a page. it is sufficient to know the 1P address of the

node backing that page, the disk partition on that node, the inode

number, and the offset within the inode where the page resides.

We use a 128-bit cluster-wide unique identifier (UID) to record

this information. We ensure that the page identified by each UID

is in one of four states: (1) cached locally on a single node, (2)

cached locally on multiple nodes, (3) cached on a single node on

behalf of another node, or (4) not cached at all.

We maintain three principal data structures, keyed by UID.

1.

2.

3.

The page-frame-directory (PFD) is a per-node structure that

contains a record for each page (local or global) that is present

on the node. A successful UID lookup in the PFD yields

information about the physical page frame containing the

data, LRU statistics about the frame, and whether the page

is local or global. An unsuccessful lookup implies that the

particular page is not present on this node,

The global-cuche-directo~ (GCD) is a cluster-wide data

structure that is used to locate the 1P address of a node that

has a particular page cached. For performance reasons, the

GCD is organized as a hash table, with each node storing

only a portion of the table.

The page-ownership-directory (POD) maps the UID for a

shared page to the node storing the GCD section containing

that page. For non-shared pages, the GCD entry is always

204

No(Ic B

c)
GCD

n.- >.... .

4-
UID

UID

Figure 4: Locating a Page.

stored on the node that is using the page. The POD is repli-

cated on all nodes and is changed only when machines are

added or deleted from the cluster.

Finding a page following a fault requires a two-step lookup, as

shown in Figure 4. First, the requesting node (e.g., node A in Fig-

ure 4) uses the UID to hash into the POD, producing an 1P address

of the node (node B) implementing the appropriate region of the

global-cache-directory. The requester sends a message containing

the UID to the GMS on that node, requesting the page identified

by the UID, The GMS on the node does a lookup in the global-

cache-directory, which results in either a miss or a hit. In case

of a miss, a message is sent to the original node. In case of a

hit, the GCD node forwards the request to the node that contains

the page-frame-directory for the UID (node C), which replies to

the requesting node. Figure 4 shows three nodes involved in the

lookup. When a faulted page is not shared, nodes A and B are iden-

tical, thereby decreasing the number of network messages needed.

This distribution of the page management information is somewhat

similar to the handling of distributed locks in VAXclusters [14].

The page-ownership-directo~ provides an extra level of indi-

rection that enables us to handle the addition or deletion of nodes

from the cluster without changing the hash function. A central

server running on one of the workstations is responsible for up-

dating the indirection table and propagating it to the rest of the

cluster. This updating must occur whenever there is a reconfigura-

tion. Parts of the global-cache-directory database are redistributed

on reconfiguration as well. However, none of these operations are

critical to the correct operation of the cluster. In the worst case,

during the redistribution process, some requests may fail to find

pages in global memory and will be forced to access them on disk.

4.2 Collecting Local Age Information

An important part of our algorithm is its page aging process, which

provides information for global decision making. Unfortunately,

it is difficult to track the ages of some pages in OSF/1. For pages

belonging to files accessed via explicit read/write requests, these

calls can provide the required age information. However, access

to anonymous and mapped tile pages is invisible to the operat-

ing system. Furthermore, the OSF/ 1 FIFO-with-second-chance

replacement algorithm provides little useful global age informa-

tion for our purposes, particularly on a system that is not heavily

faulting-exactly the case in which we wish to know the ages of

pages.

In order to collect age information about anonymous and

mapped pages, we modified the TLB handler, which is imple-

mented in PALcode [20], once a minute, we flush the TLB of all

entries. Subsequently when the TLB handler performs a virtual-

to-physical translation on a TLB miss, it sets a bit for that physical

frame. A kernel thread samples the per-frame bit every period in

order to maintain LRU statistics for all physical page frames,

4.3 Inter-node Communication

Between nodes we use simple non-blocking communication. In our

current implementation, we assume that the network is reliable and

we marshal and unmarshal to and from 1P datagrams directly. This

is justified primarily by the increased reliability of modern local

area networks such as AN2 that have flow control to eliminate cell

loss due to congestion [23]. To date, we have not noticed a dropped

packet in any of our experiments. However, our implementation

can be readily changed to use any other message-passing package

or transport protocol.

4.4 Addition and Deletion of Nodes

When a node is added to the cluster, it checks in with a designated

master node, which then notifies all the existing members of the

new addition. The master node distributes new copies of the page-

ownership-directory to each node, including the newly added one.

Each node distributes the appropriate portions of tbe global-cache-

directory to the new node. In the current implementation, the

master node is pre-determined and represents a single point of

failure that can prevent addition of new nodes. It is straightforward

to extend our implementation to deal with master node failure

through an election process to select a new master, as is done in

other systems [14, 18].

Node deletions are straightforward as well. The master node

checks periodically for the liveness of the other nodes. When it de-

tects a crashed node, it redistributes the page-ownership-directory.

As with addition, global-cache-directories are also redistributed at

that time.

4.5 Basic Operation of the Algorithm

Section 3 described the basic operation of the algorithm in terms of

a series of page swaps between nodes (see Cases 1-4). However, in

the actual implementation, the swaps are performed in a somewhat

different fashion.

