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Summary 
DNA computing is promising in providing primitives of classical 
cryptography since it provides a variety of advantages over 
conventional silicon-based computing paradigms. These 
advantages include massive parallelism and data hiding 
capability which give it the computing flavor of Turing machine 
as well as the power of parallel processing which makes it 
suitable in different applications of classical cryptography. 
Although modern cryptography has expanded ideas of classical 
cryptography to include more rigorous security proofs and first 
class protocols based on concrete mathematics for ensuring 
secrecy in cryptographic protocols, the DNA computers have not 
followed the rapid pace by which cryptography community is 
going ahead and no biological computer has been designed to 
meet the growing demand of modern cryptographic protocols. 
For this reason, in this paper, we propose four DNA/RNA 
computers which implement some modern security primitives 
such as the mental poker game, zero-knowledge proofs, 
signature schemes and public key cryptography. Security 
protocols based on wetware for these primitives have been given 
which are intended for implementation in the wet lab using 
standard genetic engineering techniques on DNA and RNA 
molecules. Security proofs have been presented for each one of 
our proposed methods which complete the theoretical merits of 
our modern security protocols. 
Key words: 
DNA computing, Mental poker, Public-key cryptography, 
Signature schemes, Zero-Knowledge proof systems. 

1. Introduction 

Classical cryptography went on until the end of the last 
century with a special focus on designing and breaking 
codes to ensure secrecy of data mostly in military 
applications. But spreading those applications which 
demand higher levels of secrecy, such as online banking 
transactions and internet services, has enlarged scopes of 
classical cryptography to a more sophisticated extent for 
rigorous analysis of cryptosystems and protocols and to 
guarantee secrecy of any system which aims to ensure 
security of messages over an insecure communication 
channel. Therefore, cryptography has evolved from an art 
to design codes to the scientific discipline of modern 
cryptography which provides mathematical reasoning and 
techniques for proving correctness of secrecy protocols 
and designing mathematically sound cryptosystems and  

 
 
protocols. In this regard, Due to their splendid advantages 
for carrying out computations which need a large amount 
of space and time such as cryptanalysis, DNA computers 
have proved promising substitutions for silicon-based 
computers in that their building blocks (DNA molecules) 
are massively parallel and can store tremendous amounts 
of data which make them suitable for data hiding and 
storage as well as utilization in cryptosystem-cracker 
machines for the inherent parallel processing capabilities 
they provide. 
The first theoretical idea of providing computation 
capabilities of DNA information processing was put 
forward by T. Head in 1987 [1] in which he showed the 
computing power equal to that of Turing machines (the 
most powerful model of computation) for the operation of 
DNA cleavage and pasting which takes place as an 
integral part of DNA processing in the cells of organisms. 
The above idea did not become feasible until the 
breakthrough discovery of capability of DNA molecules in 
solving NP-complete problems which was conducted by L. 
Adleman [2] in 1994. This outstanding paper established 
an interdisciplinary science called DNA computing. 
Following this evolutionary step toward a new computing 
media many other papers showed up that addressed 
computationally hard problems which can be solved using 
DNA computers. Many of these proposals were actually 
implemented in genetic engineering laboratories. On the 
other hand, RNA molecules which can be gained by 
transcription of DNA molecules showed promising as 
other useful media to build computers based on bio-
molecules. As an example, in [3] an RNA computer is 
designed for solving chess problems and in [4] RNA 
synthetic devices are designed for information processing 
inside cells of an organism. A large number of papers have 
addressed usual security primitives such as information 
hiding [4], breaking cryptosystems [5]-[8] using DNA 
molecules. We previously proposed a new watermarking 
and authentication scheme in context of DNA computation 
in [9] and [10], respectively. 
The bulk of research in DNA computing for providing 
secrecy has mostly focused on provision of security in the 
classical framework of building or breaking cryptosystems 
but has not considered emerging modern cryptographic 
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primitives such as zero-knowledge proofs or public key or 
signature schemes, etc. In this paper we design a number 
of modern cryptographic primitives based on emergent 
DNA and RNA based computers and then prove the 
security provided by each one of our secrecy primitives. 
Our proposed schemes are implementable solely by DNA 
or RNA molecules and consist of a wet public key 
cryptosystem, a wet signature scheme, a zero-knowledge 
proof system based on synthetic RNA devices and a 
mental poker protocol based on DNA information 
processing techniques. The proposed in-vitro and in-vivo 
methods for modern cryptography are the first modern 
secrecy protocols implemented using genetic engineering 
techniques. 
The rest of the paper is organized as follows. In section 2, 
the preliminary backgrounds are presented. In section 3, 
the proposed scheme for a public-key cryptosystem has 
been presented. A DNA-based signature scheme is also 
introduced in section 4. A protocol for playing mental 
poker in wet environment is introduced in section 5. We 
utilize RNA manipulation techniques for a biological 
method for solving the Sudoku puzzle in section 6. Finally, 
conclusions are drawn in section 7. 

