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In the calculation of probabilities of physical processes occurring in a background classical field,
the local constant field approximation (LCFA) relies on the possibility of neglecting the space-time
variation of the external field within the region of formation of the process. This approximation is
widely employed in strong-field QED as it allows to evaluate probabilities of processes occurring in
arbitrary electromagnetic fields starting from the corresponding quantities computed in a constant
electromagnetic field. Here, we scrutinize the validity of the LCFA in the case of nonlinear Compton
scattering focusing on the role played by the energy of the emitted photon on the formation length of
this process. In particular, we derive analytically the asymptotic behavior of the emission probability
per unit of photon light-cone energy k− and show that it tends to a constant for k− → 0. With
numerical codes being an essential tool for the interpretation of present and upcoming experiments
in strong-field QED, we obtained an improved approximation for the photon emission probability,
implemented it numerically, and showed that it amends the inaccurate behavior of the LCFA in
the infrared region, where it remains in qualitative and good quantitative agreement with the full
strong-field QED probability.

PACS numbers: 12.20.Ds, 41.60.-m

I. INTRODUCTION

QED is probably the best tested and most successful
among the physical theories. There are, however, sec-
tors of QED which still need to be thoroughly scruti-
nized both theoretically and experimentally. In particu-
lar, the so-called strong-field sector of QED has recently
attracted considerable attention. The strong-field sector
of QED includes electrodynamical processes occurring in
the presence of background electromagnetic fields of the
order of the “critical” field scale: Fcr = m2/|e| = 1.3 ×
1016 V/cm [1–3]. Here,m and e < 0 are the electron mass
and charge, respectively, and units with ~ = c = 4πǫ0 = 1
and α = e2 ≈ 1/137 are employed throughout the paper.
High-power lasers are a unique tool to test QED in the
strong-field sector, whose field scale corresponds to an
intensity Icr = F 2

cr/4π = 4.6 × 1029 W/cm2. The field
strength F of present and soon available lasers is still
much smaller than Fcr [4–7]. However, probing QED at
the critical field scale is facilitated by the Lorentz invari-
ance of the theory. The latter implies that the parame-
ters controlling QED processes must be Lorentz-invariant
quantities. Thus, the effective field scale at which a pro-
cess occurs is not set by the field amplitude F in the
laboratory frame but rather by the amplitude F ∗ that
the participating charged particles experience in their
rest frame [8–13]. Indeed, the parameter which identifies
the strong-field QED regime is given by χ0 = F ∗/Fcr

[8–13]. Available technology already allows for entering
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the strong-field QED regime (χ0 & 1) by combining ei-
ther conventional [14, 15] or laser-based [16] multi-GeV
electron accelerators with high-power optical lasers [4–6].
Another promising setup is based on the interaction of
an ultra-intense laser beam with a solid target [17–22].

Strong-field QED processes in intense laser beams are
conveniently studied theoretically within the plane-wave
approximation, as the resulting Dirac equation can be
solved analytically [1–3]. Now, ultrarelativistic charges
are typically involved in considered strong-field QED pro-
cesses, such that an arbitrary external electromagnetic
field looks as a plane wave in the instantaneous rest frame
of the charge [23]. In addition, since the background
laser fields considered in applications are typically very
intense, the basic strong-field QED processes (nonlin-
ear Compton scattering and nonlinear Breit-Wheeler pair
production) are formed on a length scale much smaller
than the laser wavelength [9, 12], and the corresponding
available probabilities in the so-called local constant field
approximation (LCFA) can be employed.