On a fault, the faulting node allocates a frame from its free-frame

list and executes a remote getpage operation for the missing page.

The inter-node interaction for a getpage operation is conceptually

identical to the scenario shown in Figure 4: on a hit, the actual

data is returned; on a miss, the requesting node goes to disk (or to

the NFS server). The global-cache-directory is updated with the

new location of the page and the page-frame-directory structures

on the requester and the remote node are updated suitably. If the

remote node was caching the page on behalf of another node, i.e.,

it was a global page, then the remote node deletes its entry from

the page-frame-directory. (Recall from Section 3 that there needs

to be only one copy of a global page in the system, because the cost

of remotely accessing a global page is independent of which node

it is on.) The only other possibility is that the requested page is a

local shared page, in which case the remote marks it as a duplicate.

In either case, the requesting node adds an entry.

The getpage operation represents one half of the swap; the sec-

ond half is executed at a later time in the context of the pageout

daemon. As getpage operations are executed on a node, the free

list shrinks, eventually causing the pageout daemon to wakeup.

205

No(Ic B

D

GCD

.1...!

<UID,C>

@)--m
NmicA N(vJc C

Figure 5: Executing a Putpage Operation.

The pageout daemon, in concert with the GMS, the UBC, and the

VM managers (see Figure 3), attempts to evict the oldest pages on

the node. These evictions are handled by the GMS module, which

has age information about all these pages. Some of the pages are

pushed to other idle nodes (using a putpage operation); others are

discarded because they are older than the MinAge value for the

current epoch. Those putpage operations that go to other nodes

may eventually cause older pages on those nodes to be forwarded

or discarded.

When a node performs a putpage operation, apart from send-

ing the page to the target node, it also updates the global-cache-

directory at the node that is responsible for the affected page. The

target node and the sending node each update their page-frame-

directory structures, If the evicted page is a shared global page for

which a duplicate exists elsewhere in the cluster, then it is simply

discarded.

The target node for a putpage operation is selected by executing

the algorithm described in Section 3,2. Figure 5 depicts the major

steps involved in a putpage operation.

5 Performance

This section provides performance measurements of our implemen-

tation of global memory management from several perspectives.

First, we present microbenchmarks that give a detailed breakdown

of the time for fundamental global memory management oper-

ations. Second, we look at the speedup obtained by memory-

intensive applications when using our system, Third, we examine

the effectiveness of our algorithm under different global loading

parameters. All experiments were carried out using DEC Alpha

workstations running OSF/1 V3.2, connected by a 155 Mb/s DEC

AN2 ATM network. The page size”on the Alpha and the unit of

transfer for our measurements is 8 Kbytes.

5.1 Microbenchmarks

Here we report simple measurements to evaluate the underlying

performance of our current implementation. The experiments were

done using eight 225-MHz DEC 3000-700 workstations in the

environment above, each with a local disk and connection to one

or more NFS tile servers that export shared files, including program

binaries. All of these measurements were taken on otherwise idle

machines.

Table 1 itemizes the cost of a getpage operation. The getpage

cost depends on whether the page is shared or non-shared and

whether there is a hit or miss in the global cache, As described

Latency in +$

Operation Non-Shared Page Shared Page

Miss Hit Miss Hit

Request Generation 7 61 65 65

Reply Receipt 156 5 150

GCD Processing 8 8 59 61

Network ktW&SW - 1135 211 1241

Target Processing - 80 - 81

Total 15 1440 340 1558

Table 1: Performance of the Getpage Operation (#s)

in Section 4.1, if the page is non-shared, the GCD (global-cache-

directory) node is the same as the requesting node.

The rows provide the following information. Request Gener-

ation is the time for the requesting node to generate a getpage

request, including access to the page-ownership-directory to con-

tact the GCD node. Reply Receipt is the requester time spent to

process the reply from the remote node; e.g., for a hit, this includes

tbe cost of copying data from the network buffer into a free page

and freeing the network buffer. GCD Processing accounts for the

total time spent in the GCD lookup operation as well as forwarding

the request to the PFD node. Network HW&,SW is the total time

spent in the network hardware and the operating system’s network

protocol. The bulk of this time is spent in hardware; when send-

ing large packets, the total latency introduced by the sending and

receiving controllers is comparable to the transmission time on the

fiber. Target Processing refers to the time on the remote node to do

a lookup in the page-frame-directory and reply to the requesting

node. Total is the sum of the rows and represents the latency seen

by the initiating node before the getpage operation completes. t To

put these numbers in perspective, on identical hardware, the cost

of a simple user-to-user UDP packet exchange for requesting and

receiving an 8 Kbyte page is about 1640 ps.

The Total line for the first column shows the cost of an unsuc-

cessful attempt to locate a non-shared page in the cluster. In this

case, the requested page is not in the global cache and a disk access

is required. This cost thus represents the overhead we add to an

OSF/1 disk access. The OSF/1 disk access time varies between

3600 ps and 14300 ps, so this represents an overhead of only

O.UI. 170 on a miss.

Table 2 shows the costs for a putpage operation. As shown in

Figure 5, a putpage updates the global-cache-directory as well as

the page-frame-directory structures on the source and target nodes.

