
Implementing Grover oracles for quantum key search on

AES and LowMC

Samuel Jaques1∗†, Michael Naehrig2, Martin Roetteler3, and Fernando Virdia4†‡

1 Department of Materials, University of Oxford, UK
samuel.jaques@materials.ox.ac.uk

2 Microsoft Research, Redmond, WA, USA
mnaehrig@microsoft.com

3 Microsoft Quantum, Redmond, WA, USA
martinro@microsoft.com

4 Information Security Group, Royal Holloway, University of London, UK
fernando.virdia.2016@rhul.ac.uk

Abstract. Grover’s search algorithm gives a quantum attack against block ciphers by search-
ing for a key that matches a small number of plaintext-ciphertext pairs. This attack uses
O(
√
N) calls to the cipher to search a key space of size N . Previous work in the specific case

of AES derived the full gate cost by analyzing quantum circuits for the cipher, but focused on
minimizing the number of qubits.
In contrast, we study the cost of quantum key search attacks under a depth restriction and
introduce techniques that reduce the oracle depth, even if it requires more qubits. As cases in
point, we design quantum circuits for the block ciphers AES and LowMC. Our circuits give a
lower overall attack cost in both the gate count and depth-times-width cost models. In NIST’s
post-quantum cryptography standardization process, security categories are defined based on
the concrete cost of quantum key search against AES. We present new, lower cost estimates
for each category, so our work has immediate implications for the security assessment of
post-quantum cryptography.
As part of this work, we release Q# implementations of the full Grover oracle for AES-128,
-192, -256 and for the three LowMC instantiations used in Picnic, including unit tests and
code to reproduce our quantum resource estimates. To the best of our knowledge, these are
the first two such full implementations and automatic resource estimations.

Keywords: Quantum cryptanalysis, Grover’s algorithm, AES, LowMC, post-quantum cryp-
tography, Q# implementation.

1 Introduction

The prospect of a large-scale, cryptographically relevant quantum computer has prompted increased
scrutiny of the post-quantum security of cryptographic primitives. Shor’s algorithm for factoring and
computing discrete logarithms introduced in [Sho94] and [Sho97] will completely break public-key
schemes such as RSA, ECDSA and ECDH. But symmetric schemes like block ciphers and hash

∗ Partially supported by the University of Oxford Clarendon fund.
† This work was done while Fernando and Sam were interns at Microsoft Research.
‡ Partially supported by the EPSRC and the UK government as part of the Centre for Doctoral Training
in Cyber Security at Royal Holloway, University of London (EP/P009301/1).

functions are widely considered post-quantum secure. The only caveat thus far is a security reduction
due to key search or pre-image attacks with Grover’s algorithm [Gro96]. As Grover’s algorithm only
provides at most a square root speedup, the rule of thumb is to simply double the cipher’s key
size to make it post-quantum secure. Such conventional wisdom reflects the asymptotic behavior
and only gives a rough idea of the security penalties that quantum computers inflict on symmetric
primitives. In particular, the cost of evaluating the Grover oracle is often ignored.

In their call for proposals to the standardization of post-quantum cryptography [NIS16], the
National Institute of Standards and Technology (NIST) proposes security categories for post-quantum
public-key schemes such as key encapsulation and digital signatures. Categories are defined by the
cost of quantum algorithms for exhaustive key search on the block cipher AES and collision search
for the hash function SHA-3, and measure the attack cost in the number of quantum gates. Because
the gate count of Grover’s algorithm increases with parallelization, they impose a total upper bound
on the depth of a quantum circuit, called MAXDEPTH, and account for this in the gate counts. There
is no bound on width. An algorithm meets the requirements of a specific security category if the best
known attack uses more resources (gates) than are needed to solve the reference problem. Hence, a
concrete and meaningful definition of these security categories depends on precise resource estimates
of the Grover oracle for key search on AES.

Security categories 1, 3 and 5 correspond to key recovery against AES-128, AES-192 and AES-256,
respectively. The NIST proposal derives gate cost estimates from the concrete, gate-level descriptions
of the AES oracle by Grassl, Langenberg, Roetteler and Steinwandt [GLRS16]. Grassl et al. aim to
minimize the circuit width, i.e. the number of qubits needed.

Prior work. Since the publication of [GLRS16], other works have studied quantum circuits for
AES, the AES Grover oracle and its use in Grover’s algorithm. Almazrooie, Samsudin, Abdullah
and Mutter [ASAM18] improve the quantum circuit for AES-128. As in [GLRS16], the focus is on
minimizing the number of qubits. The improvements are a slight reduction in the total number of
Toffoli gates and the number of qubits by using a wider binary field inversion circuit that saves
one multiplication. Kim, Han and Jeong [KHJ18] discuss time-space trade-offs for key search on
block ciphers in general and use AES as an example. They discuss NIST’s MAXDEPTH parameter
and hence study parallelization strategies for Grover’s algorithm to address the depth constraint.
They take the Toffoli gate depth as the relevant metric for the MAXDEPTH bound arguing that it is a
conservative approximation.

Recently, independent and concurrent to parts of this work, Langenberg, Pham and Stein-
wandt [LPS19] developed quantum circuits for AES that demonstrate significant improvements over
those presented in [GLRS16] and [ASAM18]. The main source of optimization is a different S-box
design derived from work by Boyar and Peralta in [BP10] and [BP12], which greatly reduces the
number of Toffoli gates in the S-box as well as its Toffoli depth. Another improvement is that fewer
auxiliary qubits are required for the AES key expansion. Again, this work aligns with the objectives
in [GLRS16] to keep the number of qubits small.

Bonnetain et al. [BNS19] study the post-quantum security of AES within a new framework for
classical and quantum structured search. The work cites [GLRS16] for deducing concrete gate counts
for reduced-round attacks.

Our contributions. We present implementations of the full Grover oracle for key search on AES
and LowMC in Q# [SGT+18], including full implementations of the block ciphers themselves. In

2

contrast to previous work [GLRS16], [ASAM18] and [LPS19], having a concrete implementation
allows us to get more precise, flexible and automatic estimates of the resources required to compute
these operations. It also allows us to unit test our circuits, to make sure that the implementations
are correct.

The source code is publicly available5 under a free license to allow independent verification of
our results, further investigation of different trade-offs and cost models and re-costing as the Q#
compiler improves and as automatic optimization software becomes available. We hope that it can
serve as a useful starting point for cryptanalytic work to assess the post-quantum security of other
schemes.

We review the literature on the parallelization of Grover’s algorithm ([BBHT98], [Zal99], [GR03],
[KHJ18]) to explore the cost of attacking AES and LowMC in the presence of a bound on the total
depth, such as MAXDEPTH proposed by NIST. We conclude that using parallelization by dividing
the search space is advantageous. We also give a rigorous justification for the number of plaintext-
ciphertext blocks needed in Grover’s oracle in the context of parallelization. Smaller values than
those proposed by Grassl et al. [GLRS16] are sufficient, as is also pointed out by Langenberg et

al. [LPS19].

Our quantum circuit optimization approach differs from those in the previous literature [GLRS16],
[ASAM18] and [LPS19] in that our implementations do not aim for the lowest possible number of
qubits. Instead, we designed them to minimize the gate-count and depth-times-width cost metrics
for quantum circuits under a depth constraint. The gate-count metric is relevant for defining the
NIST security categories and the depth-times-width cost metric is a more realistic measure of
quantum resources when quantum error correction is deployed. Favoring lower depth at the cost of a
slightly larger width in the oracle circuit leads to costs that are smaller in both metrics than for the
circuits presented in [GLRS16], [ASAM18] and [LPS19]. Grover’s algorithm does not parallelize well,
meaning that minimizing depth rather than width is crucial to make the most out of the available
depth.

To the best of our knowledge, our work results in the most shallow quantum circuit of AES so
far, and the first ever for LowMC. We chose to also implement LowMC as an example of a quantum
circuit for another block cipher. It is used in the Picnic signature scheme ([CDG+17], [ZCD+17]), a
round-2 candidate in the NIST standardization process. Thus, our implementation can contribute
to more precise cost estimates for attacks on Picnic and its post-quantum security assessment.

We present our results for quantum key search on AES in the context of the NIST post-quantum
cryptography standardization process and derive new and lower cost estimates for the definition of
the NIST security strength categories. We see a consistent gate cost reduction between 11 and 13
bits, making it easier for submitters to claim a certain quantum security category.

2 Finding a block cipher key with Grover’s algorithm

Given plaintext-ciphertext pairs created by encrypting a small number of messages under a block
cipher, Grover’s quantum search algorithm [Gro96] can be used to find the secret key [YI00]. This
section provides some preliminaries on Grover’s algorithm, how it can be applied to the key search
problem and how it parallelizes under depth constraints.

5 https://github.com/microsoft/grover-blocks

3

https://github.com/microsoft/grover-blocks

2.1 Grover’s algorithm

Grover’s algorithm [Gro96] searches through a space of N elements; for simplicity, we restrict to
N = 2k right away and label elements by their indices in {0, 1}k. The algorithm works with a
superposition |ψ〉 = 2−k/2

∑

x∈{0,1}k |x〉 of all indices, held in a register of k qubits. It makes use of an

operator Uf for evaluating a Boolean function f : {0, 1}k → {0, 1} that marks solutions to the search
problem, i.e. f(x) = 1 if and only if the element corresponding to x is a solution. When applying
the Grover oracle Uf to a state |x〉 |y〉 for a single qubit |y〉, it acts as |x〉 |y〉 7→ |x〉 |y ⊕ f(x)〉 in the
computational basis. When |y〉 is in the state |ϕ〉 = (|0〉 − |1〉)/

√
2, then this action can be written

as |x〉 |ϕ〉 7→ (−1)f(x) |x〉 |ϕ〉. This means that the oracle applies a phase shift to exactly the solution
indices.

The algorithm first prepares the state |ψ〉 |ϕ〉 with |ψ〉 and |ϕ〉 as above. It then repeatedly
applies the so-called Grover iteration

G = (2 |ψ〉〈ψ| − I)Uf ,

an operator that consists of the oracle Uf followed by the operator 2 |ψ〉〈ψ| − I, which can be viewed
as an inversion about the mean amplitude. Each iteration can be visualized as a rotation of the state
vector in the plane spanned by two orthogonal vectors: the superposition of all indices corresponding
to solutions and non-solutions, respectively. The operator G rotates the vector by a constant angle
towards the superposition of solution indices. Let 1 ≤ M ≤ N be the number of solutions and
let 0 < θ ≤ π/2 such that sin2(θ) = M/N . Note that if M ≪ N , then sin(θ) is very small and
θ ≈ sin(θ) =

√

M/N .

When measuring the first k qubits after j > 0 iterations of G, the success probability p(j) for
obtaining one of the solutions is p(j) = sin2((2j + 1)θ) [BBHT98], which is close to 1 for j ≈ π

4θ .

Hence, after
⌊

π
4

√

N
M

⌋

iterations, measurement yields a solution with overwhelming probability of at

least 1− M
N .

Grover’s algorithm is optimal in the sense that any quantum search algorithm needs at least
Ω(

√
N) oracle queries to solve the problem [BBHT98]. In [Zal99], Zalka shows that for any number

of oracle queries, Grover’s algorithm gives the largest probability to find a solution.

2.2 Key search for a block cipher

Let C be a block cipher with block length n and key length k; for a key K ∈ {0, 1}k denote by
CK(m) ∈ {0, 1}n the encryption of message block m ∈ {0, 1}n under the key K. Given r plaintext-
ciphertext pairs (mi, ci) with ci = CK(mi), we aim to apply Grover’s algorithm to find the unknown
key K [YI00]. The Boolean function f for the Grover oracle takes a key K as input, and is defined
as

f(K) =

{

1, if CK(mi) = ci for all 1 ≤ i ≤ r,

0, otherwise.

Possibly, there exist other keys than K that encrypt the known plaintexts to the same ciphertexts.
We call such keys spurious keys. If their number is known to be, say M − 1, the M -solution version
of Grover’s algorithm has the same probability of measuring each spurious key as measuring the
correct K.

4

Spurious keys. We start by determining the probability that a single message encrypts to the same
ciphertext under two different keys, for which we make the usual heuristic assumptions about the block
cipher C. We assume that under a fixed key K, the map {0, 1}n → {0, 1}n,m 7→ CK(m) is a pseudo-
random permutation; and under a fixed message block m, the map {0, 1}k → {0, 1}n,K 7→ CK(m)
is a pseudo-random function. Now let K be the correct key, i.e. the one used for the encryption. It
follows that for a single message block of length n, PrK 6=K′ (CK(m) = CK′(m)) = 2−n.

This probability becomes smaller when the equality condition is extended to multiple blocks.
Given r distinct messages m1, . . . ,mr ∈ {0, 1}n, we have

Pr
K 6=K′

((CK(m1), . . . , CK(mr)) = (CK′(m1), . . . , CK′(mr))) =

r−1
∏

i=0

1

2n − i
, (1)

which is ≈ 2−rn for r2 ≪ 2n. Since the number of keys different from K is 2k − 1, we expect
the number of spurious keys for an r-block message to be ≈ (2k − 1)2−rn. Choosing r such that
this quantity is very small ensures with high probability that there is a unique key and we can
parameterize Grover’s algorithm for a single solution.

