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Abstract  

 

A Spatial Query Language for Building Information Models enables the spatial analysis of 

buildings and the extraction of partial models that fulfill certain spatial constraints. Among 

other features, the developed spatial query language includes metric operators, i.e. operators 

that reflect distance relationships between spatial objects, such as mindist, maxdist, isCloser 

and isFarther. The paper presents formal definitions of the semantics of these operators by 

using point set theory notation. It further describes two possible implementation methods: the 

first one is based on a discrete representation of the operands’ geometry by means of the 

hierarchical, space-partitioning data structure octree. The octree allows for the application of 

recursive algorithms that successively increase the discrete resolution of the spatial objects 

employed and thereby enables the user to trade-off between computational effort and the 

required accuracy. By contrast, the second approach uses the exact boundary representation 

(B-Rep) of both spatial objects resulting in precise distance measurements. Here the bounding 

facets of each operand are indexed by a so-called axis-aligned bounding boxes tree (AABB 

tree). The algorithm uses the AABB-tree structure to identify candidate pairs of facets, for 

which an exact but expensive distance algorithm is employed. The article compares both 
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approaches by means of detailed investigations on the runtime performance of the developed 

algorithms.  

 

Keywords: Building Information Model, Spatial Query Language, Metric relationships, 

Distance, Octree, AABB-Tree  

 

Introduction  

This paper presents partial results of the research project “A 3D Spatial Query Language for 

Building Information Models”. The proposed language provides directional, topological and 

metric operators for specifying spatial conditions. While the directional operators are 

presented in (Borrmann and Rank, 2008a) and the topological operators are addressed in 

(Borrmann and Rank, 2008b), this paper discusses the definition and implementation of the 

metric operators.  

 

Humans view buildings primarily as an aggregation of physical objects with well-defined 

geometry and specific spatial relationships. In most cases, the architectural and/or structural 

function of a particular building component is closely related to its shape and its position in 

relation to other building components. For architects and engineers involved in designing 

buildings, geometric properties and spatial relationships between building components 

accordingly play a major role in finding solutions for most of the design and engineering 

tasks. However, software tools that allow for a sophisticated spatial analysis of digital 

building models are not yet available.  

 

The current lack of building model management software supporting geometric-topological 

analysis can be explained by the fact that, over the last decade, research in the field of 
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computer-aided building design has concentrated mainly on the development of a semantic 

object-oriented building model, also called Product Model or Building Information Model 

(BIM) (Dubois et al., 1995; Scherer, 1995; Tolman and Poyet, 1995; Eastman, 1999). These 

efforts have resulted in the widely known ISO standard Industry Foundation Classes (IFC) 

(International Organization for Standardization, 2005).  

 

Building product models, such as the IFC, do not normally describe the geometry of a 

building component explicitly, i.e. not by using the boundary representation (B-Rep) or the 

Constructive Solid Geometry (CSG) method, but by object attributes that have a geometric 

meaning. The main motivation behind this “attribute-driven geometry” approach is the scope 

that an abstract description of this kind provides for deriving both full three-dimensional 

models and two-dimensional drawings with partly symbolized representations, as stipulated in 

national building regulations and construction contracts.  

 

Unfortunately, the existing product model servers that are utilized to store and manage 

building information models are unable to interpret the attribute-driven geometric information 

that is implicitly contained in the building model, since they are not familiar with the spatial 

semantics of particular attributes and relationships. Accordingly, the expressiveness of the 

query languages provided by the product model servers, such as the Partial Model Query 

Language (Adachi, 2003) of the Secom IFC Model Server or the Product Model Query  

Language of the EuroStep Model Server, is limited to numerical comparisons and tests on 

those spatial relationships that are predefined in the product data model.  

 

In the case of the IFC, some examples of these predefined relationships are 

IfcRelFillsElement, IfcRelVoidsElement and IfcRelContainedInSpatialStructure.  
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Unfortunately, many product modeling tools do not fill the entire set of spatial relations with 

appropriate data when exporting a building model into the IFC format. In a recently 

conducted test, we used the commercial CAD tool Autodesk Revit 2008 to model a high-rise 

building completely equipped with interior fittings. The analysis of the exported IFC file 

showed that, while the IFCRelFillsElement and IFCRelVoidsElement relationships between 

walls and windows were set correctly, no IfcRelContainedInSpatialStructure relationships had 

been set. Accordingly it was not possible to query the product model for the heating 

equipment contained in a certain room or office, for example.  

 

Other spatial relationships, such as metric relationships (one object being at a certain distance 

from another, for example) are completely ignored by the IFC product model. From the point 

of view of product modeling this makes sense, because storing all possible spatial 

relationships would (1) result in huge models with many object relations not needed by the 

majority of applications and (2) introduce even more redundancy, since metric relationships 

are already implicitly defined by the shape and position of the respective objects. For this 

reason, we follow an analytic approach here, where spatial relationships do not need to be set 

by the modeling tool in use, but are derived from the objects’ shapes and positions, i.e. the 

explicit geometry of the building’s components, instead.  

 

Another issue to be considered in the context of spatial analysis is that for many construction 

domains, such as tunnel, road or bridge engineering, only rudimentary product models exist 

(Yabuki et al., 2006) and have not been used in practice so far. On the other hand, pure 3D 

modeling is gaining more and more importance in these areas and, with it, the potential 

benefits of using spatial analysis tools.  
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In order to fill the technological gaps mentioned above, we have developed a spatial query 

language for 3D building and infrastructure models. We propose employing a query language 

as an interface to the spatial analysis facilities, because it allows a user or application 

developer to formulate spatial analysis problems in a declarative way while hiding all internal 

complexity. Furthermore, using a query language is the usual way to access database systems, 

which – thanks to their inherent multi-user and persistence capabilities – will naturally be the 

instrument of choice for hosting building models in the near future. The concept of spatial 

query languages is well established in the field of Geographic Information Systems (GIS), but 

was so far limited to two-dimensional models.  

 

Possible applications for the developed 3D Spatial Query Language for Building Information 

Models range from the selection of specific building components to the verification of 

construction rules and the extraction of partial models that fulfill certain spatial constraints. 

Such a partial model resulting from a spatial query may serve as input for a numerical 

simulation or analysis, or might be made exclusively accessible to certain participants in a 

collaborative scenario.  

 

The proposed 3D Spatial Query Language relies on a spatial algebra that is formally defined 

by means of point set theory and point set topology (Borrmann et al., 2006; Borrmann, 2007). 

Besides fully three-dimensional objects of type Body, the algebra also provides abstractions 

for spatial objects with reduced dimensionality, namely by the types Point, Line and Surface. 

This is necessary because building models often comprise dimensionally reduced entities. All 

types of spatial objects are subsumed by the super-type SpatialObject.  
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The spatial operators available for the spatial types are the most important part of the algebra. 

As mentioned above, they comprise metric (distance, closerThan, fartherThan etc.), 

directional (above, below, northOf etc.) and topological (touch, within, contains etc.)  

operators.  

