
Implementing Manufacturing as a Service:

A Pull-Driven Agent-Based Manufacturing Grid

Leo van Moergestel1, Erik Puik1, Daniël Telgen1, and John-Jules Meyer2

1 HU Utrecht University of Applied Sciences, Utrecht, the Netherlands
{leo.vanmoergestel, erik.puik, daniel.telgen}@hu.nl

2 Utrecht University, Utrecht, the Netherlands
J.J.C.Meyer@uu.nl

Abstract. User requirements and low-cost small quantity production
are new challenges for the modern manufacturing industry. This means
that small batch sizes or even the manufacturing of one single prod-
uct should be affordable. To make such a system cost-effective it should
be capable to use the available production resources for many different
products in parallel. This paper gives a description of the requirements
and architecture of an end-user driven production system. The end-user
communicates with the production system by a web interface, so this
manufacturing system can be characterized in terms of cloud comput-
ing as the implementation of manufacturing as a service, abbreviated to
MaaS.

Keywords: agile manufacturing, agent technology, MaaS

Key Terms Industry, Infrastructure, Machine Intelligence.

1 Introduction

At the HU Utrecht University of Applied Sciences, an agile manufacturing system
has been developed that is capable of so-called multiparallel production of small
batches or even one single product. The need for such a manufacturing system
comes from the fact that nowadays the demand for custom end-user specified
products is increasing. Internet is offering a method to involve the end-user
directly into the production. Also the possibilities of additive manufacturing by
using 3D printers offers new ways to set up a manufacturing infrastructure with
the focus on the manufacturing of small quantities.

This paper will focus on the interface to connect the end user to the produc-
tion process. Before going into detail, the manufacturing system itself will first
globally be described.

In the next section details about the basic design considerations are given.
Because the implementation is based on agent technology, a short description of
what an agent is, will be given. The architecture and the connection with the
end-user will be the treated next. Finally, the results, related work, discussion
and a conclusion will end the paper.

2 Global description of the manufacturing system

Every product to be made starts its life as a software entity, that contains the
information what should be done to make the product. This software entity is a
so-called software agent.

2.1 Agents

A common definition of an agent given by Wooldridge and Jennings [13] is:
Definition (agent). An agent is an encapsulated computer system or com-

puter program that is situated in some environment and that is capable of flexi-
ble, autonomous action in that environment in order to meet its design objectives
or goals.

The manufacturing system that has been designed is based on a group of
cooperating agents. A system with two or more agents is called a multiagent
system (MAS). In our design the following properties of agents are important:

– goal: an agent is designed to reach a goal. If reaching the goal is complex,
subgoals can be defined as states to be reached to finaly come to the end-goal.

– action: an action is what the agent can do.
– plan: to reach a goal or subgoal the agent builds or receives a plan. Normally

a plan consists of a list of actions to reach a goal or subgoal within a certain
role.

– role: agents can have different roles. In a multiagent system these roles play
an important part in the way agents cooperate.

– behaviour: closely related to the role is the behaviour. This the set of actions
that an agent will perform in a certain role.

– belief: a belief is what the agent expects to be the case in the environment.

In multiagent technology other aspects can also be important, but the prop-
erties mentioned here are specific for the manufacturing system presented in this
paper. The main reason for choosing agent technology is that it offers a natu-
ral decomposition of responsibilities and tasks to be completed in this complex
manufacturing system. It also means that if one agent fails, other agents can
continue to fulfil their own goals and even take over actions or tasks from the
failing agent.

2.2 The manufacturing grid

The infrastructure of the manufacturing system consists of cheap reconfigurable
production machines that we will call equiplets. These equiplets are capable to
perform one or more production steps. The set of steps an equiplet can per-
form depends on its front-end. An equiplet can be reconfigured by changing
its front-end. The equiplets are placed in a grid arrangement. In conventional
mass production, a line arrangement is used because for all products the same
sequence of production steps should be followed. However in our case every prod-
uct can have a different path along the equiplets, so a grid arrangement is more
natural offering multiple mostly shorter paths in case of an arbitrary sequence
of equiplets to be visited.