Generally speaking, the LCFA is said to be applica-
ble when the background laser field is so strong that
ξ0 = |e|E0/mω0 ≫ 1 [9, 12], where E0 is the laser field
amplitude and ω0 its central angular frequency. Since
at optical laser photon energies (ω0 ∼ 1 eV), the con-
dition ξ0 ∼ 1 is already satisfied at intensities of the
order of 1018 W/cm2, the probabilities of the basic QED
processes within the LCFA are widely employed to in-
terpret present experiments on strong-field QED at in-
tensities above 1020 W/cm2, to predict the results of
upcoming ones, and to investigate theoretically QED ef-
fects in laser-plasma interaction. More precisely, the con-
dition of validity of the LCFA in the quantum regime
χ0 & 1 was found to be ξ30/χ0 ≫ 1 [24, 25]. However,
at, e.g., ξ0 & 10, the violation of the additional condition
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ξ30/χ0 ≫ 1 implies that αχ
2/3
0 & 1 and then that the per-

turbative approach to strong-field QED in a plane wave
breaks down [9].
Here, we first challenge the validity of the LCFA at

ξ0 ≫ 1 by investigating analytically the photon emission
probability in nonlinear single Compton scattering. We
find that even for a plane wave with ξ0 ≫ 1, the LCFA
predicts a photon yield which differs quantitatively and
qualitatively from the exact one for k− . (χ0/ξ

3
0)p−,

with k− (p−) being the photon (electron) light-cone en-
ergy [26]. The origin of the failure of the LCFA here is the
dependence of the formation length of the process on the
photon light-cone energy (see, e.g., [24, 27]) rather than
the interference effects investigated in [28, 29]. Then,
we provide an improved approximation of the differential
emission probability, that can be straightforwardly im-
plemented in numerical codes, which are routinely em-
ployed to analyze and interpret experiments in strong-
field QED. Unlike the differential probability within the
LCFA, the improved expression is finite at low photon
light-cone energies and this difference is shown to be sig-
nificant and in principle already observable experimen-
tally.
Note that the leading-order correction to the LCFA,

which depends on the derivatives of the background field,
has been derived analytically in [24], which, however, in-
troduces a fictitious non-integrable divergence in the in-
frared limit of the emission probability (the divergence
in the intensity of radiation is integrable, though). Fur-
thermore, strong deviations from the LCFA have been
predicted in the low-energy part of the power spectrum
emitted by multi-GeV electrons in oriented crystals [30].
Analogous deviations as in [30] have been predicted in
[31] in the case of a uniform magnetic field of finite exten-
sion. Here we investigate the case of nonlinear Compton
scattering and we provide the first numerical implemen-
tation of this process beyond the LCFA, that employs
only the local value of the background field at the inter-
action point. This is an important advantage, as it sig-
nificantly reduces the computational overhead required
to improve the LCFA.

II. THEORETICAL MODEL

Below we consider an electron with incoming four-
momentum pµ = (ε,p), which collides with a plane
wave propagating along the n direction (n2 = 1). The

plane wave is characterized by the four-vector poten-
tial Aµ(φ) = (0,A⊥(φ)), where φ = (nx) = t − n · x
[i.e., nµ = (1,n)], and where n · A⊥(φ) = 0 and
limφ→±∞ A⊥(φ) = 0 [i.e., the four-potential is chosen
in the Lorentz gauge ∂µA

µ(φ) = 0]. Several aspects of
nonlinear single Compton scattering have been already
studied recently [28, 32–47] (see also the reviews [8–12]).
In particular, since the plane wave depends only on the
variable φ, it is clearly convenient to introduce the light-
cone coordinates T = (t + n · x)/2, x⊥ = x − (n · x)n,
and, indeed, φ = t−n · x, as well as the light-cone com-
ponents v+ = (v0 + n · v)/2, v⊥ = v − (n · v)n, and
v− = v0 − n · v of an arbitrary four-vector vµ = (v0,v)
(note that T = x+ and φ = x−). Assuming that the
emitted photon (outgoing electron) is characterized by a
four-momentum kµ = (ω,k) [p′µ = (ε′,p′)], the leading-
order emission probability dP/dk− averaged (summed)
over all initial (final) discrete quantum numbers has been
derived in detail, e.g., in [48, 49] and, for the sake of com-
pleteness, some technical details are summarized below.
The leading-order matrix element of the process within
the Furry picture [1] is