In the case of shared pages, the sending node might need to initiate

two network transmissions—one to the GCD and another to the

PFD; this time is reflected in Request Generation. In a putpage

operation, the sending node does not wait for a reply from the target

before returning from a putpage call; therefore, in the bottom row

we show Sender Latency rather than the total. For shared pages,

this latency is the same as Request Generation; for non-shared

pages, the latency also includes the GCD processing, because the

GCD is on the same node.

Putpage requests are typically executed by a node under memory

pressure to free frames, An important metric is therefore the

latency for a frame to be freed; this consists of the sum of the

Sender Latency and the time for the network controller to transmit

a buffer, so that the operating system can add it to the free list. For

8 Kbyte pages, the combined transmission and operating system

t Wecould reduce the getpage hit latency 203 MS by eliminating a copy and short

circuiting the network-p~cket delivery path, hut have not yet included these changes.

206

Latency in ps

Operation Non-Shared Page Shared Page

Request Generation 58 102

GCD Processing II 7 I 12

Network HW&SW 989 989

Target Processing 178 181

Sender Latency 65 102

Table 2: Performance of the Putpage Operation (~s)

Access ~pe Access Latency in ms

GMS I No GMS

Sequential Access 2.1 3.6

uRandom Access 2.1 14.3

Table 3: Average Access Times for Non-shared Pages (ins)

overhead is about 300 ~s.

Table 3 compares the average data-read time for non-shared

pages with and without GMS. For this experiment, we ran a syn-

thetic program on a machine with 64 Mbytes of memory. The

program repeated] y accesses a large number of anonymous (i.e.,

non-shared) pages, in excess of the total physical memory. In

steady state for this experiment, every access requires a putpage to

free a page and a getpage to fetch the faulted page. The average

read time thus reflects the overhead of both operations,

The first row of Table 3 shows the average performance of se-

quential reads to non-shared pages. The numbers shown with no

GMS reflect the average disk access time; the difference between

the sequential and random access times indicates the substantial

benefit OSF gains from prefetching and clustering disk blocks for

sequential reads. Nevertheless, using GM S reduces the average

sequential read time by 41 YO for non-shared pages. For con-

sequential accesses, GMS shows a nearly a 7-fold performance

improvement. Here the native OSF/ 1 system is unable to exploit

clustering to amortize the cost of disk seeks and rotational delays.

Table 4 shows the data-access times for NFS files that can be

potentially shared. In this experiment, a client machine with 64

Mbytes of memory tries to access a large NFS tile that will not fit

into its main memory, although there is sufficient memory in the

cluster to hold all of its pages, There are four cases to consider,

In the first case, shown in the first column of Table 4, we assume

that all NFS pages accessed by the client will be put into global

memory. This happens in practice when a single NFS client ac-

cesses the file from a server. For the most part, the behavior of the

system is similar to the experiment described above: there will be

a putpage and a getpage for each access. In this case, tbe pages

will be fetched from global memory on idle machines,

The second case is a variation of the first, where two clients

are accessing the same NFS tile. One client bas ample memory

to store the entire file while the other client does not. Because of

the memory pressure, the second client will do a series of putpage

and getpage operations. The putpage operations in this case are

for shared pages, for which copies already exist in the file buffer

cache of the other client (i.e., they are duplicates). Such a putpage

operation causes the page to be dropped; there is no network trans-

mission. The average access cost in this case is therefore the cost

of a getpage.

The next two cases examine the cost of a read access when there

is no GMS. In the first case, we constrain the NFS file server so that

it does not have enough buffer cache for the entire fi le. A client read

Table 4: Average Access Times for Shared Pages (ins)

Operation CPU cost Network Traffic

ps bytesls

Initiator Request 78xn 25xn

Gather Summary 3512 154 X n

Distribute Weights 45Xrs / (108+ 2xn)xn U

Table 5: Normalized overhead for age information for 2-second

epoch

access will thus result in an NFS request to the server, which will

require a disk access. In the final case, the NFS server has enough

memory so that it can satisfy client requests without accessing the

disk. Here, the cost of an access is simply the overhead of the NFS

call and reply between the client and the server. Notice that an

NFS server-cache hit is 0.2 ms faster than a GMS hit for a single.

This reflects the additional cost of the putpage operation performed

by GMS when a page is discarded from the client cache. In NFS,

discarded pages are dropped as they are in GMS for duplicates, in

which case GMS is 0.2 ms faster than NFS.

5.2 Bookkeeping Overheads

This section describes the cost of performing the essential GMS

bookkeeping operations, which include the periodic flushing of

TLB entries as well as the overhead of collecting and propagating

global page age information.

On the 225-MHz processor, our modified TLB handler intro-

duces a latency of about 60 cycles (an additional 18 cycles over

the standard handler) on the TLB till path. In addition, since TLB

entries are flushed every minute, with a 44 entry TLB, we intro-

duce a negligible overhead of 2640 (60x44) cycles per minute.

In practice, we have seen no slowdown in the execution time of

programs with the modified TLB handler.

