
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011

24

Manuscript received November 5, 2011
Manuscript revised November 20, 2011

Implementing Modern Cryptographic Protocols Using DNA and
RNA Information Processing

Arash Karimi †,

†Iran University of Science and Technology (IUST), Narmak, Tehran, Iran

Summary
DNA computing is promising in providing primitives of classical
cryptography since it provides a variety of advantages over
conventional silicon-based computing paradigms. These
advantages include massive parallelism and data hiding
capability which give it the computing flavor of Turing machine
as well as the power of parallel processing which makes it
suitable in different applications of classical cryptography.
Although modern cryptography has expanded ideas of classical
cryptography to include more rigorous security proofs and first
class protocols based on concrete mathematics for ensuring
secrecy in cryptographic protocols, the DNA computers have not
followed the rapid pace by which cryptography community is
going ahead and no biological computer has been designed to
meet the growing demand of modern cryptographic protocols.
For this reason, in this paper, we propose four DNA/RNA
computers which implement some modern security primitives
such as the mental poker game, zero-knowledge proofs,
signature schemes and public key cryptography. Security
protocols based on wetware for these primitives have been given
which are intended for implementation in the wet lab using
standard genetic engineering techniques on DNA and RNA
molecules. Security proofs have been presented for each one of
our proposed methods which complete the theoretical merits of
our modern security protocols.
Key words:
DNA computing, Mental poker, Public-key cryptography,
Signature schemes, Zero-Knowledge proof systems.

1. Introduction

Classical cryptography went on until the end of the last
century with a special focus on designing and breaking
codes to ensure secrecy of data mostly in military
applications. But spreading those applications which
demand higher levels of secrecy, such as online banking
transactions and internet services, has enlarged scopes of
classical cryptography to a more sophisticated extent for
rigorous analysis of cryptosystems and protocols and to
guarantee secrecy of any system which aims to ensure
security of messages over an insecure communication
channel. Therefore, cryptography has evolved from an art
to design codes to the scientific discipline of modern
cryptography which provides mathematical reasoning and
techniques for proving correctness of secrecy protocols
and designing mathematically sound cryptosystems and

protocols. In this regard, Due to their splendid advantages
for carrying out computations which need a large amount
of space and time such as cryptanalysis, DNA computers
have proved promising substitutions for silicon-based
computers in that their building blocks (DNA molecules)
are massively parallel and can store tremendous amounts
of data which make them suitable for data hiding and
storage as well as utilization in cryptosystem-cracker
machines for the inherent parallel processing capabilities
they provide.
The first theoretical idea of providing computation
capabilities of DNA information processing was put
forward by T. Head in 1987 [1] in which he showed the
computing power equal to that of Turing machines (the
most powerful model of computation) for the operation of
DNA cleavage and pasting which takes place as an
integral part of DNA processing in the cells of organisms.
The above idea did not become feasible until the
breakthrough discovery of capability of DNA molecules in
solving NP-complete problems which was conducted by L.
Adleman [2] in 1994. This outstanding paper established
an interdisciplinary science called DNA computing.
Following this evolutionary step toward a new computing
media many other papers showed up that addressed
computationally hard problems which can be solved using
DNA computers. Many of these proposals were actually
implemented in genetic engineering laboratories. On the
other hand, RNA molecules which can be gained by
transcription of DNA molecules showed promising as
other useful media to build computers based on bio-
molecules. As an example, in [3] an RNA computer is
designed for solving chess problems and in [4] RNA
synthetic devices are designed for information processing
inside cells of an organism. A large number of papers have
addressed usual security primitives such as information
hiding [4], breaking cryptosystems [5]-[8] using DNA
molecules. We previously proposed a new watermarking
and authentication scheme in context of DNA computation
in [9] and [10], respectively.
The bulk of research in DNA computing for providing
secrecy has mostly focused on provision of security in the
classical framework of building or breaking cryptosystems
but has not considered emerging modern cryptographic

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011

25

primitives such as zero-knowledge proofs or public key or
signature schemes, etc. In this paper we design a number
of modern cryptographic primitives based on emergent
DNA and RNA based computers and then prove the
security provided by each one of our secrecy primitives.
Our proposed schemes are implementable solely by DNA
or RNA molecules and consist of a wet public key
cryptosystem, a wet signature scheme, a zero-knowledge
proof system based on synthetic RNA devices and a
mental poker protocol based on DNA information
processing techniques. The proposed in-vitro and in-vivo
methods for modern cryptography are the first modern
secrecy protocols implemented using genetic engineering
techniques.
The rest of the paper is organized as follows. In section 2,
the preliminary backgrounds are presented. In section 3,
the proposed scheme for a public-key cryptosystem has
been presented. A DNA-based signature scheme is also
introduced in section 4. A protocol for playing mental
poker in wet environment is introduced in section 5. We
utilize RNA manipulation techniques for a biological
method for solving the Sudoku puzzle in section 6. Finally,
conclusions are drawn in section 7.

