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Implementing Neural Architectures 
Using Analog VLSI Circuits 
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Abstract -Biological systems routinely perform computations, such as 
speech recognition and the calculation of visual motion, that baffle our most 
powerful computers. Analog very large-scale integrated (VLSI) technology 
allows us not only to study and simulate biological systems, but also to 
emulate them in designing artificial sensory systems. A methodology for 
building these systems in CMOS VLSI technology has been developed 
using analog micropower circuit elements that can be hierarchically com- 
bined. Using this methodology, experimental VLSI chips of visual and 
motor subsystems have been designed and fabricated. These chips exhibit 
behavior similar to that of biological systems, and perform computations 
useful for artificial sensory systems. 

I. INTRODUCTION 
ALCULATION of visual motion and speech recogni- 
tion are two highly complex computations which 

biological systems perform routinely, but which are be- 
yond the capability of our most powerful computers. Ana- 
log very large-scale integrated (VLSI) technology allows us 
to construct hardware models to study and simulate bio- 
logical systems. We can also derive inspiration from bio- 
logical models in building artificial sensory systems. 
Although they use imprecise and unreliable elements, bio- 
logical systems obtain robustness to noisy input data and 
element failure through the use of highly-redundant, dis- 
tributed architectures. Analog VLSI circuits provide an 
attractive medium for implementing such architectures in 
terms of density and speed. Large, regular structures which 
underlie peripheral sensory systems are natural and easy to 
implement in VLSI technology. Analog circuits in parallel 
architectures provide real-time computation for operating 
on sensory input. Processors and sensors can be integrated 
on the same chip, alleviating many of the problems (such 
as temporal aliasing due to sampling) inherent in designs 
that separate computation from sensing. 

Modeling biological systems presents many challenges 
to the analog circuit designer. Neural computation is often 
an emergent property of the system, derived from the way 
the component elements are organized, and may not be 
evident in any single element. It is often difficult to 
separate a neural structure into functional units [l]. Major 
areas are richly interconnected and computation is inter- 
twined, as a single neural structure subserves a multitude 
of functions simultaneously [2]. As a result, computational 
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strategies for building collective systems require the devel- 
opment of new architectures and a new design methodol- 
ogy. Mead [3] presents such a methodology for implement- 
ing blological inspired architectures. We shall illustrate this 
methodology and describe some of the neural organizing 
principles on which it is based. We also present two system 
designs: the silicon retina-a system in which the same 
physical structure that is used to compute gain-control also 
computes contrast ratio, time derivatives, and enhances 
edges, and the Tracker-a simple sensorimotor integration 
system that is able to actively track a bright spot of light. 

11. SYSTEM PROPERTIES 
Many parallels exist between biological “wetware” and 

analog silicon hardware [4]. Both use analog electrical 
signals, with current and differences in electrical potential 
as signal representations. Elementary computational primi- 
tives are a direct consequence of physical laws. Functions 
such as exponentials, due to the physics of energy barriers, 
are performed by the primitive devices- bilayer mem- 
branes and transistors. Time is an essential element for 
computation in both systems. The time constants of the 
processing elements are matched to the events in the 
inputs [5 ] .  Builders of analog VLSI systems face many of 
the same resource constraints as do neural systems- 
limited wiring space and a high cost of communication 
imposed by the physical placement of computation ele- 
men t s. 