 

We see the development of a spatial query language for BIMs as a first step towards making 

higher spatial concepts directly available in computer-aided engineering tools. We expect that 

spatial modeling and processing will play an increasing role in future engineering systems.  

 

Related work  

Spatial query languages  

The overall concept of providing a Spatial Query Language for analyzing Building 

Information Models is closely related to concepts and technologies developed in the area of 

Geographic Information Systems (GIS). Such systems maintain geographical data, such as the 

position and shape of cities, streets, rivers etc., as well as providing functionalities for the 

spatial analysis of this data. Due to the nature of this domain most GI systems only support 

spatial objects in two-dimensional space.  

 

The first implementations of spatial query languages on the basis of the standard query 

language of relational databases SQL were also realized in the GIS context. In the late 80’s, a 

multitude of different dialects were developed, including Spatial SQL (Egenhofer, 1987), 

KGIS (Ingram and Phillips, 1987), PSQL (Roussopoulos et al., 1988), TIGRIS (Herring et al., 

1988), and GEOQL (Ooi et al., 1989). A good overview of the different dialects and the basic 

advantages of a SQL-based implementation is provided in (Egenhofer, 1992).  
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The GIS research community also coined the phrase Spatial Database to describe database 

management systems (DBMS) that provide spatial data types and spatial indexing techniques 

and thus allow for an easy and efficient access to spatial data (Rigaux et al., 2002; Shekhar 

and Chawla, 2003). There is now a wide range of commercial 2D spatial database systems, 

the most widespread ones being PostGIS, Oracle Spatial and Informix Geodetic Datablade. 

The majority of available spatial databases comply with the standard developed by the 

OpenGIS consortium that defines a common interface for accessing 2D spatial data and 

accordingly enables the exchangeability of the database component in an overall GI system 

(OGC, 1999).  

 

In (Ozel, 2000) the potential benefits of using GI systems for the analysis of dynamical 

processes in buildings are discussed. The author states that, even if component-oriented CAD 

systems provide sophisticated functionality for geometric modeling, they normally lack 

comprehensive spatial analysis capabilities. For this reason, Ozel stores floor plans of 

buildings in a GIS database in order to use its 2D spatial analysis facilities. The author 

underlines that 3D spatial analysis would be an even more powerful tool for analyzing 

processes in buildings.  

 

Up to now, spatial database systems that support 3D spatial analysis are only to be found in a 

research context. The investigations set out in (Gröger et al., 2004), for example, clearly show 

that the spatial analysis capabilities of the commercial database system Oracle Spatial are 

limited to 2D space, even though it is possible to store simple 3D geometry.  

 

As far as GIS is concerned, the main interest lies in the 3D modeling of the ground surface, 

buildings and infrastructure as well as the subsoil layers. The most important works in this 
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area include (Breunig et al., 1994, 2001; Balovnev et al., 2004) which report on the 

development of GeoToolkit, an object-oriented framework for efficiently storing and 

accessing 3D geographic and geologic data. The main disadvantage of using the framework 

for analyzing building models is the need to model all spatial entities according to the 

mathematical concept of simplicial complexes. The obligatory conversion of a boundary 

representation, as used in CAD tools, to a simplicial complex representation is expensive and, 

in some special cases, absolutely unfeasible. A more flexible, yet theoretic approach for 

applying algebraic topology on building models is presented in (Paul and Bradley, 2003).  

 

Though (Coors, 2003; Arens et al., 2005; Zlatanova et al., 2004; Zlatanova, 2006) provide 

concepts and data structures for storing 3D city models in spatial databases, the definition and 

implementation of metric operators has been completely omitted in these papers.  

 

(Kriegel et al., 2003) introduces a database system that allows for the spatial analysis of 3D 

CAD models. It provides simple volume, collision and distance queries, but supports neither 

topological nor directional predicates. The implementation of the system relies on a voxel 

approximation of the CAD parts stored in the database and a special index structure optimized 

for this representation. We follow a similar approach here but use a dynamically created, 

hierarchical data structure: the octree.  

Metric operators  

Metric operators are well established in 2D Geographic Information Systems and the 

corresponding spatial databases. For example, in (Güting, 1988) and (van Oosterom et al., 

1994) three different distance operations are proposed: while the operation dist calculates the 

distance between two points, the operations mindist and maxdist calculate the minimum and 

maximum distance between two spatially extended objects, such as lines and regions. Another 



 9

metric operator that is often found in GIS literature is called diameter. It is used to determine 

the maximum distance between any two points of one spatial object. 

 

Also, in the much smaller 3D GIS community metric operators are commonly used. For 

example, (Breunig, 1995) defines operators for calculating the minimum distance, the 

maximum distance, the centroid distance and the Hausdorff distance between two so-called e-

complexes, a geometry description based on the concepts of algebraic topology. Unfortuna-

tely the implementation is not explained in detail. In most of the available GI systems metric 

operators are implemented on the basis of the operand’s bounding boxes yielding rather 

imprecise results not acceptable for the construction domain in scope here. 

 

However, most of the known approaches for implementing metric operators in 3D have not 

been developed in the context of GIS, but of Computational Geometry, mostly to implement 

fast collision detection between moving objects. A well-known solution for calculating the 

distance between polyhedra with convex surfaces is the GJK algorithm (Gilbert et. al, 1988), 

which relies on the Minkowski sum of the two objects and the iterative search for the vertex 

closest to the origin.  

 

However, in complex 3D scenes with a multitude of objects consisting of a large number of 

facets, it is far too laborious to perform a GJK computation for every conceivable pair of 

facets. Therefore, bounding volumes have been introduced to filter out irrelevant facet pairs 

beforehand. Organizing bounding volumes in a hierarchical way allows for recursive 

processing and yields an even higher performance. In (van den Bergen, 1998) the utilization 

of an Axis Aligned Bounding Box (AABB) tree for collision detection was introduced. The 

second algorithm presented here is based on this approach, but applies it to distance 

computation. Other developments are bounding volume hierarchies that consist of spheres 
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(Quinlan, 1994), Oriented Bounding Boxes (OBBs) (Gottschalk et al., 1996, Johnson and 

Cohen, 1998) and Swept Sphere Volumes (Larsen et al., 1999). The latter paper provides a 

good overview of the different approaches and a detailed comparison of their performance.  

 

The algorithms described above are based on a pre-set finite tree depth and a final calculation 

step to determine the distance between two polygonal or triangular facets (using GJK, for 

example), resulting in a precise distance value. By contrast, the octree-based algorithm 

proposed in this paper avoids any final calculation step and runs recursively until the desired 

accuracy is obtained. A similar approach is followed by (Jung and Gupta, 1997) but is again 

used with the aim of collision detection. Mundani (2005) shows how gaps between building 

components can be efficiently detected using octree representations, but does not extend the 

method to the more general case of distance computation. 