2. Preliminary backgrounds

In this section, we introduce the encoding scheme which is
used in the proposed ideas of this paper.
We previously defined an encoding scheme based on the
silent mutation property of the genetic code in [9] which
can be defined as follows.
Each bit of the message is encoded in a codon which
contains three nucleotides of DNA. In order to encode
logical zero in that codon, we do not change the
nucleotides of the codon therefore, neither the codon nor
the encoded amino acid changes. But if we aim to encode
logical one, we must mutate the third nucleotide of the
corresponding codon according to the table of Fig. 1.
highlighted with yellow marker so that the resultant amino
acid and so the corresponding phenotype does not change
but the sequence of transmitted DNA changes. Therefore,
by sequencing the received DNA sequence with the
original sequence of nucleotides the receiver side can
guess the transmitted digital data sequence.
The data can be encoded into a DNA sequence as
described above. If the codons are selected from the
yellow sections of the table of Fig. 1, they are said to have
multiforms. In order to encode data into an artificial gene
we must make sure that the codons that encode logical
zeros and ones have multiple forms and therefore they
must be selected from the highlighted sections of Fig. 1.

Fig. 1 The genetic code table.

A plasmid is a circular sequence of DNA which is a usual
material used in genetic engineering laboratory. A number
of genes can be inserted or cloned in any plasmid. Data
must be coded according to the above encoding scheme
inside artificial sequences of DNA in the plasmid.
Different materials and chemicals can be added to the
plate which contains synthetic plasmids which serves as a
testbed in our proposed experiments.

3. The Proposed Scheme for a Public Key
Cryptosystem

In this section we show our proposed scheme for a public-
key cryptosystem using the procedures which occur
naturally as an integral part of gene expression in all living
organisms. We define our initial setup for the public-key
cryptosystem as shown below:

We utilize the silent mutation property of amino acids as
demonstrated in section 2 for encoding our messages into
the blocks of DNA sequences in the synthetic plasmids
conveying the information. Furthermore, we define public
and private key of the cryptosystem as shown in Eq. (1)-
(2).

)(activatorindirectlbiochemicaAKeyprivate ≡ (1)

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011

26

)

,)(

,(

sequencemessagetheafterpaddingfor
snucleotideofsequenceknownA

genereporteraphenotype
certainawithgeneknownA

inhibitorlbiochemicaAKeypublic ≡

(2)

Eq. (1) and Eq. (2) show the private and public key of our
proposed cryptosystem, respectively. The first element of
both of which is a biochemical substance which can be
naturally found in the bacteria we work with. As can be
seen in Eq. (1), the private key is a biochemical indirect
activator which indirectly activates expression of the
genes which lie downstream of the promoter of the
synthetic gene sequence which encodes the message.
Furthermore, as Eq. (2) shows, the first element of the
public key is a biochemical inhibitor which effectively
blocks expression of the downstream gene(s) of the
promoter of the plasmid which encodes the public key of
the proposed cryptosystem, the second element of Eq. (2)
is a known gene with a specific phenotype and the third
element of it demonstrates a known sequence of
nucleotides which shows that the message data has ended.
Any gene to be expressed needs a promoter which is
upstream of it along with that gene which comes after it as
shown in Fig. 2.
In order to provide an example to demonstrate our
encryption mechanics, we use Eq. (3)-(4) to express the
private-public key pairs of the encryption scheme.

)(IPTGKeyprivate ≡ (3)

)
,,(

dataafterpaddingforsequence
DNAAgeneGFPLacIKeypublic ≡

(4)

Fig. 2. A plasmid containing its promoter and a gene

In Eq. (3), IPTG or Isopropyl β-D-1-thiogalactopyranoside
is a biochemical reagent which induces transcription of the
gene that encodes for beta-galactosidase, a hydrolase
enzyme which cooperates in catalyzing the hydrolysis of
β-galactosides to monosaccharide.

Also, in Eq. (4), the public key contains a biochemical
substance (LacI protein) which inhibits transcription of the
upstream gene(s) of the promoter which belongs to the
message-encoding plasmid.
IPTG molecule (with the following chemical formula
C9H18O5S), when connected to LacI, detaches it from the
promoter and unblocks expression of the gene(s)
downstream of the promoter this process is shown in Fig.
3. With this explanation at hand, we are now ready to
describe the algorithm in which Alice encrypts a message
and send it to Bob.
Algorithm 1. The proposed scenario for secure
communication of Alice and Bob
Step 1. Alice encodes her intended message in accordance
with the silent mutation property of the genetic code in
some gene(s) which have been cloned in the message
information-bearing plasmid.
Step 2. Alice inserts the third element of Eq. (4) which is a
known sequence of nucleotides to the message she wishes
to send to Bob.
Step 3. Alice, using the public key of Bob which is
defined in Eq. (2), encrypts the padded message (chosen
from the message space and encoded in message-encoding
plasmid using the silent mutation property of the genetic
code). The public key can be composed by concatenation
of LacI and the DNA sequence of a known gene (such as
green florescent protein gene) as shown in Fig. 4 which
serves as the terminator that reveals that there exists a
hidden information after ending the sequence of this
reporter gene.
The encryption procedure can be accomplished easily by
binding the synthetic concatenation of Fig. 4 to the
plasmid which conveys the message information and
therefore by blocking expression of the gene(s) which lie
downstream of promoter of the message-encoding plasmid.

