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Abstract
Linearizability is the strongest form of consistency for

concurrent systems, but most large-scale storage systems
settle for weaker forms of consistency. RIFL provides a
general-purpose mechanism for converting at-least-once
RPC semantics to exactly-once semantics, thereby mak-
ing it easy to turn non-linearizable operations into lineariz-
able ones. RIFL is designed for large-scale systems and is
lightweight enough to be used in low-latency environments.
RIFL handles data migration by associating linearizability
metadata with objects in the underlying store and migrat-
ing metadata with the corresponding objects. It uses a lease
mechanism to implement garbage collection for metadata.
We have implemented RIFL in the RAMCloud storage sys-
tem and used it to make basic operations such as writes
and atomic increments linearizable; RIFL adds only 530 ns
to the 13.5 µs base latency for durable writes. We also used
RIFL to construct a new multi-object transaction mechanism
in RAMCloud; RIFL’s facilities significantly simplified the
transaction implementation. The transaction mechanism can
commit simple distributed transactions in about 20 µs and it
outperforms the H-Store main-memory database system for
the TPC-C benchmark.

1 Introduction
Consistency is one of the most important issues in the de-

sign of large-scale storage systems; it represents the degree
to which a system’s behavior is predictable, particularly in
the face of concurrency and failures. Stronger forms of con-
sistency make it easier to develop applications and reason
about their correctness, but they may impact performance
or scalability and they generally require greater degrees of
fault tolerance. The strongest possible form of consistency in
a concurrent system is linearizability, which was originally
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defined by Herlihy and Wing [12]. However, few large-scale
storage systems implement linearizability today.

Almost all large-scale systems contain mechanisms that
contribute to stronger consistency, such as reliable network
protocols, automatic retry of failed operations, idempotent
semantics for operations, and two-phase commit protocols.
However, these techniques are not sufficient by themselves
to ensure linearizability. They typically result in “at-least-
once semantics,” which means that a remote operation may
be executed multiple times if a crash occurs during its ex-
ecution. Re-execution of operations, even seemingly be-
nign ones such as simple writes, violates linearizability and
makes the system’s behavior harder for developers to predict
and manage.

In this paper we describe RIFL (Reusable Infrastruc-
ture for Linearizability), which is a mechanism for ensur-
ing “exactly-once semantics” in large-scale systems. RIFL
records the results of completed remote procedure calls
(RPCs) durably; if an RPC is retried after it has completed,
RIFL ensures that the correct result is returned without re-
executing the RPC. RIFL guarantees safety even in the face
of server crashes and system reconfigurations such as data
migration. As a result, RIFL makes it easy to turn non-
linearizable operations into linearizable ones.

RIFL is novel in several ways:
• Reusable mechanism for exactly-once semantics: RIFL

is implemented as a general-purpose package, indepen-
dent of any specific remote operation. As a result, it can
be used in many different situations, and existing RPCs
can be made linearizable with only a few additional lines
of code. RIFL’s architecture and most of its implementa-
tion are system-independent.
• Reconfiguration tolerance: large-scale systems migrate

data from one server to another, either during crash re-
covery (to redistribute the possessions of a dead server)
or during normal operation (to balance load). RIFL han-
dles reconfiguration by associating RIFL metadata with
particular objects and arranging for the metadata to mi-
grate with the objects; this ensures that the appropriate
metadata is available in the correct place to handle RPC
retries.
• Low latency: RIFL is lightweight enough to be used even

in ultra-low-latency systems such as RAMCloud [21] and
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(a) Linearizable History
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W(0) R(1) W(0)

B:
W(1) R(1)

(b) Non-Linearizable History

Figure 1: Examples of linearizable (a) and non-linearizable (b)
histories for concurrent clients performing reads ( R() ) and
writes ( W() ) on a single object, taken from [12]. Each row
corresponds to a single client’s history with time increasing to
the right. The notation “W(1)” means that client B wrote the
value 1 into the object. Horizontal bars indicate the time duration
of each operation.

FaRM [8], which have end-to-end RPC times as low as
5 µs.
• Scalable: RIFL has been designed to support clusters

with tens of thousands of servers and one million or
more clients. Scalability impacted the design of RIFL in
several ways, including the mechanisms for generating
unique RPC identifiers and for garbage-collecting meta-
data.
We have implemented RIFL in the RAMCloud storage

system in order to evaluate its architecture and performance.
Using RIFL, we were able to make existing operations such
as writes and atomic increments linearizable with less than
20 additional lines of code per operation. We also used
RIFL to construct a new multi-object transaction mechanism
in RAMCloud; the use of RIFL significantly reduced the
amount of mechanism that had to be built for transactions.
The RAMCloud implementation of RIFL exhibits high per-
formance: it adds less than 4% to the 13.5 µs base cost for
writes, and simple distributed transactions execute in about
20 µs. RAMCloud transactions outperform H-Store [15] on
the TPC-C benchmark, providing at least 10x lower latency
and 1.35x–7x as much throughput.

2 Background and Goals
Linearizability is a safety property concerning the behav-

ior of operations in a concurrent system. A collection of op-
erations is linearizable if each operation appears to occur
instantaneously and exactly once at some point in time be-
tween its invocation and its completion. “Appears” means
that it must not be possible for any client of the system, either
the one initiating an operation or other clients operating con-
currently, to observe contradictory behavior. Figure 1 shows
examples of linearizable and non-linearizable operation his-
tories. Linearizability is the strongest form of consistency
for concurrent systems.

1 2 3 2
Object
Value

A:
R(2) W(3) R(2)

B:
W(2)

Figure 2: Non-linearizable behavior caused by crash recovery.
In this example, the server completes a write from Client B but
crashes before responding. After the server restarts, Client B
reissues the write, but meanwhile Client A has written a different
value. As a result, Client A observes the value 2 being written
twice.

Early large-scale storage systems settled for weak con-
sistency models in order to focus on scalability or partition-
tolerance [7, 9, 17, 23], but newer systems have begun pro-
viding stronger forms of consistency [3, 6, 19]. They employ
a variety of techniques, such as:
• Network protocols that ensure reliable delivery of request

and response messages.
• Automatic retry of operations after server crashes, so that

all operations are eventually completed.
• Operations with idempotent semantics, so that repeated

executions of an operation produce the same result as a
single execution.
• Two-phase commit and/or consensus protocols [11, 18],

which ensure atomic updates of data on different servers.
However, few large-scale systems actually implement lin-

earizability, and the above techniques are insufficient by
themselves. For example, Figure 2 shows how retrying an
idempotent operation after a server crash can result in non-
linearizable behavior. The problem with most distributed
systems is that they implement at-least-once semantics. If a
client issues a request but fails to receive a response, it retries
the operation. However, it is possible that the first request
actually completed and the server crashed before sending a
response. In this situation the retry causes the operation to
be performed twice, which violates linearizability.

In order for a system to provide linearizable behavior,
it must implement exactly-once semantics. To do this, the
system must detect when an incoming request is a retry
of a request that already completed. When this occurs, the
server must not re-execute the operation. However, it must
still return whatever results were generated by the earlier
execution, since the client has not yet received them.

Some storage systems, such as H-Store [15] and FaRM [8],
implement strongly consistent operations in the servers but
they don’t provide exactly-once semantics for clients: af-
ter a server crash, a client may not be able to determine
whether a transaction completed. As a result, these systems
do not guarantee linearizability (linearizability must be im-
plemented on top of the transaction mechanism, as discussed
in Section 8).