Sfi = −ie
√
4π

∫

d4x ψ̄p′,s′(x)
êk,l√
2ωV

ei(kx)ψp,s(x), (1)

where ψp,s(x) (ψp′,s′(x)) is the positive-energy Volkov
state with asymptotic four-momentum pµ (p′µ) and
asymptotic spin quantum number s (s′), i.e., the positive-
energy solution of the Dirac equation in the plane wave
Aµ(φ) [1], where the hat on a four-vector indicates the
contraction of the latter with the Dirac gamma matrices
γµ, where in general ψ̄ = ψ†γ0 for an arbitrary bispinor
ψ, where eµk,l is the (linear) polarization four-vector of the
emitted photon, and where V is the quantization volume.
For the sake of completeness, we report here the expres-
sion of the positive-energy Volkov states [1]:

ψp,s(x) =e
iSp(x)

[

1 +
e

2p−
n̂Â(φ)

]

up,s√
2V ε

, (2)

Sp(x) =− (px)−
∫ φ

0

dφ′
[

e(pA(φ′))

p−
− e2A2(φ′)

2p−

]

,

(3)

where up,s is the constant bispinor solution of the equa-
tion (p̂ − m)up,s = 0. Since the external field depends
only on the variable φ, one is able to carry out the three
integrations over T and x⊥ analytically, and one obtains

Sfi =− ie

√

π

2V 3εε′ω
(2π)3δ(2)(p′

⊥ + k⊥ − p⊥)δ(p
′
− + k− − p−)

∫

dφ ūp′,s′

[

1− e
n̂Â(φ)

2p′−

]

êk,l

[

1 + e
n̂Â(φ)

2p−

]

up,s

× exp

〈

i

{

(p′+ + k+ − p+)φ+

∫ φ

0

dφ′
[

e
(p′A(φ′))

p′−
− e

(pA(φ′))

p−
− e2

A2(φ′)

2

(

1

p′−
− 1

p−

)]

}〉

.

(4)



3

The average probability dP that a photon is emitted with
momentum between k and k + dk is given by

dP = V
d3k

(2π)3
V

∫

d3p′

(2π)3
1

2

∑

l,s,s′

|Sfi|2. (5)

When squaring modulus of the matrix element, one only
has to take care of the fact that the square of the δ-
function δ(p′−+k−−p−) is performed after transforming

it as δ(p′−+k−−p−) = (ε/p−)δ(pn−p∗n), where pn = p·n
and p∗n = (m2 + p2

⊥ − P 2
−)/2P−, with P− = p′− + k−,

in such a way that the usual procedure exploiting the
periodic boundary conditions along the n direction can
be exploited. Moreover, the sum over the spin variables
(
∑

s up,sūp,s = p̂+m and
∑

s′ up′,s′ ūp′,s′ = p̂′ +m) and
over the photon polarization (

∑

l e
µ
k,le

ν
k,l → −gµν , where

the arrow recalls that the substitution is allowed by gauge
invariance, see [1]) leads to appearance of the trace:

T = −1

4
Tr

{

(p̂′ +m)

[

1− e

2p′−
n̂Â(φ)

]

γµ
[

1 +
e

2p−
n̂Â(φ)

]

(p̂+m)

[

1− e

2p−
n̂Â(φ′)

]

γµ

[

1 +
e

2p′−
n̂Â(φ′)

]}

. (6)

The evaluation of T can be carried out with the standard technique as explained, e.g., in [1] and the result is

T =m2

(

p′−
p−

+
p−
p′−

− 4

)

+
p′−
p−

p2
⊥ − 2p⊥ · p′

⊥ +
p−
p′−

p′ 2
⊥ + ek−

(

p⊥

p−
− p′

⊥

p′−

)

· [A⊥(φ) +A⊥(φ
′)]

− e2
[

A2
⊥(φ) +A2

⊥(φ
′)−

(

p′−
p−

+
p−
p′−

)

A⊥(φ) ·A⊥(φ
′)

]