Fig. 3. Detaching LacI from the plasmid by IPTG

Promoter

Gene

Plasmid

Promoter

Gene

Plasmid

LacI

IPTG

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011

27

Fig. 4. The first and second elements of the public key of the proposed

cryptosystem

In this way, transcription of these genes will be stopped
and therefore, we can hide the message encrypted by Alice.
Step 3. Bob receives the solution which contains the
encrypted and hidden message sent from Alice. Since
using Bob’s public key Alice has blocked expression of
her intended message, only Bob who possesses his private
key has the means to unveil the information which is
hidden in the solution received by Alice and then he can
extract the message information sent by Alice by
unblocking expression of the downstream genes of the
message promoter. In our example, Bob by adding IPTG
can remove LacI and by removing it, the GFP gene is
expressed and the solution which contains hidden and
coded information turns to green.
Step 4. By analyzing the resulting plasmid, Bob can unveil
the message sent by Alice which lies between the GFP
gene and the known sequence of nucleotides which was
previously defined as a part of Bob’s public key.
Step 5. By decoding the sequence of nucleotides which
was derived by Bob in step 4, according to the genetic
code table shown in Fig. 1, he can find out the message
Alice sent for her.

4. A DNA-based signature scheme

In this section, we introduce a new signature scheme based
on the hybrid DNA manipulation in the cell.
We consider the following scenario in which Alice wants
to prove her identity to Bob by providing her signature on
the message she has transmitted to him.
In what follows, we define an algorithmic procedure by
which Alice can prove her identity to Bob as the first step
of establishing a legitimate contact with him.
Algorithm 2. A wetware signature scheme
Step 1. Alice encodes her intended message using the
silent mutation property of the genetic code.
Step 2. Alice pads end of the message by inserting a
known predefined sequence of nucleotides.
Step 3. Alice adds her wet signature on her intended
message and prepares a solution containing them. Her wet
signature is a biochemical transcription inhibitor such as
LacI which is bind to the promoter of the plasmid that
encodes her intended message.
Step 4. Alice also adds a reporter gene such as florescent
genes to the plasmid that encodes her intended message.
Step 5. Alice sends the solution containing the encoded
message and her signature to Bob.
Step 6. Bob receives the solution containing the signed
message and uses public key of Alice (a biochemical

indirect activator (such as IPTG)) to remove signature of
Alice and thus to make sure the message has been sent
from Alice.
Step 7. After removal of signature of Alice from her
signed message, Bob decodes the message which was sent
by Alice using the genetic code table.

5. A protocol for playing mental poker using
DNA manipulation techniques

In the sequel, we use the commutative property of our
encryption scheme and then propose a solution for playing
mental poker in wet environment. We call this mental
poker game, Wet Poker. First of all, we show the
commutative property of our encryption method in the
following theorem.

Theorem 1. The public key protocol proposed in
section 3 with the elements shown in Eq. (1)-(2) has the
commutative property, i.e. if data is encrypted more than
once, the order in which data is decrypted does not matter.
Therefore, assuming that we show the encryption
operation of message M using key I by IE (M) and
decryption of ciphertext C with key J with JD (C), if
Alice encrypts some message M with her public key A to
produce AE (M) and Bob encrypts AE (M) with his public
key, B, to achieve BE (AE (M)), for our encryption
scheme we have: AD ′ (BD ′ (BE (AE (M)))) =

BD ′ (AD ′ (BE (AE (M)))) = AD ′ (BD ′ (AE (BE (M))))=

BD ′ (AD ′ (AE (BE (M))))
In the above notation, pairs of),(AA ′ and),(BB ′ are
(transmitter, receiver) key pairs for Alice and Bob (i.e. if
for example A is used to encrypt a message, A′ should
be utilized for decrypting that message).
Proof. Since the encryption of a message by key A adds a
biochemical compound to the plasmid which is bind to the
promoter of the plasmid, if we assume that substance A is
added downstream of the promoter and blocks expression
of the message, if we provide another encryption to the
message, say by key B, then we have added a new
blocking biochemical compound downstream of the
promoter which inhibits expression of the genes
downstream of promoter. Now, in order to decrypt the
double encrypted message M which is))((MEE BA , we
have to add a biochemical activator to the resultant
solution to unbind the biochemical inhibitors from the
promoter. Since A′ has no effect on B and when it is
added to the solution just finds its pair (i.e. A) and since
the chemical interactions take place in space, it does not
matter which one of A′ or B ′ are added first because they
are assumed to have no effect on the other. Therefore, it
does not matter if we decrypt the resultant solution using