2. Preliminary backgrounds 

In this section, we introduce the encoding scheme which is 
used in the proposed ideas of this paper. 
We previously defined an encoding scheme based on the 
silent mutation property of the genetic code in [9] which 
can be defined as follows. 
Each bit of the message is encoded in a codon which 
contains three nucleotides of DNA. In order to encode 
logical zero in that codon, we do not change the 
nucleotides of the codon therefore, neither the codon nor 
the encoded amino acid changes. But if we aim to encode 
logical one, we must mutate the third nucleotide of the 
corresponding codon according to the table of Fig. 1. 
highlighted with yellow marker so that the resultant amino 
acid and so the corresponding phenotype does not change 
but the sequence of transmitted DNA changes. Therefore, 
by sequencing the received DNA sequence with the 
original sequence of nucleotides the receiver side can 
guess the transmitted digital data sequence. 
The data can be encoded into a DNA sequence as 
described above. If the codons are selected from the 
yellow sections of the table of Fig. 1, they are said to have 
multiforms. In order to encode data into an artificial gene 
we must make sure that the codons that encode logical 
zeros and ones have multiple forms and therefore they 
must be selected from the highlighted sections of Fig. 1. 

 
Fig. 1  The genetic code table. 

A plasmid is a circular sequence of DNA which is a usual 
material used in genetic engineering laboratory. A number 
of genes can be inserted or cloned in any plasmid. Data 
must be coded according to the above encoding scheme 
inside artificial sequences of DNA in the plasmid. 
Different materials and chemicals can be added to the 
plate which contains synthetic plasmids which serves as a 
testbed in our proposed experiments. 

3. The Proposed Scheme for a Public Key 
Cryptosystem 

In this section we show our proposed scheme for a public-
key cryptosystem using the procedures which occur 
naturally as an integral part of gene expression in all living 
organisms. We define our initial setup for the public-key 
cryptosystem as shown below: 

We utilize the silent mutation property of amino acids as 
demonstrated in section 2 for encoding our messages into 
the blocks of DNA sequences in the synthetic plasmids 
conveying the information. Furthermore, we define public 
and private key of the cryptosystem as shown in Eq. (1)-
(2). 

)( activatorindirectlbiochemicaAKeyprivate ≡ (1) 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011 
 

 

26

)

,)(

,(

sequencemessagetheafterpaddingfor
snucleotideofsequenceknownA

genereporteraphenotype
certainawithgeneknownA

inhibitorlbiochemicaAKeypublic ≡

 

(2) 

 
Eq. (1) and Eq. (2) show the private and public key of our 
proposed cryptosystem, respectively. The first element of 
both of which is a biochemical substance which can be 
naturally found in the bacteria we work with. As can be 
seen in Eq. (1), the private key is a biochemical indirect 
activator which indirectly activates expression of the 
genes which lie downstream of the promoter of the 
synthetic gene sequence which encodes the message. 
Furthermore, as Eq. (2) shows, the first element of the 
public key is a biochemical inhibitor which effectively 
blocks expression of the downstream gene(s) of the 
promoter of the plasmid which encodes the public key of 
the proposed cryptosystem, the second element of Eq. (2) 
is a known gene with a specific phenotype and the third 
element of it demonstrates a known sequence of 
nucleotides which shows that the message data has ended. 
Any gene to be expressed needs a promoter which is 
upstream of it along with that gene which comes after it as 
shown in Fig. 2. 
In order to provide an example to demonstrate our 
encryption mechanics, we use Eq. (3)-(4) to express the 
private-public key pairs of the encryption scheme. 

 
)(IPTGKeyprivate ≡  (3)

)
,,(

dataafterpaddingforsequence
DNAAgeneGFPLacIKeypublic ≡

 
(4)

 
Fig. 2. A plasmid containing its promoter and a gene 

 
In Eq. (3), IPTG or Isopropyl β-D-1-thiogalactopyranoside 
is a biochemical reagent which induces transcription of the 
gene that encodes for beta-galactosidase, a hydrolase 
enzyme which cooperates in catalyzing the hydrolysis of 
β-galactosides to monosaccharide.  