Collecting and propagating the age information consists of mul-

tiple steps: (1) the initiator triggers a new epoch by sending out

a request to each node asking for summary age information, (2)

each node gathers tbe summary information and returns it to the

initiator, and (3) the initiator receives the information, calculates

weights and epoch parameters, and distributes the data back to each

node.

The three rows of Table 5 represent the CPU cost and the network

traffic induced by each of these operations. For steps one and three,

tbe table shows the CPU overhead on the initiator node and the

network traffic it generates as a function of the number of nodes,

n, The CPU cost in step two is a function of the number of pages

each node must scan: 0.29 ps per local page and 0.54 AS for each

globa~ page scanned. The overhead shown in the table assumes that

each node has 64 Mbytes (8192 pages) of local memory and that

2000 global pages are scanned. We display network traffic as a rate

in bytes per second by assuming a worst-case triggering interval

of 2 seconds (a 2-second epoch would be extremely short), Given

this short epoch length and a 100-node network, CPU overbead is

less than 0.8?6 on the initiator node and less than 0.2?Z0on other

207

nodes, while the impact on network bandwidth is minimal.

5.3 Execution Time Improvement

This section examines the performance gains seen by several ap-

plications with the global memory system. These applications are

memory and file 1/0 intensive, so under normal circumstances, per-

formance suffers due to disk accesses if the machine has insufficient

memory for application needs. In these situations we would expect

global memory management to improve performance, assuming

that enough idle memory exists in the network. The applications

we measured were the following:

Boeing CAD is a simulation of a CAD application used in the

design of Boeing aircraft, based on a set of page-level access

traces gathered at Boeing. During a four-hour period, eight

engineers performed various operations accessing a shared

500-Mbyte database. We simulated this activity by replaying

one of these traces.

VLSI Router is a VLSI routing program developed at DEC WRL

for microprocessor layout. The program is memory intensive

and can cause significant paging activity on small-memory

machines.

Compile and Link is a partial compile and link of the OSF/1

kernel. By far, the most time is spent in file 1/0 for compiler

and linker access to temporary, source, and object files.

007 is an object-oriented database benchmark that builds a parts-

assembly database in virtual memory and then performs sev-

eral traversals of this database [4]. The benchmark is de-

signed to synthesize the characteristics of MCAD design data

and has been used to evaluate the performance of commercial

and research object databases.

Render is a graphics rendering program that displays a

computer-generated scene from a pre-computed 178-Mbyte

database [5]. In our experiment, we measured the elapsed

time for a sequence of operations that move the viewpoint

progressively closer to the scene without changing the view-

point angle.

Web Query Server is a server that handles queries against the full

text of Digital’s internal World-Wide-Web pages (and some

popular external Web pages). We measured its performance

for processing a script containing 150 typical user queries.

To provide a best-case estimate of the performance impact of

global memory management, we measured the speedup of our

applications relative to a native OSF system. Nine nodes were

used for these measurements: eight 225-MHz DEC 3000 Model

700 machines rated at 163 SPECint92 and one 233-MHz DEC

AlphaStation 400 4/233 rated at 157 SPECint92. The AlphaStation

had 64 Mbytes of memory and ran each application in turn. The

other eight machines housed an amount of idle memory that was

equally divided among them. We varied the total amount of idle

cluster memory to see the impact of free memory size. Figure 6

shows the speedup of each of the applications as a function of the

amount of idle network memory.

As Figure 6 shows, global memory management has a beneficial

impact on all the applications. With zero idle memory, application

performance with and without GMS is comparable. This is in

agreement with our microbenchmarks that indicate GMS overheads

are only 0.40.1 qo when there is no idle memory. Even when

I
/-—

I
——

&:;[
—x

I ,.,X

,,

//22/
.+--”..-

d Bca”g CAD

A VLSI Router

+– Compiled L,”k

—x— 007

— R.”d,,

+ we]> QU,ry Suw!

() 50 lrm 150 2eo 250

Amount of Idle Memory in Network

(MBytes)

Figure 6: Workload Speedup with GMS

5 10 15 20

Number of Nodes

Figure 7: Workload speedup as we vary the number of nodes. Two

fifths of the nodes are idle and the remainder run a mix of three

workloads.

idle memory is insufficient to meet the application’s demands,

our system provides relatively good performance. Beyond about

200 Mbytes of free memory in the cluster, the performance of

these applications does not show any appreciable change, but at

that point, we see speedups of from 1.5 to 3.5, depending on the

application. These speedups are significant and demonstrate the

potential of using remote memory to reduce the disk bottleneck.

Figure 6 shows the speedup of each application when running

alone with sufficient global memory. To demonstrate that those

benefits remain when multiple applications run simultaneously,

competing for memory in a larger network, we ran another exper-

iment. Here we varied the number of nodes from five to twenty;

in each group of five workstations, two were idle and each of the

remaining three ran a different workload (007, Compile and Link,

or Render). The idle machines had sufficient memory to meet the

needs of the workloads. Thus, when running with twenty nodes,

eight were idle and each of the three workloads was running on

four different nodes. The results of this experiment, shown in Fig-

ure 7, demonstrate that the speedup remains nearly constant as the

number of nodes is increased.