 LacI GFP gene

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011

28

A′ or B ′ at first. The))))((((MEEDD BABA ′′ and
))))((((MEEDD BAAB ′′ are equal. Their encryption

order is not important as well; because encryption of a
message in our setting is basically adding a biochemical
substance to the solution which contains a plasmid which
encodes the message to be encrypted. So, in general, order
of encryption and decryption is not the matter of
importance in our wetware encryption setup if we use the
appropriate key pairs for encryption and decryption. So

))))((((MEEDD BABA ′′ and))))((((MEEDD ABBA ′′ are
also equal. Therefore in general,

))))((((MEEDD BABA ′′ =))))((((MEEDD BAAB ′′ =
))))((((MEEDD ABBA ′′ =))))((((MEEDD BABA ′′ and

our encryption scheme is commutative.
Assuming that we have a deck of cards containing 52
cards (messages) encoded in ASCII format and then coded
in the message plasmid as shown in table 1, we utilize the
commutative property of our proposed encryption as
stated in theorem (1) to devise a protocol for shuffling the
input genetic deck between Alice and Bob in Algorithm 3.
We assume that each message of cards in table 1 is
encoded in one part of one or more genes. In table 1 three
hypothetical genes are demonstrated which encode certain
phenotypes (i.e. reporter genes). Each codon of the genetic
code is translated into an amino acid which must be
selected between those amino acids with multiple forms as
shown in genetic code table of Fig. 1. In order to use our
previously proposed encoding scheme [9], we must apply
silent mutation to those codons that encode logical one
according to the genetic code table of Fig. 1. In order to
use our previously proposed encoding scheme [9], we
must apply silent mutation to those codons that encode
logical one according to the genetic code table of Fig. 1
and do not change those codons that encode zero in their
ASCII code. As can be seen in table 1, all the amino acids
of the fourth column have multiform property, i.e. by
changing the third nucleotide of the corresponding codon
of column 3 of table 1, we can achieve to an amino acid
according to table of Fig. 1 which is in the multiform set
of each amino acid.
Algorithm 3. A protocol for shuffling the deck encoded in
synthetic genetic blocks
Step 1. Alice and Bob agree on the rules of table 1 and are
given the information of this table for all cards specified in
the first column of the table.
Step 2. Alice prepares a solution encoding an encryption
key and encrypts each card of the deck using this key
according to the proposed encryption scheme in a single
plasmid in which the promoter sequence comes before the
genetic code sequences of all cards in the deck.
Step 3. Alice changes the placement of the encoded
messages (genes) in a random fashion or in the other
words, shuffles the deck of cards.

Step 4. Alice gives the solution containing the encrypted
and shuffled deck to Bob.
Step 5. Bob also prepares a solution encoding his
encryption key with which he encrypts all the shuffled and
encrypted messages received from Alice.
Step 6. Bob, randomly, permutes the deck which is
composed of genes containing the card information in the
message-encoding plasmid.
Step 7. Bob gives the resultant solution back to Alice.
Step 8. Alice unveils and decrypts each card with her key.
She does not know about these cards, since Bob has
already encrypted them.
Step 9. Alice encrypts each card using predefined keys
each one in each plasmid.
Step 10. Alice gives the resultant plasmid containing the
encrypted version of all decks to Bob.
Step 11. Bob uses his key to decrypt all cards which still
have Alice’s keys on them.
Step 12. Bob also encrypts each card using predefined
keys each one in each plasmid.
Step 13. Bob renders the resultant solution to Alice.
Note that the solution derived in step 13 is the shuffled
deck which has been produced during a series of solution
modification and exchange between Alice and Bob.
Now that the players of the wet poker game shuffled the
deck of cards, they are ready to play the game. First, we
define the game in a mental manner.
The game starts with three cards chosen at random
between decks of shuffled cards. And we further assume
that Bob starts the game.
In the following, we demonstrate an algorithm for playing
wet poker.
Algorithm 4. A protocol for playing wet poker
Step 1. Three cards are randomly chosen from the shuffled
deck of cards produced in algorithm 3.
Step 2. Bob prepares a DNA solution containing the
encoded version of his selected key.
Step 3. Bob encrypts these three cards using his chosen
key.
Step 4. Bob sends these cards in a random ordering to
Alice.
Step 5. Since Alice has no idea about the contents of these
cards, she just chooses one card for Bob and one for
herself and distinguishes between these cards by applying
an encryption with her own key on that card.
Step 6. Alice shuffles the order of received cards by
randomly changing the order of received genes which
convey the cards information encoded via the silent
mutation property of the genetic code table in accordance
with the third column of table 1.
Step 7. Alice sends the soup containing the shuffled and
encrypted messages to Bob.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011

29

Step 8. Bob has no way to know which card is which. So,
he just decrypts both cards which are in the DNA soup and
keeps the soup which codes for his own card.
Step 9. Bob sends back Alice’s DNA soup which contains
her own card.
Step 10. Alice decrypts her received DNA soup to find out
the contents of it.
Step 11. Bob also decrypts the soup containing his card to
know about his hand.
Step 12. Ultimately, Alice and Bob compare their hands to
determine whose hand is bigger and therefore who is the
winner.