Also, in Eq. (4), the public key contains a biochemical 
substance (LacI protein) which inhibits transcription of the 
upstream gene(s) of the promoter which belongs to the 
message-encoding plasmid. 
IPTG molecule (with the following chemical formula 
C9H18O5S), when connected to LacI, detaches it from the 
promoter and unblocks expression of the gene(s) 
downstream of the promoter this process is shown in Fig. 
3. With this explanation at hand, we are now ready to 
describe the algorithm in which Alice encrypts a message 
and send it to Bob. 
Algorithm 1. The proposed scenario for secure 
communication of Alice and Bob 
Step 1. Alice encodes her intended message in accordance 
with the silent mutation property of the genetic code in 
some gene(s) which have been cloned in the message 
information-bearing plasmid. 
Step 2. Alice inserts the third element of Eq. (4) which is a 
known sequence of nucleotides to the message she wishes 
to send to Bob. 
Step 3. Alice, using the public key of Bob which is 
defined in Eq. (2), encrypts the padded message (chosen 
from the message space and encoded in message-encoding 
plasmid using the silent mutation property of the genetic 
code). The public key can be composed by concatenation 
of LacI and the DNA sequence of a known gene (such as 
green florescent protein gene) as shown in Fig. 4 which 
serves as the terminator that reveals that there exists a 
hidden information after ending the sequence of this 
reporter gene. 
The encryption procedure can be accomplished easily by 
binding the synthetic concatenation of Fig. 4 to the 
plasmid which conveys the message information and 
therefore by blocking expression of the gene(s) which lie 
downstream of promoter of the message-encoding plasmid. 
 

 
 

Fig. 3. Detaching LacI from the plasmid by IPTG 
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Fig. 4. The first and second elements of the public key of the proposed 

cryptosystem 
 

In this way, transcription of these genes will be stopped 
and therefore, we can hide the message encrypted by Alice. 
Step 3. Bob receives the solution which contains the 
encrypted and hidden message sent from Alice. Since 
using Bob’s public key Alice has blocked expression of 
her intended message, only Bob who possesses his private 
key has the means to unveil the information which is 
hidden in the solution received by Alice and then he can 
extract the message information sent by Alice by  
unblocking expression of the downstream genes of the 
message promoter. In our example, Bob by adding IPTG 
can remove LacI and by removing it, the GFP gene is 
expressed and the solution which contains hidden and 
coded information turns to green. 
Step 4. By analyzing the resulting plasmid, Bob can unveil 
the message sent by Alice which lies between the GFP 
gene and the known sequence of nucleotides which was 
previously defined as a part of Bob’s public key. 
Step 5. By decoding the sequence of nucleotides which 
was derived by Bob in step 4, according to the genetic 
code table shown in Fig. 1, he can find out the message 
Alice sent for her. 

4. A DNA-based signature scheme 

In this section, we introduce a new signature scheme based 
on the hybrid DNA manipulation in the cell.  
We consider the following scenario in which Alice wants 
to prove her identity to Bob by providing her signature on 
the message she has transmitted to him. 
In what follows, we define an algorithmic procedure by 
which Alice can prove her identity to Bob as the first step 
of establishing a legitimate contact with him.  
Algorithm 2. A wetware signature scheme 
Step 1. Alice encodes her intended message using the 
silent mutation property of the genetic code.  
Step 2. Alice pads end of the message by inserting a 
known predefined sequence of nucleotides. 
Step 3. Alice adds her wet signature on her intended 
message and prepares a solution containing them. Her wet 
signature is a biochemical transcription inhibitor such as 
LacI which is bind to the promoter of the plasmid that 
encodes her intended message. 
Step 4. Alice also adds a reporter gene such as florescent 
genes to the plasmid that encodes her intended message. 
Step 5. Alice sends the solution containing the encoded 
message and her signature to Bob. 
Step 6. Bob receives the solution containing the signed 
message and uses public key of Alice (a biochemical 

indirect activator (such as IPTG)) to remove signature of 
Alice and thus to make sure the message has been sent 
from Alice. 
Step 7. After removal of signature of Alice from her 
signed message, Bob decodes the message which was sent 
by Alice using the genetic code table. 

5. A protocol for playing mental poker using 
DNA manipulation techniques 

In the sequel, we use the commutative property of our 
encryption scheme and then propose a solution for playing 
mental poker in wet environment. We call this mental 
poker game, Wet Poker. First of all, we show the 
commutative property of our encryption method in the 
following theorem. 