5.4 Responsiveness to Load Changes

Our algorithm is based on the distribution and use of memory load

information. An obvious question, then, is the extent to which our

system can cope with rapid changes in the distribution of idle pages

in the network. To measure this, we ran a controlled experiment,

again using nine nodes. In this case, the 233-MHz AlphaStation

208

2.4 {

I ‘–—— -——------ --.,
0 5 1() 15 2(1 25 30

Interval Between Load Redistributions (see)

Figure 8: Effect of varying the frequency with which nodes change

from idle to non-idle on the performance of the 007 benchmark.

ran a memory-intensive application (we chose 007 for this and

several other tests, because its relatively short running time made

the evaluation more practical); the other eight nodes were divided

into two sets: those with idle memory and those without idle

memory. The total idle memory in the network was fixed at 150%

of what is needed by 007 for optimal performance, and 4 of the 8

nodes had most of the idle memory. For the experiment, every X

seconds we caused an idle node to switch with a non-idle node.

Figure 8 shows the speedup of the 007 benchmark (again,

relative to a non-GMS system) as a function of the frequency

with which the load changes occurred. As the graph indicates,

our system is successful at achieving speedup even in the face

of frequent and rapid changes. At a maximum change rate of 1

second, we still see a speedup of 1.9 over the non-global system,

despite the fact that the change requires a swap of 70MB of data

between the non-idle and idle nodes, which adds significant stress

to the system. At lower change rates of 20 to 30 seconds, we see

only a small (4910)impact on the speedup.

5.5 The Effect of Idle Memory Distribution

Another key question about our algorithm is the extent to which

it is affected by the distribution of idle pages in the network. To

measure this impact, we constructed an experiment to vary the

number of nodes in which idle pages are distributed. Again, we

measured the speedup of the 007 benchmark on one node, while

we controlled the distribution of idle pages on 8 other nodes, We

chose three points in the spectrum, arranging in each case that XYO

of the nodes contained (100 – X)?tO of the idle memory, The cases

we consider are (1) 25% of the nodes had ‘75~0 of the free memory,

(2) 37.5% of the nodes housed 62.5% of the free memory, and (3)

50% of the nodes held 50% of the free memory. Case (1) is the

most skewed, in that most of the free memory is housed on a small

number of nodes, while in case (3) the idle memory is uniformly

distributed.

For comparison, we show results for our algorithm and for N-

chance forwarding, the best algorithm defined by Dahlin et al.[10].

It is interesting to compare with N-chance, because it differs from

our algorithm in significant ways. as described in Section 2. To

the best of our knowledge, there is no existing implementation

of the N-chance algorithm described by Dahlin et al. [10]. Con-

sequently, we implemented N-chance in OSF/ 1. We made a few

minor modifications to the original algorithm. Our implementation

is as follows.

Singlet pages are forwarded by nodes with an initial recirculation

count of N = 2. When a singlet arrives at a node, the victim page

4,

H N. CIUJWX(Ml,= Nwkd~

; 34 I

I
I nms(kk.iwcdul,

1
*
LI

25% 37.5% 50%

Idleness Skew (X7. or nodes have 1OI)-X% or idle memory)

Figure 9: Effect of varying distribution of idleness on performance

of 007 benchmark.

to be evicted is picked in the following order. If there are sufficient

pages on the free list such that allocating one will not trigger page

reclamation (by the pageout daemon), we allocate a free page

for the forwarded page and no page is evicted. Otherwise, we

choose in turn: the oldest duplicate page in the UBC, the oldest

recirculating page, or a very old singlet. If this process locates a

victim, it is discarded and replaced with the forwarded page. If no

victim is available, the recirculation count of the forwarded page is

decremented and it is either forwarded or, if the recirculation count

has reached zero, dropped.

The modifications improve the original algorithm while preserv-

ing its key features: (1) a random choice of a target node is made

without using global knowledge, and (2) singlets are kept in the

cluster at the expense of duplicates, even if they might be needed

in the near future.

Figure 9 shows the effect of varying idleness in the cluster.

Here, for each point of the idleness-distribution graph we show

four bars—three for N-chance and one for GMS. The captions on

the N-chance bars indicate, for each case, the total amount of idle

memory that was distributed in the network. For example, for

Idle = Needed, the network contained exactly the number of idle

pages needed by the application, while for Idle= 2 x Needed the

network contained twice the idle pages needed by the application,

The GMS bar is measured with Idle = Needed. From the figure,

we see that for degrees of idleness that are more skewed, it is

difficult for N-chance to find the least loaded nodes. For example,

in the case of 25% of the nodes holding 75% of the pages, GMS

achieves a substantial speedup relative to N-chance in all cases,

even if the N-chance algorithm is given twice the idle memory in

the network. As we move along the graph to 37.57., where 3 of

the 8 nodes hold 63% of the idle pages, N-chance is equivalent to

CiMS only when given twice the idle memory. Obviously, when

there is plenty of free memory in the cluster, the exact distribution

of idle pages becomes secondary and the performance of N-chance

is comparable to that of our algorithm, as long as it has more pages

than are needed.

The effectiveness of the GMS system and its load information

is in fact shown by two things: first, it is superior to N-chance with

non-uniform idleness distributions, even given fewer idle pages;

second, and perhaps more important, the performance of GMS, as

show by the graph, is more-or-less independent of the skew. In

other words, GMS is successful at finding and using the idle pages

in the network, even though it had no excess idle pages to rely on.