TABLE 1: INFORMATION OF ALL CARDS ENCODED IN
DIFFERENT FORMATS

Messages
(Cards)

The ASCII code

of messages

Genetic
code of

messages

The
corresponding
Amino acids

“TWO OF
CLUBS”

“1010100101011
1

10011110100000
10011111000110
01000001000011
10011001010101
10000101010011

”

�
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

�
��	�
	�� ��	�
���
��	� ���� ��	� ��	�

��� ���� ���� ��	�
���� ��	� ��	�
���
���� ���� �	�� ��	�
�	�� ���� �	��
	��
���� ���� ��	� ��	�
�	�� ��	� ����
���
����
	�� ��	� ��	�
�	��
	�� ��	� ��	��
���� ���� ���� ����
���� ���� �	�� ��	�
���� ��	� ��	� ����
���� ��	� ��	� ��	�
���� ��	�
	�� ��	�
��	� ����
��� ��	�
�	��
��� ���� ��	�

���
	�� ���� �	��
��	� ���� ���� ��	�
��	� ��	�
	�� ��	�
����������	�������������������	�

“THREE
OF

CLUBS”

“1010100100100
0

10100101000101
10001010100000
10011111000110
01000001000011
10011001010101
10000101010011

”

�
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

�
��	�������	��������������	�
��	��������	�����
���������	�

	�����������������	�������	�
�����������	������	�������	�
���������������������������	�
�	���������	�������	�������	�
�������������������	����
	��

	���������	�����
	���������	�
���������
	��������	���������
�����������	��������	���������
�����������������
����������	�
��������������������������	�
�	��������	�����������������	�
��	�������	�������
��������	��
��	������
	���������	�����
	��
��	��������	��������	����������
��	�������	���������	����
	��
��	���������������������������
��	��������	���������	����	��

	�������	�����������	��������
��	��������	���������	��������

 … … …

“ACE OF
SPADES”

“1000001100001
1
10001010100000
10011111000110
01000001010011
10100001000001
10001001000101

1010011”

�
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
���������������

�
���� ���� ��	� ��	�
��	� ��	� �	�� ��	�
��	� ��	� �	�� ����
��	� ���� ���� ��	�

	�� ��	� ���� �	��
��	� ��	� ���� ��	�

��� ����
���
���
��	� ����
	�� ����
�	��
	�� ���� ��	�

	�� ��	� ���� ��	��
��	� �	�� ��	� ��	�
���� ��	� ���� ��	�
��	�
	�� �	�� ����

��� ���� ����
	��
���� ��	� ���� ��	�
��	� ��	� ���� ����

��� ���� ���� ��	�
�	�� ���� ����
���
���� ��	� �	�� ��	�
�	�� ��	� ����
���
����������	�������������������	�

6. A biological solution for Sudoku puzzle
using hybrid RNA manipulation methods

In this section, we introduce a solution for Sudoku puzzle
which uses RNA in-vitro manipulation methods. At first,
we define the preliminaries of our problem.

6.1 Definitions

A general instance of Sudoku is defined on an nn× grid
in which 2kn = and subgrids are of size kk × . Assuming
that some of the cells of subgrids are already filled with
Natural numbers in range {1,…,n}, the goal is to fill the
remaining cells of grid with numbers in the above range so
that different numbers appear in all rows, columns as well
as all subgrids.
Note that Sudoku problem is an NP-complete problem in
general and although solving the problem requires non-
polynomial time, verification of the solved problem can be
accomplished in polynomial time.
In this paper, we assume 22× Sudoku problem as shown
in Fig. 5 in which subgrids are of size 11× .
Assuming that only symbols 1a and 2a can be placed in

each cell of the Sudoku grid, we have six (⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
4

) possible

configurations if we further assume that there exist exactly
two numbers of each }2,1{, ∈iai . These possible
configurations are shown in Fig. 6.

Fig. 5. 22× Sudoku table

As can be seen in Fig. 6, only two configurations ((a) and
(d)) are answers of the given Sudoku problem and
depending on the given symbols inside cells of the grid,
one of them can be the answer of the given instance of
Sudoku problem.
In order to solve the problem using RNA computations,
we assume a hypothetical table as shown in Fig. 7 which
demonstrates the locations of the symbols in the grid. Each
symbol (a, b, c or d) of the grid defines one of four
possible geometric locations of symbols in the grid.
We assume the following coding scheme for symbols and
locations as shown in Fig. 8 in which we consider that

}2,1{, ∈iai has values in {0,1}. As can be seen in Fig. 8
we have produced new symbols which have been made
out of the position of symbols and the values (0 or 1)

a1 a2

a2 a1
…

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011

30

which fit into them. These new symbols which have been
shown by capital form of their positions, uniquely define
any number in any location of the Sudoku table. The
operation of || can be defined as concatenation of its left
and right symbols which are RNA segments.
Note that information of the value of just one cell suffices
to find a unique answer of the given Sudoku problem, i.e.
configurations (a) or (d) in Fig. 6. In order to solve the
problem we should mention that all cells that are in the
vicinity of each other should be filled with different values
and therefore, no two neighboring cells are allowed to
have the same symbol.
It is worthwhile that by neighboring we mean that for
instance, in Fig. 7, a is in the vicinity of b and c but not
d and the set of neighboring locations for b is },{ da . So,
in the first step, we should beware of the neighboring sets
for all positions in the Sudoku table which can be stated as
table 2 shows.
We can write algorithm 5 for finding the answer for the
defined Sudoku puzzle which is called the neighboring
problem.