The overall goal for RIFL is to implement exactly-once
semantics, thereby filling in the missing piece for lineariz-
ability. Furthermore, we designed RIFL as general-purpose
infrastructure, independent of any particular linearizable op-
eration. Our hope in doing this was to make it easy to imple-
ment a variety of linearizable operations, ranging from com-
plex transactions down to simple operations such as writes
or atomic increments. Although we implemented RIFL in a
single system, we designed the mechanism to be applicable
for a variety of systems.

We designed RIFL for use in the most demanding data-
center applications, which created two additional goals: scal-
ability and low latency. Large-scale Web applications to-
day can include tens of thousands of storage servers and an
even larger number of clients, which are typically servers in
the same datacenter that handle incoming Web requests. We
can envision applications in the near future with one mil-
lion or more client threads, each communicating with all of
the servers. This means that the per-client state stored on
each server must be small. Large-scale systems reconfigure
themselves frequently, such as migrating data after server
crashes; this means that saved results must migrate as well.
We also wanted RIFL to be suitable for high-performance
applications such as RAMCloud [21] and FaRM [8], which
keep their data in DRAM. These systems offer latencies as
low as 5 µs end-to-end for remote operations; the overheads
introduced by RIFL must not significantly impact these la-
tencies. For example, RIFL must piggyback its metadata on
existing messages whenever possible, so as not to introduce
additional communication.

RIFL assumes the existence of a remote procedure call
(RPC) mechanism in the underlying system. Linearizability
requires a request-response protocol of some sort, rather than
asynchronous messages, since there is no way of knowing
that an operation completed without receiving a response.
RIFL also assumes automatic retries in the RPC system, to
produce at-least-once semantics. An RPC must not abort and
return an error to higher-level software after a server crash,
since it will then be indeterminate whether the operation has
completed.

Given these underlying mechanisms, RIFL ensures that
RPCs will be executed exactly once as long as clients don’t
crash (see Section 9) and servers can store RIFL’s metadata
reliably.

3 RIFL Architecture
In order to implement exactly-once semantics, RIFL must

solve four overall problems: RPC identification, completion
record durability, retry rendezvous, and garbage collection.
This section discusses these issues and introduces the key
techniques RIFL uses to deal with them; Section 4 describes
the mechanisms in more detail.

In order to detect redundant RPCs, each RPC must have
a unique identifier, which is present in all invocations of
that RPC. In RIFL, RPC identifiers are assigned by clients

and they consist of two parts: a 64-bit unique identifier for
the client and a 64-bit sequence number allocated by that
client. This requires a system-wide mechanism for allocating
unique client identifiers. RIFL manages client identifiers
with a lease mechanism described later in this section.

The second overall problem is completion record durabil-
ity. Whenever an operation completes, a record of its com-
pletion must be stored durably. This completion record must
include the RPC identifier as well as any results that are
returned to the client. Furthermore, the completion record
must be created atomically with the mutations of the opera-
tion, and it must have similar durability properties. It must
not be possible for an operation to complete without a visi-
ble completion record, or vice versa. RIFL assumes that the
underlying system provides durable storage for completion
records.

The third problem is retry rendezvous: if an RPC com-
pletes and is then retried at a later time, the retries must
find the completion record to avoid re-executing the oper-
ation. However, in a large-scale system the retry may not be
sent to the same server as the original request. For exam-
ple, many systems migrate data after a server crash, transfer-
ring ownership of the crashed server’s data to one or more
other servers; once crash recovery completes, RPCs will be
reissued to whichever server now stores the relevant data.
RIFL must ensure that the completion record finds its way
to the server that handles retries and that the server receives
the completion record before any retries arrive. Retry ren-
dezvous also creates issues for distributed operations that
involve multiple servers, such as multi-object transactions:
which server(s) should store the completion record?

RIFL uses a single principle to handle both migration and
distributed operations. Each operation is associated with a
particular object in the underlying system, and the comple-
tion record is stored wherever that object is stored. If the
object migrates, then the completion record must move with
it. All retries must necessarily involve the same object(s),
so they will discover the completion record. If an operation
involves more than one object, one of them is chosen as a
distinguished object for that operation, and the completion
record is stored with that object. The distinguished object
must be chosen in an unambiguous fashion, so that retries
use the same distinguished object as the original request.

The fourth overall problem for RIFL is garbage collec-
tion: eventually, RIFL must reclaim the storage used for
completion records. A completion record cannot be re-
claimed until it is certain that the corresponding request will
never be retried. This can happen in two ways. First, once
the client has received a response, it will never retry the re-
quest. Clients provide acknowledgments to the servers about
which requests have successfully completed, and RIFL uses
the acknowledgments to delete completion records. Com-
pletion records can also be garbage collected when a client
crashes. In this situation the client will not provide acknowl-



newSequenceNum()→ sequenceNumber
Assigns and returns a unique 64-bit sequence number for
a new RPC. Sequence numbers are assigned in increasing
integer order.

firstIncomplete()→ sequenceNumber
Returns the lowest sequence number for which an RPC
response has not yet been received.

rpcCompleted(sequenceNumber)
Invoked when a response has been received for sequen-
ceNumber.

Figure 3: The API of the RequestTracker module, which man-
ages sequence numbers for a given client machine.

getClientId()→ clientId
Returns a unique 64-bit identifier for this client; if a lease
does not already exist, initializes a new one. Used only on
clients.

checkAlive(clientId)→ {ALIVE or EXPIRED}
Returns an indication of whether the given client’s lease has
expired. Used only on servers.

Figure 4: The API of the LeaseManager module, which runs
on both clients and servers and communicates with the lease
server to keep track of leases. On the client side, LeaseManager
automatically creates a lease on the first call to getClientId
and renews it in the background. The unique identifier for each
client is determined by its lease and is valid only as long as the
lease is alive.

edgments, so RIFL must detect the client’s crash in order to
clean up its completion records.

Detecting and handling client crashes creates additional
complications for garbage collection. One possible approach
is to associate an expiration time with each completion
record and delete the completion record if it still exists when
the time expires; presumably the client must have crashed
if it hasn’t completed the RPC by then. However, this ap-
proach could result in undetectable double-execution if a
client is partitioned or disabled for a period longer than the
expiration time and then retries a completed RPC.

We chose to use a different approach to client crashes,
which ensures that the system will detect any situation where
linearizability is at risk, no matter how rare. RIFL’s solu-
tion is based on leases [10]: each client has a private lease
that it must renew regularly, and the identifier for the lease
serves as the client’s unique identifier in RPCs. If a client
fails to renew the lease, then RIFL assumes the client has
crashed and garbage-collects its completion records. RIFL
checks the lease validity during each RPC, which ensures
that a client cannot retry an RPC after its completion record
has been deleted. The lease approach can still result in am-
biguous situations where a client cannot tell whether an RPC
completed, but it allows these situations to be detected and
reported.

Managing leases for a large number of clients intro-
duces additional scalability issues. For example, one million

checkDuplicate(clientId, sequenceNumber) → {NEW,
COMPLETED, IN PROGRESS, or STALE}, completion-
Record

Returns the state of the RPC given by clientId and sequen-
ceNumber. NEW means that this is the first time this RPC
has been seen; internal state is updated to indicate that the
RPC is now in progress. COMPLETED means that the
RPC has already completed; a reference to the completion
record is also returned. IN PROGRESS means that another
execution of the RPC is already underway but not yet com-
pleted. STALE means that the RPC has already completed,
and furthermore the client has acknowledged receiving the
result; there may no longer be a completion record avail-
able.

recordCompletion(clientId, sequenceNumber, completion-
Record)

This method is invoked just before responding to an RPC;
completionRecord is a reference to the completion record
for this RPC, which will be returned by future calls to
checkDuplicate for the RPC.

processAck(clientId, firstIncomplete)
Called to indicate that clientId has received responses for
all RPCs with sequence numbers less than firstIncomplete.
Completion records and other state information for those
RPCs will be discarded.