Theorem 1. The public key protocol proposed in 
section 3 with the elements shown in Eq. (1)-(2) has the 
commutative property, i.e. if data is encrypted more than 
once, the order in which data is decrypted does not matter. 
Therefore, assuming that we show the encryption 
operation of message M using key I by IE (M) and 
decryption of ciphertext C with key J with JD (C), if 
Alice encrypts some message M with her public key A to 
produce AE (M) and Bob encrypts AE (M) with his public 
key, B, to achieve BE ( AE (M)), for our encryption 
scheme we have: AD ′ ( BD ′ ( BE ( AE (M)))) = 

BD ′ ( AD ′ ( BE ( AE (M)))) = AD ′ ( BD ′ ( AE ( BE (M))))= 

BD ′ ( AD ′ ( AE ( BE (M)))) 
In the above notation, pairs of ),( AA ′  and ),( BB ′  are 
(transmitter, receiver) key pairs for Alice and Bob (i.e. if 
for example A  is used to encrypt a message, A′  should 
be utilized for decrypting that message). 
Proof. Since the encryption of a message by key A adds a 
biochemical compound to the plasmid which is bind to the 
promoter of the plasmid, if we assume that substance A is 
added downstream of the promoter and blocks expression 
of the message, if we provide another encryption to the 
message, say by key B, then we have added a new 
blocking biochemical compound downstream of the 
promoter which inhibits expression of the genes 
downstream of promoter. Now, in order to decrypt the 
double encrypted message M which is ))(( MEE BA , we 
have to add a biochemical activator to the resultant 
solution to unbind the biochemical inhibitors from the 
promoter. Since A′  has no effect on B  and when it is 
added to the solution just finds its pair (i.e. A ) and since 
the chemical interactions take place in space, it does not 
matter which one of A′  or B ′  are added first because they 
are assumed to have no effect on the other. Therefore, it 
does not matter if we decrypt the resultant solution using 

    LacI          GFP gene 
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A′  or B ′  at first. The ))))(((( MEEDD BABA ′′  and 
))))(((( MEEDD BAAB ′′  are equal. Their encryption 

order is not important as well; because encryption of a 
message in our setting is basically adding a biochemical 
substance to the solution which contains a plasmid which 
encodes the message to be encrypted. So, in general, order 
of encryption and decryption is not the matter of 
importance in our wetware encryption setup if we use the 
appropriate key pairs for encryption and decryption. So 

))))(((( MEEDD BABA ′′ and ))))(((( MEEDD ABBA ′′  are 
also equal. Therefore in general, 

))))(((( MEEDD BABA ′′ = ))))(((( MEEDD BAAB ′′ =
))))(((( MEEDD ABBA ′′ = ))))(((( MEEDD BABA ′′  and 

our encryption scheme is commutative. 
Assuming that we have a deck of cards containing 52 
cards (messages) encoded in ASCII format and then coded 
in the message plasmid as shown in table 1, we utilize the 
commutative property of our proposed encryption as 
stated in theorem (1) to devise a protocol for shuffling the 
input genetic deck between Alice and Bob in Algorithm 3. 
We assume that each message of cards in table 1 is 
encoded in one part of one or more genes. In table 1 three 
hypothetical genes are demonstrated which encode certain 
phenotypes (i.e. reporter genes). Each codon of the genetic 
code is translated into an amino acid which must be 
selected between those amino acids with multiple forms as 
shown in genetic code table of Fig. 1. In order to use our 
previously proposed encoding scheme [9], we must apply 
silent mutation to those codons that encode logical one 
according to the genetic code table of Fig. 1. In order to 
use our previously proposed encoding scheme [9], we 
must apply silent mutation to those codons that encode 
logical one according to the genetic code table of Fig. 1 
and do not change those codons that encode zero in their 
ASCII code. As can be seen in table 1, all the amino acids 
of the fourth column have multiform property, i.e. by 
changing the third nucleotide of the corresponding codon 
of column 3 of table 1, we can achieve to an amino acid 
according to table of Fig. 1 which is in the multiform set 
of each amino acid. 
Algorithm 3. A protocol for shuffling the deck encoded in 
synthetic genetic blocks 
Step 1. Alice and Bob agree on the rules of table 1 and are 
given the information of this table for all cards specified in 
the first column of the table. 
Step 2. Alice prepares a solution encoding an encryption 
key and encrypts each card of the deck using this key 
according to the proposed encryption scheme in a single 
plasmid in which the promoter sequence comes before the 
genetic code sequences of all cards in the deck. 
Step 3. Alice changes the placement of the encoded  
messages (genes) in a random fashion or in the other 
words, shuffles the deck of cards. 