TABLE 2: THE SET OF NEIGHBORING LOCATIONS
Symbol for cell location The neighboring set

a },{ cb
b },{ da
c },{ da
d },{ cb

Algorithm 5. Solving the neighboring problem for the
Sudoku puzzle
START
% We are given the initial conditions for the Sudoku
problem under consideration as statements in the set:

}2,1{},,,,{ ∈iDCBA iiii
IF (1221 ||| DCBA)

THEN CONFIG = CONFIG 1;
% CONFIG means Sudoku table of the answer
% CONFIG 1 means table (a) in Fig. 6.
ELSEIF (2112 ||| DCBA)

THEN CONFIG = CONFIG 2;
% CONFIG 2 means table (d) in Fig. 6.
END
IF (CONFIG == CONFIG 1 | CONFIG 2)

PRINT (“TRUE”)
END
The above algorithm easily finds the answer for the
problem and defines if there is any answer for the given
Sudoku problem or not.
Accordingly, we can encode algorithm 5 to a class of SAT
(satisfiability) problems as shown in the logical program
below.

))](())((
))(())((
))(())((
))(())([(

222111

111222

111222

222111

CBDDAC
DABCBA
CBDDAC
DABCBA

¬∧¬∨¬∨¬∧¬∨¬
∨¬∧¬∨¬∨¬∧¬∨¬
∨¬∧¬∨¬∨¬∧¬∨¬
∨¬∧¬∨¬∨¬∧¬∨¬

In the above transformation, a true variable means that we
are given that specific condition.
Just as utilized in [3], we use RNA library to solve this
SAT problem. At first, we prepare the mandatory
materials for initialization of our problem.

Fig. 6. All possible configurations for 22× Sudoku table

Fig. 7. A hypothetical table showing the possible locations in the Sudoku

table

a b

c d

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011

31

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

→
→
→
→

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

→
→
→
→

22

11

22

11

22

11

22

11

||
||
||
||

,

||
||
||
||

Dad
Dad
Cac
Cac

Bab
Bab
Aaa
Aaa

Fig. 8. mapping different values in different places to new symbols in the
Sudoku table

6.2 Preparing the initial settings for solving Sudoku
problem

Our approach for solving the considered Sudoku problem
utilizes the RNA model of computation which was
proposed in [3] (i.e. a gel-cut-pour computation) and uses
RNase H digestions of any inappropriate answers which
do not fit the conditions of our considered problem (i.e.
the neighboring condition demonstrated in algorithm 5).
We show each strand of RNA which encodes a possible
configuration of our considered Sudoku table as shown
below:

3|4
|)(4|3|)(3|2

|)(2|1|)(1|5

2121

2121

′

′

SuffixSpacer
DorDBitSpacerCorCBitSpacer

BorBBitSpacerAorABitprefix
In

the above template of RNA strands, the Spacer sequences
are oligonucleotides of a certain length (say 5 bases) and
one bit has been devoted to each position (cell) of the
Sudoku table which has been assumed to be of 15 bases
for 1111 ,,, DCBA and 16 bases for 2222 ,,, DCBA and
prefix and suffix are also considered to be 24 and 32 bases,
respectively [3].
According to the above template of individual RNA
strands by putting different bits in the locations of the
table and therefore, in their corresponding RNA template,
and considering fixed prefix, suffix and spacer sequences,
we can produce 16 strands each of which represents a
possible configuration of the Sudoku table from which
only one configuration is correct given the initial
conditions for the problem. The reason of choosing
different lengths for 1a and 2a is that we should filter the
strands synthesized according to the template (16 kinds of
strands) to extract 6 strands which represent all table
configurations with two numbers of 1a and two numbers
of 2a as shown in Fig. 6.
In each step of solving the Sudoku problem, we devote an
RNA pool to each cell of the Sudoku table with the RNA
template as shown above. In the first step of solving the
table, we need to make sure that we have filtered all the
generated strands to exclude those strands that do not have
equal numbers of 1a and 2a .