 

Formal definitions of metric operators  

All metric operators of the spatial query language rely on the Euclidean metric defined in 3D 

space. Let p (xp, yp, zp) and q(xq, yq, zq) ��R³, then the Euclidian distance between p and q is 

defined as:  

 2 2 2d( , ) : ( ) ( ) ( )p q p q p qp q x x y y z z       

 

The operator distance returns the minimal distance between two spatial objects as a real 

number. Let A and B be objects of type Spatial and a � A, b � B. Then distance is formally 

defined as follows:  

 
,

distance( ) : min(d( , ))
a b

A,B a b  

 

distance returns 0, if the operands touch or penetrate each other.  
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The operator maxdist can be used to determine the maximum distance between two spatial 

objects. It also returns a real value and is defined as follows: 

 

,
maxdist ( ) : max(d( , ))

a b
A,B a b  

 

The operators isCloser and isFarther are based on the minimal distance. Operands of both 

operators are two spatial objects A and B as well as a positive real value c. The operators 

return a Boolean value and are formally defined as follows: 

 

,
isCloser( , , ) min(d( , ))

a b
A B c a b c   

,
isFarther( , , ) min(d( , ))

a b
A B c a b c   

 

These operators can be used to select objects that are inside or outside a buffer zone around 

the reference object.  

 

The operator diameter returns the maximum distance between two points of one individual 

object. The operand is a spatial object A, the return value a real number. Let a, b �A. Then 

the diameter is defined as:  

 

 
,

diameter( ) max(d( , ))
a b

A a b  

 

Figure 1 illustrates the semantics of the definitions by means of an example. 
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Implementation  

Providing spatial types and operators in SQL  

Our concept for realizing the proposed spatial query language is based on an object-relational 

database technique implementing the ISO standard SQL:1999 (International Organization for 

Standardization, 1999) which allows the extension of the database type system in an object-

oriented way, especially by providing abstract data types (ADTs) which may possess member 

functions (methods) (Melton, 2003; Türker, 2003; Türker and Saake, 2006). By using an 

object-relational database management system (ORDBMS), spatial data types and spatial 

operators can be made directly available to the end-users, enabling them to formulate queries 

such as  

SELECT  * 

FROM  buildingcomps comp, columns col 

WHERE  comp.isCloser(20, col) AND 

 col.id = ’UID09ZhXa’ 

 

to find all building components that have a distance of less than 20 cm to the column with the 

specified ID.  

 

As can be seen in the example, spatial operators, such as isCloser, are implemented as 

methods of spatial data types and can be used in the WHERE part of an SQL statement. As 

opposed to purely object-oriented databases, these methods are stored and processed server-

side, resulting in dramatically reduced network traffic compared to a client-side solution. This 

section discusses the implementation of the metric operators as server-side methods.  

 

The spatial types defined in (Borrmann et al., 2006; Borrmann, 2007) and the metric operators 

specified in this paper are integrated in the object-relational query language SQL:1999 in the 

following way: the supertype SpatialObject and its subtypes Body, Surface, Line and Point are 
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declared as complex, user-defined types and the available spatial operators as member 

functions of these types. For the commercial ORDBMS Oracle the declaration reads:  

 

CREATE OR REPLACE TYPE SPATIALOBJECT AS OBJECT 

  EXTERNAL NAME ’SpatialObjectJ’ 

  LANGUAGE JAVA USING ORAData 

( 

... 

MEMBER FUNCTION distance(object SPATIALOBJECT) 

RETURN NUMBER 

EXTERNAL NAME ’distance(SpatialObjectJ) return double’, 

 

MEMBER FUNCTION isCloser(object SPATIALOBJECT, dist NUMBER) 

RETURN NUMBER 

EXTERNAL NAME isCloser (SpatialObjectJ, double) return int’, 

... 

); 

 

The SQL type is bound to a corresponding Java type stored within the database, accordingly 

the declared SQL member functions are bound to specific Java methods of this type. 

Following its declaration, the user-defined SQL type may be used to create object tables, i.e. 

tables that exclusively host instances of the given type.  

 

CREATE TABLE buildingcomponents OF BODY; 

 

As soon as the table is filled with instances, the user is able to perform queries on them that 

may contain calls of member functions in the WHERE part:  
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SELECT  * 

FROM  buildingcomps comp1, buildingcomps comp2 

WHERE  comp1.id = ’UIDahjoik’ AND 

  comp2.isCloser(VALUE(comp1)) = 1 

 

The processing of a spatial operator is forwarded to the specified Java routines stored within 

the database. In the case of a metric operator, such as isCloser, the Java stored procedure 

performs one of the algorithms presented in the next section.  

 

Implementation of metric operators  

Octree-based approach  

Octree encoding  

In the first implementation approach, we use the octree-encoded discretized geometry of the 

operands for distance calculation (Figure 2, left). The octree is a space-dividing, hierarchical 

tree data structure (Hunter, 1978; Jackins & Tanimoto, 1980; Meagher, 1982; Samet, 1985). 

Each node in the tree represents a cubic cell and has exactly one father and either eight 

children if it is an inner node, or zero children if it is a branch node. The aggregation of all 

child cells results in the parent cell. The ratio of the child cell’s edge length to that of its father 

is always 1:2. The equivalent of the octree in 2D is called quadtree. Data structures of this 

kind are usually referred to as space partition trees.  

 

The impact of the octree encoding’s primary parameters, the size of the maximum and the 

minimum octant, on the resulting precision of the geometry description of typical building 

components is extensively discussed in (Shapira, 1993). 
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There are different methods for generating the octree representation of an object’s geometry. 

The approaches differ according to whether only the body’s boundary (Wenisch and Wenisch, 

2004) or also its interior (Mundani et al., 2003; Mundani, 2005) is represented by the resulting 

octree (Figure 3). What is common to all approaches is the principle that, starting at the root 

node, only those children that are neither entirely inside the body nor entirely outside of it are 

refined. In the case of a two-colored tree, the cells that are cut by the boundary are marked 

black and all others white. In the case of a three-colored tree, interior cells are marked black, 

boundary cells grey and exterior cells white.  

 

The octree encoding has several advantages over the cell enumeration method. Firstly, the 

amount of storage space is reduced by one order (from O (n³) to O (n²)), because only the 

boundary has to be fully resolved. Secondly, the recursive nature of the data structure allows 

for the application of recursive algorithms. 

 

In the proposed concept for the implementation of spatial operators, the geometry of each 

single building component is discretized in a separate octree. As regards generation time for 

the corresponding octree, there are two possibilities: the octree can either be created when the 

geometric object (building component) is inserted into the database (generation in advance) or 

when the spatial operation is performed (on-the-fly generation). The first approach requires 

more processing time for insertion and a lot of memory space needed for the continual storage 

of the octree. 

 

The decision to adopt one or the other approach mainly depends on the interval between 

insertion/update operations compared with the frequency of queries containing spatial 

operators. In the application domain discussed here, the frequency of insert/update operations 
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is expected to be much higher than that of spatial queries. Accordingly, the approach of on-

the-fly generation is considered to be more appropriate in this case. It offers the additional 

advantage – particularly for the implementation of the distance operator – that the octree 

generation can be coupled with the recursive algorithm, i.e. only those parts of the octrees 

need to be refined that are regarded as being closest to each other. 