Step 4. Alice gives the solution containing the encrypted 
and shuffled deck to Bob. 
Step 5. Bob also prepares a solution encoding his 
encryption key with which he encrypts all the shuffled and 
encrypted messages received from Alice. 
Step 6. Bob, randomly, permutes the deck which is 
composed of genes containing the card information in the 
message-encoding plasmid. 
Step 7. Bob gives the resultant solution back to Alice. 
Step 8. Alice unveils and decrypts each card with her key. 
She does not know about these cards, since Bob has 
already encrypted them. 
Step 9. Alice encrypts each card using predefined keys 
each one in each plasmid. 
Step 10. Alice gives the resultant plasmid containing the 
encrypted version of all decks to Bob. 
Step 11. Bob uses his key to decrypt all cards which still 
have Alice’s keys on them. 
Step 12. Bob also encrypts each card using predefined 
keys each one in each plasmid. 
Step 13. Bob renders the resultant solution to Alice. 
Note that the solution derived in step 13 is the shuffled 
deck which has been produced during a series of solution 
modification and exchange between Alice and Bob. 
Now that the players of the wet poker game shuffled the 
deck of cards, they are ready to play the game. First, we 
define the game in a mental manner. 
The game starts with three cards chosen at random 
between decks of shuffled cards. And we further assume 
that Bob starts the game. 
In the following, we demonstrate an algorithm for playing 
wet poker. 
Algorithm 4. A protocol for playing wet poker 
Step 1. Three cards are randomly chosen from the shuffled 
deck of cards produced in algorithm 3. 
Step 2. Bob prepares a DNA solution containing the 
encoded version of his selected key. 
Step 3. Bob encrypts these three cards using his chosen 
key. 
Step 4. Bob sends these cards in a random ordering to 
Alice. 
Step 5. Since Alice has no idea about the contents of these 
cards, she just chooses one card for Bob and one for 
herself and distinguishes between these cards by applying 
an encryption with her own key on that card. 
Step 6. Alice shuffles the order of received cards by 
randomly changing the order of received genes which 
convey the cards information encoded via the silent 
mutation property of the genetic code table in accordance 
with the third column of table 1. 
Step 7. Alice sends the soup containing the shuffled and 
encrypted messages to Bob. 
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Step 8. Bob has no way to know which card is which. So, 
he just decrypts both cards which are in the DNA soup and 
keeps the soup which codes for his own card. 
Step 9. Bob sends back Alice’s DNA soup which contains 
her own card. 
Step 10. Alice decrypts her received DNA soup to find out 
the contents of it. 
Step 11. Bob also decrypts the soup containing his card to 
know about his hand. 
Step 12. Ultimately, Alice and Bob compare their hands to 
determine whose hand is bigger and therefore who is the 
winner. 
 

TABLE 1: INFORMATION OF ALL CARDS ENCODED IN 
DIFFERENT FORMATS 
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6. A biological solution for Sudoku puzzle 
using hybrid RNA manipulation methods 

In this section, we introduce a solution for Sudoku puzzle 
which uses RNA in-vitro manipulation methods. At first, 
we define the preliminaries of our problem. 

6.1 Definitions 

A general instance of Sudoku is defined on an nn×  grid 
in which 2kn =  and subgrids are of size kk × . Assuming 
that some of the cells of subgrids are already filled with 
Natural numbers in range {1,…,n}, the goal is to fill the 
remaining cells of grid with numbers in the above range so 
that different numbers appear in all rows, columns as well 
as all subgrids. 
Note that Sudoku problem is an NP-complete problem in 
general and although solving the problem requires non-
polynomial time, verification of the solved problem can be 
accomplished in polynomial time. 
In this paper, we assume 22×  Sudoku problem as shown 
in Fig. 5 in which subgrids are of size 11× . 
Assuming that only symbols 1a  and 2a  can be placed in 

each cell of the Sudoku grid, we have six ( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
4

) possible 

configurations if we further assume that there exist exactly 
two numbers of each }2,1{, ∈iai . These possible 
configurations are shown in Fig. 6. 
 