Remark 1. Grassl et al. [GLRS16, §3.1] work with a similar argument. They take the probability
over pairs (K ′,K ′′) of keys with K ′ 6= K ′′. Since there are 22k − 2k such pairs, they conclude that
about (22k − 2k)2−rn satisfy the above condition that the ciphertexts coincide on all r blocks. But
this also counts pairs of keys for which the ciphertexts match each other, but do not match the
images under the correct K. Thus, using the number of pairs overestimates the number of spurious
keys and hence the number r of message blocks needed to ensure a unique key.

Based on the above heuristic assumptions, one can determine the probability for a specific
number of spurious keys. Let X be the random variable whose value is the number of spurious
keys for a given set of r message blocks and a given key K. Then, X is distributed according to a
binomial distribution:

Pr(X = t) =

(

2k − 1

t

)

pt(1− p)2
k−1−t,

where p = 2−rn. We use the Poisson limit theorem to conclude that this is approximately a Poisson
distribution with

Pr(X = t) ≈ e−
2k−1

2rn
(2k − 1)t(2−rn)t

t!
≈ e−2k−rn 2t(k−rn)

t!
. (2)

The probability that K is the unique key consistent with the r plaintext-ciphertext pairs is

Pr(X = 0) ≈ e−2k−rn

. Thus we can choose r such that rn is slightly larger than k; rn = k+10 gives
Pr(X = 0) ≈ 0.999. In a block cipher where k = b · n is a multiple of n, taking r = b+ 1 will give
the unique key K with probability at least 1− 2−n, which is negligibly close to 1 for typical block
sizes. If rn < k, then K is almost certainly not unique. Even rn = k− 3 gives less than a 1% chance
of a unique key. Hence, r must be at least ⌈k/n⌉.

The case k = rn, when the total message length is equal to the key length, remains interesting if
one aims to minimize the number of qubits. The probability for a unique K is Pr(X = 0) ≈ 1/e ≈
0.3679, and the probability of exactly one spurious key is the same. Kim et al. [KHJ18, Equation (7)]
describe the success probability after a certain number of Grover iterations when the number of
spurious keys is unknown. The optimal number of iterations gives a maximum success probability of
0.556, making it likely that the first attempt will not find the correct key and one must repeat the
algorithm.

5

Depth constraints for cryptanalysis. In this work, we assume that any quantum adversary is
bounded by a constraint on its total depth for running a quantum circuit. In its call for proposals
to the post-quantum cryptography standardization effort [NIS16], NIST introduces the parameter
MAXDEPTH as such a bound and suggests that reasonable values6 are between 240 and 296. Whenever
an algorithm’s overall depth exceeds this bound, parallelization becomes necessary. We do assume
that MAXDEPTH constitutes a hard upper bound on the total depth of a quantum attack, including
possible repetitions of a Grover instance.

In general, an attacker can be assumed to have a finite amount of resources, in particular a finite
time for an attack. This is equivalent to postulating an upper bound on the total depth of a quantum
circuit as suggested by NIST. Unlike in the classical case, the required parallelization increases the
gate cost for Grover’s algorithm, which makes it important to study attacks with bounded depth.

We consider it reasonable to expect that the overall attack strategy is guaranteed to return a
solution with high probability close to 1 within the given depth bound. E.g., a success probability
of 1/2 for a Grover instance to find the correct key requires multiple runs to increase the overall
probability closer to 1. These runs, either sequentially or in parallel, need to be taken into account for
determining the overall cost and must respect the depth limit. While this setting is our main focus,
it can be adequate to allow and cost a quantum algorithm with a success probability noticeably
smaller than 1. Where not given in this paper, the corresponding analysis can be derived in a
straightforward manner.

Repeated measurements. It is shown by Boyer et al. [BBHT98] that instead of iterating
⌊

π
4

√

N
M

⌋

times, the expected number of iterations needed to find a solution is smaller if we stop early after a
fixed number j and repeat the algorithm until it succeeds. In this case, one expects j/p(j) iterations,
with a minimum of roughly 0.690

√

N/M expected iterations when measuring and restarting after

0.583
√

N/M iterations. But this observation is only useful when it is possible to run the search
procedure many times. In cryptanalysis, the situation is typically different. In light of the above
assumption of having a depth bound and the goal of achieving high success probability, a repeating
strategy requiring on the average a small number of iterations is undesirable if the variance of
the number of necessary iterations is high. The above optimal value of 0.583

√

N/M sequential
quantum iterations before measuring a candidate solution identified by Boyer et al. [BBHT98] means
that, if the first measurement fails and we must repeat the partial search, we end up using at least
1.166

√

N/M Grover iterations, exceeding π
4

√

N/M .
In general, for an integer m such that the depth limit allows a total of mj iterations, we can

decide whether to repeat a j-fold iteration instance of Grover’s algorithm m times or to use mj
iterations in one instance. The former succeeds with probability 1 − (1 − p(j))m, and the latter
with probability p(mj) = sin2((2mj + 1)θ). It can be shown by induction that, if 0 < φ < π/(2m),
then 1 − sin2(mφ) ≤ (1 − sin2(φ))m for all m ≥ 1; with φ = (2j + 1)θ and the observation that
φ≫ θ it follows, that to reach a fixed probability, we are better off using more consecutive quantum
iterations than measuring and repeating.

6 Suggested MAXDEPTH values are justified by assumptions about the total available time and speed of
each gate. The limit 296 is given as “the approximate number of gates that atomic scale qubits with
speed of light propagation times could perform in a millennium” [NIS16]. An adversary could only run a
higher-depth circuit if they were able to use smaller qubits, faster propagation, or had more available
time.

6

Remark 2. While for some cryptanalytic applications, it is important to find the correct key, for
others, any key that matches the plaintext-ciphertext pairs can be sufficient. For example, the Picnic
signature scheme ([CDG+17], [ZCD+17]) uses a block cipher C and encrypts a message m to c,
and (m, c) is the public key. The signature is a zero-knowledge proof that the signer knows a secret
key K such that CK(m) = c. Any other key K ′ with CK′(m) = c produces a valid signature for
the original public key. Thus, to forge signatures, a spurious key works just as well. However, since
in general, the number of spurious keys is unknown, Grover’s algorithm needs to be adjusted for
example as in [BBHT98, §4] or by running a quantum counting algorithm first [BBHT98, §5]. This
requires repeated runs of various Grover instances. As argued above for the measure-and-repeat
approach, under a total depth limitation, this reduces the success probability.

2.3 Parallelization

There are different ways to parallelize Grover’s algorithm. Kim, Han, and Jeong [KHJ18] describe
two, which they denote as inner and outer parallelization. Outer parallelization runs multiple
instances of the full algorithm in parallel. Only one instance must succeed, allowing us to reduce the
necessary success probability, and hence number of iterations, for all. Inner parallelization divides
the search space into disjoint subsets and assigns each subset to a parallel machine. Each machine’s
search space is smaller, so the number of necessary iterations shrinks.

Zalka [Zal99] concludes that in both cases, one only obtains a factor
√
S gain in the number

of Grover iterations when working with S parallel Grover oracles, and that this is asymptotically
optimal. Compared to many classical algorithms, this is an inefficient parallelization, since we must
increase the width by a factor of S to reduce the depth by a factor of

√
S. Both methods avoid any

communication, quantum or classical, during the Grover iterations. They require communication
at the beginning, to distribute the plaintext-ciphertext pairs to each machine and to delegate the
search space for inner parallelization, and communication at the end to collect the measured keys
and decide which one, if any, is the true key. The next section discusses why our setting favours
inner parallelization.

Advantages of inner parallelization. Consider S parallel machines that we run for j iterations,
using the notation of §2.1, and a unique key. For a single machine, the success probability is
p(j) = sin2 ((2j + 1)θ). Using outer parallelization, the probability that at least one machine
recovers the correct key is pS(j) = 1− (1− p(j))S . We hope to gain a factor

√
S in the number of

iterations, so instead of iterating
⌊

π
4θ

⌋

times, we run each machine for jS =
⌊

π
4θ

√
S

⌋

iterations.

Considering some small values of S, we get S = 1 : p1(j1) ≈ 1, S = 2 : p2(j2) ≈ 0.961 and
S = 3 : p3(j3) ≈ 0.945. As S gets larger, we use a series expansion to find that

pS(jS) ≈ 1−
(

1− π2

4S
+O

(

1

S2

))S
S→∞−−−−→ 1− e−

π2

4 ≈ 0.915. (3)

This means that by simply increasing S, it is not possible to gain a factor
√
S in the number of

iterations if one aims for a success probability close to 1. In contrast, with inner parallelization, the
correct key lies in the search space of exactly one machine. With jS iterations, this machine has
near certainty of measuring the correct key, while other machines are guaranteed not to measure
the correct key. Overall, we have near-certainty of finding the correct key. Inner parallelization thus

7

achieves a higher success probability with the same number S of parallel instances and the same
number of iterations.

Another advantage of inner parallelization is that dividing the search space separates any spurious
keys into different subsets and reduces the search problem to finding a unique key. This allows us to
reduce the number r of message blocks in the Grover oracle and was already observed by Kim, Han,
and Jeong [KHJ18] in the context of measure-and-repeat methods. In fact, the correct key lies in
exactly one subset of the search space. If the spurious keys fall into different subsets, the respective
machines measure spurious keys, which can be discarded classically after measurement with access
to the appropriate number of plaintext-ciphertext pairs. The only relevant question is whether there
is a spurious key in the correct key’s subset of size 2k/S. The probability for this is

SKP(k, n, r, S) =

∞
∑

t=1

Pr(X = t) ≈ 1− e−
2k−rn

S , (4)

using Equation (2) with 2k replaced by 2k/S. If k = rn, this probability is roughly 1/S when S gets
larger. In general, high parallelization makes spurious keys irrelevant, and the Grover oracle can
simply use the smallest r such that SKP(k, n, r, S) is less than a desired bound.

3 Quantum circuit design

Quantum computation is usually described in the quantum circuit model. This section describes
our interpretation of quantum circuits, methods and criteria for quantum circuit design, and cost
models to estimate quantum resources.

3.1 Assumptions about the fault-tolerant gate set and architecture

The quantum circuits we are concerned with in this paper operate on qubits. They are composed of
so-called Clifford+T gates, which form a commonly used universal fault-tolerant gate set exposed
by several families of quantum error-correcting codes. The primitive gates consist of single-qubit
Clifford gates, controlled-NOT (CNOT) gates, T gates, and measurements. We make the standard
assumption of full parallelism, meaning that a quantum circuit can apply any number of gates
simultaneously so long as these gates act on disjoint sets of qubits [BBG+13,GR03].

All quantum circuits for AES and LowMC described in this paper were designed, tested, and
costed in the Q# programming language [SGT+18], which supports all assumptions discussed here.
We adopt the computational model presented in [JS19]. The Q# compiler allows us to compute
circuit depth automatically by moving gates around through a circuit if the qubits it acts on were
previously idle. In particular, this means that the depth of two circuits applied in series may be less
than the sum of the individual depths of each circuit. The Q# language allows the circuit to allocate

auxiliary qubits as needed, which adds new qubits initialized to |0〉. If an auxiliary qubit is returned
to the state |0〉 after it has been operated on, the circuit can release it. Such a qubit is no longer
entangled with the state used for computation and the circuit can now maintain or measure it.

Grover’s algorithm is a far-future quantum algorithm, making it difficult to decide on the
right cost for each gate. Previous work assumed that T gates constitute the main cost ([GLRS16],
[ASAM18], [LPS19]). They are exceptionally expensive for a surface code [FMMC12]; however, for
a future error-correcting code, T gates may be transversal and cheap while a different gate may be

8

expensive. Thus, we present costs for both counting T gates only, and costing all gates equally. For
most of the circuits, these concerns do not change the optimal design.

We ignore all concerns of layout and communication costs for the Grover oracle circuit. Though
making this assumption is unrealistic for a surface code, where qubits can only interact with
neighboring ones, other codes may not have these issues. A single oracle circuit uses relatively few
logical qubits (< 220), so these costs are unlikely to dominate. This allows us to compare our work
with previous proposals, which also ignore these costs. This also implies that uncontrolled swaps
are free, since the classical controller can simply track such swaps and rearrange where it applies
subsequent gates.

While previous work on quantum circuits for AES such as [GLRS16], [ASAM18] and [LPS19]
mainly uses Toffoli gates, we use AND gates instead. A quantum AND gate has the same functionality
as a Toffoli gate, except the target qubit is assumed to be in the state |0〉, rather than an arbitrary
state. We use a combination7 of Selinger’s [Sel13] and Jones’ [Jon13] circuits to express the AND
gate in terms of Clifford and T gates, see §C. This circuit uses 4 T gates and 11 Clifford gates in
T -depth 1 and total depth 8. It uses one auxiliary qubit which it immediately releases, while its
adjoint circuit is slightly smaller.

3.2 Automated resource estimation and unit tests

One incentive for producing full implementations of the Grover oracle and its components is to
obtain precise8 resource estimates automatically and directly from the circuit descriptions. Another
incentive is to test the circuits for correctness and to compare results on classical inputs against
existing classical software implementations that are known (or believed) to be correct. Yet quantum
circuits are in general not testable, since they rely on hardware yet to be constructed. To partially
address this issue, the Q# compiler can classically simulate a subset of quantum circuits, enabling
partial test coverage. We thus designed our circuits such that this tool can fully classically simulate
them, by using X, CNOT, CCNOT, SWAP, and AND gates only, together with measurements
(denoted throughout as M “gates”). This approach limits the design space since we cannot use true
quantum methods within the oracle. Yet, it is worthwhile to implement components that are testable
and can be fully simulated to increase confidence in the validity of resource estimates deduced from
such implementations.