 

The octree-based distance computation algorithm 

The input for the algorithm is the octree representation of both objects for which the distance 

is to be calculated, plus the maximum refinement level. It returns an interval in R+ determining 

the upper and lower bound between which the exact distance lies. This can be interpreted as a 

fixed value (the midpoint of the interval) combined with a maximum error. 

 

The core of the algorithm is based on the calculation of distance values for pairs of octree 

cells (a cell pair is composed of one cell that belongs to octree A and another cell that belongs 

to octree B) on each octree level and the principle that those cell pairs whose distance is 

definitely higher than that of any other cell pair can be excluded from further refinement. The 

algorithm is implemented by two functions findClosestCells() and createCandidateList() 

which are shown schematically in Figure 8 and Figure 9. FindClosestCells() steers the 

traversal of the octrees by recursively calling itself. Additionally it creates cell pairs for the 

next refinement level and calls createCandidateList() which filters out all irrelevant pairs.  

 

The algorithm is based on the fact that the exact position of the boundary of the objects is 

unknown when using an octree encoding (Figure 5). Therefore an upper and lower bound of 

the distance value has to be calculated for each cell pair (Figure 9, lines 6-14). These values 

reflect the interval in which the real distance lies. They are derived from the coordinates of the 
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octants in the coordinate system of the current level. It is important to bear in mind that these 

values have a local nature bound to the current octree level that need to be scaled to real-

world coordinates to allow for conclusions about the real distance. 

 

To compute lower and upper bound, each Cartesian direction is evaluated separately by 

applying the following rules: if the coordinate value of both cells is equal, then the lower 

bound is 0 and the upper bound is 1 (Figure 9, line 12). In any other case, the lower bound 

results from the difference between the coordinate values minus 1 and the upper bound from 

the difference between the coordinate values plus 1. The cell pairs’ lower and upper bound 

can now be computed by summing up the squared values (Figure 9, lines 9-10). The expen-

sive calculation of the square root is not yet necessary, because in this step only the global 

order (closer, farther) of the cell pairs has to be determined. 

 

By computing the upper and lower bounds for all cell pairs, it is possible to identify the 

candidates for the closest cell pair ranking. To this end, the lowest upper bound of all pairs of 

the current level is determined (Figure 9, lines 15-17) and all cell pairs whose lower bound is 

higher than this value are excluded (Figure 9, lines 22-26).  

 

All other pairs are candidates. For them, the algorithm is recursively repeated (Figure 8, line 

10). They are refined, i.e. pairs of the respective child cells are composed (Figure 8, 2-5), and 

the filtering algorithm is applied to the resulting pairs of children (Figure 8, line 10), i.e. 

distance values are calculated, candidates are chosen, and so on. The recursion is aborted 

when the maximum refinement level is reached (Figure 8, line 7-9). 

 

By descending both octrees in this way (which is a breadth-first traversal – see Figure 6), the 

precision of the calculated distance is successively increased: the calculated distance can be 
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expressed on each level by means of an interval, whose endpoints are calculated from the 

square root of the upper and lower distance values determined for the cell pairs on the level in 

question. By letting the user choose the termination level, he is able to balance the accuracy of 

the result obtained with the time needed for its computation. 

 

The interval in which the real distance lies is calculated after the recursion has finished. The 

final lower bound results from the square root of the lowest lower bound on the final octree 

level multiplied by the edge length of an octant on this level. The final upper bound is derived 

from the square root of the lowest upper bound on the final level, again multiplied by an 

octant’s edge length. The return value of the algorithm is either a tuple of two real numbers 

representing upper and lower bound of the distance, or a single real number calculated as the 

arithmetic mean of upper and lower bound. The latter version can be integrated more easily 

into a spatial query language. 

 

It is possible to couple the generation of the octree with the distance algorithm. This further 

increases the overall performance, because then the octree is built up only at points that are 

relevant for the distance computation (Figure 7). The proper place for integrating such an on-

the-fly octree generation in the algorithm is the refine() function call (Figure 8. 1, line 3). 

 

By slightly modifying the basic algorithm for calculating the distance, it can also be applied 

to implement the maxdist, diameter, isCloser and isFarther operators. The implementation of 

isCloser and isFarther is almost identical to the distance algorithm. As soon as the distance 

algorithm is entirely within the range defined by isCloser or isFarther, the algorithm can 

abort the recursion and return true. In the case of isCloser the algorithm can also stop and 

return false when the lower bound of the distance interval exceeds the given distance. In the 
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case of isFarther it can stop and return false when the upper bound of the distance interval 

drops below the given distance. 

 

For the implementation of maxdist a somewhat greater modification of the basic algorithm is 

required: instead of choosing those pairs of octants for further refinement whose lower bound 

distance is smaller than the smallest upper bound distance, here the octant pairs are candidates 

whose upper bound distance is smaller than the largest lower bound distance. 

 

The operator diameter has also been implemented on the basis of the maxdist algorithm.  To 

do this, the octree of the object to be examined is passed as the first and second parameter to 

the maxdist function. This accordingly determines the maximum distance between the points 

of the object, which corresponds exactly to the definition of diameter. The maxdist algorithm 

can also be used to determine the penetration depth of two overlapping objects. For this 

purpose, the Boolean intersection of both octree-encoded geometries first has to be computed, 

by the algorithm proposed in (Mundani et al., 2003), for example. The maxdist algorithm is 

subsequently applied to the resulting octree. 

 

Time complexity of the octree-based algorithm 

Contrary to traditional distance algorithms, the computational time needed to calculate the 

distance is independent of the number of facets the objects’ surfaces are composed of, but 

depends on the desired accuracy. It corresponds to the width of the resulting interval and 

increases with each recursion level by the order O (n³).  

 

The time complexity depends directly on the number of cell pairs that need to be compared. 

To estimate this number, we examine the worst case, which results from two objects facing 
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each other with parallel (plane) surfaces. For the sake of simplicity, we first examine the 2D 

case. As stated above, all cell pairs satisfying the distance condition dlower < dupper,min are 

refined. The first step is to count those cell pairs where cell A has a fixed x coordinate and cell 

B fulfills the distance condition. The number of such pairs multiplied by the number of cells 

on the flat surface in y direction yields the number of candidate pairs. Any side effects are 

disregarded, in other words, we assume an infinitely extended surface. For pairs of cells that 

satisfy the distance condition, the distance in y direction is a-1, a or a+1 (Figure 10). No y 

distance smaller than a-1 is possible due to the extent of the surfaces. Nor is a y distance 

greater than a+1 possible in view of the distance condition, because for a cell pair with a y 

distance of a+2 and the smallest possible x distance of 0 dlower = (a+2)² + 0²  >  dupper,min = 

(a+1)² + 1² already holds. For cell pairs with a y distance of a or a+1 there is additional scope 

in x direction, i.e. cell B can be shifted by 1or 2 places respectively (Figure 11). 