 
Fig. 5. 22×  Sudoku table 

 
As can be seen in Fig. 6, only two configurations ((a) and 
(d)) are answers of the given Sudoku problem and 
depending on the given symbols inside cells of the grid, 
one of them can be the answer of the given instance of 
Sudoku problem. 
In order to solve the problem using RNA computations, 
we assume a hypothetical table as shown in Fig. 7 which 
demonstrates the locations of the symbols in the grid. Each 
symbol (a, b, c or d) of the grid defines one of four 
possible geometric locations of symbols in the grid. 
We assume the following coding scheme for symbols and 
locations as shown in Fig. 8 in which we consider that 

}2,1{, ∈iai  has values in {0,1}. As can be seen in Fig. 8 
we have produced new symbols which have been made 
out of the position of symbols and the values (0 or 1) 

 
a1 a2 

a2 a1 
…
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which fit into them. These new symbols which have been 
shown by capital form of their positions, uniquely define 
any number in any location of the Sudoku table. The 
operation of || can be defined as concatenation of its left 
and right symbols which are RNA segments. 
Note that information of the value of just one cell suffices 
to find a unique answer of the given Sudoku problem, i.e. 
configurations (a) or (d) in Fig. 6. In order to solve the 
problem we should mention that all cells that are in the 
vicinity of each other should be filled with different values 
and therefore, no two neighboring cells are allowed to 
have the same symbol. 
It is worthwhile that by neighboring we mean that for 
instance, in Fig. 7, a  is in the vicinity of b  and c  but not 
d  and the set of neighboring locations for b is },{ da . So, 
in the first step, we should beware of the neighboring sets 
for all positions in the Sudoku table which can be stated as 
table 2 shows. 
We can write algorithm 5 for finding the answer for the 
defined Sudoku puzzle which is called the neighboring 
problem. 
 

TABLE 2: THE SET OF NEIGHBORING LOCATIONS 
Symbol for cell location The neighboring set 

a  },{ cb  
b  },{ da  
c  },{ da  
d  },{ cb  

 
Algorithm 5. Solving the neighboring problem for the 
Sudoku puzzle 
START 
% We are given the initial conditions for the Sudoku 
problem under consideration as statements in the set: 

}2,1{},,,,{ ∈iDCBA iiii  
IF  ( 1221 ||| DCBA ) 

THEN  CONFIG = CONFIG 1; 
% CONFIG means Sudoku table of the answer 
% CONFIG 1 means table (a) in Fig. 6. 
ELSEIF  ( 2112 ||| DCBA ) 

THEN  CONFIG = CONFIG 2; 
% CONFIG 2 means table (d) in Fig. 6. 
END 
IF  (CONFIG == CONFIG 1 | CONFIG 2) 

PRINT (“TRUE”) 
END 
The above algorithm easily finds the answer for the 
problem and defines if there is any answer for the given 
Sudoku problem or not. 
Accordingly, we can encode algorithm 5 to a class of SAT 
(satisfiability) problems as shown in the logical program 
below. 

))](())((
))(())((
))(())((
))(())([(

222111

111222

111222

222111

CBDDAC
DABCBA
CBDDAC
DABCBA

¬∧¬∨¬∨¬∧¬∨¬
∨¬∧¬∨¬∨¬∧¬∨¬
∨¬∧¬∨¬∨¬∧¬∨¬
∨¬∧¬∨¬∨¬∧¬∨¬

 

In the above transformation, a true variable means that we 
are given that specific condition. 
Just as utilized in [3], we use RNA library to solve this 
SAT problem. At first, we prepare the mandatory 
materials for initialization of our problem. 
 

 
Fig. 6. All possible configurations for 22×  Sudoku table 

 

 
Fig. 7. A hypothetical table showing the possible locations in the Sudoku 

table 
 

 
a b 

c d 
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||
||
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,

||
||
||
||

Dad
Dad
Cac
Cac

Bab
Bab
Aaa
Aaa

 

Fig. 8. mapping different values in different places to new symbols in the 
Sudoku table 

 

6.2 Preparing the initial settings for solving Sudoku 
problem 

 
Our approach for solving the considered Sudoku problem 
utilizes the RNA model of computation which was 
proposed in [3] (i.e. a gel-cut-pour computation) and uses 
RNase H digestions of any inappropriate answers which 
do not fit the conditions of our considered problem (i.e. 
the neighboring condition demonstrated in algorithm 5).  
We show each strand of RNA which encodes a possible 
configuration of our considered Sudoku table as shown 
below: 