As part of the development process, we first implemented AES (resp. LowMC) in Python3, and
tested the resulting code against the AES implementation in PyCryptodome 3.8.2 [PyC19] (resp. the
C++ reference implementation in [Low19]). Then, we proceeded to write our Q# implementations
(running on the Dotnet Core version 2.1.507, using the Microsoft Quantum Development Kit version
0.7.1905.3109), and tested these against our Python3 implementations, by making use of the IQ#
interface (see [Mic19b],[Mic19a]. For the Q# simulator to run, we are required to use the Microsoft
QDK standard library’s Toffoli gate for evaluating both Toffoli and AND gates, which results in
deeper than necessary circuits. We also have to explicitly SWAP values across wires, which costs 3
CNOT gates, rather than simply keeping track of the necessary free rewiring. Hence, to mitigate
these effects, our functions admit a Boolean flag indicating whether the code is being run as part of

7 We thank Mathias Soeken for providing the implementation of the AND gate circuit.
8 Since the publication of this paper, a problem with the ResourcesEstimator functionality in Q# has
been found and reported in Issue #192, https://github.com/microsoft/qsharp-runtime/issues/192.
Currently, results may report independent lower bounds on depth and width that may not be simultaneously
realizable in a quantum circuit. The Q# team has stated that they are working to resolve this issue.

9

https://github.com/microsoft/qsharp-runtime/issues/192

a unit test by the simulator, or as part of a cost estimate. In the latter case, Toffoli and AND gate
designs are automatically replaced by shallower ones, and SWAP instructions are disregarded as
free (after manually checking that this does not allow for incompatible circuit optimizations). All
numbers reporting the total width of a circuit include the initial number of qubits plus the maximal
number of temporarily allocated auxiliary qubits within the Q# function. For numbers describing
the total depth, all gates such as Clifford gates, CNOT and T gates as well as measurements are
assigned a depth of 1.

The AND and Toffoli gate designs we chose use measurements, hence CNOT, 1-qubit Clifford,
measurement and depth counts are probabilistic. The Q# simulator does not currently support
PRNG seeding for de-randomizing the measurements,9 which means that estimating differently sized
circuits with the same or similar depth (or re-estimating the same circuit multiple times) may result
in slightly different numbers. We also note that the compiler is currently unable to optimize a given
circuit by, e.g., searching through small circuit variations that may result in functionally the same
operation at a smaller cost (say by allowing better use of the circuit area).

3.3 Reversible circuits for linear maps

Linear maps f : Fn
2 → F

m
2 for varying dimensions n and m are essential building blocks of AES and

LowMC. In general, such a map f , expressed as multiplication by a constant matrixMf ∈ F
m×n
2 , can

be implemented as a reversible circuit on n input wires and m additional output wires (initialized
to |0〉), by using an adequate sequence of CNOT gates: if the (i, j)-th coefficient of Mf is 1, we set a
CNOT gate targeting the i-th output wire, controlled on the j-th input wire.

Yet, if a linear map g : Fn
2 → F

n
2 is invertible, one can reversibly compute it in-place on the

input wires via a PLU decomposition of Mg, Mg = P · L · U [TB97, Lecture 21]. The lower- and
upper-triangular components L and U of the decomposition can be implemented as described
above by using the appropriate CNOT gates, while the final permutation P does not require any
quantum gates and instead, is realized by appropriately keeping track of the necessary rewiring.
An example of a linear map decomposed in both ways is shown in Figure 1. While rewiring is not
easily supported in Q#, the same effect can be obtained by defining a custom REWIRE operation
that computes an in-place swap of any two wires when testing an implementation, and that can be
disabled when costing it. We note that such decompositions are not generally unique, but it is not
clear whether sparser decompositions can be consistently obtained with any particular technique.
For our implementations, we adopt the PLU decomposition algorithm from [TB97, Algorithm 21.1],
as implemented in SageMath 8.1 [S+17].

3.4 Cost metrics for quantum circuits

For a meaningful cost analysis, we assume that an adversary has fixed constraints on its total
available resources, and a specific cost metric they wish to minimize. Without such limits, we might
conclude that AES-128 could be broken in under a second using 2128 machines, or broken using only
a few thousand qubits but a billion-year runtime. Most importantly, we assume a total depth limit
Dmax as explained in §2.2.

In this paper, we use the two cost metrics that are considered by Jaques and Schanck in [JS19].
The first is the total number of gates, the G-cost. It assumes non-volatile (“passive”) quantum

9 https://github.com/microsoft/qsharp-runtime/issues/30, visited 2019-08-24.

10

https://github.com/microsoft/qsharp-runtime/issues/30

M =

1 0 1 1
1 0 1 0
0 1 0 0
1 0 0 1

=

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

·

1 0 0 0
0 1 0 0
1 0 1 0
1 0 0 1

·

1 0 1 1
0 1 0 0
0 0 1 0
0 0 0 1

= P · L · U

(a) Invertible linear transformation M and its PLU decomposition.

|a〉
|b〉
|c〉
|d〉
|0〉
|0〉
|0〉
|0〉

|a〉
|b〉
|c〉
|d〉
|a+ c+ d〉
|a+ c〉
|b〉
|a+ d〉

(b) Naive circuit computing M .

|a〉
|b〉
|c〉
|d〉

|a+ c+ d〉

|b〉
|a+ d〉

|a+ c〉

(c) In-place implementation of M .

Fig. 1: Alternative circuits implementing the same linear transformation M : F4
2 → F

4
2, by using

the two strategies described in §3.3. Both are direct implementations, and could potentially be
reduced in size by automatic means as in [MSR+19], [MSC+19], [GKMR14] and [ZC19], or manually.
Figure 1b is wider and has a larger gate count, but is shallower, than Figure 1c.

memory, and therefore models circuits that incur some cost with every gate, but no cost is incurred
in time units during which a qubit is not operated on.

The second cost metric is the product of circuit depth and width, the DW -cost. This is a more
realistic cost model when quantum error correction is necessary. It assumes a volatile (“active”)
quantum memory, which incurs some cost to correct errors on every qubit in each time step, i.e.
each layer of the total circuit depth. In this cost model, a released auxiliary qubit would not require
error correction, and the cost to correct it could be omitted. But we assume an efficient strategy
for qubit allocation that avoids long idle periods for released qubits and thus choose to ignore this
subtlety. Instead, we simply cost the maximum width at any point in the oracle, times its total
depth. For both cost metrics, we can choose to count only T -gates towards gate count and depth, or
count all gates equally.

The cost of Grover’s algorithm. As in §2.1, let the search space have size N = 2k. Suppose we
use an oracle G such that a single Grover iteration costs GG gates, has depth GD, and uses GW qubits.
Let S = 2s be the number of parallel machines that are used with the inner parallelization method
by dividing the search space in S disjoint parts (see §2.3). In order to achieve a certain success
probability p, the required number of iterations can be deduced from p ≤ sin2((2j + 1)θ) which
yields jp =

⌈

(arcsin
(√
p
)

/θ − 1)/2
⌉

≈ arcsin
(√
p
)

/2 ·
√

N/S. Let cp = arcsin
(√
p
)

/2, then the total
depth of a jp-fold Grover iteration is

D = jpGD ≈ cp
√

N/S · GD = cp2
k−s
2 GD cycles. (5)

11

Note that for p ≈ 1 we have cp ≈ c1 = π
4 . Each machine uses jpGG ≈ cp

√

N/S · GG = cp2
k−s
2 GG

gates, i.e. the total G-cost over all S machines is

G = S · jpGG ≈ cp
√
N · S · GG = cp2

k+s
2 GG gates. (6)

Finally, the total width is W = S · GW = 2sGW qubits, which leads to a DW -cost

DW ≈ cp
√
N · S · GDGW = cp2

k+s
2 GDGW qubit-cycles. (7)

These cost expressions show that minimizing the number S = 2s of parallel machines minimizes
both G-cost and DW -cost. Thus, under fixed limits on depth, width, and the number of gates, an
adversary’s best course of action is to use the entire depth budget and parallelize as little as possible.
Under this premise, the depth limit fully determines the optimal attack strategy for a given Grover
oracle. Limits on width or the number of gates simply become binary feasibility criteria and are
either too tight and the adversary cannot finish the attack, or one of the limits is loose. If one
resource limit is loose, we may be able to modify the oracle to use this resource to reduce depth,
lowering the overall cost.

Optimizing the oracle under a depth limit. Grover’s full algorithm parallelizes so badly that
it is generally preferable to parallelize within the oracle circuit. Reducing its depth allows more
iterations within the depth limit, thus reducing the necessary parallelization.

Let Dmax be a fixed depth limit. Given the depth GD of the oracle, we are able to run jmax =
⌊Dmax/GD⌋ Grover iterations of the oracle G. For a target success probability p, we obtain the
number S of parallel instances to achieve this probability in the instance whose key space partition
contains the key from p ≤ sin2((2jmax + 1)

√

S/N) as

S =

⌈

N · arcsin2
(√
p
)

(2 · ⌊Dmax/GD⌋+ 1)2

⌉

≈ c2p2
k G

2
D

D2
max

. (8)

Using this in Equation (6) gives a total gate count of

G = c2p2
kGDGG

Dmax
gates. (9)

It follows that for two oracle circuits G and F, the total G-cost is lower for G if and only if
GDGG < FDFG. That is, we wish to minimize the product GDGG. Similarly, the total DW -cost
under the depth constraint is

DW = c2p2
kG

2
DGW

Dmax
qubit-cycles. (10)

Here, we wish to minimize G
2
DGW of the oracle circuit to minimize total DW -cost.

Comparing parallel Grover search to classical search. In the computational model of [JS19],
each quantum gate is interpreted as some computation done by a classical controller. For certain
parameter settings, these controllers may find the key more efficiently through a classical search.
Assume, this is done with a brute force algorithm, which simply iterates through all potential keys

12

and checks if they are correct. Let C be the classical gate cost to test a single key. Then for a search
space of size N = 2k, the total cost for the brute force attack to achieve success probability p is
p2kC. Comparing this cost to the gate cost for Grover’s algorithm in Equation (6), we conclude that
if we use more than (pC/(cpGG))

22k parallel machines, Grover’s algorithm is slower and more costly
than a classical search on the same hardware.

Since the Grover oracle G includes a reversible evaluation of the block cipher and quantum
computation of a function is likely more costly than its classical counterpart, we may assume
that the classical gate cost C is smaller than the quantum gate cost GG of the Grover oracle, i.e.
C ≤ GG. It holds that p/cp < 1.45, so (pC/(cpGG))

2 < 2.11 and for p = 1, we have (pC/(cpGG))
2 =

16/π2 · C2/G2
G ≈ 1.62 · C2/G2

G ≤ 1.62. Depending on the actual cost ratio, this bound may be in a
meaningful range.

Communication cost to assemble the results in parallel Grover. We briefly discuss the
communication cost incurred by communicating a found solution from one of the machines in a
large network of parallel computers to a central processor. Each machine measures a candidate key
after a specified number of Grover iterations. The classical controller then checks this key against a
small number of given plaintext-ciphertext pairs in order to determine whether it is a valid solution.
If the key is correct, it is communicated to a central processor.

If the number of machines is small, the central processor simply queries each machine sequentially
for the correct key. For a large number of machines, we instead assume they are connected in a
binary tree structure with one machine designated as the root. The central processor queries this
one for the final result. If it has measured a correct key, it is returned, otherwise it asynchronously
queries two other machines which form the roots of equally-sized sub-trees, in which the same
process is repeated. For S machines this requires S requests, but only lgS must be sequential.

We assume that the spatial arrangement of the S machines is in a two-dimensional plane in form
of an H tree. Furthermore, it can be assumed that communication between machines is via classical
channels with very small signal propagation times. The total distance any signal must travel is
proportional to the square root of the size of this tree, i.e.

√
S. Thus, the total time to recover the

final key is O(lgS)+ cS
√
SGW cycles, where cS is a constant to account for the relationship between

signal propagation speed and quantum gate times. For large S, the O(lgS) term is insignificant.
We assume that cS ≪ 1, meaning that these classical channels can propagate a signal across a

qubit-sized distance much faster than we can apply a gate to that qubit. This means the depth of
each Grover search will dwarf the communication costs so long as S ≤ 2k/2

cpGD

cS
√
GW

. If we use more

machines than this, the communication costs dominate the depth. These costs increase with S and
thus S = 2k/2

cpGD

cS
√
GW

gives the minimum possible depth of

Dmin = 2
k
4

√

cpcSGD

√

GW cycles. (11)

Similar reasoning shows that a classical brute force search, which assembles its results in the same
way, has a minimum depth of 2

k
3 (GWCc2S/p

2)1/3. Thus, unless we can construct a three-dimensional
layout10, we cannot solve the search problem with quantum or classical computers in depth less
than Equation (11). For AES-128, 192 and 256 this implies minimum depths of 240.2cs, 2

56.2cs and
272.3cs, respectively. For LowMC-128, 192, and 256 the minimum depths are respectively 241.1cs,
259.8cs and 276.4cs.

10 A truly three-dimensional layout seems unlikely, though an adversary with the resources to build 264

quantum computers may also be able to launch them into orbit and assemble them into a sphere.