2.3 Agent-based manufacturing

The equiplet-based manufacturing description will have its focus on the MAS
where the equiplet agent is the representative of the equiplet. An equiplet agent
will publish its capabilities. This means it will announce its production steps. It
will wait for products to arrive to actually perform the production steps.

The product agent has several roles. It starts with planning the path along
the equiplets for the production. Next, it will schedule the production. After
successfully scheduling, it will guide the product along the equiplets. At every
equiplet it will instruct the equiplet agent what step or steps to perform. It will
log the results of a production step and also update a globally shared knowledge
base that can be consulted by other product agents to check the reliability of a
certain equiplet for a certain step with certain parameters. Having the respon-
sibility for the manufacturing of a product, the product agent is also the entity
that should recover from errors during manufacturing. If there is a failure on
a certain equiplet, depending on the type of failure (recoverable or severe) the
product agent will try to plan the required step on an alternative equiplet for
the same reason as why one would not prefer to hire a plumber who previously
made mistakes resulting in a flood. By putting the information about the failure
(step type and parameters) in a shared knowledge base, the product agents will
learn as a group about the reliability of the equiplets for certain steps.

When the product is finished, the product agent can also have a role in other
parts of the life cycle of a product, being a software entity that knows a lot about
the product and the actual production. To achieve these roles, the agent could
be embedded in the product itself, but being accessible in cyberspace is also a
possibility.

3 System architecture

In this section a description of the system architecture as well as the constraints
on our type of production will be presented.

In figure 1 the layered software architecture is given. Only one product agent
and one equiplet agent is depicted and the modules in the lower layer of the
equiplet depend on the front-end that has been connected to the equiplet. In
this case an equiplet with the pick and place capabilities and vision modules
is used in this example. For the MAS layer Jade [1] was used as a platform.
Jade is a widely accepted Java-based multiagent environment. The inter-agent
communication is implemented by using blackboards. A blackboard is a software
entity where agents can publish information that will be available to other agents.

The software for the equiplet is based on ROS. ROS is an acronym for Robot
Operating System [10]. ROS is not really an operating system but it is middle-
ware specially designed for robot control and it runs on Linux. In ROS a process
is called a node. These nodes can communicate by a publish and subscribe mech-
anism. In ROS this communication mechanism is called a topic. This platform
has been chosen for the following reasons:

MAS

ROS

LINUX

Product
Agent

Equiplet
Agent

Blackboard

Database

Equiplet
Node

Pick & Place
Node

Vision
Node

Gripper Motors Camera

Fig. 1. Layered architecture

– Open source, so easy to adapt, compliant with a lot of open source tools.
– Wide support by an active community.
– Huge amount of modules already available.
– Nodes that are parts of ROS can live on several different platforms, assumed

that a TCP/IP connection is available.

At the lowest layer in figure 1 is a Linux platform running modules that com-
municate with the underlying hardware. Linux is a stable, portable and versatile
platform. In the next section we will take a closer look at the implementation of
this architecture in combination with a web interface.

Our production model is based on trays that will carry the product to be
built. These trays are transparent boxes, so equiplets with a camera can inspect
them both from the top and the bottom. In the latter case the workplace of an
equiplet should also be transparent, which is the case for the equiplets built so
far. The trays are marked with a unique QR-code. During the first production
steps the trays are filled with all the components required to make the product.
This way a kind of construction box is generated. This means that for all steps
to come, the components are available. This is a big advantage over a situation
where logistic streams of components within the grid should be taken care of.
The disadvantage is that parallel production of sub-parts in complex production
paths is not possible. However for the proof of concept this is not a big problem
and solutions can be found where the sub-parts are first manufactured in parallel
and added to the construction box. Of course within our conceptual model other
production models could be used, but the examples given here are based on this
model.