,

(7)

where the conservation laws imply that p′
⊥ = p⊥ − k⊥ and that p′− = p− − k−. By using the above expression

of T , the probability dP can be written as

dP =
d3k

(2π)3
απm2

p−p′−ω

∫

dφdφ′
{

p−
p′−

+
p′−
p−

− 4 +
p′−
p−

p2
⊥

m2
− 2

p⊥ · p′
⊥

m2
+
p−
p′−

p′ 2
⊥

m2
+
k−
m

(

p⊥

p−
− p′

⊥

p′−

)

· [ξξξ⊥(φ) + ξξξ⊥(φ
′)]

−
[

ξξξ2⊥(φ) + ξξξ2⊥(φ
′)−

(

p−
p′−

+
p′−
p−

)

ξξξ⊥(φ) · ξξξ⊥(φ′)
]}

exp

〈

i

{(

m2 + p′2
⊥

2p′−
+

k2
⊥

2k−
− m2 + p2

⊥

2p−

)

(φ− φ′)

+m

∫ φ

φ′

dφ̃

[

p⊥ · ξξξ⊥(φ̃)
p−

− p′
⊥ · ξξξ⊥(φ̃)
p′−

+
mk−
2p−p′−

ξξξ2⊥(φ̃)

]}〉

,

=− d3k

4π2

αm2

p−p′−ω

∫

dφdφ′ e
−i

k−m2

2p−p′
−

∫

φ′

φ
dφ̃

{

1+
[

p
⊥

m
−

p−
k−

k
⊥

m
−ξ⊥(φ̃)

]

2
}

{

1 +
1

4

p2− + p′ 2−
p−p′−

[ξξξ⊥(φ)− ξξξ⊥(φ
′)]2

}

,

(8)

where ξξξ⊥(φ) = eA⊥(φ)/m. This expression is par-
ticularly useful to calculate the differential probability
dP/dk−. In order to do this, in fact, one has to pass
from the variable kn = k · n to the variable k− =
√

k2
⊥ + k2n − kn, i.e., to write d3k = (ω/k−)dk−d

2k⊥.
The integral over the emitted transverse photon momen-
tum is Gaussian as the phase there contains at the highest
quadratic terms in k⊥. One needs the identity (see, e.g.,

[50])

I0(a) =
∫

d2z

(2π)2
eiaz

2

=

∫ ∞

0

ds

4π
eias =

i

4πa
(9)

for any two-dimensional real vector z = (z1, z2) and for
any constant a with Im(a) > 0. By employing this iden-
tity, one finally obtains
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dP

dk−
=− i

α

2π

1

p−

ξ0
χ0

∫

dϕdϕ′

ϕ− ϕ′ + i0

{

1 +
p2− + p′ 2−
4p−p′−

[ξξξ⊥(ϕ)− ξξξ⊥(ϕ
′)]2

}

× exp

〈

i
1

2

k−
p′−

ξ0
χ0

{

ϕ− ϕ′ +

∫ ϕ

ϕ′

dϕ̃ξξξ2⊥(ϕ̃)−
1

ϕ− ϕ′

[
∫ ϕ

ϕ′

dϕ̃ξξξ⊥(ϕ̃)

]2
}〉

,

(10)

where the laser phase ϕ = ω0φ (ϕ′ = ω0φ
′) has been in-

troduced, and where the prescription ϕ− ϕ′ + i0 results
from the condition on the imaginary part of the constant
a in Eq. (9) and ensures that the emission probabil-
ity vanishes if the external field vanishes. By passing

now to the variables ϕ+ = (ϕ + ϕ′)/2 and ϕ− = ϕ − ϕ′

and by taking into account the parity properties of the
integrand with respect to the variable ϕ−, the differ-
ential probability dP/dk− is found to have the form
dP/dk− =

∫

dϕ+ dP/dk−dϕ+, where (see also, e.g., [49])

dP

dk−dϕ+
=

α

2π

1

p−

ξ0
χ0

Im

∫

dϕ−

ϕ− + i0

{

1 +
p2− + (p− − k−)