 

To determine the maximum distance b in x direction we have to distinguish between three 

cases. In the first case, the y distance is a-1. The distance condition accordingly states (a-1)² + 

b² < (a+1)² + 1², yielding b1,max = 4 1a  . In the second case, the y distance is a. The distance 

condition accordingly states a² + b² < (a+1)² + 1², yielding b2,max = 2 2a  . In the third case, 

the y distance is a+1. The distance condition accordingly states (a+1)² + (b+1)² < (a+1)² + 1², 

yielding b3,max = 0. The cell pairs may have the distance b in either the positive or negative 

direction. In addition, there are always 3 cell pairs with a y distance of 0, so that in each case 3 

+ 2b cell pairs satisfy the distance condition. The number of cell pairs accordingly results in 

N1 =  (3 + 2 4 1a  ) + 2 � (3 + 2 2 2a  ) + 3�3  ≈  O ( a ) 

To obtain the total number of cell pairs requiring refinement, it is necessary to multiply N1 by 

the number of cells in x direction (length l): N = N1� l. 
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Both the distance a and the length l depend on the current refinement level. Let a0 be the 

distance at level 0. In each recursion step, a range of length xd is mapped to a range of length 

xd+1 with xd+1 = 2xd. After d refinement steps, a can be estimated using a ≈ a0 � 2
d
 and l by l ≈ 

l0� 2
d
. Accordingly, the number of cell pairs that have to be compared on level d is 

N = O ( 2d � 2
d
) = O (2

3/2d
) 

for the 2D case.  

 

In 3D, the minimum upper distance is dupper,min= (a+1)² + 1² +1². Because it is 1 greater than in 

the 2D case, b1,max, b2,max and b3,max change slightly: b1,max= 4 2a   b2,max = 2 3a   and b3,max = 

1. The number of cells within the corresponding shell segments of an imaginary sphere can be 

approximated by 

N1 ≈ (3 + 2b1,max)² π / 4 + 2 (3 + 2b2,max)² π / 4 + 3 (3 + 2b3,max)² π / 4 ≈  O (a) 

Let lx and ly be the lengths of the plate in x and y direction. Accordingly, the number of cell 

pairs that need to be compared on level d is 

N = N1� lx� ly = O ( 2
d
 � 2

d
 � 2

d
 ) = O ( 2

3d 
) 

for the 3D case. 

 

The AABB-based approach 

The second implementation approach is based on the exact shapes of the geometric objects 

(the operands) given by their boundary representation (B-Rep). However, the aim in this case 

is likewise to avoid the high effort for computing the distances between all possible facet 

pairs. Therefore we employ axis-aligned bounding box trees (AABB-trees) to organize the 

facets of each of the operands hierarchically. We can then traverse both trees in a similar 

fashion as in the octree-based implementation, i.e. compute an upper and lower bound for 

each pair of AABBs and accordingly prune all irrelevant pairs and their children.  
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An AABB tree is a binary tree that is built up by recursively subdividing a given mesh into 

axis-aligned bounding boxes. Every internal node has the property that its AABB 

encompasses the AABBs of its children and thus all primitives assigned to the two child 

nodes. In contrast to octrees, AABB trees can only model the surface but not the interior of an 

object. 

 

AABB trees are constructed in a top-down manner (Figure 11). Given a triangulation of an 

object’s surface, the corresponding AABB tree is built up as follows: First, the smallest 

AABB containing the set of all primitives is computed. After that, the set is split into two 

subsets, i.e. a left and a right one, according to a partition rule. In our case, the projection onto 

the longest axis of the AABB is decisive: if the midpoint of a primitive’s projection is smaller 

than the midpoint of the AABB’s projection, the primitive is allotted to the left subset. 

Otherwise it is attached to the right subset. Once all the primitives of the AABB under 

consideration have been classified, we continue recursively with both the left and the right 

subset until an AABB contains only one primitive or the maximum level has been reached. In 

the latter case, the box is a leaf of the AABB tree. 

 

An alternative partition rule sorts the primitives in ascending order with respect to the 

midpoint of the respective projection onto the longest AABB axis and then splits the set into 

two equal subsets. In contrast to the first partition rule, it produces a balanced AABB tree but, 

due to the wider distribution of the box size, the maximum extent of the boxes on a certain 

level may be larger. 
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The idea of the distance algorithm applied to this hierarchical model representation is similar 

to that of the octree-based algorithm. In a breadth-first traversal on each level, all AABB pairs 

that are not candidates for the minimum distance are excluded. In contrast to the octree-based 

distance algorithm, calculations cannot be realized as integer operations and, in addition, leaf 

nodes of the AABB trees are handled differently. 

 

If an AABB pair is a potential candidate for minimal distance and both AABBs of the pair are 

leaf nodes, we build the cross product of all primitives assigned to the two AABBs and, in a 

final calculation step, compute the exact minimal distance for all resulting pairs. The exact 

distance between two primitives under consideration is computed by means of the GJK 

algorithm for convex polyhedrons. Since an AABB generally encompasses a few triangles 

only, the computational effort is limited.  

 

The computed distances between triangles may lead to a new minimum upper distance that 

can be used to exclude other AABB pairs in the same way as in the octree-based approach. It 

is possible that an AABB pair is a potential candidate for the minimal distance, but only one 

box of the pair is a leaf and, therefore, only the second bounding box has two children. In this 

case, the two children of the second AABB are paired with the first AABB, respectively. 

Finally, the global minimum distance results as the lowest of all the distances from one 

triangle to another that were computed with GJK during the algorithm. 

 

Johnson and Cohen (1998) report a time complexity of  O(n) for the OBB tree based 

algorithm, where n is the number of facets. Because the algorithmic nature of the AABB tree 

approach is identical, we can assume the same time complexity in this case. 
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Performance comparison 

For comparing the performance of the different algorithms we used two different setups – a 

theoretical and a practical real-world example. In the theoretic setup we computed the 

distance between two spheres with radius 1, one located at (0,0,0) and the other one at  

(2,2,2). To model surfaces with different complexities, the spheres were triangulated using 8, 

16, 32 and 64 segments resulting in 48, 224, 960 and 3968 facets, respectively. Tables 1 and 2 

depict the results of the performance measurements. The timings include the creation of the 

octrees and AABB trees respectively. In the case of the octree based algorithm, the tree is 

only generated during the recursion where it is necessary, i.e. only candidate cells are refined. 

 

We implemented both algorithms as pure Java code, because this simplifies the server-side 

integration into an object-relational database. All intersection tests between facets and octants 

/ bounding boxes are performed using the Akenine-Möller approach (Akenine-Möller, 2001). 

All timings were taken on an Intel PM-770 2.13GHz machine. 

 

Tables 1 and 2 clearly show that the performance of the AABB algorithm is superior to that of 

the octree based algorithm, particularly if one takes into account that it delivers the precise 

distance. But, as depicted in the diagram of  Figure 13, the processing time of the AABB al-

gorithm is highly dependent on the chosen maximum depth of the AABB tree. The optimal 

depth of the AABB tree depends on the size and distribution of the facets and can hardly be 

predicted for the general case. By contrast, the processing time of the octree based algorithm 

scales continuously with O ( 2
3d 

), as deduced theoretically above. 