4 Connecting the end-user

To use the manufacturing grid, a webserver has been added to allow end-users to
construct products to be made by the grid. This is why it can not happen that a
product is requested that does not fit within the capabilities of the manufacturing
grid, because the grid itself is offering the webinterface for designing the product.
If a product can be made using the webinterface, the grid will be capable to make
it. This web interface will be called WIMP as an acronym for Web Interface
Managing Production. The addition of a web interface as shown in figure 2

Web

browser

Web

server

Multiagent

system

Manufacturing

grid

End-user

Fig. 2. Combination with webinterface

fits neatly in the concept of agile and lean manufacturing [11], where the end-
user plays a prominent role in the production itself. The end-user specifies the
product that will be tailor-made to his or her requirements. This pull-driven
type of manufacturing will not lead to overproduction and waste of material.

The architecture of the software of the manufacturing system is depicted
in figure 3. In this figure blackboards are abbreviated by BB. A web server

Webbrowser
HTML5
Javascript

Webserver

Tomcat

Java application

Jade Product Agent

Jade Equiplet Agents

Equiplet 1 Equiplet 2 Equiplet 3 ...

Timeserver
Time process

BB-steps
BB-planning

BB-logfile

Fig. 3. Combination with webinterface

publishes a website where a customer can design his product. This could be a
new product if the steps to produce it are within the capabilities of the equiplets
in the grid. The webserver will be responsible to offer only those production step
possibilities that are present in the grid. By pushing a submit button, a server-
side program will create and activate a product agent. This agent will start to

plan the production path and communicate with the available equiplet agents
to create the product. A more technical picture showing the distributed nature
of the system is given in figure 4. The numbered components in figure 4 are:

Gateway

server

Web

browser

Product

agent

Equiplet

agent

Knowledge

DB

Tomcat

server

JADE

Collective

DB

Grid control system Webserver

Client PC

Grid information system

1

2

3

4
5

6

7

Fig. 4. Different platforms and their relations

1. The client PC as used by end-user. The end user can use any HTML-5
enabled browser.

2. Connection to the Tomcat server is established via a web socket.
3. The Tomcat server on which the website is hosted. The server can be placed

on the grid server, but it can also be located somewhere else.
4. A connection between the gateway server and the Tomcat server is made

through a (Java) socket.
5. The gateway server is responsible for spawning a product agent in the jade

container. The gateway server acts as a gateway to the outside world, imple-
mented to be able to spawn agents.

6. The Jade container of the grid contains all agents. Agents can communicate
with the Tomcat server as will be explained in more detail further on in this
paper.

7. The grid information system is a server where the databases and blackboards
reside. These are the systems where shared and individual knowledge will be
stored.

Agents have to be able to report back to the user. In order to do so, a software
solution was implemented to allow them to send information over a socket. In

order to keep the connection alive, a heart-beat system has been developed. This
is not shown in detail in figure 4, but the realisation will be described in the next
sections.

4.1 Communications with the web interface/Tomcat server

Once a product agent is created through the web interface, the agent will create
a socket behaviour. This socket behaviour is the way for a product agent to
communicate with the server and thus to the web interface. To check whether or
not the server is still alive and reachable a heart message is sent. If this message
is not answered with a beat message it is assumed that the server is down. This
is how the socket behaviour is used and implemented: The socket behaviour is
used for the communication with the web interface and extends the Jade Waker
behaviour which means it will become active after a certain amount of time.
At the time of writing the wake up period for the socket behaviour is set at
5 seconds. This means that every 5 seconds the socket behaviour will become
active and check if it is connected to the WIMP server. If it is connected it
will check if there are data in the buffer; if any it will process the data. If the
buffer is empty or if all data is processed the socket behaviour will go idle and
will become active once the Waker behaviour is fired again after 5 seconds. The
socket behaviour can also be used to write messages to the WIMP server even
if the socket behaviour is not active, this is because it will be executed within
the action method of another behaviour.