Biological systems have evolved architectures that make 
ingenious and efficient use of these limited resources, and 
their study is insightful for VLSI implementations. Many 
“place encoding? exist in biology where information is 
encoded in an element’s spatial location and this location 
is part of the computation. For example, in vision systems, 
the location of a photoreceptor in the retina indicates the 
position of the incoming light in space forming a spatial 
map. The encoding is carried to the next level in cortex via 
a conformal mapping that maintains a spatial locality of 
the signals. At higher levels of cortex maps of features are 
made so that related features are stored together. In a 
spatial map, neurons representing similar information are 
arrayed as closely as possible so that processing may be 
shared. Local averages are computed by local signal aggre- 
gation with a minimum of wire length, a precious resource 
for the VLSI designer. These average values are the local 
operating points of the system and are used by an auto- 
matic gain control subsystem. 
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Some important differences exist between the two tech- 
nologies, however. Neurons have a fan-out and fan-in of 
several thousand-much higher than is currently possible 
in VLSI technology. Also, the brain has more layers avail- 
able for wiring; it has a 2+ E dimensional cortex, versus 
the two dimensions available to chip designers. Analog 
VLSI technology, however, has a speed advantage; it uses 
nanosecond logic, as compared to the millisecond logic 
used for typical neural computations. The integration lev- 
els of neural systems are much larger than is currently 
available in VLSI technology [3], [4]. We will need to use 
multi-chip systems or wafer-scale integration to achieve 
the density needed to implement complex neural functions. 
Neural computing devices are less precise and are less well 
matched than are the analog electronic devices used in 
VLSI circuits [4]. The fault tolerance of neural systems 
suggests that neural organizing principles can be adapted 
to produce wafer-scale architectures. We can use neurobio- 
logical systems as inspiration, but there will be some 
differences in implementation as we exploit the advantages 
of our technology. For example, we could use our speed 
advantage to time-multiplex signals on a single wire to 
make up for lack of wiring space. 

111. THE CIRCUIT BUILDING BLOCKS 
To manage the complexity of building large-scale neuro- 

morphic analog systems, we have developed a structured, 
hierarchical design methodology. At the most basic level, 
we have a transistor model which is simple, but is adequate 
for predicting relevant behavior at the circuit and subsys- 
tem levels. At the next level of abstraction, we have 
designed a set of elementary, yet powerful analog circuit 
building blocks. The basic building blocks are combined 
hierarchically into larger designs using composition rules. 
We must match signal types, and notice that each signal 
type lends itself to certain computations. We use voltages 
for distributing information and currents for doing sum- 
mation via Kirchhoffs current law. 

The circuit building blocks must be able to encompass 
the data representations used by neurons in different parts 
of the brain [7]. In a neural system, computation is often a 
series of transformations from one representation to an- 
other, as the most important outputs are passed on to the 
next level. In the motor system, muscles are innervated by 
neurons where the contraction of the muscle is propor- 
tional to the firing rate of the neuron. A neuron monotoni- 
cally encodes a single variable. In contrast, in the visual 
system, neurons are tuned to respond to multiple proper- 
ties of a stimulus. A neuron in visual cortex may respond 
to stimulus location, orientation and direction of motion 
[8]. A stimulus activates a number of neurons that respond 
over a limited range of inputs, but whose regions of 
sensitivity overlap. As a result, spatio-temporal patterns of 
activity of a cell population are used to represent data. For 
example, in the visual system, color is calculated from the 
analog ratios of the values of three different types of cone 
cells that have overlapping spectral sensitivities [9]. 

With these principles in mind, we can turn circuits into 
systems. In the following sections, we shall describe the 

- 

Fig. 1. Schematic of the transconductance amplifier circuit. The circuit 
consists of a bias transistor Qb, a differential pair Ql-Q2, and a 
current mirror Q3-Q4. 

transistor model and the functional analog building blocks. 
We shall then describe subsystems for global and local 
averaging. 

3.1. The Transistor Model 
We build analog circuits in which many of the MOS 

transistors operate in the weak-inversion (subthreshold) 
regime. In this regime, the MOS transistor behaves much 
like a bipolar transistor; the dominant conduction mode is 
the result of diffusion current. The drain current is expo- 
nential in the gate voltage. A simple model for the sub- 
threshold transistor in terms of its gate voltage Vg, source 
voltage 5 and drain-source voltage vd, is given by 

where K measures the effectiveness of the gate voltage in 
determining the surface potential, Io is the zero-bias cur- 
rent, and Vo is a measure of the drain resistance, also 
known as the Early voltage [lo]. For our purposes, these 
parameters are considered to be constants of the fabrica- 
tion process. The parameter V, is a characteristic voltage 
equal to kT/q  in which k is Boltzmann’s constant, T is 
absolute temperature, and q is the charge on an electron. 