Figure 5: The API of the ResultTracker module, which runs on
servers to keep track of all RPCs for which results are not known
to have been received by clients.

clients could create a significant amount of lease renewal
traffic for a centralized lease manager. In addition, lease in-
formation must be durable so that it survives server failure;
this increases the cost of managing leases. The lease time-
out must be relatively long, in order to reduce the likelihood
of lease expiration due to temporary disruptions in commu-
nication, but this increases the amount of state that servers
need to retain.

4 Design Details
The previous section introduced the major problems that

RIFL must solve and described some of the key elements of
RIFL’s solutions. This section fills in the details of the RIFL
design, focusing on the aspects that will be the same in any
system using RIFL. System-specific details are discussed in
Section 5.

RIFL appears to the rest of the system as three modules.
The first, RequestTracker, runs on client machines to manage
sequence numbers for outstanding RPCs (Figure 3). The sec-
ond module, LeaseManager, runs on both clients and servers
to manage client leases (Figure 4). On clients, LeaseMan-
ager creates and renews the client’s lease, which also yields
a unique identifier for the client. On servers, LeaseManager
detects the expiration of client leases. The third module, Re-
sultTracker, runs only on servers: it keeps track of currently
executing RPCs and manages the completion records for
RPCs that have finished (Figure 5).



4.1 Lifetime of an RPC
When a client initiates a new RPC, it forms a unique iden-

tifier for that RPC by combining the client’s unique identifier
with a new sequence number provided by RequestTracker. It
includes this identifier in the RPC and must record the iden-
tifier so that it can use the same identifier in any subsequent
retries of the RPC.

When a server receives an RPC, it must check to see if the
RPC represents a retry of a previously completed RPC. To
do this, it calls ResultTracker’s checkDuplicatemethod
and does one of four things based on the result:
• In the normal case, this is a new RPC (one whose identi-

fier has never been seen previously); checkDuplicate
records that the RPC is underway and returns NEW. The
server then proceeds to execute the RPC.
• If this RPC has already completed previously, then
checkDuplicate returns COMPLETED. It also re-
turns a reference to the RPC’s completion record; the
server uses this to return a response to the client without
re-executing the RPC.
• Is also possible that the RPC is currently being executed

but has not completed. In this case, checkDuplicate
returns IN PROGRESS; depending on the underlying
RPC system, the server may discard the incoming request
or respond to the client with an indication that execution
is still in progress.
• Finally, it is possible for a stale retry to arrive even after

a client has received a response to the RPC and acknowl-
edged receipt to the server, and the server has garbage-
collected the completion record. This indicates either a
client error or a long-delayed network packet arriving out
of order. In this case checkDuplicate returns STALE
and the server returns an error indication to the client.
In the normal case of a new RPC, the server executes the

operation(s) indicated in the RPC. In addition, it must create
a completion record containing the following information:
• The unique identifier for the RPC.
• An object identifier, which uniquely identifies the storage

location for a particular object in the underlying system,
such as a key in a key-value store. The specific format
of this identifier will vary from system to system. This
field is used to ensure that the completion record migrates
along with the specified object.
• The result that should be returned to the client for this

RPC. The result will vary from operation to operation:
a write operation might return a version number for the
new version of the object; an atomic increment operation
might return the new value; some operations may have
no result.

The underlying system must provide a mechanism for stor-
ing completion records. The completion record must be
made durable in an atomic fashion along with any side ef-
fects of the operation, and durability must be assured before
the RPC returns. The exact mechanism for doing this will

vary from system to system, but many large-scale storage
systems include a log of some sort; in this case, the opera-
tion side effects and completion record can be appended to
the log atomically.

Once the completion record has been made durable, the
server invokes the recordCompletion method of Re-
sultTracker and passes it a reference to the completion
record. The format of the reference is system-specific and
opaque to the ResultTracker module. The reference must
provide enough information to locate the completion record
later, such as a location in the log. ResultTracker associates
this reference with the RPC identifier, so that it can return
the reference in future calls to checkDuplicate. Once
recordCompletion has returned, the server can return
the RPC’s result to the client.

When the client receives a response to an RPC, it invokes
the rpcCompleted method of RequestTracker. This al-
lows RequestTracker to maintain accurate information about
which RPCs are still in progress.

If a client fails to receive a response to an RPC or detects
a server crash via some other mechanism, then it is free
to reissue the RPC. If data has migrated, the reissued RPC
may be sent to a different server than the original attempt
(the mechanisms for managing and detecting migration are
implemented by the underlying system). However, the client
must use the same unique identifier for the reissued RPC that
it used for the original attempt. When the server receives this
RPC, it will invoke checkDuplicate as described above
and either execute the RPC or return the result of a previous
execution.

4.2 Garbage collection
RIFL uses sequence numbers to detect when comple-

tion records can be safely reclaimed. The RequestTracker
module in each client keeps track of that client’s “ac-
tive” RPC sequence numbers (those that have been re-
turned by newSequenceNum but have not yet been passed
to rpcCompleted). The firstIncomplete method
of RequestTracker returns the smallest of these active se-
quence numbers, and this value is included in every out-
going RPC. When an RPC arrives on a server, the server
passes that sequence number to the ResultTracker module’s
processAck method, which then deletes all of its inter-
nal state for RPCs from that client with smaller sequence
numbers. ProcessAck also invokes the underlying system
to reclaim the durable storage occupied by the completion
records.

Using a single sequence number to pass garbage collec-
tion information between clients and servers is convenient
because the sequence number occupies a small fixed-size
space in outgoing RPCs and it can be processed quickly on
servers. However, it forces a trade-off between RPC concur-
rency on clients and space utilization on servers. If a client
issues an RPC that takes a long time to complete, then con-
currently issues other RPCs, the completion records for the



later RPCs cannot be garbage collected until the stalled RPC
completes. This could result in an unbounded amount of
state accumulating on servers.

In order to limit the amount of state on servers, which
is important for scalability, RIFL sets an upper limit on the
number of non-garbage-collectible RPCs a given client may
have at one time. This number is currently set at 512. Once
this limit is reached, no additional RPCs may be issued until
the oldest outstanding RPC has completed. The limit is high
enough to allow considerable concurrency of RPCs by a
single client, while also limiting worst-case server memory
utilization.

The garbage collection mechanism could be implemented
using a more granular approach that allows information for
newer sequence numbers to be deleted while retaining in-
formation for older sequence numbers that have not com-
pleted. However, we were concerned that this might create
additional complexity that impacts the latency of RPCs; as
a result, we have deferred such an approach until there is
evidence that it is needed.

4.3 Lease management
RIFL uses leases to allocate unique client identifiers and

detect client crashes. Leases are managed by a centralized
lease server, which records information about active leases
on a stable storage system such as ZooKeeper [13] so it can
be recovered after crashes. When a client issues its first RPC
and invokes the getClientId method of LeaseManager
(Figure 4), LeaseManager contacts the lease server to allo-
cate a new lease. LeaseManager automatically renews the
lease and deletes it when the client exits. The identifier for
this lease serves as the unique identifier for the client.

The lease mechanism presents two challenges for RIFL’s
scalability and latency: renewal overhead and validation
overhead. The first challenge is the overhead for lease re-
newal on the lease server, especially if the system ap-
proaches our target size of one million clients; the problem
becomes even more severe if each renewal requires opera-
tions on stable storage. To reduce the renewal overhead, the
lease server keeps all of the lease expiration times in mem-
ory, and it does not update stable storage when leases are re-
newed. Only the existence of leases is recorded durably, not
their expiration times. To compensate for the lack of durable
lease expiration times, the lease server automatically renews
all leases whenever it reconstructs its in-memory data from
stable storage after a restart.