The heartbeat behaviour was created to eliminate a problem we were having
with the socket behaviour. The problem encountered was the socket behaviour
being unable to see if the socket connection is still alive, if it is not closed
properly. The socket behaviour will only know if the connection is closed when
either the client closed it properly or when the socket behaviour is trying to
write on the socket when it is closed. Because we can receive commands from
the WIMP server, we need to be sure the connection is active. If the connection
is closed, but the socket behaviour is not aware of this, that would mean that the
socket behaviour simply cannot receive messages from the WIMP server. And
since the socket behaviour does not know the socket is closed, it will not try to
reconnect. The heartbeat behaviour sends a heart message every 5 seconds and
sets a timeout timer for 15 seconds. After sending a heart message the heartbeat
behaviour expects a response within 15 seconds from the WIMP server. The
response should be a beat. If it does not receive a response message within 15
seconds it will report to the socket behaviour that the connection is no longer
active and will tell the socket behaviour to reconnect. If it is not possible to
reconnect immediately, the socket behaviour will try to reconnect every time it
becomes active.

4.2 WIMP capabilities

At the client side a web-browser receives a web-page in HTML5 format with
embedded JavaScript and will display a graphical environment where a product

can be designed. This is the user interface of what has been called the WIMP. At
this moment 4 typical product design web interfaces are implemented in WIMP:

1. Pick and place: 2D ball in cradle placement.
2. Paint pixels: pixel-based picture.
3. Pick, place and stack: simple 3D design.
4. Inspection of 3D printing object in STL-format.

A simple example of the pick and place interface is shown in a screen-shot in
figure 5. A case with compartments of a certain dimension specified by the user

Fig. 5. Case with coloured balls in the webbrowser

is to be filled with coloured balls. The end-user selects a ball of a certain colour
and moves the ball to an empty compartment.

An example of a sceenshot of the paint design interface is given in figure 6.
On a canvas, a pixel-based painting using a combination of several colours can
be made.

Fig. 6. A simple paint example

The WIMP software is also capable to build three-dimensional structures.
It has some built-in intelligence. For example if a user wants to add a part
at a place where adhesive is needed to keep it in place, it will warn the user

if he / she did not select the adhesive option for the placement of this part.
This part of WIMP is only a basic implementation and in future development

Fig. 7. A 3D structure

all kinds of special provisions should be added. For example when gluing two
objects together several points of special interest arise. First of all the location
of the objects you want to glue is very important. If the object is glued onto
an existing structure it is possible that the existing structure will tip over. The
structure must be stable enough and strong enough to support the new object.
To determine if those conditions are met you have to know the material of
the current structure, how much it weighs, and several other factors. Another
important aspect of gluing objects is the type of adhesive. Not all materials can
be glued together and not all types of adhesive can be used in combination with
all materials. During manufacturing the objects that will be glued must be held
together. This must be done until the adhesive is dry. Some adhesive types need
heat to function properly, other types can be hardened by using UV-light.

Fig. 8. View of an STL-image

At the client side a product is described by JSON. JSON, or JavaScript
Simple Object Notation is a popular alternative to XML. XML was the de-facto
standard before the existence of JSON. Until HTML 5, you needed to include
libraries to encode and decode JSON objects. Now, the JavaScript engine that
comes with HTML 5 has built-in support for encoding/decoding JSON objects.
For every part placed on the design grid in the webbrowser, the parttype (ball, or
block), colour (red, blue, green, yellow) and position (coordinates on the design-

grid) is entered in this JSON information. It is also possible to choose whether
or not to use adhesive. By clicking the submit button, the JSON information
is transferred to the webserver. Every action described in this information is
related to and translated into a production step. In figure 9 the internal structure
of a production step information block is given. A unique ID is followed by a
capability. This is the step action required and will be tied to an equiplet capable
to perform this step. The parameters give extra information about the object the
action has to work on. For example in a pick and place action, the parameters
will specify the coordinates of the final positions and the object that has to move
to that position.