Operation in the subthreshold region has several advan- 
tages for the construction of large analog systems [ll]. 
Typical currents for a minimum-sized device are in the 
range of lo-’* to 10-7A, so power consumption is low. 
Also, the transistor saturates after a few V, of drain 
voltage. As a result, the drain voltage of a subthreshold 
transistor can be operated much closer to the source volt- 
age than can the drain voltage of an above-threshold 
transistor. Finally, the transistor computes an exponential, 
a function we will use often. 

3.2. The Transconductance Amplifier 
One of our most important building blocks is the 

transconductance amplifier shown in Fig. 1. The circuit 
acts like an operational amplifier with high open-loop 
voltage gain ( > low), however, the transconductance (the 
gain from differential input voltage to output current) is 
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controllable. The bias transistor, Qb, acts as a current 
source, setting the current through the differential-ampli- 
fier stage, controlling the transconductance G and the 
saturated output current l b .  

By using the simple model for the transistor, we can 
deduce the output current as a function of differential 
input voltage in the ideal case: 

1 I=Z,tanh -(v1-v2) . i 2;T 

The basic transconductance amplifier circuit uses only five 
transistors, but has a limited voltage gain and a limited 
range of output voltages over which it operates correctly. 
We use a wide-range transconductance amplifier [3] which 
has nine transistors when the circuit must operate over a 
large output voltage range. 

The transconductance amplifier performs several inter- 
esting computations in different regions of operation. For 
small differential voltages, the amplifier is roughly linear, 
with trkconductance 

(3) 

For large differential input voltages, IV2 - VJ >> V T / ~ ,  the 
circuit behaves like a threshold function with asymptotes 
f l b .  

3.3. Arithmetic Building Blocks 
In addition to the transconductance amplifier, we have 

developed a set of primitive circuit elements that are 
sufficiently rich to encompass many different kinds of 
neural architectures. Basic transistor properties lead to 
simple square root and logarithm circuits that perform 
data compression. Due to the large dynamic range of 
sensory inputs, neural signals are often represented with a 
logarithmic encoding. Physiological recordings show that a 
biological photoreceptor's electrical response is logarithmic 
in light intensity over the centeral part of its range [12]. 

We can devise several of our functional building blocks 
as extensions of the transconductance amplifier. We make 
a unity-gain follower by connecting the open-circuited 
output of the transconductance amplifier back to its nega- 
tive input. We design a half-way rectifier by adding a 
p-channel current mirror at the output of the transconduc- 
tance amplifier. The p-channel current mirror copies only 
positive currents. A full-wave rectifier is composed of two 
half-wave rectifiers. Many of the circuits used in analog 
bipolar design, such as the Gilbert transconductance mul- 
tiplier and other translinear circuits [13], [14] have been 
adopted in our subthreshold MOS implementations. We 
also use traditional analog micropower circuits [ll]. 

Other functional units have biological correlates. The 
winner-take-all circuit [15] computes the maximum of the 
currents flowing into a set of input channels. The circuit 
causes the voltage on the output of the maximum channel 
to go high, while all other outputs are held low. This 
computation is similar to the nonspecific-inhibition 
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Photoreceptor circuit schematic and measured response of the 
circuit. The photocurrent is pro ortional to the incident light intensity. 
The output voltage is logari&c over more than four orders of 
magnitude in intensity. Data taken from Mead [3]. 

Fig. 2. 

schemes found in biology, where the presence of a signal 
on one channel is used to inhibit other channels [16]. 

The time scales needed for sensory processing using 
neural organizations require large values of resistance. 
Resistor values in a typical CMOS process are quite low. 
Using a special process with undoped polysilicon, we could 
make the required resistors, but instead we have chosen to 
design active resistors with variable resistance using only 
the basic CMOS process [3]. We set the value of resistance 
with a subthreshold bias transistor. The resistor is mono- 
tonic with I-Vcharacteristics that pass through the origin. 
The resistor saturates whan there is a large voltage differ- 
ences across it, as does the transconductance amplifier. We 
will use this property to advantage at the system level. 