2

4p−(p− − k−)

[

ξξξ⊥

(

ϕ+ − ϕ−

2

)

− ξξξ⊥

(

ϕ+ +
ϕ−

2

)]2
}

eiΦ(k−,ϕ−,ϕ+),

(11)

Φ(k−, ϕ−, ϕ+) =
1

2

k−
p− − k−

ξ0
χ0

{

ϕ− +

∫ ϕ−/2

−ϕ−/2

dϕ̃ξξξ2⊥(ϕ+ + ϕ̃)− 1

ϕ−

[
∫ ϕ−/2

−ϕ−/2

dϕ̃ξξξ⊥(ϕ+ + ϕ̃)

]2
}

, (12)

with χ0 = (p−/m)E0/Fcr. In this respect, having in
mind applications based on modern numerical codes as
those used in strong-field QED, it is natural to interpret
the quantity dP/dk−dϕ+ as a probability per unit of k−
and per unit of laser phase. This interpretation is con-
sistent within the LCFA (see below and [9]). However,
we stress that if the phase Φ(k−, ϕ−, ϕ+) is always of
the order of unity, the radiation probability is formed
only after integrating both ϕ+ and ϕ− over the whole
laser pulse and the above interpretation of dP/dk−dϕ+

does not strictly hold. Finally we observe that in the
limit k− ≪ p− Eqs. (11)-(12) are in agreement with Eqs.
(1)-(3) in [30], under the approximations k− ≈ 2ω and
p− ≈ 2ε (see also below).

A. Photon emission probability per unit ω and per

unit k
−

It is also worth mentioning that the differential proba-
bility dP/dk− can be interpreted as (half of) the energy
differential probability of the emitted photon within a

very broad range of parameters. In fact, in the case of
electron-laser collision this approach is justified in the
most relevant configuration, which we also investigate
below, where the electron is initially counterpropagating
with respect to the laser field (p ‖ −n), it is ultrarel-
ativistic (p− ≫ m), and its energy is much larger than
mξ0 (p− ≫ mξ0, see, e.g., [51]). Under these conditions,
indeed, the radiation is essentially confined within a cone
along the initial momentum of the electron of maximal
angular aperture of the order of mξ0/p− ≪ 1 such that
k− ≈ 2ω [23]. Here, we provide a more quantitative
proof of the equivalence between dP/dω and 2dP/dk−,
and also show that it is actually violated at very low ω’s,
such that ω . ω0.

In order to work on expressions of the differential prob-
abilities which are manifestly non-negative, we notice
that ξξξ⊥(ϕ) − ξξξ⊥(ϕ

′) = πππ⊥(ϕ
′) − πππ⊥(ϕ), where πππ⊥(ϕ) =

p⊥/m − (p−/k−)k⊥/m − ξξξ⊥(ϕ). Thus, by integrating
by parts the terms with the pre-exponent proportional
to πππ2

⊥(ϕ) and to πππ2
⊥(ϕ

′) in the last line of Eq. (8), we
obtain

dP =
α

8π2

d3k

p−p′−ω

m2

ω2
0

〈

k2−
p−p′−

∣

∣

∣

∣

∣

∫

dϕ e
i 1
2

k−

p′
−

ξ0
χ0

∫

ϕ

0
dϕ′

{

1+
[

p
⊥

m
−

p−
k−

k
⊥

m
−ξ⊥(ϕ′)

]

2
}∣

∣

∣

∣

∣

2

+
p2− + p′ 2−
p−p′−

∣

∣

∣

∣

∣

∫

dϕ

[

p⊥

m
− p−
k−

k⊥

m
− ξ⊥(ϕ)

]

e
i 1
2

k−

p′
−

ξ0
χ0

∫

ϕ

0
dϕ′

{

1+
[

p
⊥

m
−

p−
k−

k
⊥

m
−ξ⊥(ϕ′)

]

2
}∣

∣

∣

∣

∣

2〉

.