This filtering for generation of 6 kinds of strands with two
numbers of 1a and 2a between 16 kinds of strands can be
conducted as follows. We should pour the prepared
solution containing all 16 possible configurations of the
Sudoku table on a gel (such as agarose gel or
polyacrylamide gel) to extract those strands with length of
138 nucleotides and therefore those strands which possess
exactly two numbers of 1a and 2a . In this step 6 kinds of
strands are selected.
Then in the next steps we remove the strands which
introduce false configurations by digestion and the
remaining strands introduce the answer to the considered
Sudoku problem. In algorithm 6 we explain this method.
Algorithm 6. Solving the Sudoku problem using RNA
library
Step 1. Divide the filtered RNA pool for each cell of the
Sudoku table of Fig. 5 into two halves in each tube in
which for example for the first cell one tube represents
strands that have 1a in position a and the other tube
contains strands that do not have 1a in position a .
Step 2. In the pool that contains strands which represent

1a in position a , using RNase H, digest strands which do
not have 1a in position a as well as those strands which
represent 1a in position b and c . Therefore, we have
implemented the first logical statement which states
(111 CBA ¬∧¬→) (i.e. if 1A takes place, 1B and 1C
events cannot happen).
Step 3. In the pool that contains strands which do not have

1a in position a digest strands which have 1a in the
same position.
Step 4. Since in the tubes there should be no loss in the
consumed mass, we should remove those DNA strands
which were used to do the above digestions using spin
column purification.
Step 5. Start over from step 1 and repeat this algorithm
starting from 2B .
Algorithm 6 implements the above propositional formula
and the result of it contains RNA strands which represent
the answer for the Sudoku table of Fig. 5.

6.3 Application of the proposed problem in Zero-
Knowledge system

A zero-knowledge proof, as defined in [11] is an
interactive proof between two parties who wish to
communicate. These parties are called prover and verifier.
The prover knows solution to a certain problem. There is a
game between the prover and the verifier during which
they exchange information and at the end of these sessions,
the verifier accepts or rejects the execution.
We show the implications of the above method of solving
Sudoku problem for zero-knowledge proof systems and

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011

32

then prove the completeness of our proposed protocol. For
this reason, we consider a scenario in which Alice wants
to prove Bob that she has solved the Sudoku problem with
the initial conditions selected by Bob. In what follows, we
devise a protocol in which Alice convinces Bob that she
has solved a problem (the Sudoku problem).

Algorithm 7. Proving identity of Alice to Bob
Step 1. Alice (the prover) and Bob (the verifier) agree on
the given Sudoku problem.
Step 2. Bob gives some initial conditions to Alice in terms
of some prefilled cells.
Step 3. Alice shows the results of electrophoresis of all
initially generated RNA strands to Bob to prove him that
she has found the collection of 6 possible types of strands
one of which is the answer to the problem.
Step 4. If Bob verified the result of electrophoresis, he can
give Alice some other challenges to make sure that she has
found the answer to the given Sudoku problem.
Step 5. Alice uses the given initial conditions of Bob in
algorithm 6 to solve the problem.
Step 6. Alice utilizes genetic engineering standard
procedures to answer the challenge of Bob.
Step 7. Bob checks for what he expects in the answered
challenge.
Step 8. Bob verifies the response of the challenge Alice
has answered, if it was how he expected, or rejects the
response of the challenge otherwise.
Using the 8-step procedure as shown in algorithm 7 Alice
can prove Bob that she has solved the Sudoku problem
posed by Bob.
The challenge which is mentioned in step 4 of the above
algorithm can be a specific pattern that defines the answer
uniquely. These specific patterns can unveil the correct
answer of the challenge. In the following, we bring some
sort of challenges that Bob may give Alice in step 4
through which he can find out if Alice has solved the
problem or not.
In Fig. 9 we can see the RNA patterns which have been
extracted from the filter (gel) during the electrophoresis
operation.
1) 3|||||||||5 1221 ′′ suffixSDSCSBSAprefix
2) 3|||||||||5 1122 ′′ suffixSDSCSBSAprefix
3) 3|||||||||5 2211 ′′ suffixSDSCSBSAprefix
4) 3|||||||||5 2121 ′′ suffixSDSCSBSAprefix
5) 3|||||||||5 2112 ′′ suffixSDSCSBSAprefix
6) 3|||||||||5 1212 ′′ suffixSDSCSBSAprefix

Fig. 9. All extracted RNA patterns from the initial electrophoresis

operation (S is the spacer sequence)

As can be seen in Fig. 9, only patterns of number (1) and
(5) represent answer to the given Sudoku problem and

depending on one initial condition provided by Bob, one
of them can be considered as the answer.
The RNA patterns demonstrated in Fig. 9 reveal some
information which could guide Bob to propose challenges
which uniquely determine the correct answer. For instance,
the symmetry of the correct answers can be utilized as
follow.
Assume that Bob has provided Alice with a Sudoku table
with initial condition as shown in Fig. 10.
At first, he can use restriction enzymes of some kind to cut
the strands in two halves as shown in Fig. 11.
After applying restriction enzymes of some kind on the
strands of Fig. 11, according to his initial cell information
provided to Alice, Bob can observe if there is a certain
pattern of oligonucleotides which is a subsequence of

22SCB (and since the first cell of the table contains 1a ,
Bob knows that the answer to this problem is number (6)
of Fig. 9) or not. If he found it, he can verify the answer of
the challenge by Alice. No need to say that he does not see
the complete answer given by Alice to his challenge and
he just checks for some certain points that he knows.
Therefore, using our proposed protocol Alice does not
need to reveal the whole answer to Bob to prove that she
solved the problem.
The completeness of a protocol is defined as the
probability that an honest verifier verifies a correct proof.
As explained above, in our proposed zero-knowledge
protocol there is only one type of strand between all 16
generated types of RNA strands that fits the criteria for
acceptance of the correct strands and our wetware zero-
knowledge proof system proves to be complete. ■