The differences between these algorithms are mostly due to the

random nature of the N-chance algorithm. Since N-chance chooses

209

■ N. CI,WCL (Me= Nw(U)

❑ N-c1w,cL’ (idle= 1,5x NwdwJl

J

!S+N. CIXU>CC(k!], = 2 x NCIXW

203

0

25% 37.5% 50%

Idleness Skew (X% of nodes ha~e 1OO-X % of idle memory)

Figure 10: Effect of varying distribution of idleness on the per-

formance of a program actively accessing local memory, half of

which consists of shared data that is duplicated on other nodes.

a target node at random, it works best if idle memory is uniformly

distributed, which will not always be the case.

5.6 Interference with Non-Idle Nodes

A possible negative effect of global memory management, men-

tioned above, is that the global management may negatively impact

applications running on non-idle nodes in the cluster. A heavily

paging node can interfere with other non-idle nodes by adding

management overhead, by replacing needed pages, or by causing

network traffic.

As one test of this effect, we ran an experiment as before with

9 nodes. One node ran the 007 benchmark, generating global

memory traffic. On the remaining 8 nodes, we distributed idle

pages as in the previous section, creating different skews of the

idle pages. However, in this case, all the non-idle nodes ran a copy

of a synthetic program that loops through various pages of its local

memory; half of the pages accessed by this program are shared

among the various running instances, while half are private to each

instance.

Figure 10 shows the average sIowdown of the synthetic pro-

grams for both GMS and the three N-chance tests given various

distributions of idle memory, as before. The slowdown gives the

performance decrease relative to the average performance when

007 was not running. For all the distributions tested, GMS causes

virtually no slowdown of the synthetic program when 007 is gen-

erating global memory traffic. In contrast, N-chance causes a

slowdown of as much as 2.5, depending on the amount of idle

memory and its distribution. For 3 idle nodes (37.5’%0), N-chance

causes a slowdown of 1.2, even when twice the needed idle mem-

ory is available. When the idle memory is uniformly distributed,

N-chance again does as well as GMS, as long as there is additional

idle memory in the cluster.

Figure 11 shows, for the same experiment, the network traffic in

megabytes measured during the test, which took 100-200 seconds.

Here we see the network impact of the two algorithms for the

various idle page distributions. For the more skewed distribution

of 2570, GMS generates less than 1/3 of the network traffic of

N-chance, given the same number of idle pages in the network,

At twice the number of idle pages, N-chance still generates over

50% more traffic than GMS. Not until the idle memory is uniformly

distributed does the N-chance network traffic equal the GMS traffic.

The reasons for these differences are two-fold, First, N-chance

■ N.CIU”LI! [Idle= Needed]

D N-Clmmc (Idle= 1.5x Needed)

❑ N-Chunce (Idle= 2 x Ncukl)

fC GMS (MI.. NdUI)

25% 37.5% 50%

IdlenessSkew (X% of nodes have 1OO-X% of idle memory)

Figure 11: Effect of varying distribution of idleness on network

activity.

2,6 ~

I ~1 1

1 2 3 4 5 6 7

Number of Nodes Running Benchmark

Figure 12: Performance impact of a single idle node serving the

remote memory needs for multiple client nodes.

chooses nodes at random, as previously described, so remote pages

from 007 are sent to the non-idle nodes. Second, N-chance at-

tempts to keep singlets in the network by displacing duplicates,

even if they have been recently referenced. This second effect

is evident in this test, i.e., the active, shared, local pages on the

non-idle nodes are displaced by remote pages sent (randomly) to

those nodes by the N-chance algorithm. When the program on

the non-idle node references one of these displaced pages, a fault

occurs and the page is retrieved from one of the other nodes or from

disk. To make room for the faulted page, the node must discard

its LRU page by forwarding it or dropping it if it is a duplicate.

This additional paging increases network traffic and reduces the

performance of all programs running in tbe cluster.

5.7 CPU Load on Idle Nodes

The experiment in the previous section demonstrates the success

of GMS in avoiding nodes without idle memory. However, even

nodes with substantial amounts of idle memory maybe “non-idle,”

i.e., may be running programs executing in a small subset of local

memory. A global management system such as ours does place

CPU overhead on such a node in order to use its idle memory,

through the getpage and putpage requests that it must respond to.

To evaluate the extent of this impact under heavy load, we

performed an experiment in which only one node had idle memory,

We then monitored the CPU load on that node as we increased the

number of clients using its memory for their global storage. Again,

210

T 3(K)()

/i

1 2 3 4 5 6 7

Number of Nodes Running Benchmark

Figure 13: Impact of multiple clients on CPU performance of an

idle node.

we used 007, increasing the number of 007 client nodes from

one to seven, ensuring in all cases that the idle node had sufficient

memory to handle all of their needs.