3.4. The Photoreceptor 
To process sensory data, we must have a set of primi- 

tives for transducing sensory inputs, such as light or sound, 
onto the silicon. We use the photoreceptor circuit shown in 
Fig. 2 to transduce light into an electrical signal [17]. The 
photoreceptor consists of a photodetector and a logarith- 
mic element. The photodetector is a vertical bipolar tran- 
sistor, which is a parasitic element of the basic CMOS 
process. The base is the well, the emitter is the source-drain 
diffusion, and the collector is the substrate. As incident 
photons create electron-hole pairs, electrons are collected 
by the base, transducing light into photocurrent with a 
gain of several hundred. The logarithrmc element consists 
of two diode-connected p-channel transistors acting as a 
load for the photodetector. The transistors are biased into 
the weak-inversion regime by the photocurrent; they create 
an output voltage that is proportional to the logarithm of 
the current and hence to the logarithm of the incident light 
intensity. The voltage out of this photoreceptor is logarith- 
mic over four to five orders of magnitude in light intensity, 
as shown in Fig. 2. 

The logarithmic response compresses the intensity range 
of several orders of magnitude into a few hundred milli- 



646 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. 36, NO. 5, MAY 1989 

Fig. 3. Schematic of the follower integrator circuit. The capacitor cur- 
rent is proportional to the difference between Kn and VoUl for small 
differences. The time constant integration, 7,  is the capacitance multi- 
plied by the conductance of the amplifier. 

volts of output voltage range. As a result of this transfor- 
mation, voltage differences between two points in a uni- 
formly illuminated image correspond to the ratio between 
the reflectances of the two objects- the voltage difference 
represents a contrast ratio that is independent of illumina- 
tion level. 

3.5. Time- Vaying Building Blocks 
Most of the information that the sensory system must 

process concerns time-varying signals: visual motion, 
sound, etc. To process these signals, we have designed a set 
of functional building blocks for time-varying inputs. As 
shown in Fig. 3, we have created a first-order low-pass 
filter, called a follower integrator, by adding a capacitor to 
the basic follower circuit. We use an MOS transistor 
operated above threshold as a capacitor. For small signals, 
in the linear region of the amplifier, the follower integrator 
has the transfer function 

(4) 

where the time constant T is equal to C / G ,  C is the value 
of capacitance, and G is the transconductance of the 
amplifier. For low frequencies, the circuit acts as a unity- 
gain follower; for high frequencies it acts as an integrator. 
We combined two cascaded follower integrator first-order 
sections with a positive feedback amplifier to build a 
second-order section. We set the poles of this second-order 
system by changing the conductance of the feedback am- 
plifier. 

Many computations emphasize temporal changes in the 
pattern of input signals. A derivative circuit has this prop- 
erty. We designed a differentiator by subtracting a signal 
from a time-integrated version of itself, which is computed 
by the follower integrator. We do this subtraction with a 
transconductance amplifier. We also have built circuits 
that emphasize temporal derivatives above a certain signal 
level. 

So far, we have dealt with signals that are analog in both 
time and amplitude. Biological systems also use signals 
that are digital in amplitude and analog in time. These 
fully restored signals are used for transmitting data over 
long distances. The data are represented by the arrival 

Fig. 4. Schematic of the follower aggregation circuit. Each follower 
supplies a current to the output node that is proportional to the 
difference between its input voltage and the output voltage. 

time of nerve pulses [18]. We have designed a circuit, the 
Neuron, that integrates a current input and produces pulse 
outputs when the input voltage is above a certain thresh- 
old. The 'Neuron's output frequency is dependent on the 
input current, and the pulsewidth is controllable. This 
circuit is useful in encoding frequency coded data. 

These building blocks for time-varying signals can be 
combined into subsystems, and are important in the design 
of auditory processing elements. We cascaded first-order 
sections into an analog delay line. The silicon cochlea chip 
uses second-order sections in a frequency-selective analog 
delay line [19]. We composed neuron circuits into a delay 
line that propagates fully restored pulses. A variation on 
this design, based on principles taken from biological 
axons, allows bidirectional pulse propagation. The pulse 
representation used by the axon delay lines makes compu- 
tations such as correlations particularly easy to perform. 