Fig. 10. The proposed Sudoku problem of Bob

1) 3|||||||||5 1221 ′′ suffixSDSCSBSAprefix
2) 3|||||||||5 1122 ′′ suffixSDSCSBSAprefix
3) 3|||||||||5 2211 ′′ suffixSDSCSBSAprefix
4) 3|||||||||5 2121 ′′ suffixSDSCSBSAprefix
5) 3|||||||||5 2112 ′′ suffixSDSCSBSAprefix
6) 3|||||||||5 1212 ′′ suffixSDSCSBSAprefix

Fig. 11. RNA strands of Fig. 9 after applying appropriate restriction

enzymes

a1

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011

33

7. Conclusion

DNA computing is promising in providing secrecy
primitives because their substrates (DNA molecules) have
the ability to hide information and their power of
computation equals that of a parallel computer. In this
paper some primitives of modern cryptography are
designed in the context of DNA computing. All building
blocks of the proposed models are fully constructible
solely with biological parts. Our proposed primitives for
ensuring secrecy consist of a genetically engineered public
key cryptosystem, a DNA-based signature scheme, a
protocol for playing mental poker on the wetware, and an
RNA-based zero-knowledge proof system based on
solving the Sudoku problem. Our proposed genetically
engineered computers are designed based on the standard
parts and techniques of genetic engineering which,
considering the assumed sizes for the problems, can be
easily constructed and verified in laboratory. Furthermore,
security proofs have been presented for each one of the
proposed schemes which show that our proposed genetic
machines are mathematically sound.

References
[1] T. Head, Formal Language Theory and DNA: an analysis

of the generative capacity of specific recombinant behaviors,
Bull. Math. Biology, vol. 49, 1987, pp. 737–759.

[2] L.M. Adleman, Molecular computation of solutions to
combinatorial problems, Science, vol. 266, 1994, pp. 1021-
1024.

[3] A. R. Cukras, D. Faulhammer, R. J. Lipton, L. F.
Landweber, Chess games: a model for RNA based
computation, BioSystems vol. 52, 1999, pp. 35–45.

[4] A. Gehani, T. LaBean, J. Reif, DNA-based
Cryptography, Aspects of Molecular Computing, Springer-
Verlag Lecture Notes In Computer Science, vol. 2950, 2004.

[5] D. Boneh, C. Dunworth, R. Lipton, Breaking DES Using a
Molecular Computer, Princeton CS Tech-Report CS-TR-
489-95, 1995.

[6] L. M. Adleman, P. W. K. Rothemund, S. Roweis and E.
Winfree, On Applying Molecular Computation to the Data
Encryption Standard, In Proc. Second Annual Meeting on
DNA Based Computers, DIMACS Workshop, Princeton
University, USA, June 1996, pp. 28-48.

[7] S. N. Krishna, R. Rama, Breaking DES Using P System.
Theoretical Computer Science, vol. 299, 2003, pp. 495-508.

[8] A. Choudhary, K. Krithivasan, Breaking DES Using
Networks of Evolutionary Processors with Parallel String
Rewriting Rules, International Journal of Computer
Mathematics, Vol. 86, No. 4, 2009, pp. 567-576.

[9] A. Karimi, R. Dastanian, H. S. Shahhoseini, A New
Watermarking Scheme for An in-vivo Computer Based on
Infection of E. coli, Proceedings of International
Conference on Computer and Electrical Engineering
(ICCEE), vol. 8, 2010, pp. 484-488. Chengdu, China.

[10] R. Dastanian, A. Karimi, H. S. Shahhoseini, A Novel Multi-
Client Authentication Method Using Infection of Bacteria,

Proceedings of International Conference on
Communication and Electronics Information (ICCEI), vol. 1,
2011, pp. 310-314, Haikou, China.

[11] S. Goldwasser, S. Micali and C. Rackoff, The knowledge
complexity of interactive proof systems, SIAM J.
Computing Vol. 18, no. 1, 1989, pp. 186–208.

Arash Karimi was born in Tehran, Iran
in April the 29th, 1985. He received the
B.S. and M.S. degrees in the Dept. of
Electrical Engineering from Amirkabir
University of Science and Technology
(Tehran Polytechnic) and Iran
University of Science and Technology
(IUST), Tehran, Iran, in 2008 and 2011,
respectively. His major field of study is
telecommunications and cryptography.
He has published a number of papers in

international conferences and journals in the field of information
assurance. His current field of interest include statistical
cryptanalysis, unconventional methods in computation with a
focus on cryptanalysis, Biochemical computing, and formal
languages and automata. Mr. Karimi is a member of Iran
Cryptography Research Association, student branch and a
member of Security Study Group Association (SSG), IT
organization of Iran.