The second problem with leases is that a server must
validate a client’s lease during the execution of each RPC,
so it can reject RPCs with expired leases. The simplest
way to implement this is for the server to contact the lease
server during each request in order to validate the lease, but
this would create unacceptable overheads both for the lease
server and for the RPC’s server.

Instead, RIFL implements a mechanism that allows servers
to validate leases quickly using information received from

clients during normal RPCs; a server only needs to contact
the lease server if a lease is near to, or past, expiration. The
lease server implements a cluster clock, which is a time value
that increases monotonically at the rate of the lease server’s
real-time clock and is durable across lease server crashes.
The lease server returns its current cluster clock value when-
ever it responds to a client request for lease creation or re-
newal, and the client includes this time in RPC requests.
Servers use this information for two purposes. First, it al-
lows them to compute a lower bound on the lease server’s
value of the cluster clock. Second, it allows servers to esti-
mate when the client’s lease will expire, given knowledge of
the lease interval (which is a fixed system-wide parameter).
Using this approach, a server can almost always determine
trivially that a client’s lease is still valid. If a lease is near to
expiration, then the server must contact the lease manager to
validate the lease; this also returns the current cluster clock
value. A server only expires a lease if it has confirmed the ex-
piration with the lease server. The cluster clock mechanism
includes several other details, which we omit here because
of space limitations.

4.4 Migration
As discussed in Section 3, a large-scale system may mi-

grate data from one server to another, either to balance load
during normal operation or during crash recovery. The de-
tails of this are system-specific, but in order for RIFL to
function correctly, the system must always migrate each
completion record to the same machine that stores the ob-
ject identified by that completion record. When a completion
record arrives on a new server, the underlying system must
call RIFL’s ResultTracker module so that it can reconstruct
its in-memory metadata that maps from RPC identifiers to
completion records.

5 Implementation
In order to evaluate RIFL, we have implemented it in

RAMCloud [21], a key-value store that keeps all data in
DRAM. RAMCloud has several properties that make it an
attractive target for RIFL. It is already designed for large
scale and it offers low latency (small remote reads take
4.7 µs end to end, small durable writes take 13.5 µs); the
RAMCloud implementation allows us to evaluate whether
RIFL can be used for large-scale low-latency applications.
In addition, RAMCloud already implemented at-least-once
semantics, so RIFL provides everything needed to achieve
full linearizability. Finally, RAMCloud is available in open-
source form [1].

Previous sections have described the system-independent
aspects of RIFL; this section describes the RAMCloud-
specific facilities that had to be created as part of implement-
ing RIFL. All of the changes to RAMCloud were localized
and small.

RAMCloud uses a unified log-structured approach for
managing data both in DRAM and on secondary stor-



age [21], and it uses small amounts of nonvolatile memory to
perform durable replication quickly. RIFL stores its comple-
tion records as a new type of entry in the RAMCloud log; we
extended the logging mechanism to ensure that completion
records can be written atomically with other records such as
new values for objects. A reference to a completion record
(as passed to and from ResultTracker) consists of its address
in the in-memory copy of the log.

Garbage collection of completion records is handled by
the log cleaner using its normal mechanism. The cleaner
operates by scanning a region of log entries and calling a
type-specific method for each entry to determine whether the
entry is still live; live entries are copied forward in the log,
then the entire region is reclaimed. A log entry containing
a completion record is live if ResultTracker still stores an
entry for the completion record’s RPC id.

In RAMCloud, each object is assigned to a server based
on its table identifier and a hash of its key; RIFL uses
these two 64-bit values as the object identifier in completion
records. We made two small modifications to RAMCloud’s
migration and crash recovery code so that (a) completion
records are sent to the correct server during crash recovery
(b) when a completion record arrives on a new server, Re-
sultTracker is invoked to incorporate that completion record
into its metadata.

In RAMCloud the lease server is integrated into the clus-
ter coordinator and uses the same ZooKeeper instance for
storing lease information that the coordinator uses for its
other metadata.

Once RIFL was implemented in RAMCloud, we used it
to create a variety of linearizable operations. We first con-
verted a few simple operations such as write, conditional
write, and atomic increment to be linearizable. Each of these
operations affects only a single object on a single server, so
the code modifications followed naturally from the descrip-
tion in Section 4.

We also used RIFL to implement a new multi-object
transaction mechanism that was not previously present in
RAMCloud. This mechanism is described in the following
section.

6 Implementing Transactions with RIFL
This section describes how we used RIFL to imple-

ment a new multi-object distributed transaction mechanism
in RAMCloud. Transactions are a more complex use case
for RIFL, since they involve multiple objects on different
servers. We found that RIFL significantly simplified the im-
plementation of transactions, and the resulting mechanism
offers high performance, both in absolute terms and relative
to other systems.

The two-phase commit protocol for RAMCloud transac-
tions is based on Sinfonia [2]; we chose this approach be-
cause Sinfonia offers the lowest possible latency for dis-
tributed transactions. However, we did not need to imple-
ment all of Sinfonia’s mechanisms because RIFL made some

of them unnecessary. The description below focuses on the
overall mechanism and its use of RIFL; we have omitted a
few details and corner cases because of space limitations.

6.1 APIs
The application-visible API for RAMCloud transactions

is based on a new Transaction class. To use the transaction
mechanism, an application creates a Transaction object, uses
it to read, write, and delete RAMCloud objects, then invokes
a commit operation, which will succeed or abort. If the com-
mit succeeds, it means that all of the operations were ex-
ecuted atomically as a single linearizable operation. If the
commit aborts, then none of the transaction’s mutations were
applied to the key-value store or were in any way visible to
other clients; the system may abort the commit for a variety
of reasons, including data conflicts, busy locks, and client
crashes. If an application wishes to ensure that a transaction
succeeds, it must retry aborted transactions. With this API,
RAMCloud provides ACID transactions with strict serializ-
ability [24] using optimistic concurrency control [16].

6.2 The commit operation
The Transaction object defers all updates to the key-value

store until commit is invoked. When reads are requested, the
Transaction reads from the key-value store and caches the
values along with the version number for each RAMCloud
object. When writes and deletes are requested, the Transac-
tion records them for execution later, without modifying the
key-value store. When commit is invoked, the Transaction
applies all of the accumulated mutations in an atomic fash-
ion.

The Transaction object implements its commit method
using a single internal operation that is similar to a Sinfonia
mini-transaction; we will use the term “Commit” for this
operation. Commit is a distributed operation involving one
or more objects, each of which could be stored on a different
server. The arguments to Commit consist of a list of objects,
with the following information for each object:
• The table identifier and key for the object.
• The operation to execute on the object: read, write, or

delete.
• A new value for the object, in the case of writes.
• The expected version number for the object (or “any”).

Commit must atomically verify that each object has the re-
quired version number, then apply all of the write and delete
operations. If any of the version checks fail, the commit
aborts and no updates occur.