Iv. LOCAL AND GLOBAL AGGREGATION 
An essential computation in neural systems is the calcu- 

lation of averages. The follower integrator circuit computes 
a temporal average-a reference against whch the tempo- 
ral variation of signals can be compared. We shall now 
describe subsystems that perform spatial averages. The 
follower aggregation circuit, shown in Fig. 4, consists of 
follower stages with their outputs connected. Assuming 
operation in the linear regime, each amplifier contributes a 
current G,( V ,  - Vou,) to the output node. Using Kirchhoff s 
current law at the output node yields 

Thus the circuit takes the average of the inputs V,  weighted 
by the transconductances GI. If any input voltage is signifi- 
cantly different from the average, however, the transcon- 
ductance-amplifier current saturates and the contribution 
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Fig. 5. A resistive ladder network. A signal injected at node V, Will 
decay exponentially with distance at a scale set by the product RG. 

by that data point is limited. This property gives the circuit 
a robustness against bad data points. If all values are 
scattered by many V T / ~ ,  then the circuit performs a 
weighted median calculation with all amplifiers saturated. 

The follower-aggregation circuit performs a global aver- 
age. Neural-type circuits also perform local aggregation 
useful for computing local averages. Data can be averaged 
over a local neighborhood, with data spatially distant from 
the point of aggregation contributing less to the average. 
Local averages can be computed by a resistive network. A 
one-dimensional resistive-ladder network is shown in Fig. 
5.  A signal injected into this network decays exponentially 
with distance from the source. For a uniform, continuous 
network, the voltage along the network as a function of 
distance x, has the form 

(7) v = voe ( - x / L )  

where 

1 -=m. L (8) 

Here, R is the resistance per unit length and G is the 
conductance to ground. L is a measure of the neighbor- 
hood over which the average is taken and a = 1/L is called 
the space constant. For a discrete network, the result is 

v, = ynvo (9) 

where 

1 1 
y = 1 +  - - '/l+ - 

2L2 L 4L2 

and R and G are given per section. For large values of L, 
the continuous approximation to the discrete network is 
quite good. If the conductance to ground is small when 
compared with the conductance to the network, the signal 
will propagate for a large distance before it dies out, and L 
will be larger. 

Inputs to the network can be provided by voltages or by 
currents. The voltage source is placed between the conduc- 
tance G and ground. Multiple inputs cause the network to 
perform a weighted average at each node by superposition; 
the farther away the inputs are from a node, the less 
weight they are given. The voltage at a given node due to 
multiple input currents I ,  is 

0 2 4 6 8 1 0 1 2 1 4  
0.14 : : : : : : I 

Tap 

Voltage versus distance for a one-dimensional discrete resistive 
ladder network for different values of L. The solid curves were com- 
puted from theory for each value of L. The dots are data taken from 
the output of the discrete line. Data taken from Mead [3]. 

Fig. 6. 

where Go is the effective conductance of a semi-infinite 
network. For a continuous network, Go is given by 

For the discrete case, the result is 

We design a silicon implementation of the resistive net- 
work by replacing the resistor by our active resistor circuit 
and the conductance by a follower. The transconductance 
of the amplifier corresponds to G in Fig. 5.  Inputs to the 
follower correspond to voltage sources. Data from an 
experimental network for several different values of L are 
shown in Fig. 6 .  

This resistive averaging network is useful for a smooth- 
ing operation. The superposition principle also applies in 
two dimensions, but the weighting function is more com- 
plex [3]. The two-dimensional network computes a smooth 
fit to each point of data included in a region of diameter 
L. Because the resistors saturate, when there is too much 
voltage drop across a single resistor, a discontinuity will 
occur. This saturating property of the resistor is useful for 
image segmentation [3]. The network segments an image 
into regions over which the image is smooth. 

V. THE SILICON RETINA 
The silicon retina [20] is a system built from our analog 

functional building blocks. It illustrates many of the prop- 
erties of neural systems. The model for the retina of each 
type of animal is different, but we have conserved the 
gross structure of vertebrate retina in our design of the 
silicon retina. The c h p  generates, in real time, outputs that 
correspond to signals observed in biological retinas, and 
exhibits a tolerance for device imperfections. 