ID Capability Parameters

Fig. 9. Components of a step object

4.3 Webserver and Tomcat-driven Java application

The web page presented to the client is presented by a Tomcat web server.
Tomcat is designed to support Java Servlets. This means that Tomcat is capable
to start a Java program at the server the moment the client sends a request
for a product. This Java program is capable of spawning a product agent in
the Jade environment. To do this a Gateway is used in the Jade environment
to achieve this functionality. This newly spawned agent will also receive the
JSON information about the product to be made. From this information, the
needed product steps are generated by the product agent. An overview of the
connection sockets is shown in figure 10. Every product agent is capable to
receive information from the Tomcat server using the Gateway Server. Every
product agent can also directly send information to the Tomcat Server. This
will create the possibility to inform the end-user in realtime about the progress
of the production.

Product agent The product agent is created and its goal is to produce the
product. Therefore it has to fulfil its sub-goals. The first sub-goal is planning
the production path. This means: selecting the equiplets involved, inquire if the
steps are feasible and finally scheduling the production. The next sub-goal is to
guide the product along the production path and to inform the equiplet about
the step or steps to perform. For every step, data aquisition of the production
data is possible and should be carried out by the product agent. It depends on
the equiplet agent what information will be made available.

Blackboard and timing The blackboard system as described in the architec-
ture was implemented as actually three separate blackboards (see figure 3). This

Socket A

Socket C
Socket D

Socket B

Socket D

Socket B
Socket A

Socket C

Agent A
Agent B

Agent C
Agent D

Gateway Server Tomcat Server

Fig. 10. Socket connections between product agents and the user interface

has to do with the fact that the performance of the system could be better and
also the read and write access permissions become more clear. The BB-steps
blackboard is used by the equiplet agents to announce its production steps. This
information is under normal circumstances read-only for the product agents. The
BB-planning blackboard is read and written by the product agents and a timing
process. The information on this blackboard is the planning of timeslots or time
steps for every equiplet, and a load of every equiplet.

To synchronise all agents, a timeserver has been added to the system. The
scheduling is done by the product agents. Every newly arrived product agent
tries to schedule itself in a way that it will not exceed its deadline. If it fails, it
will ask other product agents with a later deadline to temporally give up their
scheduling. Next it will try to generate new schedules for all involved agents.
If successful, the new schedule will be adopted. If the scheduling fails the old
schedules are restored and the new agent reports a scheduling failure.

The third blackboard in figure 3 (BB-logfile) is used to build a knowledge
base about the performance of the individual equiplets and is shared among the
product agents. Successful and unsuccessful steps are reported in this blackboard
by products agents. This blackboard serves as an extra check when the product
agent is planning the set of equiplets to be used for a certain product. The higher
the failure rate of a certain equiplet, the more it will be avoided by the product
agents. This failure rate can be reset after repair or adjustment of an equiplet.

Equiplet agent The equiplet agent is also implemented as a Jade agent and
it is the interface to the underlying software and hardware. It depends on the

front-end of the equiplet what modules are available. The equiplet agent is also
the interface to the product agent. Both types of agents live in Jade containers
and can communicate with each other. The communication between the product
agents and the equiplet agents as well as other product agents is FIPA-based.
FIPA is an acronym for Foundation for Intelligent Physical Agents and the foun-
dation developed a standard for inter-agent communication. The Jade platform
is FIPA-compliant. For the implementation of the blackboard, Open BBS has
been chosen. This Java-based blackboard was easy to integrate in the Jade en-
vironment; it was open-source and tests proved that it performed well enough
for our grid.

The equiplet agent will translate the production steps in front-end-specific
sub-steps. A pick-and-place action is composed of movements and control of a
vacuum pincer to pick the objects involved. The movements and commands are
sent to the ROS-layer that will control the hardware and the commands are
actually carried out by the connected hardware.