6.3 Client-driven two-phase commit
Commit is implemented using a two-phase protocol

where the client serves as coordinator. In the first phase,
the client issues one prepare RPC for each object in-
volved in the transaction (see Figure 6). The server storing
the object (called a participant) locks the object and checks
its version number. If it doesn’t match the desired version
then the participant unlocks the object and returns ABORT;



prepare(tableId, key, version, operation(READ, WRITE,
DELETE), newValue, rpcId, firstIncomplete, leaseInfo, allOb-
jects)→ {PREPARED, ABORT},

Sent from clients to participants for the first stage of com-
mit: verifies that the object given by tableId and key is not
already locked by another transaction and has a version
number matching version; if so, locks the object, writes
a durable record describing the lock as well as operation
and newValue, and returns PREPARED; otherwise returns
ABORT. operation specifies the operation that will eventu-
ally be performed on the object and newValue is the new
object value for writes. rpcId, firstIncomplete, and lease-
Info are used by RIFL for at-most-once semantics. allOb-
jects describes all of the objects in the transaction (tableId,
keyHash, and rpcId for each).

decision(rpcId, action(COMMIT, ABORT))
Sent from clients or recovery coordinators to participants
for the second stage of two-stage commit; rpcId indicates
a particular object (must match the rpcId of a previous
prepare). If action is COMMIT, then the operation spec-
ified in the corresponding prepare is performed. In any
case, the lock is removed and the durable lock record is
deleted.

startRecovery(allObjects)
Sent from participants to the recovery coordinator to start
recovery. allObjects specifies all of the objects of the trans-
action (same format as for prepare).

requestAbort(rpcId)→ {PREPARED, ABORT},
Sent from the recovery coordinator to participants during
the first phase of crash recovery. Returns PREPARED if a
completion record indicates a prior PREPARED response
for rpcId, otherwise returns ABORT.

Figure 6: The APIs for the RPCs used to implement the commit
protocol for RAMCloud transactions.

it also returns ABORT if the object was already locked by
another transaction. Otherwise the participant stores infor-
mation about the lock in a transaction lock table and creates
a durable record of the lock in its log. It then returns PRE-
PARED to the client. The client issues all of the prepare
RPCs concurrently and it batches requests to the same par-
ticipant.

If all of the prepare RPCs return PREPARED, then
the commit will succeed; if any of the prepare RPCs
return ABORT, then the transaction will abort. In either
case, the client then enters the second phase, where it is-
sues a decision RPC for each object. The participant for
each object checks whether the RPC indicates “commit” or
“abort”. If the decision was to commit, it applies the mu-
tation for that object, if any. Then, whether committing or
aborting, it removes the lock table entry and adds a tomb-
stone record to the RAMCloud log to nullify the lock record.

The transaction is effectively committed once a durable
lock record has been written for each of the objects. At
this point, regardless of the client’s actions, the mutations
will eventually be applied (the details will be discussed be-

low). The Transaction object’s commit method can return as
soon as positive responses have been received from all of
the servers; the decision RPCs can be issued in the back-
ground. Thus, the latency for Commit consists of one round-
trip RPC time (more precisely, the time for a concurrent col-
lection of RPCs to all of the participants) plus the time for a
durable write on each participant. In RAMCloud, a durable
write is implemented with concurrent RPCs that replicate
log records in nonvolatile memory on three backup servers.
This is the lowest possible time for a transaction commit;
we chose the client-driven approach because it is at least one
half round-trip faster than approaches that use a server as the
transaction coordinator.

The commit protocol is optimized for two special cases.
The first consists of transactions whose objects all reside on
a single participant. When a participant receives a prepare
request, it checks to see if it owns all of the objects in
the transaction. If so, it executes both the prepare and
decision operations and returns a special COMMITTED
status to the client; the client then skips its decision
phase. The participant propagates log records to backups
only once, after the decision phase. Since the optimized
form does not return to the client until after the decision
has completed, its latency is slightly higher than it would
be without the optimization, but the optimization improves
throughput significantly and eliminates the need for clients
to invoke decision RPCs. (see Section 7).

The second optimization is for read-only transactions. If a
transaction does not modify any objects, the client indicates
this in each prepare RPC. In this case, the participant
simply checks to make sure the object is not locked and
then verifies its version number; there is no need to acquire
a lock or record any durable data. As with single-server
transactions, clients need not issue decision RPCs.

6.4 Client crashes
If the client crashes before completing all of the decision

RPCs, then a server must complete the process on its behalf.
RAMCloud transactions use a mechanism similar to Sinfo-
nia for this. If the client is suspected to have crashed, the
participant for the transaction’s first object acts as recovery
coordinator. The recovery coordinator executes a two-phase
protocol similar to that of the client, except that its goal is
to abort the transaction unless it has already committed (in
general, there may not be enough information to complete
an incomplete transaction, since the client may have crashed
before issuing all of the prepare RPCs). In the first phase
the recovery coordinator issues a requestAbort RPC
for each object, whose participant will agree to abort un-
less it has already accepted a prepare for the object. If
requestAbort returns PREPARED for every object in
the transaction, then the transaction has already committed.
Otherwise, the recovery coordinator will abort the trans-
action. In either case, the recovery coordinator then sends
decision RPCs for each object.



Transaction recovery is initiated using a timeout mech-
anism. Whenever a participant creates an entry in its lock
table, it starts a timer. If the timer expires before the partici-
pant has received a decision, then the participant sends a
startRecovery RPC to the recovery coordinator.

In order to provide enough information for crash recov-
ery, the client includes identifiers for all objects in the trans-
action as part of each prepare. This information serves
two purposes. First, it allows each participant to identify the
recovery coordinator (the server for the first object in the
list). Second, the object list is needed by the recovery coor-
dinator to identify participants for its requestAbort and
decision RPCs. The recovery coordinator may not have
received a prepare if the client crashed, so when a partic-
ipant invokes startRecovery it includes the list of ob-
jects that it received in its prepare.

6.5 RIFL’s role in transactions
The issue of exactly-once semantics arises in several

places in the RAMCloud transaction mechanism. For ex-
ample, a server may crash after completing a prepare but
before responding; its objects and lock table will migrate
to another server during crash recovery, and the client will
eventually retry with that server. In addition, a client that is
presumed dead may not actually be dead, so it could send
prepare RPCs at the same time the recovery coordina-
tor is sending requestAbort RPCs for the same objects:
once one of these RPCs has reached a decision for an ob-
ject, the other RPC must see the same decision. Finally, a
“dead” client may wake up after recovery is complete and
go through its two-phase protocol; participants must not re-
execute prepare RPCs for which requestAbort RPCs
were executed during recovery, and the client must reach the
same overall decision about whether the transaction com-
mitted.

All of these situations are handled by using RIFL for the
prepare and requestAbort RPCs. Each prepare is
treated as a separate linearizable operation. For example,
when a client begins the Commit process it uses RIFL to
assign a unique identifier for each prepare, and the par-
ticipant logs a completion record for the RPC atomically
with the lock record. If the version check fails, the partic-
ipant will not create a lock record, but it will still create a
completion record indicating that it rejected the RPC. The
participant also uses the RPC identifier in its lock table as
a unique identifier for a particular object participating in a
particular transaction. If a client retries a prepare (e.g. be-
cause of a participant crash), the completion record ensures
exactly-once semantics. Each object can potentially migrate
independently during crash recovery, but the per-object com-
pletion records will follow them.

When a requestAbort is issued during client crash
recovery, the recovery coordinator uses the same RPC iden-
tifier that was used by the corresponding prepare (the
identifiers are included in prepare RPCs along with ob-

ject identifiers, and they are passed to the recovery coor-
dinator in startRecovery RPCs). This allows a partic-
ipant handling a requestAbort to determine whether it
already processed a prepare for that object; if there is no
pre-existing completion record, then the server creates a new
one indicating that it has agreed to abort the transaction. The
shared RPC identifier ensures that races are resolved prop-
erly: if a prepare arrives from the client later, it will find
the requestAbort completion record and return ABORT
to the client.

Completion records are not needed for decisionRPCs,
since redundant executions can be detected using the lock ta-
ble. If a decision is retried, there will no longer exist a
lock table entry for the object. This indicates that the current
decision is redundant, so the participant returns immedi-
ately without taking any action.