(13)

Here, it is convenient for the analytical manipulation of the integrals to regularize those in ϕ which do not contain
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a pre-exponential factor proportional to the external field by employing the identity (see, e.g., [37])

∫

dϕ e
i 1
2

k−

p′
−

ξ0
χ0

∫

ϕ

0
dϕ′ {1+[s⊥+ξ⊥(ϕ′)]2}

= − 1

1 + s2⊥

∫

dϕ [2s⊥ · ξ⊥(ϕ) + ξ2⊥(ϕ)]e
i 1
2

k−

p′
−

ξ0
χ0

∫

ϕ

0
dϕ′ {1+[s⊥+ξ⊥(ϕ′)]2}

, (14)

where s⊥ = (p−/k−)k⊥/m− p⊥/m.
The final expression of the differential probability in

Eq. (13) can now be employed to calculate either dP/dω
or dP/dk−. In the first case, one simply writes d3k =

ω2dωd2nk, where d
2nk = sin θkdθkdϕk is the differential

solid angle corresponding to the direction of emission of
the photon, and integrates over d2nk, i.e.,

dP

dω
=

α

8π2
ω
m2

ω2
0

∫

d2nk

〈

k2−
p2−p

′ 2
−

∣

∣

∣

∣

∣

∫

dϕ e
i 1
2

k−

p′
−

ξ0
χ0

∫

ϕ

0
dϕ′

{

1+
[

p−
k−

k
⊥

m
−

p
⊥

m
+ξ⊥(ϕ′)

]

2
}∣

∣

∣

∣

∣

2

+
p2− + p′ 2−
p2−p

′ 2
−

∣

∣

∣

∣

∣

∫

dϕ

[

p−
k−

k⊥

m
− p⊥

m
+ ξ⊥(ϕ)

]

e
i 1
2

k−

p′
−

ξ0
χ0

∫

ϕ

0
dϕ′

{

1+
[

p−
k−

k
⊥

m
−

p
⊥

m
+ξ⊥(ϕ′)

]

2
}∣

∣

∣

∣

∣

2〉

.

(15)

We call the attention to the fact that the transverse
vector r⊥ = p−k⊥/mk− = p− sin θkl⊥/m(1 − cos θk),
with l⊥ = (cosϕk, sinϕk), is effectively independent of

ω. Thus, it is convenient to perform the change of vari-
able r⊥ = p− sin θk/m(1 − cos θk) as the integral over
d2nk can be transformed into an integral over d2r⊥:

dP

dω
=

α

2π2

ω

p2−

ξ20
χ2
0

∫

d2r⊥
(1 +m2r2⊥/p

2
−)

2

〈

k2−
p′ 2−

∣

∣

∣

∣

∣

∫

dϕ e
i 1
2

k−

p′
−

ξ0
χ0

∫

ϕ

0
dϕ′ {1+[r⊥−u⊥(ϕ′)]2}

∣

∣

∣

∣

∣

2

+
p2− + p′ 2−
p′ 2−

∣

∣

∣

∣

∣

∫

dϕ [r⊥ − u⊥(ϕ)] e
i 1
2

k−

p′
−

ξ0
χ0

∫

ϕ

0
dϕ′ {1+[r⊥−u⊥(ϕ′)]2}

∣

∣

∣

∣

∣

2〉

,

(16)

where u⊥(ϕ) = p⊥/m−ξ⊥(ϕ). It should be noticed that
the quantities k− and p′− = p− − k− depends on r⊥ as
k− = 2ω/(1 +m2r2⊥/p

2
−).