 

The superiority of the AABB approach becomes even more obvious when looking at a real-

world example. We use the building model shown in Figure 14, which consists of 216 

building components, and use three different algorithms for calculating the distance between 
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one of the columns and all other objects. The results presented in Table 3 and Figure 15 

clearly show that the fact that most components of “standard” buildings have a rectangular, 

axis-aligned shape, renders the AABB algorithm even more suitable: the algorithm runs in 

less than 10% of the time the octree algorithms taken for a maximum level of 6. In addition, it 

returns the precise distance instead of an interval (not taking into account the impreciseness 

resulting from numerical issues here). 

 

Summary 

In this article we have presented definitions and possible implementations of directional 

operators in a Spatial Query Language for 3D Building Models. By using point-set theory 

notation, we have formally defined the metric operators distance, maxdist, isCloser, isFarther 

and diameter. The paper describes in detail two possible implementations of these operators.  

The first one relies on the octree representation of the geometric objects. The recursive 

algorithm calculates upper and lower bounds for all octant pairs of one level and excludes all 

irrelevant pairs from further refinement. By traversing the octrees, the resulting distance 

interval becomes narrower, and thus the preciseness of the calculated is successively 

increased. 

 

The second approach employs trees of Axis Aligned Bounding Boxes (AABBs). Here the 

bounding facets of the original objects are organized hierarchically. Also in this case, lower 

and upper bound distances are calculated during a traversal of the trees and irrelevant 

branches are excluded from further examination. As opposed to the octree approach, there is a 

final level that contains a subset of the original facets (the candidates), for which an exact 

distance computation is performed. 
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The performance comparisons show that using AABB trees coupled with executing the GJK 

algorithm for the final candidates is a good solution for calculating the distance between two 

polyhedra. Even for objects with complex surfaces, it displays a better performance than the 

octree-based algorithm. Moreover, the distance returned by the AABB algorithm is an exact 

value, not an interval, as in the case of the octree algorithm. The fact that most components of 

“standard” buildings have a rectangular, axis-aligned shape, renders the AABB algorithm 

even more suitable. 

 

Although we discovered that the performance of the octree-based distance algorithm falls 

short of that of an AABB-based one, the former has a primal advantage: for a particular level 

of precision, the time for processing the distance algorithm has an upper limit, regardless of 

the number and arrangement of the facets. This property is very useful for integrating the 

algorithm in a spatial database, because the user is not normally aware of the complexity of 

the stored objects when submitting a query. By contrast, the processing time of the AABB-

based algorithm largely depends on the chosen tree-depth and the distribution of the facets. 

Moreover, the octree encoding provides an opportunity for an easy, yet robust implementation 

not only of the distance operator but also of other metric operators, such as volume or area. 

  

Outlook 

Our future work in the context of metric operators will include further research into the 

runtime performance of our algorithms for real-world building models. We also plan to test 

alternative implementations, such as algorithms based on oriented bounding boxes. 

 

Within the scope of the overall Spatial Query Language project we intend to enhance the 

performance of the database access further still by implementing R-tree indexing structures 
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within the database management system. In addition, we want to analyze the potential use of 

so-called In-Memory Databases to avoid secondary storage access while retaining the benefits 

of a declarative query language. 

 

In the current phase of our project we store the explicit geometry of all building components 

of a BIM in the database by means of a simple vertex-edge-face data structure. In future, we 

want to upgrade to a more comprehensive boundary representation, such as Winged-Edge or 

Radial-Edge, which will make it possible to use the results of a spatial query for further 

processing in the end-user’s CAD system. We also intend to store semantic information, such 

as BIM classes and non-geometric attributes, to make it possible to employ such information 

within the selection predicate. 

 

Of particular interest is the combination of the proposed spatial query language for building 

models with techniques for the extraction of air volumes from 3D models that have been 

developed by our group (van Treeck and Rank, 2007). This combination will enable the user 

to not only query spatial relationships between building components, such as walls and 

columns, but also to include non-physical spatial entities such as rooms and floors. Another 

promising research direction is the evaluation of an alternative query language as a basis for 

the extension by spatial operators. Possible candidates are XQuery, a query language for 

XML data, and SPARQL, a language for querying RDF ontologies developed in the context 

of the Semantic Web (Beetz et al., 2007). 

 

Finally, we will place emphasis on showing practical applications of the spatial query 

language by developing forms of usage in the context of checking construction rules and 

creating partial models. 

 



 28

Acknowledgements  

The authors gratefully acknowledge the support for the ongoing project by the German 

Research Foundation (DFG) under grant Ra624/17-1. 

 



 29

References 

 

Adachi, Y. (2003). “Overview of partial model query language.” Proc. of the 10th Int. Conf. 

on Concurrent Engineering. ISPE, Madeira, Portugal. A. A. Balkema Publishers, 549-555. 

 

Akenine-Möller, T. (2001). ”Fast 3D triangle-box overlap testing,” J. of Graphics Tools, 6, 

29–33. 

 

Arens, C., Stoter, J., and van Oosterom, P. (2005). “Modelling 3D spatial objects in a geo-

DBMS using a 3D primitive.” Computers & Geosciences, 31 (2), 165–177 

 

Balovnev, O., Bode, T., Breunig, M., Cremers, A., Müller, W. Pogodaev, G., Shumilov, S.,  

Siebeck, J., Siehl, A., and Thomson, A. (2004). “The story of the GeoToolKit – an object-

oriented geodatabase kernel system.” GeoInformatica 8 (1), 5–47.  

 

Beetz, J., de Vries, B., van Leeuwen, J. (2007). “RDF-based distributed functional part 

specifications for the facilitation of service-based architectures.” Proc. of the 24th CIB-W78 

Conf. on Information Technology in Construction, CIB-W78, Maribor, Slovenia. 

 

Borrmann, A. (2007). “Computerunterstützung verteilt-kooperativer Bauplanung durch 

Integration interaktiver Simulationen und räumlicher Datenbanken.” Ph.D. thesis, Lehrstuhl 

für Bauinformatik, Technische Universität München.  

 



 30

Borrmann, A., C. van Treeck, and E. Rank (2006). “Towards a 3D spatial query language for 

building information models.” Proc. of the Joint Int. Conf. for Computing and Decision 

Making in Civil and Building Engineering. ISCCBE, Montreal, Canada.  

 

Borrmann, A. and Rank, E. (2008a). “Specification and implementation of directional 

operators in a 3D spatial query language for building information models.” Advanced 

Engineering Informatics. accepted.  

 

Borrmann, A. and Rank, E. (2008b). “Topological operators in a 3D Spatial Query Language 

for Building Information Models.” Proc. of the 12
th

 Int. Conf. on Computing in Civil and 

Building Engineering, ISCCBE, Beijing, China. 

 

Breunig, M., Bode, T. and Cremers, A. (1994). “Implementation of elementary geometric 

database operations for a 3D-GIS.” Proc. of the 6th Int. Symp. on Spatial Data Handling. 

IGU, Edinburgh, Scotland. 

 

Breunig, M., Cremers, A., Müller, W., and Siebeck, J. (2001). “New methods for topological 

clustering and spatial access in object-oriented 3D databases.” Proc. of the 9th ACM Int. 

Symp. on Advances in Geographic Information Systems. ACM, Atlanta, Georgia, USA. 