13

4 A quantum circuit for AES

The Advanced Encryption Standard (AES) [DR99,DR01] is a block cipher standardized by NIST
in 2001. Using the notation from [DR99], AES is composed of an S-box, a Round function (with
subroutines ByteSub, ShiftRow, MixColumn, AddRoundKey; with the last round slightly differing
from the others), and a KeyExpansion function (with subroutines SubByte, RotByte). Three
different instances of AES have been standardized, for key lengths of 128, 192 and 256 bits. Grassl
et al. [GLRS16] describe their quantum circuit implementation of the S-box and other components,
resulting in a full description of all three instances of AES (but no testable code has been released).
Grassl et al. take care to reduce the number of auxiliary qubits required, i.e. reducing the circuit
width as much as possible. The recent improvements by Langenberg et al. [LPS19] build on the work
by Grassl et al. with similar objectives.

In this section, we describe our implementation of AES in the quantum programming language
Q# [SGT+18]. Some of the components are taken from the description in [GLRS16], while others
are implemented independently, or ported from other sources. We take the circuit description
from [GLRS16] as the basis for our work and compare to the results in [LPS19]. In general, we aim
at reducing the depth of the AES circuit, while limitations on width are less important. Width
restrictions are not explicitly considered by the NIST call for proposals [NIS16, § 4.A.5].

The internal state of AES contains 128 bits, arranged in four 32-bit (or 4-byte) words. In the
rest of this section, when referring to a ‘word’, we intend a 4-byte word. In all tables below, we
denote by #CNOT, the number of CNOT gates, by #1qCliff the number of 1-qubit Clifford gates,
by #T the number of T gates, by #M the number of measurement operations and by width the
number of qubits.

4.1 S-box, ByteSub and SubByte

The AES S-box is a transformation that inverts the input as an element of F256, and maps 0 to 0.
The S-box is the only source of T gates in a quantum circuit of AES. On classical hardware, it can
be implemented easily using a lookup-table. Yet, on a quantum computer, this is not efficient (see
[BGB+18], [LKS18] and [Gid19]). Alternatively, the inversion can be computed either by using some
variant of Euclid’s algorithm (taking care of the special case of 0), or by applying Lagrange’s theorem
and raising the input to the (|F×

256| − 1)th power (i.e. the 254th power), which incidentally also
takes care of the 0 input. Grassl et al. [GLRS16] suggest an Itoh-Tsujii inversion algorithm [IT88],
following [ASR12], and compute all required multiplications over F2[x]/(x

8 + x4 + x3 + x+ 1). This
idea had already been extensively explored in the vast11 literature on hardware design for AES, and
requires a different construction of F256 to be most effective. Following this lead, we port the S-box
circuit by Boyar and Peralta from [BP12] to Q#. The specified linear program combining AND and
XOR operations can be easily expressed as a sequence of equivalent CNOT and AND operations
(we use cheaper T -depth-1 AND gates [Sel13,Jon13] instead of T -depth-1 CCNOT gates [Sel13], see
§C). Cost estimates for the AES S-box are in Table 1. We compare to our own Q# implementation
of the S-box circuits from [GLRS16] and [LPS19]. ByteSub is a state-wide parallel application of
the S-box, requiring new output auxiliary qubits to store the result, while SubByte is a similar
word-wide application of the S-box.

11 E.g. see [Rij00], [SMTM01], [BP10], [BP+19], [JKL10], [NNT+10], [UHS+15], [RMTA18b], [RMTA18a],
[WSH+19].

14

operation #CNOT #1qCliff #T #M T -depth full depth width

[GLRS16] S-box 8683 1028 3584 0 217 1692 44

[BP10] S-box 818 264 164 41 35 497 41

[BP12] S-box 654 184 136 34 6 101 137

Table 1: Comparison of our reconstruction of the original [GLRS16] S-box circuit with the one
from [BP10] as used in [LPS19] and the one in this work based on [BP12]. In our implementation
of [BP10] from [LPS19], we replace CCNOT gates with AND gates to allow a fairer comparison.

Remark 3. Langenberg et al. [LPS19] independently introduced a new AES quantum circuit design
using the S-box circuit proposed in [BP10]. They also present a ProjectQ [SHT18] implementation
of the S-box, albeit without unit tests. We ported their source code to Q#, tested and costed it. For
a fairer comparison, we replaced their CCNOT gates with the AND gate design that our circuits use.
Cost estimates can be found in Table 1. Overall, the [BP12] S-box leads to a more cost effective
circuit for our purposes in both the G-cost and DW -cost metrics, and hence we did not proceed
further in our analysis of costs using the [BP10] design. Note that the results obtained here differ
from the ones presented in [LPS19, §3.2]. This is due to the difference in counting gates and depth.
While [LPS19] counts Toffoli gates, the Q# resource estimator costs at a lower level of T gates and
also counts all gates needed to implement a Toffoli gate.

4.2 ShiftRow and RotByte

ShiftRow is a permutation on the full 128-bit AES state, happening across its four words [DR99,
§4.2.2]. As a permutation of qubits, it can be entirely encoded as rewiring. As in [GLRS16], we
consider rewiring as free and do not include it in our cost estimates. Similarly, RotByte is a circular
left shift of a word by 8 bits, and can be implemented by appropriate rewiring as well.

4.3 MixColumn

The operation MixColumn interprets each word in the state as a polynomial in F256[x]/(x
4+1). Each

word is multiplied by a fixed polynomial c(x) [DR99, § 4.2.3]. Since the latter is coprime to x4 + 1,
this operation can be seen as an invertible linear transformation, and hence can be implemented in
place by a PLU decomposition of a matrix in F

32×32
2 . To simplify this tedious operation, we use

SageMath [S+17] code that performs the PLU decomposition, and outputs equivalent Q# code.
Note that [GLRS16] describes the same technique, while achieving a significantly smaller design than
the one we obtain (ref. Table 2), but we were not able to reproduce these results. However, highly
optimized, shallower circuits have been proposed in the hardware design literature such as [JMPS17],
[KLSW17], [BFI19], [EJMY18], [TP19]. Hence, we chose to use one of those and experiment with a
recent design by Maximov [Max19]. Both circuits are costed independently in Table 2. Maximov’s
circuit has a much lower depth, but it only reduces the total depth, does not reduce the T -depth
(which is already 0) and comes at the cost of an increased width. Our experiments show that without
a depth restriction, it seems advantageous to use the in-place version to minimize both G-cost and
DW -cost metrics, while for a depth restricted setting, Maximov’s circuit seems better due to the
square in the depth term in Equation (10).

15

operation #CNOT #1qCliff #T #M T -depth full depth width

In-place MixColumn 1108 0 0 0 0 111 128

[Max19] MixColumn 1248 0 0 0 0 22 318

Table 2: Comparison of an in-place implementation of MixColumn (via PLU decomposition) versus
the recent shallow out-of-place design in [Max19].

4.4 AddRoundKey

AddRoundKey performs a bitwise XOR of a round key to the internal AES state and can be realized
with a parallel application of 128 CNOT gates, controlled on the round key qubits and targeted on
the state qubits. Grassl et al. [GLRS16] and Langenberg et al. [LPS19] use the same approach.

4.5 KeyExpansion

Key expansion is one of the two sources of T gates in the design of AES, and hence might have a
strong impact on the overall efficiency of the circuit. A simple implementation of KeyExpansion
would allocate enough auxiliary qubits to store the full expanded key, including all round keys. This
is easy to implement with relatively low depth, but uses more qubits than necessary. The authors
of [GLRS16] amortize this width cost by caching only those key bytes that require S-box evaluations.
Instead, we minimize width by not requiring auxiliary qubits at all. At the same time, we reduce the
depth in comparison with the naive key expansion using auxiliary qubits for all key bits as described
above.

Let |k〉0 denote the AES key consisting of Nk ∈ {4, 6, 8} key words and |k〉i the i-th set of Nk

consecutive round key words. The first such block |k〉1 can be computed in-place as shown in the
appropriately sized circuit in Figure 2. This circuit produces the i-th set of Nk key words from the
(i − 1)-th set. Note that for AES-128, these sets correspond to the actual round keys as the key
size is equal to the block size, for AES-192 and AES-256, each round key set generates more words
than needed in a single round key. The full operation mapping |k〉i−1 7→ |k〉i is denoted by KE.
As for the two larger key sizes, each round only needs parts of these sets of round key words, we
specify KEl

j to denote the part of the operation KE that produces the words j . . . l of the new set,

disregarding other words. KEl
j can be used as part of the round strategy from §4.6 to only compute

as many words of the round key as necessary, resulting in an overall narrower and shallower circuit.
A comparison of this strategy and the naive KeyExpansion can be found in §B.
Remark 4. In addition to improving the S-box circuit over [GLRS16], Langenberg et al. [LPS19, §4]
demonstrate significant savings by reducing the number of qubits and the depth of key expansion.
This is achieved by an improved scheduling of key expansion during AES encryption, namely by
computing round key words only at the time they are required and un-computing them early. While
their method is based on the one in [GLRS16] using auxiliary qubits for the round keys, our approach
works completely in place and reduces width and depth at the same time.

4.6 Round, FinalRound and full AES

To encrypt a message block using AES-128 (resp. -192, -256), we initially XOR the input message
with the first 4 words of the key, and then execute 10 (resp. 12, 14) rounds consisting of ByteSub,

16

|k0〉i−1

|k1〉i−1

|k2〉i−1

|k3〉i−1 RotByte

l SubByte

RotByte†

RC |k0〉i
|k1〉i
|k2〉i
|k3〉i

(a) AES-128 in-place key expansion step producing the i-th round key.

|k0〉i−1

|k1〉i−1

|k2〉i−1

|k3〉i−1

|k4〉i−1

|k5〉i−1 RotByte

l SubByte

RotByte†

RC |k0〉i
|k1〉i
|k2〉i
|k3〉i
|k4〉i
|k5〉i

(b) AES-192 in-place key expansion step producing the i-th set of 6 round key words.

|k0〉i−1

|k1〉i−1

|k2〉i−1

|k3〉i−1

|k4〉i−1

|k5〉i−1

|k6〉i−1

|k7〉i−1 RotByte

l SubByte

RotByte†

RC

SubByte

|k0〉i
|k1〉i
|k2〉i
|k3〉i
|k4〉i
|k5〉i
|k6〉i
|k7〉i

(c) AES-256 in-place key expansion step producing the i-th set of 8 round key words.

Fig. 2: In-place AES key expansion for AES-128, AES-192, and AES-256, deriving the ith set of Nk

round key words from the (i− 1)
th

set. Each |kj〉i represents the jth word of |k〉i. SubByte takes
the input state on the top wire, and returns the output on the bottom wire, while l SubByte takes
inputs on the bottom wire, and returns outputs on the top. Dashed lines indicate wires that are not
used in the l SubByte operation. RC is the round constant addition, implemented by applying X
gates as appropriate.

17

ShiftRow, MixColumn (except in the final round) and AddRoundKey. The C-like pseudo-code
from [DR99, §4.4] is reported in simplified fashion in §A, Algorithm 1. The quantum circuits for
AES we propose follow the same blueprint with the exception that key expansion is interleaved
with the algorithm in such a way that the operations KEl

j only produce the key words that are
immediately required.

The resulting circuits are shown in Figures 3 and 4. For formatting reasons, we omit the repeating
round pattern, and only represent a subset of the full set of qubits used. In AES-128, each round is
identical until round 9. In AES-192 rounds 5, 8 and 11 use the same KE call and order as round 2;
rounds 6 and 9 do as round 3; rounds 7 and 10 do as round 4. In AES-256, rounds 4, 6, 8, 10, 12 (resp.
5, 7, 9, 11, 13) use the same KE call and order as round 2 (resp. 3). Cost estimates for the resulting
AES encryption circuits are in Table 3. In contrast to [GLRS16] and [LPS19], we aim to reduce
circuit depth, hence un-computing of rounds is delayed until the output ciphertext is produced.
For easier testability and modularity, the Round circuit is divided into two parts: a ForwardRound
operator that computes the output state but does not clean auxiliary qubits, and its adjoint. For
unit-testing Round in isolation, we compose ForwardRound with its adjoint operator. For testing
AES, we first run all ForwardRound instances without auxiliary qubit cleaning, resulting in a similar
ForwardAES operator, copy out the ciphertext, and then undo the ForwardAES operation.

Table 3 presents results for the AES circuit for both versions of MixColumn, the in-place
implementation using a PLU decomposition as well as Maximov’s out-of-place, but lower depth
circuit. We use both because each has advantages for different applications. The full depth corresponds
to GD as in §3.4 and §2.3, while width corresponds to GW . While for AES-128 and AES-192, GDGW

is smaller for the in-place implementation, G2
DGW is smaller for Maximov’s circuit. Hence, §2.3

indicates Maximov’s circuit gives a lower DW -cost under a depth restriction. If there is no depth
restriction, the in-place design has a lower DW -cost.

operation MC #CNOT #1qCliff #T #M T -depth full depth width

AES-128 IP 291150 83116 54400 13600 120 2827 1785

AES-192 IP 328612 93160 60928 15232 120 2987 2105

AES-256 IP 402878 114778 75072 18768 126 3353 2425

AES-128 M 293730 83236 54400 13600 120 2094 2937

AES-192 M 331752 93280 60928 15232 120 1879 3513

AES-256 M 406288 114318 75072 18768 126 1955 4089

Table 3: Circuit cost estimates for the AES operator, using the [BP12] S-box and for MixColumn
design (“MC”) either in-place (“IP”) or Maximov’s [Max19] (“M”). The apparently inconsistent
T -depth is discussed in §4.7.