3|4
|)(4|3|)(3|2

|)(2|1|)(1|5

2121

2121

′

′

SuffixSpacer
DorDBitSpacerCorCBitSpacer

BorBBitSpacerAorABitprefix
In 

the above template of RNA strands, the Spacer sequences 
are oligonucleotides of a certain length (say 5 bases) and 
one bit has been devoted to each position (cell) of the 
Sudoku table which has been assumed to be of 15 bases 
for 1111 ,,, DCBA  and 16 bases for 2222 ,,, DCBA  and 
prefix and suffix are also considered to be 24 and 32 bases, 
respectively [3]. 
According to the above template of individual RNA 
strands by putting different bits in the locations of the 
table and therefore, in their corresponding RNA template, 
and considering fixed prefix, suffix and spacer sequences, 
we can produce 16 strands each of which represents a 
possible configuration of the Sudoku table from which 
only one configuration is correct given the initial 
conditions for the problem. The reason of choosing 
different lengths for 1a  and 2a  is that we should filter the 
strands synthesized according to the template (16 kinds of 
strands) to extract 6 strands which represent all table 
configurations with two numbers of 1a  and two numbers 
of 2a  as shown in Fig. 6. 
In each step of solving the Sudoku problem, we devote an 
RNA pool to each cell of the Sudoku table with the RNA 
template as shown above. In the first step of solving the 
table, we need to make sure that we have filtered all the 
generated strands to exclude those strands that do not have 
equal numbers of 1a  and 2a .  

This filtering for generation of 6 kinds of strands with two 
numbers of 1a  and 2a  between 16 kinds of strands can be 
conducted as follows. We should pour the prepared 
solution containing all 16 possible configurations of the 
Sudoku table on a gel (such as agarose gel or 
polyacrylamide gel) to extract those strands with length of 
138 nucleotides and therefore those strands which possess 
exactly two numbers of 1a  and 2a . In this step 6 kinds of 
strands are selected. 
Then in the next steps we remove the strands which 
introduce false configurations by digestion and the 
remaining strands introduce the answer to the considered 
Sudoku problem. In algorithm 6 we explain this method.  
Algorithm 6. Solving the Sudoku problem using RNA 
library 
Step 1. Divide the filtered RNA pool for each cell of the 
Sudoku table of Fig. 5 into two halves in each tube in 
which for example for the first cell one tube represents 
strands that have 1a  in position a  and the other tube 
contains strands that do not have 1a  in position a . 
Step 2. In the pool that contains strands which represent 

1a  in position a , using RNase H, digest strands which do 
not have 1a  in position a  as well as those strands which 
represent 1a  in position b  and c . Therefore, we have 
implemented the first logical statement which states 
( 111 CBA ¬∧¬→ ) (i.e. if 1A  takes place, 1B  and 1C  
events cannot happen). 
Step 3. In the pool that contains strands which do not have 

1a  in position a  digest strands which have 1a  in the 
same position. 
Step 4. Since in the tubes there should be no loss in the 
consumed mass, we should remove those DNA strands 
which were used to do the above digestions using spin 
column purification. 
Step 5. Start over from step 1 and repeat this algorithm 
starting from 2B . 
Algorithm 6 implements the above propositional formula 
and the result of it contains RNA strands which represent 
the answer for the Sudoku table of Fig. 5. 

6.3 Application of the proposed problem in Zero-
Knowledge system 

A zero-knowledge proof, as defined in [11] is an 
interactive proof between two parties who wish to 
communicate. These parties are called prover and verifier. 
The prover knows solution to a certain problem. There is a 
game between the prover and the verifier during which 
they exchange information and at the end of these sessions, 
the verifier accepts or rejects the execution. 
We show the implications of the above method of solving 
Sudoku problem for zero-knowledge proof systems and 
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then prove the completeness of our proposed protocol. For 
this reason, we consider a scenario in which Alice wants 
to prove Bob that she has solved the Sudoku problem with 
the initial conditions selected by Bob. In what follows, we 
devise a protocol in which Alice convinces Bob that she 
has solved a problem (the Sudoku problem). 