Figure 12 shows that when seven copies of 007 were simul-

taneously using the remote memory of the idle node, the average

speedup achieved by GMS was only moderately lowered. That is,

the applications using the idle node’s memory did not seriously

degrade in performance as a result of their sharing a single global

memory provider,

On the other hand, Figure 13 shows the result of that workload

on the idle node itself. The bar graph shows the CPU overhead ex-

perienced by the idle node as a percentage of total CPU cycles. As

well, Figure 13 plots the rate of page-transfer (getpage and putpage)

operations at the idle node during that execution. From this data,

we see that when seven nodes were running 007 simultaneously,

the idle node received an average of 2880 page-transfer operations

per second, which required 56% of the processor’s CPU cycles.

This translates to an average per-operation overhead of 194 ps,

consistent with our micro-benchmark measurements.

6 Limitations

The most fundamental concern with respect to network-wide re-

source management is the impact of failures, In most distributed

systems, failures can cause disruption, but they should not cause

permanent data loss. Temporary service loss is common on any

distributed system, as anyone using a distributed file system is well

aware. Whh our current algorithm, all pages in global memory are

clean, and can therefore be retrieved from disk should a node hold-

ing global pages fail. The failure of the initiator or master nodes is

more difficult to handle; while we have not yet implemented such

schemes, simple algorithms exist for the remaining nodes to elect

a replacement.

A reasonable extension to our system would permit dirty pages

to be sent to global memory without first writing them to disk. Such

a scheme would have performance advantages, particularly given

distributed file systems and faster networks, at the risk of data loss

in the case of failure. A commonly used solution is to replicate

pages in the global memory of multiple nodes; this is future work

that we intend to explore.

Another issue is one of trust. As a chrster becomes more closely

coupled, the machines act more as a single timesharing system. Our

mechanism expects a single, trusted, cluster-wide administrative

domain. All of the kernels must trust each other in various ways.

In particular, one node must trust another to not reveal or corrupt

its data that is stored in the second node’s global memory. Without

mutual trust, the solution is to encrypt the data on its way to or

from global memory. This could be done most easily at the network

hardware level [19].

Our current algorithm is essentially a modified global LRU re-

placement scheme. It is well known that in some cases, such as

sequential file access, LRU may not be the best choice [22]. The

sequential case could be dealt with by limiting its buffer space, as is

done currently in the OSF/1 file buffer cache. Other problems could

exist as weH. The most obvious is that a single badly-behaving pro-

gram on one node could cause enormous paging activity, effectively

flushing global memory. Of course, even without global memory,

a misbehaving program could flood the network or disk, disrupting

service. Again, one approach is to provide a threshold limiting the

total amount of global memory storage that a single node or single

application could consume.

If only a few nodes have idle memory, the CPU load on these

nodes could be high if a large number of nodes all attempt to use that

idle memory simultaneously. If there are programs running on the

idle machines, this could adversely affect their performance. This

effect was measured in the previous section. A possible solution is

to incorporate CPU-load information with page age information,

and to use it to limit CPU overhead on heavily-loaded machines,

In the end, all global memory schemes depend on the existence

of “a reasonable amount of idle memory” in the network. If the

idle memory drops below a certain point, the use of global memory

management should be abandoned until it returns to a reasonable

level. Our measurements show the ability of our algorithm and

implementation to find and effectively utilize global memory even

when idle memory is limited.

7 Conclusions

Current-generation networks, such as ATM, provide an order-of-

magnitude performance increase over existing 10 Mb/s Ethernets;

another order-of-magnitude—to gigabit networks—is visible on

the horizon. Such networks permit a much tighter coupling of

interconnected computers, particularly in local area clusters. To

benefit from this new technology, however, operating systems must

integrate low-latency high-bandwidth networks into their design,

in order to increase the performance of both distributed and parallel

applications.

We have shown that global memory management is one prac-

tical and efficient way to share cluster-wide memory resources.

We have designed a memory management system that attempts

to make cluster-wide decisions on memory usage, dynamically ad-

justing the local/global memory balance on each node as the node’s

behavior and the cluster’s behavior change, Our system does not

cause data loss should nodes fail, because only clean pages are

cached in global memory; cached data can always be fetched from

disk if necessary.

The goal of any global memory algorithm is to reduce the av-

erage memory access time. Key to our algorithm is its use of

periodically-distributed ch.rster-wide age information in order to:

(1) house global pages in those nodes most likely to have idle mem-

ory, (2) avoid burdening nodes that are activcJy using their memory,

(3) ultimately maintain in cluster-wide primary memory the pages

most likely to be globally reused, and (4) maintain those pages in

the right places. Algorithms that do not have these properties are

211

unlikely to be successful in a dynamic cluster environment.

We have implemented our algorithm on the OSF/1 operating

system running on a cluster of DEC Alpha workstations connected

by a DEC AN2 ATM network. Our measurements show the under-

lying costs for global memory management operations in light of a

real implementation, and the potential benefits of global memory

management for applications executing within a local-area cluster.

Acknowledgments

Jeff Chase was closely involved in early discussions of this work.

Comments from Brian Bershad, Jeff Chase, Dylan McNamee, Hal

Murray, John Ousterhout, Chuck Thacker, and the anonymous ref-

ereeshelped improve thequality of the paper. The authors would

like tothank Ted Romerfor his help with Alpha PALcode, Dy-

lan McNamee and Brad Chamberlain for the Render application,

Jeremy Dion and Patrick Boyle for the VLSI router, Steve Glass-

man for the Web Query Server, Vivek Narasayya for help with the

007 benchmark, and Ashutosh Tiwary for the Boeing CAD traces.