4.7 T -depth

Every round of AES (as implemented in Figures 3 and 4) computes at least one layer of S-boxes
as part of ByteSub, which must later be uncomputed. We would thus expect the T -depth of n
rounds of AES to be 2n times the T -depth of the S-box. Instead, Table 3 shows smaller depths. We
find this effect when using either the AND circuit or the unit-testable CCNOT implementation.
To test if this is a bug, we used a placeholder S-box circuit which has an arbitrary T -depth d
and which the compiler cannot parallelize (see §D for the design). This “dummy“ AES design had
the expected T -depth of 2n · d. Thus we believe the Q# compiler found non-trivial parallelization

18

|k〉
0

|m
〉
|0〉
|0〉...
|0〉
|0〉

K
E

N
k
−
1

0

B
S

S
R

M
C

K
E

N
k
−
1

0

B
S

S
R

M
C

...

K
E

N
k
−
1

0

B
S

S
R

|k〉
1
0

...|c〉

R
o
u
n
d
1

R
o
u
n
d
2

R
o
u
n
d
1
0

(a
)
A
E
S
-1
2
8
o
p
era

tio
n
.

|k〉
0

|m
〉
|0〉
|0〉
|0〉
|0〉
|0〉
|0〉
|0〉
|0〉...
|0〉
|0〉

K
E

10

B
S

S
R

M
C

K
E

52

B
S

S
R

M
C

K
E

30

B
S

S
R

M
C

K
E

54

B
S

K
E

10

S
R

M
C

...

K
E

30

B
S

S
R

|k〉
1
2

...|c〉

R
o
u
n
d
1

R
o
u
n
d
2

R
o
u
n
d
3

R
o
u
n
d
4

R
o
u
n
d
1
2

(b
)
A
E
S
-1
9
2
o
p
era

tio
n
.

F
ig.3:

C
ircu

it
sketch

es
for

th
e
A
E
S
-128

an
d
A
E
S
-192

op
eration

.
E
ach

w
ire

u
n
d
er

th
e
|k〉

0
lab

el
rep

resen
ts

4
w
ord

s
of

th
e
key

for
A
E
S
-128

an
d
2
w
ord

s
for

A
E
S
-192.

E
ach

su
b
seq

u
en
t
w
ire

(in
itially

lab
eled

|m
〉
an

d
|0〉)

rep
resen

ts
4
w
ord

s.
C
N
O
T

gates
b
etw

een
w
ord

-sized
w
ires

sh
ou

ld
b
e
read

as
m
u
ltip

le
p
arallel

C
N
O
T

gates
ap

p
lied

b
itw

ise
(e.g.

at
th
e
b
egin

n
in
g
of

A
E
S
-192

th
e
in
ten

tion
is

of
X
O
R
in
g
128

b
its

from
|k〉

0
on

to
th
e
state).

B
S
stan

d
s
for

B
y
teS

u
b
,
S
R

for
S
h
iftR

ow
an

d
M
C

for
M
ix
C
olu

m
n
.
F
or

A
E
S
-128,

th
e
circu

it
sh
ow

s
a
n
in
-p
la
ce

im
p
lem

en
ta
tio

n
o
f
M
ix
C
o
lu
m
n
,
w
h
ile

fo
r
A
E
S
-1
9
2
,
it
u
ses

a
n
o
u
t-o

f-p
la
ce

v
ersio

n
lik

e
M
a
x
im

ov
’s

M
ix
C
o
lu
m
n
lin

ea
r
p
ro
g
ra
m

[M
a
x
1
9
].

19

|k〉
0

|m
〉
|0〉
|0〉
|0〉
|0〉
|0〉
|0〉...
|0〉
|0〉

B
S

S
R

M
C

K
E

30

B
S

S
R

M
C

K
E

74

B
S

S
R

M
C

...

K
E

30

B
S

S
R

|k〉
1
4

...|c〉

R
o
u
n
d
1

R
o
u
n
d
2

R
o
u
n
d
3

R
o
u
n
d
1
4

(a
)
A
E
S
-2
5
6
o
p
era

tio
n
.

F
ig.4:

C
ircu

it
sketch

for
th
e
A
E
S
-256

op
eration

.
E
ach

w
ire

u
n
d
er

th
e
|k〉

0
lab

el
rep

resen
ts

4
w
ord

s
of

th
e
key.

E
ach

su
b
seq

u
en
t

w
ire

(in
itially

lab
eled

|m
〉
an

d
|0〉)

rep
resen

ts
4
w
ord

s.
C
N
O
T

gates
b
etw

een
w
ord

-sized
w
ires

sh
ou

ld
b
e
read

as
m
u
ltip

le
p
arallel

C
N
O
T

gates
ap

p
lied

b
itw

ise.
T
h
e
valu

e
of
N

k
is
8.

B
S
stan

d
s
for

B
y
teS

u
b
,
S
R

for
S
h
iftR

ow
an

d
M
C

for
M
ix
C
olu

m
n
.
M
ix
C
olu

m
n

u
ses

a
n
o
u
t-o

f-p
la
ce

versio
n
like

M
a
x
im

ov
’s

M
ix
C
olu

m
n
lin

ear
p
rogram

[M
ax

19
].

20

between components of the S-box and the surrounding circuit. This provides a strong case for full
explicit implementations of quantum cryptanalytic algorithms in Q# or other languages that allow
automatic resource estimates and optimizations; in our case the T -depth of AES-256 is 25% less
than naively expected. Unfortunately, Q# cannot yet generate full circuit diagrams, so we do not
know exactly where the parallelization takes place12.

5 A quantum circuit for LowMC

LowMC [ARS+15,ARS+16] is a family of block ciphers aiming for low multiplicative complexity
circuits. Originally designed to reduce the high cost of binary multiplication in the MPC and FHE
scenarios, it has been adopted as a fundamental component by the Picnic signature scheme (see
[CDG+17] and [ZCD+17]) proposed for standardization as part of the NIST process for standardizing
post-quantum cryptography.

To achieve low multiplicative complexity, LowMC uses an S-box layer of AND-depth 1, which
contains a user-defined number of parallel 3-bit S-box computations. In general, any instantiation
of LowMC comprises a specific number of rounds. Each round calls an S-box layer, an affine
transformation, and a round key addition. Key-scheduling can either be precomputed or computed
on the fly. In this work, we study the original LowMC design. This results in a sub-optimal circuit,
which can clearly be improved by porting the more recent version from [DKP+19] instead. Even for
the original LowMC, our work shows that the overhead from the cost of the Grover oracle is very
small, in particular under the T -depth metric. Since LowMC could be standardized as a component
of Picnic, we deem it appropriate to point out the differences in Grover oracle cost between different
block ciphers and that generalization from AES requires caution.

In this section we describe our Q# implementation of the LowMC instances used as part of
Picnic. In particular, Picnic proposes three parameter sets, with (key size, block size, rounds) ∈
{(128, 128, 20), (192, 192, 30), (256, 256, 38)}, all with 10 parallel S-boxes per substitution layer.

5.1 S-box and S-boxLayer

The LowMC S-box can be naturally implemented using Toffoli (CCNOT) gates. In particular, a
simple in-place implementation with depth 5 (T -depth 3) is shown in Figure 5, alongside a T -depth
1 out-of-place circuit, both of which were produced manually. Costs for both circuits can be found
in Table 4. We use the CCNOT implementation with no measurements from [Sel13]. For LowMC
inside of Picnic, the full S-boxLayer consists of 10 parallel S-boxes run on the 30 low order bits of
the state.

operation #CNOT #1qCliff #T #M T -depth full depth width

In-place S-box 50 6 21 0 3 23 7

Shallow S-box 60 6 21 0 1 11 13

Table 4: Cost estimates for a single LowMC S-box circuit, following the two designs proposed in
Figure 5. We note that the circuit size may seem different at first sight due to Figure 5 not displaying
the concrete CCNOT implementation.

12 https://github.com/microsoft/qsharp-runtime/issues/31, visited 2019-09-03.

21

https://github.com/microsoft/qsharp-runtime/issues/31

|a〉
|b〉
|c〉

|a+ bc〉
|a+ b+ ac〉
|a+ b+ c+ ab〉

(a) LowMC in-place S-box.

|a〉
|b〉
|c〉
|0〉
|0〉
|0〉
|x〉
|y〉
|z〉

|a〉
|b〉
|c〉
|0〉
|0〉
|0〉
|x+ a+ bc〉
|y + a+ b+ ac〉
|z + a+ b+ c+ ab〉

(b) LowMC T -depth 1 S-box.

Fig. 5: Alternative quantum circuit designs for the LowMC S-box. The in-place design requires
auxiliary qubits as part of the concrete CCNOT implementation.

5.2 LinearLayer, ConstantAddition and AffineLayer

AffineLayer is an affine transformation applied to the state at every round. It consists of a matrix
multiplication (LinearLayer) and the addition of a constant vector (ConstantAddition). Both matrix
and vector are different for every round and are predefined constants that are populated pseudo-
randomly. ConstantAddition is implemented by applying X gates for entries of the vector equal
to 1. In Picnic, for every round and every parameter set, all LinearLayer matrices are invertible
(due to LowMC’s specification requirements), and hence we use a PLU decomposition for matrix
multiplication (§3.3). Cost estimates for the first round affine transformation in LowMC as used in
Picnic are in Table 5.

operation #CNOT #1qCliff #T #M T -depth full depth width

AffineLayer L1 R1 8093 60 0 0 0 2365 128

AffineLayer L3 R1 18080 90 0 0 0 5301 192

AffineLayer L5 R1 32714 137 0 0 0 8603 256

Table 5: Costs for in-place circuits implementing the first round (R1) AffineLayer transformation for
the three instantiations of LowMC used in Picnic.

5.3 KeyExpansion and KeyAddition

To generate the round keys rki, in each round i the LowMC key k is multiplied by a different key
derivation pseudo-random matrix KMi. For Picnic, each KMi is invertible, so we compute rki
from rki−1 as rki = KMi ·KM−1

i−1 · rki−1. We compute this in-place using a PLU decomposition of

KMi ·KM−1
i−1. This saves matrix multiplications and qubits compared to computing rki directly.

We call this operation KeyExpansion. KeyAddition is equivalent to AddRoundKey in AES, and is
implemented the same way. Cost estimates for the first round key expansion in LowMC as used in
Picnic can be found in Table 6.

22

operation #CNOT #1qCliff #T #M T -depth full depth width

KeyExpansion L1 R1 8104 0 0 0 0 2438 128

KeyExpansion L3 R1 18242 0 0 0 0 4896 192

KeyExpansion L5 R1 32525 0 0 0 0 9358 256

Table 6: Costs for in-place circuits implementing the first round (R1) KeyExpansion operation for
the three instantiations of LowMC used in Picnic.

5.4 Round and LowMC

The LowMC round sequentially applies S-boxLayer, AffineLayer and KeyAddition to the state. Our
implementation also runs KeyExpansion before AffineLayer. For a full LowMC encryption, we first
add the LowMC key k to the message to produce the initial state, then run the specified number of
rounds on it. Costs of the resulting encryption circuit are in Table 7.

operation #CNOT #1qCliff #T #M T -depth full depth width

LowMC L1 689944 4932 8400 0 40 98699 991

LowMC L3 2271870 9398 12600 0 60 319317 1483

LowMC L5 5070324 14274 15960 0 76 693471 1915

Table 7: Costs for the full encryption circuit for LowMC as used in Picnic.

6 Grover oracles and key search resource estimates

Equipped with Q# implementations of the AES and LowMC encryption circuits, this section
describes the implementation of full Grover oracles for both block ciphers. Eventually, based on the
cost estimates obtained automatically from these Q# Grover oracles, we provide quantum resource
estimates for full key search attacks via Grover’s algorithm. Beyond comparing to previous work, our
emphasis is on evaluating algorithms that respect a total depth limit, for which we consider NIST’s
values for MAXDEPTH from [NIS16]. This means we must parallelize. We use inner parallelization via
splitting up the search space, see §2.3.

6.1 Grover oracles

As discussed in §2.2 and §2.3, we must determine the parameter r, the number of known plaintext-
ciphertext pairs that are required for a successful key-recovery attack. The Grover oracle encrypts r
plaintext blocks under the same candidate key and computes a Boolean value that encodes whether
all r resulting ciphertext blocks match the given classical results. A circuit for the block cipher allows
us to build an oracle for any r by simply fanning out the key qubits to the r instances and running
the r block cipher circuits in parallel. Then a comparison operation with the classical ciphertexts
conditionally flips the result qubit and the r encryptions are un-computed. Figure 6 shows the
construction for AES and r = 2, using the ForwardAES operation from §4.6.

23

|k〉
0

|m1〉

|m2〉

|−〉

|0〉
|0〉

|0〉

FwAES

FwAES

FwAES†

FwAES†

|0〉
|0〉

|0〉

|k〉
0

|m1〉

|m2〉

|−〉

Fig. 6: Grover oracle construction from AES using two message-ciphertext pairs. FwAES represents
the ForwardAES operator described in §4.6. The middle operator “=” compares the output of AES
with the provided ciphertexts and flips the target qubit if they are equal.

The required number of plaintext-ciphertext blocks. The explicit computation of the proba-
bilities in Equation (1) shows that using r = 2 (resp. 2, 3) for AES-128 (resp. -192, -256) guarantees
a unique key with overwhelming probability. The probabilities that there are no spurious keys are
1− ǫ, where ǫ < 2−128, 2−64, and 2−128, respectively. Grassl et al. [GLRS16, § 3.1] used r = 3, r = 4
and r = 5, respectively. Hence, these values are too large and the Grover oracle can work correctly
with fewer full AES evaluations.