5 Results

The research done so far for this agent-based production system had several
milestones. The first milestone was the proof of concept given by a simulation
of the multiagent system as described in [5]. In that system the product agents
planned their production path along equiplet agents that used timing delays
to mimic the production steps. The equiplet agent was not combined with the
equiplet hardware. The next milestone was the implementation of a reliable and
fast scheduling algorithm as described in [6]. The third step was integrating
the MAS with the ROS-based equiplet in the system, so the integration with
real equiplet hardware has been accomplished [12]. The latest step is described
in this paper. A web front-end has been built to specify the product to be
produced. At this moment the given 2D examples can be executed on the three
available equiplets. So the total chain from design to production is working. In
figure 11 a design in the paint application of WIMP is made. In figure 12 the
result of this product is shown. Though this example still is very simple, it shows
that the multiagent system is working to our expectations. The 3D example is
already implemented at the MAS level and ROS level. The equiplet front-end
to perform these steps is under development as a glue dispenser and an extra
degree of freedom (rotation capability around the z-axis) of the pick and place
robot is needed. However using a dummy equiplet (as in the earlier developed
simulation) shows that the software is working to our expectations. This also
includes an error recovery system.

6 Related work

The concept of using agents for production is not new. Among others a multiagent-
based production system has also been developed by Jennings and Bussmann
[3][4]. Jennings and Bussmann introduce the concept of a product agent, in their

Fig. 11. WIMP paint design

terms workpiece agents, during the production. Their system focuses on relia-
bility and minimizing downtime in a production line. This approach is used in
the production of cylinder heads in car manufacturing. The roles of the agents
in this production system differ from our approach. This has to do with the fact
that Jennings and Bussmann use agent technology in a standard pipeline-based
production system and the main purpose was to minimise the downtime of this
production system. Their agents do not perform individual product logging and
only play a role in the production phase. In our approach the product logging
is done by the product agent for every single product and could be the basis
of the other roles of the product agent in other parts of the life cycle. In the
model presented by Jennings and Bussmann the workpiece agent is not so much
involved in production details as the product agent in our model. Another big
difference is also that our model is end-user driven.

In the field of agent-based production there are several other important pub-
lications. Paolucci and Sacile[8] give an extensive overview of what has been
done. Their work focuses on simulation as well as production scheduling and
control. The main purpose to use agents in [8] is agile production and making
complex production tasks possible by using a multi-agent system. Agents are
also introduced to deliver a flexible and scalable alternative for MES for small
production companies. The roles of the agents in their overview are quite di-
verse. In simulations agents play the role of active entities in the production. In
production scheduling and control agents support or replace human operators.

Fig. 12. Resulting product on the equiplet

Agent technology is used in parts or subsystems of the manufacturing process.
We on the contrary based the manufacturing process as a whole on agent tech-
nology and we have developed a production paradigm based on agent technology
in combination with a manufacturing grid. This model uses only two types of
agents and focuses on agile multiparallel production. The design and implemen-
tation of the production platforms and the idea to build a manufacturing grid
can be found in Puik[9]. After production the product agents can be embedded,
if possible, in the product itself. In [7] the role of product agents in the whole
life cycle of a product is discussed.

The term industrial internet [2] is used to describe the possibilities of inter-
connected machinery, sensors and devices that can be used to enhance production
and solving emergent problem on the fly. Research in this field is related to our
research. The approach we used however is purely based on the aforementioned
cheap reconfigurable equiplets. The introduction of agent technology opens pos-
sibilities that go beyond the production phase, as the product agent can play an
important role in other parts of the life cycle of a product.

7 Discussion and future work

The production approach described here is also applicable to a hybrid system
containing human actors as parts of the production system. In this situation

human workers take the position of the equiplets. The production steps for a
certain product should be translated to human-readable instructions and humans
perform the actual production steps. In that model the equiplet agent carries out
this translation so the MAS layer is still intact. This approach is useful in the
situation where the production tasks are too complicated for an equiplet to be
performed, but it can also help in the situation where a new equiplet front-end
has to be developed.