 

Coors, V. (2003). “3D-GIS in networking environments.” Computers, Environment and 

Urban Systems, 27 (4), 345–357.  

 

Dubois, A. M., Flynn, J., Verhoef, M. H. G. and Augenbroe, G. L. M. (1995). “Conceptual 

modelling approaches in the COMBINE project.” Proc. of the 1st Europ. Conf. on Product 

and Process Modeling in the Building Industry. EAPPM, Dresden, Germany. 



 31

 

Eastman, C. (1999). Building Product Models: Computer Environments Supporting Design 

and Construction. CRC Press.  

 

Egenhofer, M. (1987). “An extended SQL syntax to treat spatial objects.” Proc. of the 2nd Int. 

Seminar on Trends and Concerns of Spatial Sciences. Fredericton, NB, Canada. 

 

Egenhofer, M. (1992). “Why not SQL!” Journal of Geographical Information Systems, 6(2), 

71–85.  

 

Gröger, G., Reuter, M. and Plümer, L. (2004). “Representation of a 3-D city model in spatial 

object-relational databases.” Proc. of the 20th ISPRS Congress, ISPRS, Istanbul, Turkey. 

 

Güting, R. H. (1988). “Geo-relational algebra: A model and query language for geometric 

database systems.” Proc. of the Int. Conf. on Extending Database Technology, EDBT Assoc., 

Venice, Italy.  

 

Gottschalk, S., Lin, M., and Manocha, D. (1996). ”OBB-Tree: A hierarchical structure for 

rapid interference detection.” Proc. of 23
rd

 Int. Conf. on Computer Graphics and Interactive 

Techniques (SIGGRAPH '96), ACM, New Orleans, LA, USA. 

 

Herring, J., Larsen, R., and Shivakumar, J. (1988). “Extensions to the SQL query language to 

support spatial analysis in a topological data base.” Proc. of GIS/LIS ’88, ACSM, San 

Antonio, Texas.  

 



 32

Hunter, G. “Efficient computation and data structures for graphics.” PhD thesis. Princeton 

University. 

 

Ingram, K. and Phillips, W. (1987). “Geographic information processing using a SQL-based 

query language.” Proc. of the 8th Int. Symp. on Computer-Assisted Cartography. CaGIS, 

Baltimore, MD, USA. 

 

Jung, D. and Gupta, K.K. (1997). “Octree-based hierarchical distance maps for collision 

detection.” Journal of Robotic Systems 14(11), 789–806. 

 

International Organization for Standardization (1999). ANSI/ISO/IEC 90751:99. ISO 

International Standard: Database Language SQL.  

 

International Organization for Standardization (2005). ISO/PAS 16739:2005 Industry 

Foundation Classes, Release 2x, Platform Specification.  

 

Jackins, C. L., and Tanimoto, S. L. (1980). “Oct-trees and their use in representing three-

dimensional objects.” IEEE Computer Graphics and Image Processing, 14(3), 249–270. 

 

Johnson, D.,  and Cohen, E. (1988). “A framework for efficient minimum distance 

computation.” Proc. IEEE Int. Conf. on Robotics and Automation, IEEE, Philadelphia, PA, 

USA. 

 

Gilbert, E. G., Johnson, D.W., and Keerthi, S. S.  (1988). “A fast procedure for computing the 

distance between complex objects in three-dimensional space.” IEEE Journal of Robotics and 

Automation, 4(2),193–203. 



 33

 

Gottschalk, S., Lin, M., and Manocha, D.  (1996). ”OBB-Tree: A hierarchical structure for 

rapid interference detection.” Proc. of 23
rd

 Int. Conf. on Computer Graphics and Interactive 

Techniques (SIGGRAPH '96), ACM, New Orleans, LA, USA. 

 

Kriegel, H.-P., Pfeifle, M., Pötke, M., Renz, M. and Seidl, T. (2003). “Spatial data 

management for virtual product development.” Lecture Notes in Computer Science 2598, 

216–230.  

 

Lin, M. C. and Canny, J. F. (1991). “A fast algorithm for incremental distance computation.” 

Proc. IEEE Int. Conf. on Robotics and Automation, IEEE, Sacramento, CA, USA. 

 

Meagher, D. (1982). “Geometric modeling using octree encoding.” IEEE Computer Graphics 

and Image Processing, 19 (2), 129–147.  

 

Melton, J. (2003). “Advanced SQL:1999. Understanding Object-Relational and Other 

Advanced Features.” Morgan Kaufmann, San Francisco, USA.  

 

Mundani, R.-P. (2005). “Hierarchische Geometriemodelle zur Einbettung verteilter 

Simulationsaufgaben.” Ph.D. thesis, Universität Stuttgart.  

 

Mundani, R.-P., Bungartz, H.-J., Rank, E., Romberg, R. and Niggl, A. (2003). “Efficient 

algorithms for octree-based geometric modelling.” Proc. of the 9th Int. Conf. on Civil and 

Structural Engineering Computing. B.H.V. Topping (ed.), Egmond aan Zee, The Netherlands. 

 



 34

Ooi, B., Sacks-Davis, R. and McDonell, K. (1989). “Extending a DBMS for geographic 

applications.” Proc. of the IEEE 5th Int. Conf. on Data Engineering, IEEE, Los Angeles, CA, 

USA. 

 

OpenGIS Consortium (OGC) (1999). OGC Abstract Specification.  

 

Ozel, F. (2000). “Spatial databases and the analysis of dynamic processes in buildings.” Proc. 

of the 5th Conf. on Computer Aided Architectural Design Research in Asia. CAADRIA, 

Singapore, Malaysia. 

 

Paul, N. and Bradley, P. E. (2003). “Topological houses.” Proc. of the 16th Int. Conf. of 

Computer Science and Mathematics in Architecture and Civil Engineering (IKM 2003). 

Weimar, Germany. 

 

Rigaux, P., Scholl, M., and Voisard, A. (2002). “Spatial Databases with Application to GIS.” 

Morgan Kaufmann.  

 

Roussopoulos, N., Faloutsos, C., and Sellis, T. (1988). “An efficient pictorial database system 

for PSQL.” IEEE Transactions on Software Engineering 14 (5), 639–650.  

 

Scherer, R. J. (1995). “EU-project COMBI – objectives and overview.” Proc. of the 1st 

Europ. Conf. on Product and Process Modeling in the Building Industry. EAPPM, Dresden, 

Germany. 

 

Shapira, A. (1993). “Octree subdivision of building elements”, Journal of Computing in Civil 

Engineering, 7(4), 439–457.  



 35

 

Shekhar, S. and Chawla S. (2003). “Spatial Databases: A Tour.” Pearson Education.  

 

Tolman, F. and Poyet P. (1995). “The ATLAS models.” Proc. of the 1st Europ. Conf. on 

Product and Process Modelling in the Building Industry. EAPPM, Dresden, Germany. 

 

Türker, C. (2003). “SQL:1999 & SQL2000. Objekt-relationales SQL, SQLJ & SQL/XML.” 

dpunkt Verlag.  