If one is content with a success probability lower than 1, it suffices to use r = ⌈k/n⌉ blocks of
plaintext-ciphertext pairs. In this case, it is enough to use r = 1, 2, and 3 for AES-128, -192, -256,
respectively. Langenberg et al. [LPS19] also propose these values. As an example, if we use r = 1 for
AES-128, the probability of not having spurious keys is 1/e ≈ 0.368, which could be a high enough
chance for a successful attack in certain scenarios, e.g., when there is a strict limit on the width of
the attack circuit. Furthermore, when a large number of parallel machines are used in an instance of
the attack, as discussed in §2.3, even the value r = 1 can be enough in order to guarantee with high
probability that the relevant subset of the key space contains the correct key as a unique solution.

The LowMC parameter sets we consider here all have k = n. Therefore, r = 2 plaintext-ciphertext
pairs are enough for all three sets (k ∈ {128, 192, 256}). Then, the probability that the key is unique
is 1− ǫ, where ǫ < 2−k, i.e. this probability is negligibly close to 1. With high parallelization, r = 1
is sufficient for a success probability very close to 1.

Grover oracle cost for AES. Table 8 shows the resources needed for the full AES Grover oracle
for the relevant values of r ∈ {1, 2, 3}. Even without parallelization, more than 2 pairs are never
required for AES-128 and AES-192. The same holds for 4 or more pairs for AES-256.

Grover oracle cost for LowMC. The resources for our implementation of the full LowMC Grover
oracle for the relevant values of r ∈ {1, 2} are shown in Table 9. No setting needs more than r = 2
plaintext-ciphertext pairs.

6.2 Cost estimates for block cipher key search

Using the cost estimates for the AES and LowMC Grover oracles from §6.1, this section provides
cost estimates for full key search attacks on both block ciphers. For the sake of a direct comparison
to the previous results in [GLRS16] and [LPS19], we first ignore any limit on the depth and present

24

operation MC r #CNOT #1qCliff #T #M T -depth full depth width

AES-128 IP 1 292313 84428 54908 13727 121 2816 1665

AES-192 IP 1 329697 94316 61436 15359 120 2978 1985

AES-256 IP 1 404139 116286 75580 18895 126 3353 2305

AES-128 IP 2 585051 169184 109820 27455 121 2815 3329

AES-192 IP 2 659727 188520 122876 30719 120 2981 3969

AES-256 IP 2 808071 231124 151164 37791 126 3356 4609

AES-256 IP 3 1212905 347766 226748 56687 126 3347 6913

AES-128 M 1 294863 84488 54908 13727 121 2086 2817

AES-192 M 1 332665 94092 61436 15359 120 1879 3393

AES-256 M 1 407667 116062 75580 18895 126 1951 3969

AES-128 M 2 589643 168288 109820 27455 121 2096 5633

AES-192 M 2 665899 188544 122876 30719 120 1890 6785

AES-256 M 2 815645 231712 151164 37791 126 1952 7937

AES-256 M 3 1223087 346290 226748 56687 126 1956 11905

Table 8: Costs for the AES Grover oracle operator for r = 1, 2 and 3 plaintext-ciphertext pairs.
“MC” is the MixColumn design, either in-place (“IP”) or Maximov’s [Max19] (“M”).

operation r #CNOT #1qCliff #T #M T -depth full depth width

LowMC L1 1 690961 5917 8908 191 41 98709 1585

LowMC L3 1 2273397 10881 13364 286 61 319323 2377

LowMC L5 1 5072343 16209 16980 372 77 693477 3049

LowMC L1 2 1382143 11774 17820 362 41 98707 3169

LowMC L3 2 4547191 21783 26732 576 61 319329 4753

LowMC L5 2 10145281 32567 33964 783 77 693483 6097

Table 9: Cost estimates for the LowMC Grover oracle operator for r = 1 and 2 plaintext-ciphertext
pairs. LowMC parameter sets are as used in Picnic.

25

the same setting as in these works. Then, we provide cost estimates with imposed depth limits and
the consequential parallelization requirements.

Comparison to previous work. Table 10 shows cost estimates for a full run of Grover’s algorithm
when using

⌊

π
4 2

k/2
⌋

iterations of the AES Grover operator without parallelization. We only take into
account the costs imposed by the oracle operator Uf (in the notation of §2.1) and ignore the costs
of the operator 2 |ψ〉〈ψ| − I. If the number of plaintext-ciphertext pairs ensures a unique key, this
number of operations maximizes the success probability psucc to be negligibly close to 1. For smaller
values of r such as those proposed in [LPS19], the success probability is given by the probability
that the key is unique.

The G-cost is the total number of gates, which is the sum of the first three columns in the table,
corresponding to the numbers of 1-qubit Clifford and CNOT gates, T gates and measurements.
Table 10 shows that the G-cost is always better in our work when comparing values for the same
AES instance and the same value for r. The same holds for the DW -cost as we increase the width
by factors less than 4 and simultaneously reduce the depth by more than that.

Table 11 shows cost estimates for LowMC in the same setting. Despite LowMC’s lower multi-
plicative complexity and a relatively lower number of T gates, the large number of CNOT gates
leads to overall higher G-cost and DW -cost than AES, as we count all gates.

Cost estimates under a depth limit. Tables 13 and 14 show cost estimates for running Grover’s
algorithm against AES and LowMC under a given depth limit. This restriction is proposed in
the NIST call for proposals for standardization of post-quantum cryptography [NIS16]. We use
the notation and example values for MAXDEPTH from the call. Imposing a depth limit forces the
parallelization of Grover’s algorithm, which we assume uses inner parallelization, see §2.3.

The values in the table follow §3.4. Given cost estimates GG, GD and GW for the oracle circuit,
we determine the maximal number of Grover iterations that can be carried out within the MAXDEPTH
limit. Then the required number S of parallel instances is computed via Equation (8) and the G-cost
and DW -cost follow from Equations (9) and (10). The number r of plaintext-ciphertext pairs is the
minimal value such that the probability SKP for having spurious keys in the subset of the key space
that holds the target key is less than 2−20.

The impact of imposing a depth limit on the key search algorithm can directly be seen by
comparing, for example Table 13 with Table 10 in the case of AES. Key search against AES-128
without depth limit has a G-cost of 1.34 · 283 gates and a DW -cost of 1.75 · 286 qubit-cycles. Now,
setting MAXDEPTH = 240 increases both the G-cost and the DW -cost by a factor of roughly 234 to
1.07 ·2117 gates and 1.76 ·2120 qubit-cycles. For MAXDEPTH = 264, the increase is by a factor of roughly
210. We note that for MAXDEPTH = 296, key search on AES-128 does not require any parallelization.

Implications for post-quantum security categories. The security strength categories 1, 3 and
5 in the NIST call for proposals [NIS16] are defined by the resources needed for key search on
AES-128, AES-192 and AES-256, respectively. For a cryptographic scheme to satisfy the security
requirement at a given level, the best known attack must take at least as many resources as key
search against the corresponding AES instance.

As guidance, NIST provides a table with gate cost estimates via a formula depending on the
depth bound MAXDEPTH. This formula is deduced as follows: assume that non-parallel Grover search
requires a depth of D = x · MAXDEPTH for some x ≥ 1 and the circuit has G gates. Then, about x2

26

Grassl et al. [GLRS16]

scheme r #Clifford #T #M T -depth full depth width G-cost DW -cost ps

AES-128 3 1.55 · 286 1.19 · 286 0 1.06 · 280 1.16 · 281 2 953 1.37 · 287 1.67 · 292 1

AES-192 4 1.17 · 2119 1.81 · 2118 0 1.21 · 2112 1.33 · 2113 4 449 1.04 · 2120 1.44 · 2125 1

AES-256 5 1.83 · 2151 1.41 · 2151 0 1.44 · 2144 1.57 · 2145 6 681 1.62 · 2152 1.28 · 2158 1

extrapolation of Grassl et al. [GLRS16] to lower r

AES-128 1 1.03 · 285 1.59 · 284 0 1.06 · 280 1.16 · 281 984 1.83 · 285 1.11 · 291 1/e

AES-192 2 1.17 · 2118 1.81 · 2117 0 1.21 · 2112 1.33 · 2113 2 224 1.04 · 2119 1.44 · 2124 1

AES-256 2 1.46 · 2150 1.13 · 2150 0 1.44 · 2144 1.57 · 2145 2 672 1.30 · 2151 1.02 · 2157 1/e

Langenberg et al. [LPS19]

AES-128 1 1.46 · 282 1.47 · 281 0 1.44 · 277 1.39 · 279 865 1.10 · 283 1.17 · 289 1/e

AES-192 2 1.71 · 2115 1.68 · 2114 0 1.26 · 2109 1.23 · 2111 1 793 1.27 · 2116 1.08 · 2122 1

AES-256 2 1.03 · 2148 1.02 · 2147 0 1.66 · 2141 1.61 · 2143 2 465 1.54 · 2148 1.94 · 2154 1/e

this work (with “in-place” MixColumn)

AES-128 1 1.13 · 282 1.32 · 279 1.32 · 277 1.48 · 270 1.08 · 275 1665 1.33 · 282 1.76 · 285 1/e

AES-128 2 1.13 · 283 1.32 · 280 1.32 · 278 1.48 · 270 1.08 · 275 3329 1.34 · 283 1.75 · 286 1

AES-192 2 1.27 · 2115 1.47 · 2112 1.47 · 2110 1.47 · 2102 1.14 · 2107 3969 1.50 · 2115 1.11 · 2119 1

AES-256 2 1.56 · 2147 1.81 · 2144 1.81 · 2142 1.55 · 2134 1.29 · 2139 4609 1.84 · 2147 1.45 · 2151 1/e

AES-256 3 1.17 · 2148 1.36 · 2145 1.36 · 2143 1.55 · 2134 1.28 · 2139 6913 1.38 · 2148 1.08 · 2152 1

this work (with “in-place” MixColumn), using Grassl et al. [GLRS16] values for r

AES-128 3 1.69 · 283 1.97 · 280 1.97 · 278 1.48 · 270 1.09 · 275 4993 1.00 · 284 1.32 · 287 1

AES-192 4 1.27 · 2116 1.47 · 2113 1.47 · 2111 1.47 · 2102 1.15 · 2107 7937 1.50 · 2116 1.11 · 2120 1

AES-256 5 1.95 · 2148 1.13 · 2146 1.13 · 2144 1.55 · 2134 1.28 · 2139 11521 1.15 · 2149 1.81 · 2152 1

Table 10: Comparison of cost estimates for Grover’s algorithm with
⌊

π
4 2

k/2
⌋

AES oracle iterations
for attacks with high success probability, disregarding MAXDEPTH. CNOT and 1-qubit Clifford gate
counts are added to allow easier comparison to the previous work from [GLRS16,LPS19], who report
both kinds of gates under “Clifford”. [LPS19] uses the S-box design from [BP10]. “IP MC” (resp.
“M’s MC”) means the oracle uses an in-place (resp. Maximov’s [Max19]) MixColumn design. The
circuit sizes for AES-128 (resp. -192, -256) in the second block have been extrapolated from Grassl
et al. by multiplying gate counts and circuit width by 1/3 (resp. 1/2, 2/5), while keeping depth
values intact. ps reports the approximate success probability.

27

scheme r # CNOT #1qCliff #T #M T -depth full depth width G-cost DW -cost ps

LowMC L1 1 1.04 · 283 1.13 · 276 1.71 · 276 1.17 · 271 1.01 · 269 1.18 · 280 1585 1.06 · 283 1.83 · 290 1/e

LowMC L3 1 1.70 · 2116 1.04 · 2109 1.28 · 2109 1.75 · 2103 1.50 · 2101 1.91 · 2113 2377 1.72 · 2116 1.11 · 2125 1/e

LowMC L5 1 1.90 · 2149 1.55 · 2141 1.63 · 2141 1.14 · 2136 1.89 · 2133 1.04 · 2147 3049 1.91 · 2149 1.55 · 2158 1/e

LowMC L1 2 1.04 · 284 1.13 · 277 1.71 · 277 1.11 · 272 1.01 · 269 1.18 · 280 3169 1.06 · 284 1.83 · 291 1

LowMC L3 2 1.70 · 2117 1.04 · 2110 1.28 · 2110 1.77 · 2104 1.50 · 2101 1.91 · 2113 4753 1.72 · 2117 1.11 · 2126 1

LowMC L5 2 1.90 · 2150 1.56 · 2142 1.63 · 2142 1.20 · 2137 1.89 · 2133 1.04 · 2147 6097 1.91 · 2150 1.55 · 2159 1

Table 11: Cost estimates for Grover’s algorithm with
⌊

π
4 2

k/2
⌋

LowMC oracle iterations for attacks
with high success probability, without a depth restriction.

machines are needed that each run for a fraction 1/x of the time and use roughly G/x gates in
order for the quantum attack to fit within the depth budget given by MAXDEPTH while attaining
the same attack success probability. Hence, the total gate count for a parallelized Grover search is
roughly (G/x) · x2 = G ·D/MAXDEPTH. The cost formula reported in the NIST table (also provided
in Table 12 for reference) is deduced by using the values for G-cost and depth D from Grassl et
al. [GLRS16].