 
Algorithm 7. Proving identity of Alice to Bob 
Step 1. Alice (the prover) and Bob (the verifier) agree on 
the given Sudoku problem. 
Step 2. Bob gives some initial conditions to Alice in terms 
of some prefilled cells. 
Step 3. Alice shows the results of electrophoresis of all 
initially generated RNA strands to Bob to prove him that 
she has found the collection of 6 possible types of strands 
one of which is the answer to the problem. 
Step 4. If Bob verified the result of electrophoresis, he can 
give Alice some other challenges to make sure that she has 
found the answer to the given Sudoku problem. 
Step 5. Alice uses the given initial conditions of Bob in 
algorithm 6 to solve the problem. 
Step 6. Alice utilizes genetic engineering standard 
procedures to answer the challenge of Bob. 
Step 7. Bob checks for what he expects in the answered 
challenge. 
Step 8. Bob verifies the response of the challenge Alice 
has answered, if it was how he expected, or rejects the 
response of the challenge otherwise. 
Using the 8-step procedure as shown in algorithm 7 Alice 
can prove Bob that she has solved the Sudoku problem 
posed by Bob. 
The challenge which is mentioned in step 4 of the above 
algorithm can be a specific pattern that defines the answer 
uniquely. These specific patterns can unveil the correct 
answer of the challenge. In the following, we bring some 
sort of challenges that Bob may give Alice in step 4 
through which he can find out if Alice has solved the 
problem or not. 
In Fig. 9 we can see the RNA patterns which have been 
extracted from the filter (gel) during the electrophoresis 
operation. 
1) 3|||||||||5 1221 ′′ suffixSDSCSBSAprefix  
2) 3|||||||||5 1122 ′′ suffixSDSCSBSAprefix  
3) 3|||||||||5 2211 ′′ suffixSDSCSBSAprefix  
4) 3|||||||||5 2121 ′′ suffixSDSCSBSAprefix  
5) 3|||||||||5 2112 ′′ suffixSDSCSBSAprefix  
6) 3|||||||||5 1212 ′′ suffixSDSCSBSAprefix  

 
Fig. 9. All extracted RNA patterns from the initial electrophoresis 

operation (S is the spacer sequence) 
 

As can be seen in Fig. 9, only patterns of number (1) and 
(5) represent answer to the given Sudoku problem and 

depending on one initial condition provided by Bob, one 
of them can be considered as the answer. 
The RNA patterns demonstrated in Fig. 9 reveal some 
information which could guide Bob to propose challenges 
which uniquely determine the correct answer. For instance, 
the symmetry of the correct answers can be utilized as 
follow. 
Assume that Bob has provided Alice with a Sudoku table 
with initial condition as shown in Fig. 10. 
At first, he can use restriction enzymes of some kind to cut 
the strands in two halves as shown in Fig. 11. 
After applying restriction enzymes of some kind on the 
strands of Fig. 11, according to his initial cell information 
provided to Alice, Bob can observe if there is a certain 
pattern of oligonucleotides which is a subsequence of 

22SCB  (and since the first cell of the table contains 1a , 
Bob knows that the answer to this problem is number (6) 
of Fig. 9) or not. If he found it, he can verify the answer of 
the challenge by Alice. No need to say that he does not see 
the complete answer given by Alice to his challenge and 
he just checks for some certain points that he knows. 
Therefore, using our proposed protocol Alice does not 
need to reveal the whole answer to Bob to prove that she 
solved the problem. 
The completeness of a protocol is defined as the 
probability that an honest verifier verifies a correct proof. 
As explained above, in our proposed zero-knowledge 
protocol there is only one type of strand between all 16 
generated types of RNA strands that fits the criteria for 
acceptance of the correct strands and our wetware zero-
knowledge proof system proves to be complete.              ■ 
 

 
Fig. 10. The proposed Sudoku problem of Bob 

 
1) 3|||||||||5 1221 ′′ suffixSDSCSBSAprefix  
2) 3|||||||||5 1122 ′′ suffixSDSCSBSAprefix  
3) 3|||||||||5 2211 ′′ suffixSDSCSBSAprefix  
4) 3|||||||||5 2121 ′′ suffixSDSCSBSAprefix  
5) 3|||||||||5 2112 ′′ suffixSDSCSBSAprefix  
6) 3|||||||||5 1212 ′′ suffixSDSCSBSAprefix  

 
Fig. 11. RNA strands of Fig. 9 after applying appropriate restriction 

enzymes 

 
a1 
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7. Conclusion 

DNA computing is promising in providing secrecy 
primitives because their substrates (DNA molecules) have 
the ability to hide information and their power of 
computation equals that of a parallel computer. In this 
paper some primitives of modern cryptography are 
designed in the context of DNA computing. All building 
blocks of the proposed models are fully constructible 
solely with biological parts. Our proposed primitives for 
ensuring secrecy consist of a genetically engineered public 
key cryptosystem, a DNA-based signature scheme, a 
protocol for playing mental poker on the wetware, and an 
RNA-based zero-knowledge proof system based on 
solving the Sudoku problem. Our proposed genetically 
engineered computers are designed based on the standard 
parts and techniques of genetic engineering which, 
considering the assumed sizes for the problems, can be 
easily constructed and verified in laboratory. Furthermore, 
security proofs have been presented for each one of the 
proposed schemes which show that our proposed genetic 
machines are mathematically sound. 
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