6.6 Garbage collection
Garbage collection is more complex for distributed trans-

actions than for single-object operations because it requires
knowledge of distributed state. In Sinfonia this complexity
is reflected in two additional protocols: a special mechanism
to collect ids for completed transactions and exchange them
among servers in batches, and a separate epoch-based mech-
anism for garbage-collecting information about transaction
aborts induced during crash recovery. Our use of RIFL in
RAMCloud transactions allowed us to avoid both of these
additional protocols and ensure proper garbage collection
with only a few small additions.

In a distributed transaction, none of the completion
records for the prepare RPCs can be deleted until the
decision RPCs have been processed for all of the trans-
action’s objects (otherwise the transaction could be re-
executed with a different result). This problem led to the
transaction id exchange mechanism in Sinfonia. Our transac-
tion mechanism uses a much simpler solution: a client does
not call rpcCompleted for any of its prepare RPCs un-
til it has received responses for all of the decision RPCs.

The epoch mechanism in Sinfonia was required to garbage-
collect transactions aborted during client crash recovery; in
RAMCloud transactions the client leases already handle this
situation. If a client crashes during a transaction, then it
will never call rpcCompleted for its prepare RPCs, so
servers will retain completion records until the client lease
expires. The timers for transaction recovery are consider-
ably shorter than the lease timeout; this ensures that the
completion records will still be available for the recovery
mechanism described in Section 6.4. If the client has not
really crashed and finishes executing the transaction pro-
tocol after recovery has occurred, the completion records
will still be available, so the client will observe the com-
mit/abort decision made during recovery. It will then call
rpcCompleted and the completion records can be deleted
without waiting for lease expiration.



CPU Xeon X3470 (4x2.93 GHz cores, 3.6 GHz Turbo)
RAM 24 GB DDR3 at 800 MHz
Flash 2x Samsung 850 PRO SSDs
Disks (256 GB)
NIC Mellanox ConnectX-2 Infiniband HCA

Switch Mellanox SX6036 (4X FDR)

Table 1: The server hardware configuration used for benchmark-
ing. All nodes ran Linux 2.6.32 and were connected to a two-
level Infiniband fabric with full bisection bandwidth; the NICs
support kernel-bypass. The Infiniband fabric supports 32 Gbps
bandwidth, but PCI Express limits the nodes to about 24 Gbps.

RIFL’s completion records provide a clean separation
of information with different lifetimes, so different kinds
of information can be garbage-collected independently. For
example, the completion record for a prepare is dis-
tinct from the lock record created by that RPC. The lock
record’s lifetime is determined by the transaction (the record
is deleted as soon as a decision RPC is received), but the
completion record must be retained until the client acknowl-
edges receipt of the prepare result or its lease expires,
which could be considerably later.

6.7 Server crash recovery
If a server crashes during the transaction commit proto-

col, its objects will be reconstructed on one or more other
servers. The log records for locks and prepare comple-
tions will migrate with the corresponding objects and the
new servers will use this data to populate lock tables and
ResultTrackers, so the two-phase commit protocol can be
completed in the normal way.

If the recovery coordinator crashes during transaction
recovery, its data will be reconstructed on another server
and transaction recovery will eventually start again. The
completion records ensure that any past decisions are visible
to future recovery coordinators.

7 Evaluation
We evaluated the RAMCloud implementation of RIFL to

answer the following questions:
• What is RIFL’s impact on latency and throughput?
• Does RIFL limit scalability?
• How hard is it to use RIFL to implement linearizability?
• How does the performance of transactions implemented

with RIFL compare to other state-of-the-art systems?
All performance evaluations were conducted on a cluster
of machines with the specifications shown in Table 1. All
measurements were made using Infinband networking. Un-
less otherwise indicated, all RAMCloud measurements were
made using RAMCloud’s fastest transport, which bypasses
the kernel to communicate directly with NICs. In a few cases
we used a different transport based on TCP implemented
in the kernel (packets were still delivered via Infiniband).
RAMCloud servers were configured to use 3-way replica-
tion. The log cleaner did not run in any of these experi-
ments; in a production system cleaning overheads could re-
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random RAMCloud write operations with and without RIFL.
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the 1M measured writes took at least x µs to complete. “Origi-
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vs. 13.5 µs for the original system.
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Figure 8: The aggregate throughput for one server serving 100B
RAMCloud writes with and without RIFL, as a function of
the number of clients. Each client repeatedly issued random
writes back to back to a single server in a 4-server cluster.
“Original Write” refers to the base RAMCloud system before
adding RIFL. Each experiment was run 5 times. The data points
show the median values; error bars show min and max.

duce throughput by as much as 25% from the numbers re-
ported here, depending on memory utilization and workload
(see Figure 6 in [21] for details).

7.1 Performance Impact of RIFL
Performance is often used as an argument for weak con-

sistency in large-scale systems. However, we found that
RIFL is able to add full linearizable semantics to RAM-
Cloud with negligible impact on performance.

Figure 7 shows the latency of RAMCloud write opera-
tions before and after adding RIFL. RIFL increases the me-
dian write latencies by less than 4% (530 ns). More gen-
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Figure 9: Latency of linearizable writes as a function of the
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dom 100B write requests, with each write request using a ran-
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percentile latency). The median latency increased by less than
5% from 14.0 µs with 1 active client to 14.6 µs with 1M active
clients.

erally, the overall shape of the latency distribution did not
change with the addition of linearizability.

Figure 8 shows the throughput of write operations for a
single server, before and after introducing RIFL. Overall,
RIFL had no measurable impact on throughput (experimen-
tal error is greater than the differences between the curves).

7.2 Scalability Impact of RIFL
RIFL creates three potential scalability issues. The first

is memory space required on servers for completion records
and client lease information. RIFL uses 40B per client for
overall client state, plus roughly 76B for each completion
record, or a total of 116B per client (assuming one active
completion record per client per server). If a server has 1M
active clients, the total memory requirements for RIFL data
will be 160MB per server; given current server capacities
of 256GB or more, this represents less than 1% of server
memory.

The second scalability risk is the possibility of perfor-
mance degradation if a server must manage state for a large
number of clients (for example, this could result in addi-
tional cache misses). To evaluate this risk, we used a sin-
gle client executable to simulate up to one million active
clients, all issuing linearizable write requests to the same
server (Figure 9). Ideally, the write latency should be con-
stant as amount of client state on the server increases. In-
stead, we found a 5% increase in latency when scaling from
one active client to one million. While the overhead does
increase with the number of clients, the overhead is small
enough that it doesn’t limit system scalability.

1x10
-6

1x10
-5

1x10
-4

1x10
-3

1x10
-2

1x10
-1

1x10
0

 10  100  1000  10000

F
ra

c
ti
o
n
 o

f 
T

ra
n
s
a
c
ti
o
n
s
 (

L
o
g
 S

c
a
le

)

Latency in Microseconds (Log Scale)

1 participant  
2 participants
3 participants
4 participants
5 participants

Figure 10: Reverse cumulative distribution of transaction com-
mit latency measured from the beginning of the commit process
to the completion of all prepare RPCs. Each transaction reads
and writes one randomly chosen object per participant; the clus-
ter contained 10 servers. A point (x, y) indicates that y of the
1M measured transaction commits took at least x µs to com-
plete. The median latency for 1, 2, 3, 4, and 5 participants is
17.8 µs, 19.2 µs, 21.8 µs, 24.8 µs, and 27.3 µs respectively.