The above formula does not take into account that parallelization often allows us to reduce the
number of required plaintext-ciphertext pairs, resulting in a G-cost reduction for search in each
parallel Grover instance by a factor larger than x. Note also that [NIS16, Footnote 5] mentions that
using the formula for very small values of x (very large values of MAXDEPTH such thatD/MAXDEPTH < 1,
where no parallelization is required) underestimates the quantum security of AES. This is the case
for AES-128 with MAXDEPTH = 296.

In Table 12, we compare NIST’s numbers with our gate counts for parallel Grover search. Our
results for each specific setting incorporate the reduction of plaintext-ciphertext pairs through
parallelization, provide the correct cost if parallelization is not necessary and use improved circuit
designs. The table shows that for most situations, AES is less quantum secure than the NIST
estimates predict. For each category, we provide a very rough approximation formula that could
be used to replace NIST’s formula. We observe a consistent reduction in G-cost for quantum key
search by 11-13 bits.

Since NIST clearly defines its security categories 1, 3 and 5 based on the computational resources
required for key search on AES, the explicit gate counts should be lowered to account for the best
known attack. This would mean that it is now easier for submitters to claim equivalent security,
with the exception of category 1 with MAXDEPTH = 296. A possible consequence of our work is that
some of the NIST submissions might profit from slightly tweaking certain parameter sets to allow
more efficient implementations, while at the same time satisfying the (now weaker) requirements for
their intended security category.

Remark 5. The G-cost results in Table 14 show that key recovery against the LowMC instances we
implemented requires at least as many gates as key recovery against AES with the same key size. If
NIST replaces its explicit gate cost estimates for AES with the ones in this work, these LowMC
instances meet the post-quantum security requirements as defined in the NIST call [NIS16]. On the
other hand, the same results show that they do not meet the explicit gate count requirements for
the original NIST security categories. For example, LowMC L1 can be broken with an attack having
G-cost 1.25 · 2123 when MAXDEPTH = 240, while the original bound in category 1 requires a scheme to
not be broken by an attack using less than 2130 gates. In all settings considered here, a LowMC

28

key can be found with a slightly smaller G-cost than NIST’s original estimates for AES, again with
the exception when no parallelization is needed. The margin is relatively small. We cannot finalize
conclusions about the relative security of LowMC and AES until quantum circuits for LowMC are
optimized as much as the ones for AES.

NIST Security G-cost for MAXDEPTH (log2)

Category source 240 264 296 approximation

1 AES-128
[NIS16] 130.0 106.0 74.0 2170/MAXDEPTH

this work 117.1 93.1 ∗83.4 ≈ 2157/MAXDEPTH

3 AES-192
[NIS16] 193.0 169.0 137.0 2233/MAXDEPTH

this work 181.1 157.1 126.1 ≈ 2221/MAXDEPTH

5 AES-256
[NIS16] 258.0 234.0 202.0 2298/MAXDEPTH

this work 245.5 221.5 190.5 ≈ 2285/MAXDEPTH

Table 12: Comparison of our cost estimate results with NIST’s approximations based on Grassl
et al. [GLRS16]. The approximation column displays NIST’s formula from [NIS16] and a rough
approximation to replace the NIST formula based on our results. Under MAXDEPTH = 296, AES-128 is
a special case as the attack does not require any parallelization and the approximation underestimates
its cost.

7 Future work

This work’s main focus is on exploring the setting proposed by NIST where quantum attacks are
limited by a total bound on the depth of quantum circuits. Previous works [GLRS16,ASAM18,LPS19]
aim to minimize cost under a tradeoff between circuit depth and a limit on the total number of
qubits needed, say a hypothetical bound MAXDEPTH. Depth limits are not discussed when choosing
a Grover strategy. Since it is somewhat unclear what exact characteristics and features a future
scalable quantum hardware might have, quantum circuit and Grover strategy optimization with
the goal of minimizing different cost metrics under different constraints than MAXDEPTH could be an
interesting avenue for future research.

We have studied key search problems for a single target. In classical cryptanalysis, multi-target
attacks have to be taken into account for assessing the security of cryptographic systems. We
leave the exploration of estimating the cost of quantum multi-target attacks, for example using
the algorithm by Banegas and Bernstein [BB17] under MAXDEPTH (or alternative regimes), as future
work.

Further, implementing quantum circuits for cryptanalysis in Q# or another quantum program-
ming language for concrete cost estimation is worthwhile to increase confidence in the security of
proposed post-quantum schemes. For example, quantum lattice sieving and enumeration appear to
be prime candidates.

Acknowledgements. We thank Chris Granade and Bettina Heim for their help with the Q#
language and compiler, Mathias Soeken and Thomas Häner for general discussions on optimizing

29

scheme MD r S log2 (SKP) D W G-cost DW -cost

AES-128 240 1 1.28 · 269 −69.36 1.00 · 240 1.76 · 280 1.07 · 2117 1.76 · 2120

AES-192 240 1 1.04 · 2133 −69.05 1.00 · 240 1.72 · 2144 1.09 · 2181 1.72 · 2184

AES-256 240 1 1.12 · 2197 −69.16 1.00 · 240 1.08 · 2209 1.39 · 2245 1.08 · 2249

AES-128 264 1 1.28 · 221 −21.36 1.00 · 264 1.76 · 232 1.07 · 293 1.76 · 296

AES-192 264 1 1.04 · 285 −21.05 1.00 · 264 1.72 · 296 1.09 · 2157 1.72 · 2160

AES-256 264 1 1.12 · 2149 −21.16 1.00 · 264 1.08 · 2161 1.39 · 2221 1.08 · 2225

AES-128* 296 2 1.00 · 20 −∞ 1.08 · 275 1.63 · 211 1.34 · 283 1.75 · 286

AES-192 296 2 1.05 · 221 −∞ 1.00 · 296 1.74 · 233 1.09 · 2126 1.74 · 2129

AES-256 296 2 1.12 · 285 −85.16 1.00 · 296 1.09 · 298 1.39 · 2190 1.09 · 2194

(a) The depth cost metric is the full depthD. All circuits use Maximov’s [Max19] MixColumns
implementation, except for AES-128 at MAXDEPTH = 296 for which in-place MixColumns
gives lower costs.

scheme MD r S log2 (SKP) T -D W G-cost T -DW -cost

AES-128 240 1 1.10 · 261 −61.14 1.00 · 240 1.79 · 271 1.98 · 2112 1.79 · 2111

AES-192 240 1 1.08 · 2125 −61.12 1.00 · 240 1.05 · 2136 1.10 · 2177 1.05 · 2176

AES-256 240 1 1.20 · 2189 −61.26 1.00 · 240 1.35 · 2200 1.42 · 2241 1.35 · 2240

AES-128 264 2 1.10 · 213 −∞ 1.00 · 264 1.79 · 224 1.98 · 289 1.79 · 288

AES-192 264 2 1.08 · 277 −∞ 1.00 · 264 1.05 · 289 1.11 · 2154 1.05 · 2153

AES-256 264 2 1.20 · 2141 −141.26 1.00 · 264 1.35 · 2153 1.42 · 2218 1.35 · 2217

AES-128 296 2 1.00 · 20 −∞ 1.48 · 270 1.63 · 211 1.34 · 283 1.21 · 282

AES-192 296 2 1.08 · 213 −∞ 1.00 · 296 1.05 · 225 1.11 · 2122 1.05 · 2121

AES-256 296 2 1.20 · 277 −77.26 1.00 · 296 1.35 · 289 1.42 · 2186 1.35 · 2185

(b) The depth cost metric is the T -depth T -D only. All circuits use the in-place MixColumns
implementation.

Table 13: Cost estimates for parallel Grover key search against AES under a depth limit MAXDEPTH
with inner parallelization (see §2.3). MD is MAXDEPTH, r is the number of plaintext-ciphertext pairs
used in the Grover oracle, S is the number of subsets into which the key space is divided, SKP
is the probability that spurious keys are present in the subset holding the target key, W is the
qubit width of the full circuit, D the full depth, T -D the T -depth, DW -cost uses the full depth and
T -DW -cost the T -depth. After the Grover search is completed, each of the S measured candidate
keys is classically checked against 2 (resp. 2, 3) plaintext-ciphertext pairs for AES-128 (resp. -192,
-256).

30

scheme MD r S log2 (SKP) D W G-cost DW -cost

LowMC L1 240 1 1.40 · 280 −80.48 1.00 · 240 1.08 · 291 1.25 · 2123 1.08 · 2131

LowMC L3 240 1 1.83 · 2147 −147.87 1.00 · 240 1.06 · 2159 1.65 · 2190 1.06 · 2199

LowMC L5 240 1 1.08 · 2214 −214.11 1.00 · 240 1.61 · 2225 1.99 · 2256 1.61 · 2265

LowMC L1 264 1 1.40 · 232 −32.48 1.00 · 264 1.08 · 243 1.25 · 299 1.08 · 2107

LowMC L3 264 1 1.83 · 299 −99.87 1.00 · 264 1.06 · 2111 1.65 · 2166 1.06 · 2175

LowMC L5 264 1 1.08 · 2166 −166.11 1.00 · 264 1.61 · 2177 1.99 · 2232 1.61 · 2241

LowMC L1 296 2 1.00 · 20 −∞ 1.18 · 280 1.55 · 211 1.06 · 284 1.83 · 291

LowMC L3 296 1 1.83 · 235 −35.87 1.00 · 296 1.06 · 247 1.65 · 2134 1.06 · 2143

LowMC L5 296 1 1.08 · 2102 −102.11 1.00 · 296 1.61 · 2113 1.99 · 2200 1.61 · 2209

(a) The depth cost metric is the full depth D.

scheme MD r S log2 (SKP) T -D W G-cost T -DW -cost

LowMC L1 240 1 1.01 · 258 −58.02 1.00 · 240 1.57 · 268 1.06 · 2112 1.57 · 2108

LowMC L3 240 1 1.12 · 2123 −123.16 1.00 · 240 1.30 · 2134 1.29 · 2178 1.30 · 2174

LowMC L5 240 1 1.79 · 2187 −187.84 1.00 · 240 1.33 · 2199 1.81 · 2243 1.33 · 2239

LowMC L1 264 2 1.01 · 210 −∞ 1.00 · 264 1.57 · 221 1.06 · 289 1.57 · 285

LowMC L3 264 1 1.12 · 275 −75.16 1.00 · 264 1.30 · 286 1.29 · 2154 1.30 · 2150

LowMC L5 264 1 1.79 · 2139 −139.84 1.00 · 264 1.33 · 2151 1.81 · 2219 1.33 · 2215

LowMC L1 296 2 1.00 · 20 −∞ 1.01 · 269 1.55 · 211 1.06 · 284 1.56 · 280

LowMC L3 296 2 1.12 · 211 −∞ 1.00 · 296 1.30 · 223 1.29 · 2123 1.30 · 2119

LowMC L5 296 1 1.79 · 275 −75.84 1.00 · 296 1.33 · 287 1.81 · 2187 1.33 · 2183

(b) The depth cost metric is the T -depth T -D only.

Table 14: Cost estimates for parallel Grover key search against LowMC under a depth limit MAXDEPTH
with inner parallelization (see §2.3). MD is MAXDEPTH, r is the number of plaintext-ciphertext pairs
used in the Grover oracle, S is the number of subsets into which the key space is divided, SKP
is the probability that spurious keys are present in the subset holding the target key, W is the
qubit width of the full circuit, D the full depth, T -D the T -depth, DW -cost uses the full depth and
T -DW -cost the T -depth. After the Grover search is completed, each of the S measured candidate
keys is classically checked against 2 plaintext-ciphertext pairs.

31

quantum circuits and Q#, Mathias Soeken for providing the AND gate circuit we use, and Daniel
Kales and Greg Zaverucha for their input on Picnic and LowMC.

References

ARS+15. Martin R Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and Michael Zohner.
Ciphers for MPC and FHE. In EUROCRYPT 2015. Springer, 2015.

ARS+16. Martin R Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and Michael Zohner.
Ciphers for MPC and FHE. Cryptology ePrint Archive, Report 2016/687, 2016.

ASAM18. Mishal Almazrooie, Azman Samsudin, Rosni Abdullah, and Kussay N. Mutter. Quantum
reversible circuit of AES-128. Quantum Information Processing, 17(5):112, Mar 2018.

ASR12. Brittanney Amento, Rainer Steinwandt, and Martin Roetteler. Efficient quantum circuits for
binary elliptic curve arithmetic: reducing T-gate complexity. arXiv:1209.6348, 2012.

BB17. Gustavo Banegas and Daniel J Bernstein. Low-communication parallel quantum multi-target
preimage search. In SAC 2017. Springer, 2017.

BBG+13. Robert Beals, Stephen Brierley, Oliver Gray, Aram W Harrow, Samuel Kutin, Noah Linden,
Dan Shepherd, and Mark Stather. Efficient distributed quantum computing. Proceedings A,
2013.

BBHT98. Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. Tight bounds on quantum searching.
Fortschritte der Physik, 46(4-5):493–505, 1998.

BFI19. Subhadeep Banik, Yuki Funabiki, and Takanori Isobe. More results on shortest linear programs.
Cryptology ePrint Archive, Report 2019/856, 2019.

BGB+18. Ryan Babbush, Craig Gidney, Dominic W Berry, Nathan Wiebe, Jarrod McClean, Alexandru
Paler, Austin Fowler, and Hartmut Neven. Encoding electronic spectra in quantum circuits
with linear T complexity. Physical Review X, 8(4):041015, 2018.

BNS19. Xavier Bonnetain, Maŕıa Naya-Plasencia, and André Schrottenloher. Quantum security analysis
of AES. IACR Trans. Symmetric Cryptol., 2019(2):55–93, 2019.