The cells in the first layers of the retina are shown in 
Fig. 7 [21]. Light is transduced into an electrical signal via 
the photoreceptors at the top. The primary pathway pro- 
ceeds vertically from the photoreceptors through the triad 
synapse to the bipolar cells and then to the ganglion cells. 
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Fig. 7. An artist’s conception of a cross section of a primate retina. 
R :  photoreceptor, H :  horizontal cell, I B :  invaginating bipolar cell, 
FB: flat bipolar cell, A :  amacrine cell, IP: inner plexiform cell, G :  
ganglion cell. Adapted from Dowling [21]. 

This pathway intersects two horizontal pathways: the hori- 
zontal cells of the outer-plexiform layer and the amacrine 
cells of the inner-plexiform layer. The triad synapse is the 
point of contact among the photoreceptor, the bipolar cell, 
and the horizontal network. In just a few layers of cells in 
the retina, a remarkable amount of computation is done: 
the image becomes independent of the absolute light level 
and as the retina adapts to a wide range of viewing 
conditions, it enhances edges and emphasizes time-deriva- 
tives. 

A schematic drawing of the silicon retina is shown in 
Fig. 8. The horizontal network is modeled as a resistive 
network. We model the photoreceptor, the bipolar cell, 
and the triad synapse as shown in the inset. A wide-range 
amplifier provides a conductance through which the resis- 
tive network is driven toward the photoreceptor-output 
potential. The horizontal cells form a network that aver- 
ages the photoreceptor output spatially and temporally. A 
second amplifier senses the voltage difference across the 
conductance, and generates an output proportional to the 
difference between the photoreceptor output and the net- 
work potential at that location. The bipolar cells’ output is 
thus proportional to the difference between the photore- 
ceptor signal and the horizontal-cell signal. Because the 
silicon model is implemented in a physical substrate, it has 
a straightforward structural relationship to the vertebrate 
retina and provides an example of a spatial mapping. Each 
photoreceptor in the network is linked to its six neighbors 
with resistive elements to form a hexagonal array. By using 
a wide-range amplifier in place of a bidirectional conduc- 
tance, we make the photoreceptor an effective voltage 
source that provides input into the resistive network. The 
spatial scale of the weighting function a is determined by 
the product of the lateral resistance and the conductance 

Fig. 8. Diagram of the silicon retina. The horizontal cell layer is repre- 
sented by the resistive network. The pixels are tiled in a hexagonal 
array. The circuit schematic for a single pixel representing the triad 
synapse is shown in the inset with P representing the photoreceptor. 

coupling the photoreceptors into the network as described 
in Section IV. 

The c h p  consists of an array of pixels and a scanning 
arrangement for reading the results of the retinal process- 
ing. The output of any pixel can be accessed through the 
scanner, whch is made up of a vertical scan register and a 
horizontal scan register [22]. Each scan-register stage has 
l-bit of shift register with the associated signal-selection 
circuits. The scanners can be operated in one of two 
modes: static probe or serial access. In static-probe mode, 
a single row and column are selected, and the output of a 
single pixel is observed as a function of time. In serial 
access mode, both vertical and horizontal shift registers are 
clocked at regular intervals to provide a sequential scan of 
the processed image for display on a television monitor. 
The core of the chp  is made of rectangular tiles with a 
height-to-width ratio of 0 to 2 to approximate a hexago- 
nal grid. Each tile contains the circuitry for a single pixel, 
along with the wiring necessary to connect the pixel to its 
nearest neighbors. 

The photoreceptor, the horizontal cells, and the bipolar 
cells in the triad synapse interact in a center-surround 
organization. In t h s  organization, the signal average from 
a central area is subtracted from the average over a larger 
surrounding area, and the difference is reported at the 
output. The center of the bipolar-cell receptive field is 
excited by the photoreceptors, whereas the antagonistic 
surround is due to the horizontal cells. The output of the 
bipolar cell represents the difference between a center 
intensity and a weighted average of the intensities of the 
surround. The horizontal network provides a smooth refer- 
ence for local computation. If the visual system used a 
global average as a reference, details in very light or very 
dark areas would be invisible. 