 

Türker, C. and Saake, G. (2006). “Objektrelationale Datenbanken.” dpunkt Verlag.  

 

van Oosterom, P., Vertegaal, W., van Hekken, M., and Vijlbrief, T. (1994). “Integrated 3D 

modelling within a GIS.” Proc. of Advanced Geographic Data Modelling (AGDM'94) - 

International GIS Workshop. Netherlands Geodetic Commission, Delft, The Netherlands. 

 

van Treeck, C. and Rank, E. (2007). “Dimensional reduction of 3D building models using 

graph theory and its application in building energy simulation.” Engineering with Computers 

23 (2) 109–122. 

 

Wenisch, P. and Wenisch, O. (2004). “Fast octree-based voxelization of 3D boundary 

representation-objects.” Technical report, Computation in Engineering, Technische 

Universität München.  

 

Yabuki, N., Lebegue, E., Gual, J., Shitani, T. and Zhantao, L. (2006). “International 

collaboration for developing the bridge product model IFC-Bridge.” Proc. of the 11th Int. 

Conf. on Computing in Civil and Building Engineering.  ISCCBE, Montreal, Canada.  



 36

 

Zlatanova, S. (2006). “3D geometries in spatial DBMS.” Innovations in 3D Geo Information 

Systems,  A. Abdul-Rahman, S. Zlatanova and V. Coors, eds., Springer, Berlin, 1–14. 

 

Zlatanova, S., Rahman, A. and Shi, W. (2004). “Topological models and frameworks for 3D 

spatial objects.” Journal of Computers & Geosciences, 30 (4), 419–428.  

 



 37

 

 

 

 

Figure 1. 

1-column, height: 69.5mm 
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Figure 2. 

2 colums, height: 65.7 mm
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Figure 3. 

 

1 column, height: 49.1mm
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Figure 4. 

1 column, height: 61.63mm
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Figure 5. 

2 columns, height: 52,2mm
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Figure 6. 

1 column, height 54.5mm
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Figure 7. 

Height: 48.1 mm
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Figure 8. 

1 column, height: 55.9 mm
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Figure 9. 

1 column, height: 99.6 mm
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Figure 10. 

2 columns, height 86.8 mm
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Figure 11. 

1 column, height 43.4 mm 
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Figure 12. 

1 column, height: 80.6mm 
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Figure 13. 

1 column, height: 80.4mm 
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Figure 14. 

1 column, height: 74.9 mm 
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Figure 15. 

1 column, height 76mm 
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max 

depth 

number of facets per sphere 

48 224 960 3968 16128 39600 

4 112 221 600 1730 5853 13531 

5 245 428 972 2665 8718 19539 

6 503 608 1285 3306 10484 23798 

7 909 1087 1952 4495 13039 28383 

8 1364 2322 3198 6149 15622 32447 

9 2108 6324 8094 12538 23967 53639 

10 3487 18791 24055 36273 51821 74429 

 

Table 1.  

1 column, height 42.5mm 



 53

 

 

 

 

 

max 

depth 

number of facets per sphere 

48 224 960 3968 16128 39600 

4 78 532 6196 99941   

6 79 284 2555 38775 570905  

8  177 659 2646 69586  

10  149 373 1229 12978  

12  142 354 537 3474 14002 

14   343 527 1522 3825 

16   342 544 1702 3386 

18   331 556 1672 3615 

20    554 1704 3639 

22    601 1671 3616 

24    659 1680 3607 

26    578 1690 3591 

28     1655 3637 

30     1698 3666 

 

Table 2. 

1 column, height 75.0 mm 
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max 

depth 
Akenine-Möller Mundani AABB 

6 2234 1782 281 

7 5812 7703 281 

8 14296 32485 281 

9 44778  281 

 

Table 3. 

 

1 column, height 30.5 mm 
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Figure 1. Illustration of the semantics of the metric operators. As can be seen in the example, 

closerThan and fartherThan can be interpreted in a way that is called buffer zoning in the GIS 

context (Shekhar and Chawla, 2003). 

Figure 2. Two different approaches for implementing metric operators: While the left-hand 

diagram depicts the octree representations of the operands, the right-hand diagram shows their 

AABB tree representations. 

Figure 3. The difference between a three-colored quadtree (above), where the interior of 

described object is marked black, and a two-colored quadtree (below), that only represents the 

boundary of the object. 

Figure 4. The octree representation of one of the slabs of the building model shown in Figure 

14. 

Figure 5. Since the exact position of the boundary of the objects is unknown when using 

octree encodings, an upper (middle diagram) and lower distance value (right-hand diagram) 

has to be determined for each cell pair based on the distance between the cells’ midpoints 

(left-hand diagram). 

Figure 6. While processing the algorithm, the octrees of both operands are traversed in a 

breadth-first manner. On each level, pairs of octants are created with one octant from octree A 

and one octant from octant B. This figure shows a corresponding quadtree example. 

Figure 7. If the octree generation is coupled with the distance algorithm only refinements at 

relevant places are necessary. 

Figure 8. The function findClosestCells identifies the set of cell pairs that might be closest 

together. It calls itself recursively to enter the next level of refinement. 

The function findClosestCells identifies the set of cell pairs that might be closest together. It 

calls itself recursively to enter the next level of refinement. 
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Figure 9. The helper function createCandidateList() filters out all irrelevant cell pairs by 

calculating the lower and the upper bound of the distance for each cell pair and comparing it 

with the lowest upper bound on this level. 

Figure 10. All possible combinations of cells that satisfy the distance condition. The tiles 

correspond to different distances in y direction (a-1, a and a+1). 

Figure 11. 2D example for the generation of an AABB tree for a given polygon. On each 

level, the current AABB is divided along the longest axis into two subspaces. By checking the 

edges’ midpoints for containment, each edge is assigned to one of the two subspaces. 

Subsequently, a bounding box containing all edges of one subspace is created and inserted 

into the AABB tree as a child of the current AABB. This is repeated recursively until the 

maximum tree level is reached. Note that the leaf nodes may contain more than one edge. 

Figure 12. The diagram plots the scaling of the octree algorithm with respect to the number of 

facets per sphere.  

Figure 13. The diagram shows that the performance of the AABB-based algorithm depends 

largely on the chosen tree-depth. 

Figure 14. Real-world example: the 3D model of the structural framework of a 5-storey 

building consisting of 216 elements. Three different algorithms were employed for calculating 

the distance between one of the columns and all other building components. 

Figure 15. The diagram shows the performance of the diverse algorithms for the real-world 

example from Figure 14. Please note the logarithmic scaling of the time-axis in the diagram.  

Table 1. The results of the performance measurements of the octree-based algorithm. All 

timings are in milliseconds. 

Table 2. The results of the performance measurements of the AABB-based algorithm. All 

timings are in milliseconds. 

Table 3. Timings taken for a real-world example from Figure 14 using the octree and the 

AABB tree approach. In the case of the octree algorithm, a tree generation method based on 
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triangle-octant intersection tests (Akenine-Möller, 2001) was employed in conjunction with 

the approach proposed by Mundani (2005). All timings are in milliseconds. 