The third scalability issue is the lease renewal traffic that
the lease server must process; the number of active clients is
limited by the rate at which the lease server can serve lease
renewal requests. We measured the lease server’s maximum
throughput to be 750k renewals per second. Lease terms are
currently set at 30 min with renewals issued after half the
term has elapsed. At this rate, 1M active clients will consume
less than 0.2% of a lease server’s capacity.

7.3 Is Implementing Linearizability with RIFL Hard?
Given RIFL, which consists of about 1200 lines of C++

code, we were able to add linearizability support to existing
RAMCloud operations with only few additional lines of
code. We did this for write, conditional write, increment,
and delete operations. On the client side, RAMCloud RPCs
are implemented using wrapper objects that implement core
functionality common to a set of RPCs. As part of our RIFL
implementation, we created a new linearizable RPC wrapper
with 109 lines of code. Using this wrapper, each operation’s
client-side code required only 4 lines of code modification.
Each operation’s server-side code needed 13 lines of code
modification. In all, we were able to add full linearizability
support for all 4 operations in 68 lines of code, or 177 lines
including the wrapper

RIFL also significantly simplified the implementation of
distributed transactions in RAMCloud. This was discussed
in detail in section 6.5.

7.4 Evaluating RIFL-based Transactions
Figure 10 shows the the latency for simple transactions

with 1–5 objects, each on a different participant server. A
transaction with only a single object commits in 17.8 µs
while a transaction with 5 objects commits in 27.3 µs. Fig-
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Figure 11: Median transaction commit latency for a single client
measured from the beginning of the commit process to the com-
pletion of all prepare RPCs, as a function of the number of
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participants the transaction is committing 300 objects spanning
60 participants. All experiments used a cluster with 60 servers.

Type Mix Working Set (DB rows) Multi-
Read Set Write Set warehouse

NewOrder 45% 23 rows 23 rows 9.5%
Payment 43% 4 rows 4 rows 15%
OrderStatus 4% 13 rows 0 rows 0%
Delivery 4% 130 rows 130 rows 0%
StockLevel 4% 390 rows 0 rows 0%

Table 2: The five transaction types used by the TPC-C bench-
mark. “Mix” gives the frequency for each transaction type.
“Working Set” indicates how many database records are read
and written by each transaction type, on average. “Multi-
warehouse” indicates the fraction of each transaction type that
involves multiple warehouses.

ure 11 shows the transaction commit latencies for larger
transactions up to 300 objects on 60 participants; latency
increases roughly linearly with the number of participants.
This scaling behavior is expected as the client must issue a
separate RPC for each additional participant.

Figure 12 graphs the throughput of RIFL-based trans-
actions. For transactions involving a single participant, a
cluster with 10 servers can support about 440k transactions
per second. With more participants per transaction, through-
put drops roughly in proportion to the number of partici-
pants: with five participants in each transaction, the cluster
throughput is about 70k transactions per second. Figure 12
also shows that the single-server optimization described in
Section 6 improves throughput by about 40%.

7.5 Comparing Transaction Performance with H-Store
We implemented the TPC-C benchmark [25] with RAM-

Cloud transactions and used it to compare performance be-
tween RAMCloud and H-Store [15], a main-memory DBMS
for OLTP applications. TPC-C simulates an order fulfillment
system with a workload consisting of five transaction types
(see Table 2). Data is logically partitioned into warehouses,
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Figure 12: Aggregate transaction throughput for a cluster of 10
servers as a function of the number of clients. Each client re-
peatedly creates and commits transactions back to back where
each transaction reads and writes one 100-byte object per partic-
ipant; participants were chosen at random for each transaction.
Each experiment was run 5 times; the figure shows the median
measured throughput. The “unoptimized” case shows through-
put with the single-server optimization disabled.

and most transactions only manipulate data within a single
warehouse. The primary metric for TPC-C is the number of
committed NewOrder transactions per minute (TpmC).

Our implementation of the TPC-C benchmark for RIFL
differs slightly from the standard in that we removed wait
time and keying time in clients (this allowed us to gener-
ate a higher workload with fewer clients). We modeled each
table row in TPC-C as an object in RAMCloud and simu-
lated secondary indexes using auxiliary RAMCloud tables.
For instance, we used an auxiliary table to map from each
customer last name to a list of matching customer IDs. Up-
dates to the auxiliary tables are included in the TPC-C trans-
actions.

H-Store provides many parameters to tune the system’s
performance. With help from the H-Store developers [22]
and to the best of our ability, we tuned two H-Store config-
urations for measurement: one for best latency and one for
best throughput. In some experiments we disabled durability
in the H-Store configuration optimized for latency. RAM-
Cloud does not provide any tuning parameters so RIFL-
based transactions on RAMCloud were measured as-is (we
view RAMCloud’s lack of parameters as an advantage).

Figure 13 shows TPC-C latency with a single client and a
single warehouse. Warehouses are relatively small, so TPC-
C normally runs with each warehouse located entirely on
a single server; this is the leftmost point in Figure 13. In
this configuration H-Store’s latency is more than 10x higher
than RAMCloud’s when durability is enabled in H-Store,
and 20% higher even when durability is disabled in H-Store.
Furthermore, RAMCloud achieves its low latency while pro-
viding 3-way distributed replication of all data, whereas H-
Store does not perform replication. H-Store is exceptionally
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Figure 13: Average latency of TPC-C NewOrder transactions
with a single warehouse, as a function of the degree of sharding
for the warehouse. “Server Span” of 10 indicates that the data
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was tuned for low latency and measured with durability both
enabled and disabled. RIFL-based transactions were measured
on both RAMCloud’s standard kernel-bypassing transport as
well as over kernel TCP.

efficient for single-server transactions because it uses pre-
defined stored procedures for all transactions. In the single-
server case the server can execute all reads and writes locally
and no data needs to be transferred either to clients or other
servers.

Figure 13 also shows the latency for a modified TPC-
C benchmark configuration where the warehouse dataset is
sharded across multiple servers. This evaluates how the sys-
tems will perform on datasets too large to fit on a single
server. RIFL-based transactions execute faster with shard-
ing, because they issue RPCs concurrently to all the par-
ticipants. In H-Store, performance degrades with sharding:
RAMCloud latencies are 1–2 orders of magnitude less than
H-Store.

RAMCloud’s kernel-bypass transport is significantly
faster than TCP, which is used by H-Store. To level the play-
ing field, Figure 13 also contains measurements of RAM-
Cloud using TCP. Even with TCP, RAMCloud is still signif-
icantly faster than H-Store except in the single-server case.
The gap in latency between H-Store and RAMCloud over
TCP indicates that H-Store’s latency is not limited by net-
work speed, so H-Store’s latency would not improve if it
used kernel-bypass.

Figure 14 shows latency and throughput for the TPC-C
benchmark with the standard mix detailed in Table 2, with
each warehouse on a separate server. The measurements for
H-Store tuned for throughput overstate its throughput be-
cause we were not able to run the benchmark long enough
for H-Store to reach steady state (the servers crashed). Dur-
ing the shortened runs, H-Store completed only about half
as many distributed transactions as required by the mix;
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Figure 14: Latency and aggregate throughput of NewOrder
transactions in the TPC-C benchmark, as a function of the
system scale. The benchmark used the transaction mix in Ta-
ble 2, with each warehouse stored on a single server. Increas-
ing the number of servers also increased the number of ware-
houses. Roughly 90% of NewOrder transactions involved only
one warehouse. RIFL-based transactions were tested on both
RAMCloud’s standard kernel-bypassing Infiniband transport as
well as kernel TCP.

the others were still in progress when the runs ended. In
the steady state, the more expensive distributed transactions
would have limited performance.