Fig. 9 shows the shft  in operating point of the bipolar- 
cell output of both the biological and silicon retinas as a 
function of surround illumination. At a fixed surround 
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Fig. 9. (a) Intensity versus output peak response for a depolarizing 
bipolar cell responding to full-field flashes. Data from Werblin [23]. 
(b) Intensity versus steady-state output current for a single pixel of the 
sihcon retina for four different background intensities. The curves shift 
to higher intensities at higher background illuminations. 
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Fig. 10. Model illustrating pixel response to a spatial edge in intensity. 
The solid line represents the voltage outputs of the hotorece tors 
along a cross section perpendicular to the edge. The dasted line SEOWS 
the resistive network output. The difference between the photoreceptor 
output and the resistive network is shown in the trace labeled differ- 
ence. 

illumination level, the output of the bipolar cell saturates 
to produce a constant output at very low or very high 
center intensities, and it is sensitive to changes in input 
over the middle of its range. Using the potential of the 
resistive network as a reference, it centers the range over 
which the output responds on the signal level averaged 
over the local surround. The action of the horizontal-cell 
layer is an example of lateral inhibition. As a sharp edge 
passes over the receptive-field center, the output undergoes 
an abrupt transition from lower than average to above 
average. Sharp edges thus generate large output, whereas 
smooth areas produce no output, because the local center 
intensity matches the average intensity. Fig. 10 shows a 
model illustrating the mechanism of the generation of a 
pixel's response to a spatial edge in intensity. Fig. 11 
shows the actual response of the silicon retina to an edge 
stimulus. The output response is large at the position of 
the edge. The center-surround computation is a good ap- 
proximation to a Laplacian filter, whch is used widely in 
computer vision systems. Other experiments on the silicon 
retina including its time properties are reported in [ZO].  

0.15 T 
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Fig. 11. Pixel output of the silicon retina in response to a contrast edge 
for two different space constants. Data from Mead [3]. 

VI. SENSORIMOTOR INTEGRATION 
Neurons in the retina spatially encode information in 

their activity. Motor neurons, such as those that control 
the eye muscles in the ocular motor system, encode scalar 
information in their firing rates. In order to perform ocular 
motor functions such as saccades, place encoding from 
retinotopic maps must be covered into the frequency en- 
coding used by the motor neurons [24]-[26]. We have 
designed and fabricated VLSI chips that convert the place 
encoding of a stimulus in an image into a frequency 
encoding for driving a motor system. These chips extract 
information from a visual map created using a two-dimen- 
sional array of photodetectors and local processing and 
then use servo techniques to create signals useful for 
driving motors. We shall describe a system that calculates 
a useful function of an image-its center of intensity and 
combines this information with a servo to perform simple 
sensory motor integration. 

6.1. Center of Intensity 

The silicon retina has an output for every pixel. We shall 
now describe a system that extracts information from the 
image and reduces the number of outputs that are passed 
on to subsequent stages of processing. The chp, the Tracker 
[27], calculates the center of intensity of a visual field. Its 
computation effectively determines the position of a bright 
spot in a visual image, provided that the background is 
sufficiently dim. The silicon retina design closely follows 
the biological metaphor; in contrast, the Tracker chip 
represents a more traditional engineering-oriented ap- 
proach. 

Fig. 12  shows a follower-aggregation network composed 
of a one-dimensional array of phototransistors and 
transconductance amplifiers. The network computes the 
weighted average of the phototransistor positions, where 
each position is weighted by the photocurrent in the corre- 
sponding phototransistor. We have modified the basic 
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Fig. 12. Follower aggregation network with followers modified to use 
phototransistor currents as their bias currents. Inputs to the array 
correspond to photodetector positions encoded by a resistive line. 

transconductance amplifier by replacing the bias transistor 
Qb (Fig. 1) with a phototransistor. The amplifier bias 
current is supplied by the phototransistor, so the transfer 
function now is 

(14) 

The position of each phototransistor in the array is en- 
coded by a resistive line with end voltages V, and VN. The 
resistive line is used as a voltage divider, whch sets up a 
linear voltage gradient along the array. The network be- 
haves like the one described in Section IV, with conduc- 
tance set by the phototransistor and inputs set to equal the 
phototransistor positions. 