We would also like to thank Hal Murray for his help with the AN2

network, and the DEC SRC community for donating workstations

for our experiments.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

T. E, Anderson, S. S. Owicki, J. B. Saxe, and C. P. Thacker.

High-speed switch scheduling for local-area networks. ACM

Trans. Comput. Syst., 11(4):319-352, NOV. 1993.

M. Bern, D. Greene, and A. Raghunathan. Online algorithms

for cache sharing. In Proceedings of the 25th ACM Sympo-

sium on Theory of Computing, May 1993.

D. Black and D. D. Sleator. Competitive algorithms for repli-

cation and migration poblems. Technical Report CMU-CS-

89-201, Department of Computer Science, Carnegie-Mellon

University, 1989.

M. J. Carey, D. J. Dewitt, and J. F. Naughton. The 007

benchmark. In Proc. of the ACM SIGMOD International

Conference on Management of Data, May 1993.

B. Chamberlain, T. DeRose, D. Salesin, J. Snyder, and

D. Lischinski. Fast rendering of complex environments using

a spatial hierarchy. Technical Report 95-05-02. Department

of Computer Science and Engineering, University of Wash-

ington, May 1995.

J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska.

Sharing and protection in a single-address-space operating

system. ACM Trans. Comput. Syst., 12(4):27 1–307, NOV.

1994.

M. Chrobak, L. Larmore, N. Reingold, and J. Westbrook.

Page migration algorithms using work functions. Technical

Report YALE/DCS/RR-9 10, Department of Computer Sci-

ence, Yale University, 1992.

D. Comer and J. Griffioen. A new design for distributed

systems: The remote memory model. In Proceedings of

the Summer 1990 USENIX Conference, pages 127–1 35, June

1990.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21)

[22]

[23]

[24]

A, L, Cox and R. J. Fowler. The implementation of a coher-

ent memory abstraction on a NUMA multiprocessor: Ex-

periences with PLATINUM. In Proceedings of the 12th

ACM Symposium on Operating Systems Principles, Decem-

ber 1989.

M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A. Pat-

terson. Cooperative caching: Using remote client memory

to improve file system performance. In Proceedings of the

USENIX Conference on Operating Systems Design and Im-

plementation, November 1994.

D. L. Eager, E. D. Lazowska, and J. Zahorjan. Adaptive load

sharing in homogeneous distributed systems. IEEE Trans. on

Software Engineering, SE- 12(5), May 1986.

E. W. Felten and J. Zahorjan. Issues in the implementation

of a remote memory paging system. Technical Report 91-

03-09, Department of Computer Science and Engineering,

University of Washington, Mar. 1991.

M. J. Frankling, M. J. Carey, and M. Livny. Global mem-

ory management in client-server DBMS architectures. In

Proceedings of the 18th VLDB Conference, August 1992.

N. P. Kronenberg, H. M. Levy, and W. D. Strecker. VAX-

chrsters: A closely-coupled distributed system. ACM Trans.

Comput. Syst., 4(2):130-146, May 1986.

P. J. Leach, P. H. Levine, B. P. Douros, J. A. Hamilton,

D. L. Nelson, and B. L. Stumpf. The architecture of an

integrated local network. IEEE Journal on Selected A reas in

Communications, 1(5):842–857, Nov. 1983.

K. Li and P. Hudak. Memory coherence in shared virtual

memory systems. ACM Trans. Comput. Syst., 7(4):32 1–359,

Nov. 1989.

M. N. Nelson, B. B. Welch, and J. K. Ousterhout. Caching

in the Sprite network files ystem, ACM Trans. Comput. Syst.,

6(1):134-154, Feb. 1988.

B. N. Schilit and D. Duchamp. Adaptive remote paging.

Technical Report CUCS-004091, Department of Computer

Science, Columbia University, February 1991.

M.D. Schroeder, A. D. Birrell, M. Burrows, H. Murray, R. M.

Needham, T. L. Rodeheffer, E. H. Satterthwaite, and C. P.

Thacker. Autonet: A high-speed, self-configuring local area

network using point-to-point links. IEEE Journal on Selected

Areas in Communications, 9(8):13 18–1335, Oct. 1991.

R. L. Sites, editor. Alpha Architecture Reference Manual.

Digital Press, One Burlington Woods Drive, Burlington, MA

01803, 1992.

P. Stenstrom, T. Joe, and A. Gupta. Comparative performance

evaluation of cache-coherent NUMA and COMA architec-

tures. In Proceedings of the 19th International Symposium

on Computer A rchitecture, May 1992.

M. Stonebraker. Operating system support for database man-

agement. Commun. ACM, 24(7):412418, July 1981.

C. P. Thacker and M. D. Schroeder. AN2 switch overview.

In preparation.

J. Westbrook. Randomized algorithms for multiprocessor

page migration. In DIMACS Series in Discrete Mathematics

and Theoretical Computer Science, volume 7, 1992.

212