RIFL outperforms H-Store for TPC-C both in latency and
throughput. RIFL’s advantage is smallest when comparing
throughput between RAMCloud over TCP and H-Store op-
timized for throughput; even so, RIFL’s throughput is 35%
higher at 16 servers, even though RAMCloud is performing
3x replication and H-Store is not executing the full TPC-C
transaction mix. When RAMCloud over TCP is compared
with H-Store optimized for latency, RAMCloud’s through-
put is 3.6x that of H-Store. When RAMCloud runs with
kernel-bypass, its throughput is 2.8–7.6x that of H-Store.
RAMCloud latency is at least 10x smaller than H-Store
when H-Store is tuned for latency, and 1000x smaller when
H-Store is tuned for throughput.

7.6 RAMCloud Throughput Limitations
The RAMCloud architecture was optimized for latency,

not throughput; as a result, RIFL’s throughput is lower than it
could be with a different underlying architecture. In particu-
lar, RAMCloud does almost no batching of requests; this ap-



proach improves latency under low load, but hurts through-
put under high load. The primary bottleneck for transaction
throughput is the pipeline for replicating new data to back-
ups. A single RAMCloud server can maintain only about
1.5 outstanding replication operations at a time, on average,
where a “replication operation” consists of all of the mu-
tations associated with one incoming RPC (such as an in-
dividual write or a prepare RPC describing one or more
objects for a single transaction). This serialization is partic-
ularly harmful in high-latency environments such as when
RAMCloud uses TCP. We believe that adaptive batching
techniques such as those in the IX system [4] could improve
RAMCloud’s (and RIFL’s) throughput with little impact on
latency; we leave this to future work.

8 Related Work
Numerous distributed storage systems have been pro-

posed or implemented in recent years, with a variety of ap-
proaches to consistency. Many of the early systems inten-
tionally sacrificed consistency to enhance scalability or par-
tition tolerance [7, 9, 17, 23]. Linearizability is impossible
for these systems since they do not maintain consistency be-
tween replicas. The difficulties of programming weakly con-
sistent systems have been widely discussed, so recent sys-
tems have tended towards stronger forms of consistency [3,
6, 19]. Some of these systems offer semantics close to lin-
earizability, but it is difficult to tell whether any are truly lin-
earizable. For example, Spanner [6] claims to provide con-
sistency that is equivalent to linearizability, and it performs
retries internally for certain transactions, but it does not ap-
pear to extend exactly-once semantics all the way out to
clients.

Many traditional databases provide exactly-once seman-
tics for transactions using queued transaction processing [5],
but this technique is fairly heavyweight compared to RIFL.
Queued transaction processing separates the execution of a
single logical user defined transaction into 3 phases: request
submission, request execution, and reply processing. To en-
sure exactly-once semantics in the face of server crashes,
each phase is performed as a transaction. The overhead of
turning each request into 3 transactions is especially notice-
able for single-object requests.

Many systems provide strong internal consistency guar-
antees, but most of these systems do not provide exactly-
once semantics for clients. For example, H-Store [15], Span-
ner [6], and FaRM [8] implement distributed transactions,
but an untimely server crash can leave clients without a
clear indication whether a transaction committed. A client
can implement linearizability in these systems by including
an additional object in the transaction with a unique identi-
fier, which it can check later to determine if the transaction
committed. However, this requires clients to create their own
mechanisms for managing transaction ids.

The distributed transaction mechanism implemented by
Sinfonia [2] is linearizable because clients serve as transac-

tion coordinators: this guarantees that they see exactly-once
semantics for transaction commits. However, Sinfonia does
not describe how to implement unique transaction ids, nor
does it handle situations where data migrates (transactions
hang until crashed servers restart).

Consensus-based systems such as ZooKeeper [13] and
Raft [20] provide strongly consistent replication. ZooKeeper
claims to provide “asynchronous linearizability” but does
not describe what this means or how the various issues ad-
dressed by RIFL are handled. Raft outlines how to imple-
ment linearizability but does not describe how to allocate
unique identifiers, and Raft does not address the migration
issue, since all data is replicated on every server.

The techniques used by RIFL for ensuring exactly-once
semantics share several features with network transport pro-
tocols such as TCP [14], including sequence numbers, ac-
knowledgments, retries, and limits on outstanding opera-
tions. RIFL differs in that its protocol must survive server
crashes and migration of the communication end-points.

9 Client Failures and the Ultimate Client
RIFL only guarantees exactly-once semantics for an op-

eration if its client is reliable. If a client crashes and loses its
state, then its operations in progress may or may not com-
plete. We assume this behavior is acceptable, since the tim-
ing of the crash could already cause some operations not to
complete.

However, the client may itself be a server for some
higher-level client. For example, in a large-scale Web appli-
cation the lowest-level client is typically a front-end server
that responds to HTTP requests from Web browsers; it is-
sues requests to other servers in the datacenter and gener-
ates HTTP responses. Even if the interactions between the
front-end server and back-end servers are implemented in an
exactly-once fashion, the front-end server could crash before
responding to the Web browser. If this happens, the browser
may retry the operation, resulting in the same problems that
RIFL was designed to eliminate.

One way to handle these multi-layer situations is to im-
plement RIFL at each layer. For example, browsers could
generate a unique identifier for each HTTP request, which
can be recorded on front-end servers and used to ensure that
requests are carried out exactly once.

However, the ultimate client is a human, and humans are
not likely to implement RIFL. For example, what happens
if a user invokes an operation in his/her browser and the
browser (or the machine running it) crashes during the oper-
ation? Once again, the operation may or may not complete.

The only way to ensure true end-to-end exactly-once se-
mantics is for the side effects of operations to be recog-
nizable to humans, so that users can determine on their
own whether each operation completed. For example, if a
user doesn’t receive an acknowledgment that a request com-
pleted, he/she can check to see whether the desired reser-



vation exists or the desired order is present in his/her order
history. If not, then the user re-invokes the operation.

Even though final responsibility for exactly-once seman-
tics must lie with the user, it is still important for the un-
derlying system to support linearizability in its implementa-
tion. This allows the system to be constructed in layers while
avoiding avoid internal duplication of operations, so that a
user-recognizable operation occurs either exactly as speci-
fied or not at all. As a counter-example, if an order were
partially filled, it might be difficult for the user to recognize
that it needs to be (partially) reissued.

10 Linearizability and Transactions
One interesting question for system design is the rela-

tionship between linearizability and transactions. Ultimately,
distributed systems often must provide both transactions and
exactly-once semantics. In the traditional approach, transac-
tions are implemented first (a relatively thick layer). Exactly-
once behavior is then implemented on top of transactions
using one of the approaches discussed in Section 8, such as
queued transactions. In RIFL we first implemented lineariz-
ability as a distinct layer, then built transactions on top of
it.

The RIFL approach has two advantages. First, the lin-
earizability layer can also be used for simple operations that
do not require distributed transactions, such as writes and in-
crements. This results in lower latency and higher through-
put for these operations.

The second advantage of a separate linearizability layer
is that it provides a better modular decomposition. It encap-
sulates a significant fraction of the complexity of distributed
transactions into a separate layer, which can be implemented
and validated independently. The existence of a linearizabil-
ity layer then makes transactions easier to implement, and it
eliminates the need for an exactly-once layer on top of trans-
actions.

11 Conclusion
In this paper we have described RIFL, a mechanism for

achieving exactly-once RPC semantics for large-scale dis-
tributed systems. RIFL is a general-purpose mechanism, in-
dependent of any particular operation or system. We have
implemented RIFL in the RAMCloud storage system to
demonstrate its versatility and performance. RIFL allowed
us to make basic operations such as writes and atomic in-
crements linearizable with only a few additional lines of
code, and it significantly simplified the implementation of a
high-performance distributed transaction mechanism.
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