Standard mass production always has the risk of overproduction, especially
when new products arrive from other sources offering better performance or a
lower price. In the concept of lean manufacturing, this kind of waste should
be avoided by so-called pull-driven production. This means that a product will
only be made if an end-user is asking for it. This is exactly what has been
accomplished in the manufacturing system described in this paper.

For transport of the products between equiplets, automated guided vehicles
(AGV) are being developed. However, the use of AGVs is not implemented yet,
but the transport between equiplets can be seen as a step needed in the sequence
of steps to make a product. This means that from the point of view of the product
agent, an AGV is just another equiplet, offering the product transport step fitting
in the total sequence of steps needed for manufacturing the product. There is
a difference however. The AGV is reserved for a whole sequence of steps, while
equiplets are reserved for just a single step or a set of steps if these steps are
consecutive and can be realised by the same equiplet.

8 Conclusion

In this paper we described a real production system that has been built as a proof
of concept. All software used is based on open standards. Further research on
the manufacturing of products with a higher complexity must be done, however
the basic techniques for the implementation proved to work.

The grid is capable to produce several different products in parallel and every
product has its own unique production log generated by and embedded in the
product agent. This product agent can play an important role in the other parts
of the life-cycle of the product. When a product will be disassembled the product
agent carries important information about the sub-parts of the product. This can
be useful for recycling and reuse of sub-parts.

References

1. Bordini, N., Dastani, M., Dix, J., Seghrouchni, A.E.F.: Multi-Agent Programming.
Springer (2005)

2. Bruner, J.: http://radar.oreilly.com/2013/01/defining-the-industrial-internet.html
(2013)

3. Bussmann, S., Jennings, N., Wooldridge, M.: Multiagent Systems for Manufactur-
ing Control. Springer-Verlag, Berlin Heidelberg (2004)

4. Jennings, N., Bussmann, S.: Agent-based control system. IEEE Control Systems
Magazine (Vol 23 nr.3), 61–74 (2003)

5. Moergestel, L.v., Meyer, J.-J., Puik, E., Telgen, D.: Decentralized autonomous-
agent-based infrastructure for agile multiparallel manufacturing. ISADS 2011 pro-
ceedings pp. 281–288 (2011)

6. Moergestel, L.v., Meyer, J.-J., Puik, E., Telgen, D.: Production scheduling in an
agile agent-based production grid. IAT 2012 proceedings pp. 293–298 (2012)

7. Moergestel, L.v., Meyer, J.-J., Puik, E., Telgen, D.: Embedded autonomous agents
in products supporting repair and recycling. Proceedings of the International Sym-
posium on Autonomous Distributed Systems (ISADS 2013) Mexico City pp. 67–74
(2013)

8. Paolucci, M., Sacile, R.: Agent-based manufacturing and control systems : new
agile manufacturing solutions for achieving peak performance. CRC Press, Boca
Raton, Fla. (2005)

9. Puik, E., Moergestel, L.v.: Agile multi-parallel micro manufacturing using a grid
of equiplets. IPAS 2010 proceedings pp. 271–282 (2010)

10. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E.,
Eheeler, R., A., N.: Ros: an open source robot operating system. Open-Source
Software workshop of the International Conference on Robotics and Automation
(ICRA) (2009)

11. Shingo, S.: A Study of the Toyota Production System. Productivity Press (1989)
12. Telgen, D., Moergestel, L.v., Puik, E., Meyer, J.: Requirements and matching soft-

ware technologies for sustainable and agile manufacturing systems. INTELLI 2013
proceedings pp. 30–35 (2013)

13. Wooldridge, M., Jennings, N.: Intelligent agents: Theory and practice. The Knowl-
edge Engineering Review (10(2)), 115–152 (1995)