For small Vo-VN, all amplifiers are in their linear re- 
gions and the output voltage represents the mean of the 
distribution of incoming light intensity. For large Vo-VN, 
the output voltage represents the median of the distribu- 
tion, since most of the outputs will be independent of the 
position in the array. Detectors farther away from the 
bright spot contribute less to the output than they would 
in a weighted mean, and the localization is more accurate. 
The output signal levels are also much larger with a 
reduced sensitivity to offsets, so this mode of operation is 
preferred. 

This center-of-intensity calculation can be generalized to 
two dimensions, as shown in Fig. 13. Because the two 
dimensions are independent, the value of the intensity at 
any point along each axis is taken to be the sum of the 
currents from the receptors in a line perpendicular to that 
axis. The receptors are spatially alternated, so that the 
currents from adjacent receptors are added to opposing 
axes. A 200x200 pixel version of the chip was fabricated 
in a 2-pm CMOS process. We used the polysilicon layer to 
implement the resistive voltage dividers. We tested the chip 
using a light-emitting diode (LED), a precision motion 
table, and a uniformly reflective background. The results 
of moving the LED along one axis are shown in Fig. 14. 
The output voltage correctly encoded the position of the 
LED along the chip. As the stimulus moved off the ends of 
the chip, the output voltage returned to the value obtained 
for a uniformly illustrated background. We repeated the 
procedure along different positions and we calculated the 

fa ...IQ . . . I Q v x  

Fig. 13. Two-dimensional follower aggregation network. The photo- 
transistor current outputs are summed onto wires running parallel to 
each axis. These current sums bias the transconductance amplifiers in 
the two follower aggregation networks located at the edges of the array. 
The receptors are spatially alternated, so that adjacent phototransistors 
contribute to opposing axes. 
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Fig. 14. Output voltage of the Tracker chip versus osition of an LED 
along an axis. Data taken from DeWeerth anaMead [27]. 

relative and maximum errors to be less than 1 percent. We 
measured a repeatability of 0.05 percent, and a monotonic- 
ity of better than 0.1 percent. An advantage of the Tracker 
over commercially available schemes is that it can be 
extended to calculate multiple bright spots or to display 
selective attention to a given bright spot [28]. 

6.2. Sensorimotor Integration 
Using traditional positional servo techniques, we devel- 

oped a framework for converting simple sensory informa- 
tion into appropriate signals for driving actuators [29]. 
Sensory and servo information can be combined on the 
same chip, affording advantages in terms of lower pad 
count, higher speed, lower area, lower cost, and lower 
discrete-part count. We used the same follower-integrator, 
differential amplifier and derivative circuits as those we 
used to design the sensory systems. We used the Neuron 
circuit to convert the servo outputs into a pulse train for 
driving the actuators. The output pulsewidth determines 
the size of each elementary correction being applied to the 
actuator. The actuator is driven sufficiently hard by each 
pulse to overcome the static friction. Because the amount 
of drive is set by the duty cycle of the pulses and not by an 
analog current, power amplification is very easy to accom- 
plish. We used a dual-rail pulse encoding for bidirectional 
operation of the actuators. As an example of this frame- 
work, we implemented a simple position-derivative (P-D) 



MAHER et al.: NEURAL ARCHITECTURES 651 

servo. We combined this servo with the 2-D Tracker circuit 
on a single chip. The chip was able to actively track a 
bright spot of light, a useful engineering task. 

We have also implemented a system combining a 
1-dimensional version of this chip with a planar model of 
the oculomotor plant. The pulse outputs from the chip are 
used to drive a pair of motors representing the antagonistic 
muscles that control one axis of ocular rotation. The 
eyeball is modelled using a turntable with the chip and a 
lens mounted at its center. The system fixates on a stimu- 
lus presented to the visual field of the chip. The system is a 
simple model of sensorimotor integration that performs a 
transformation from a place encoding to a frequency en- 
coding. We envision using more complex local processing 
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