BP10. Joan Boyar and René Peralta. A new combinational logic minimization technique with applica-
tions to cryptology. In SEA 2010, pages 178–189. Springer, 2010.

BP12. Joan Boyar and René Peralta. A small depth-16 circuit for the AES S-Box. In Dimitris Gritzalis,
Steven Furnell, and Marianthi Theoharidou, editors, SEC 2012. Springer, 2012.

BP+19. Joan Boyar, René Peralta, et al. Small low-depth circuits for cryptographic applications.
Cryptography and Communications, 11(1):109–127, 2019.

CDG+17. Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher, Christian
Rechberger, Daniel Slamanig, and Greg Zaverucha. Post-quantum zero-knowledge and signatures
from symmetric-key primitives. In ACM CCS 2017. ACM, 2017.

DKP+19. Itai Dinur, Daniel Kales, Angela Promitzer, Sebastian Ramacher, and Christian Rechberger.
Linear equivalence of block ciphers with partial non-linear layers: Application to LowMC. In
Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019. Springer, 2019.

DR99. Joan Daemen and Vincent Rijmen. AES proposal: Rijndael. 1999.
DR01. Joan Daemen and Vincent Rijmen. Specification for the advanced encryption standard (AES).

Federal Information Processing Standards Publication, 197, 2001.
EJMY18. Patrik Ekdahl, Thomas Johansson, Alexander Maximov, and Jing Yang. A new SNOW stream

cipher called SNOW-V. Cryptology ePrint Archive, Report 2018/1143, 2018.
FMMC12. Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland. Surface

codes: Towards practical large-scale quantum computation. Phys. Rev. A, 2012.
Gid19. Craig Gidney. Windowed quantum arithmetic. arXiv preprint arXiv:1905.07682, 2019.
GKMR14. David Gosset, Vadym Kliuchnikov, Michele Mosca, and Vincent Russo. An algorithm for the

T-count. Quantum Information & Computation, 14(15-16):1261–1276, 2014.

32

GLRS16. Markus Grassl, Brandon Langenberg, Martin Roetteler, and Rainer Steinwandt. Applying
Grover’s algorithm to AES: quantum resource estimates. In PQCRYPTO 16. Springer, 2016.

GR03. Lov K. Grover and Terry Rudolph. How significant are the known collision and element
distinctness quantum algorithms? QIC 2003, 2003.

Gro96. Lov K. Grover. A fast quantum mechanical algorithm for database search. In STOC ’96. ACM,
1996.

IT88. Toshiya Itoh and Shigeo Tsujii. A fast algorithm for computing multiplicative inverses in
GF(2ˆm) using normal bases. Inf. Comput., 78(3):171–177, 1988.

JKL10. Yong-Sung Jeon, Young-Jin Kim, and Dong-Ho Lee. A compact memory-free architecture for
the AES algorithm using resource sharing methods. JCSC, 2010.

JMPS17. Jérémy Jean, Amir Moradi, Thomas Peyrin, and Pascal Sasdrich. Bit-sliding: a generic technique
for bit-serial implementations of SPN-based primitives. In CHES. Springer, 2017.

Jon13. Cody Jones. Low-overhead constructions for the fault-tolerant Toffoli gate. Physical Review A,
87(2):022328, 2013.

JS19. Samuel Jaques and John M Schanck. Quantum cryptanalysis in the ram model: Claw-finding
attacks on SIKE. In CRYPTO 2019. Springer, 2019.

KHJ18. Panjin Kim, Daewan Han, and Kyung Chul Jeong. Time–space complexity of quantum search
algorithms in symmetric cryptanalysis: applying to AES and SHA-2. QIP, 2018.

KLSW17. Thorsten Kranz, Gregor Leander, Ko Stoffelen, and Friedrich Wiemer. Shorter linear straight-line
programs for MDS matrices. IACR Trans. Symm. Cryptol., 2017(4):188–211, 2017.

LKS18. Guang Hao Low, Vadym Kliuchnikov, and Luke Schaeffer. Trading T-gates for dirty qubits in
state preparation and unitary synthesis. arXiv preprint arXiv:1812.00954, 2018.

Low19. LowMC. LowMC/lowmc at e847fb160ad8ca1f373efd91a55b6d67f7deb425, 2019. https://

github.com/LowMC/lowmc/tree/e847fb160ad8ca1f373efd91a55b6d67f7deb425.
LPS19. Brandon Langenberg, Hai Pham, and Rainer Steinwandt. Reducing the cost of implementing

AES as a quantum circuit. Cryptology ePrint Archive, Report 2019/854, 2019.
Max19. Alexander Maximov. AES MixColumn with 92 XOR gates. Cryptology ePrint Archive, Report

2019/833, 2019.
Mic19a. Microsoft. Getting started with Python and Q# — Microsoft Docs, 2019. https://docs.

microsoft.com/en-us/quantum/install-guide/python.
Mic19b. Microsoft. microsoft/iqsharp: Microsoft’s IQ# server., 2019. https://github.com/microsoft/

iqsharp.
MSC+19. Giulia Meuli, Mathias Soeken, Earl Campbell, Martin Roetteler, and Giovanni De Micheli. The

role of multiplicative complexity in compiling low T-count oracle circuits. CoRR, 2019.
MSR+19. Giulia Meuli, Mathias Soeken, Martin Roetteler, Nikolaj Bjørner, and Giovanni De Micheli.

Reversible pebbling game for quantum memory management. In DATE, 2019.
NIS16. NIST. Submission requirements and evaluation criteria for the Post-Quantum Cryptography

standardization process, 2016.
NNT+10. Yasuyuki Nogami, Kenta Nekado, Tetsumi Toyota, Naoto Hongo, and Yoshitaka Morikawa.

Mixed bases for efficient inversion in F((2ˆ2)ˆ2)ˆ2 and conversion matrices of SubBytes of AES.
In CHES. Springer, 2010.

PyC19. PyCryptodome. Welcome to PyCryptodome’s documentation — PyCryptodome 3.8.2 docu-
mentation, 2019. https://pycryptodome.readthedocs.io/en/stable/index.html.

Rij00. Vincent Rijmen. Efficient implementation of the Rijndael S-box. Katholieke Universiteit Leuven,

Dept. ESAT. Belgium, 2000.
RMTA18a. Arash Reyhani-Masoleh, Mostafa Taha, and Doaa Ashmawy. New area record for the AES

combined S-box/inverse S-box. In ARITH. IEEE, 2018.
RMTA18b. Arash Reyhani-Masoleh, Mostafa Taha, and Doaa Ashmawy. Smashing the implementation

records of AES S-box. TCHES, 2018.
S+17. William Stein et al. Sage Mathematics Software Version 8.1, 2017.
Sel13. Peter Selinger. Quantum circuits of T -depth one. Phys. Rev. A, 87:042302, Apr 2013.

33

https://github.com/LowMC/lowmc/tree/e847fb160ad8ca1f373efd91a55b6d67f7deb425
https://github.com/LowMC/lowmc/tree/e847fb160ad8ca1f373efd91a55b6d67f7deb425
https://docs.microsoft.com/en-us/quantum/install-guide/python
https://docs.microsoft.com/en-us/quantum/install-guide/python
https://github.com/microsoft/iqsharp
https://github.com/microsoft/iqsharp
https://pycryptodome.readthedocs.io/en/stable/index.html

SGT+18. Krysta M. Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher E. Granade, Bettina
Heim, Vadym Kliuchnikov, Mariia Mykhailova, Andres Paz, and Martin Roetteler. Q#: Enabling
scalable quantum computing and development with a high-level DSL. In RWDSL@CGO 2018,
2018.

Sho94. P. W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In FOCS

1994, pages 124–134. IEEE Computer Society, 1994.
Sho97. P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a

quantum computer. SIAM J. Comput., 26(5):1484–1509, October 1997.
SHT18. Damian S Steiger, Thomas Häner, and Matthias Troyer. ProjectQ: an open source software

framework for quantum computing. Quantum, 2(49):10–22331, 2018.
SMTM01. Akashi Satoh, Sumio Morioka, Kohji Takano, and Seiji Munetoh. A compact Rijndael hardware

architecture with S-box optimization. In ASIACRYPT 2001. Springer, 2001.
TB97. L.N. Trefethen and D. Bau. Numerical Linear Algebra. Other Titles in Applied Mathematics.

SIAM, 1997.
TP19. Quan Quan Tan and Thomas Peyrin. Improved heuristics for short linear programs. Cryptology

ePrint Archive, Report 2019/847, 2019.
UHS+15. Rei Ueno, Naofumi Homma, Yukihiro Sugawara, Yasuyuki Nogami, and Takafumi Aoki. Highly

efficient GF(2ˆ8) inversion circuit based on redundant GF arithmetic and its application to
AES design. In CHES 2015. Springer, 2015.

WSH+19. Zihao Wei, Siwei Sun, Lei Hu, Man Wei, Joan Boyar, and Rene Peralta. Scrutinizing the
tower field implementation of the F28 inverter – with applications to AES, Camellia, and SM4.
Cryptology ePrint Archive, Report 2019/738, 2019.

YI00. Akihiro Yamamura and Hirokazu Ishizuka. Quantum cryptanalysis of block ciphers (algebraic
systems, formal languages and computations). 2000.

Zal99. Christof Zalka. Grover’s quantum searching algorithm is optimal. Phys. Rev. A, 1999.
ZC19. Fang Zhang and Jianxin Chen. Optimizing T gates in Clifford+T circuit as π/4 rotations

around Paulis. arXiv preprint arXiv:1903.12456, 2019.
ZCD+17. Greg Zaverucha, Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian

Ramacher, Christian Rechberger, and Daniel Slamanig. Picnic. Technical report, NIST, 2017.

34

A AES encryption algorithm

In Algorithm 1, we reproduce a simplified view of AES encryption [DR99, § 4.4].

Algorithm 1: AES

Input: m /* message */

Input: k /* key */

1 s← m /* state */

2 ek ← KeyExpansion(k) /* expanded key */

3 s← AddRoundKey(s, k)
4 for i = 1 . . . total rounds− 1 do

5 s← Round(s, ek)

6 c← FinalRound(s, ek) /* ciphertext */

7 return c

B Comparison of in-place AES KeyExpansion vs. naive unrolling

In §4.5, we discuss an in-place design for the KeyExpansion routine in AES. While this clearly saves
width by not requiring auxiliary qubits for the expansion, it may look as going against our design
choice of minimizing depth. In particular, one may think that a naive design where a register of
enough auxiliary qubits is allocated such that the whole key expansion can be performed before any
rounds are run could save in depth, given that it does not need to handle any particular previous
state on the qubits. In Table 15, we report numbers comparing the sizes of our AES circuits, with
the only difference being the naive vs the in-place designs for KeyExpansion, showing that the
latter is shallower (and of course narrower). This is due to being able to perform the gates for the
KeyExpansion in parallel to the gates run during rounds that do not depend on the output of the
new key material. In particular, the S-box computations required to expand the key can be run in
parallel to those executed on the state by ByteSub.

operation KE #CNOT #1qCliff #T #M T -depth full depth width

AES-128 in-place 291150 83116 54400 13600 120 2827 1785

AES-192 in-place 328612 93160 60928 15232 120 2987 2105

AES-256 in-place 402878 114778 75072 18768 126 3353 2425

AES-128 naive 293758 83212 54400 13600 132 2995 3065

AES-192 naive 331496 93040 60928 15232 132 3113 3577

AES-256 naive 406176 114718 75072 18768 138 3385 4089

Table 15: Size comparison for AES quantum circuits using “in-place” vs “naive” KeyExpansion (see
§4.5). In both cases, an “in-place” MixColumn circuit is used. We notice that the difference in width
between equivalent circuits corresponds to 4 · 32 · (Nr+ 1)− 32 ·Nk qubits, where Nr (resp. Nk) is
the number of AES rounds (resp. words in the AES key), see [DR99].

35

C AND gate

In our AES implementation, we use a T -depth 1 circuit for an AND gate which is a combination of
Selinger [Sel13] and Jones [Jon13], and that was designed by Mathias Soeken. A diagram can be
found in Figure 7.

|a〉
|b〉
|0〉

|0〉
H

T†

T†

T

T

H S

|0〉

|a〉
|b〉
|a · b〉

(a) AND gate.

|a〉
|b〉

|a · b〉 H

S

S

X

S†

|a〉
|b〉
|0〉

(b) AND† gate.

Fig. 7: AND gate design used in our circuit. We notice that in (b), the measurement returns a
classical bit b and leaves the original qubit in the state |b〉.

D Placeholder S-box

As part of our sanity checking of the Q# resource estimator in §4.7, we replaced the AES S-box
with the design in Figure 8, that tries to force all the wires to “synchronize” such that the T gates
between two neighboring S-boxes cannot be partially computed in parallel. Costing the T -depth of
the resulting dummy AES operation returns the expected value of 2×# of rounds× d, where d is
the depth of the dummy S-box.

36

|in〉
0

|in〉
1

|in〉
2

|in〉
3

|in〉
4

|in〉
5

|in〉
6

|in〉
7

|out〉
0

|out〉
1

|out〉
2

|out〉
3

|out〉
4

|out〉
5

|out〉
6

|out〉
7

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

Repeat d times

Fig. 8: Dummy S-box design, that tries to forcefully avoid non-parallel calls to the S-box to be
partially executed at the same time.

37

	Implementing Grover oracles for quantum key search on AES and LowMC