In order to study now the differential probability

dP/dk−, we go back to Eq. (13) and we change, as ex-
plained above, from the variable kn to the variable k−.
Since the variables k⊥ and k− are then independent, it
is convenient to change variable from k⊥ to r⊥ as above:

dP

dk−
=

α

8π2

k−
p2−

ξ20
χ2
0

∫

d2r⊥

〈

k2−
p′ 2−

∣

∣

∣

∣

∣

∫

dϕ e
i 1
2

k−

p′
−

ξ0
χ0

∫

ϕ

0
dϕ′ {1+[r⊥−u⊥(ϕ′)]2}

∣

∣

∣

∣

∣

2

+
p2− + p′ 2−
p′ 2−

∣

∣

∣

∣

∣

∫

dϕ [r⊥ − u⊥(ϕ)]e
i 1
2

k−

p′
−

ξ0
χ0

∫

ϕ

0
dϕ′ {1+[r⊥−u⊥(ϕ′)]2}

∣

∣

∣

∣

∣

2〉

.

(17)

In fact, Eq. (16) and Eq. (17) indicate that the differ-
ential probabilities dP/dω and 2dP/dk− approximately
coincide at k− ≈ 2ω, if in the effective integration region
in Eq. (16) it is r⊥ ≪ p−/m (which means |k⊥| ≪ k−).

We will determine the condition when this is the case be-
low but we can already conclude that it must be violated
in the infrared limits ω → 0 and k− → 0. On the one
hand, in fact, it can easily be seen from Eq. (14) and
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Eq. (16) that dP/dω goes linearly to zero in the limit
ω → 0 as one can essentially set ω = 0 in the exponen-
tial functions. On the other hand, we will show below
that dP/dk− tends to a constant in the limit k− → 0

(see also Appendix A). Now, an inspection to Eq. (16)
indicates that the condition on r⊥ in order that dP/dω
and 2dP/dk− approximately coincide can be derived by
studying the phase Θ(r⊥, ω, ϕ, ϕ

′) given by

Θ(r⊥, ω, ϕ, ϕ
′) =

1

2

2ω

(1 +m2r2⊥/p
2
−)p− − 2ω

ξ0
χ0

∫ ϕ

ϕ′

dϕ̃

{

1 +
[

r⊥ − p⊥

m
+ ξ⊥(ϕ̃)

]2
}

=
1

2

2ω

(1 +m2r2⊥/p
2
−)p− − 2ω

ξ0
χ0

{

ϕ− ϕ′ +

∫ ϕ

ϕ′

dϕ̃ξξξ2⊥(ϕ̃)−
1

ϕ− ϕ′

[
∫ ϕ

ϕ′

dϕ̃ξξξ⊥(ϕ̃)

]2
}

+
1

2

2ω

(1 +m2r2⊥/p
2
−)p− − 2ω

ξ0
χ0

(ϕ− ϕ′)

[

r⊥ − p⊥

m
+

1

ϕ− ϕ′

∫ ϕ

ϕ′

dϕ̃ ξ⊥(ϕ̃)

]2

(18)

and resulting from the square modulus of the integral
amplitudes in Eq. (16). Since we assume that r⊥ is
indeed much smaller than p−/m, the term in the first
line of the second equality can be ignored in our con-
siderations. Moreover, we work in the relevant regime
where p− ≫ m, χ0 ∼ 1, and ξ0 ≫ 1, and we know al-
ready that if we look at emitted energies ω such that
2ω ∼ p−, then |ϕ − ϕ′| ∼ 2π/ξ0. Thus, in order to
keep the phase of the order of unity, r⊥ must be of the
order of ξ0 such that in the relevant region of integra-
tion the term in the square bracket in the last line in
Eq. (18) can undergo a compensation and become of
the order of unity. This would suggest that the con-
dition r⊥ ≪ p−/m requires that mξ0/p− ≪ 1. How-
ever, one can argue that, since the LCFA applies here,
at any phase ϕ one can choose a system of coordinates
aligned with the instantaneous velocity of the electron
such that in that system the instantaneous transverse
momentum mu⊥(ϕ) = p⊥ − mξ⊥(ϕ) vanishes and the
condition r⊥ ≪ p−/m is effectively guaranteed for an
ultrarelativistic electron (m/p− ≪ 1). The above argu-
ment does not hold in general if 2ω ≪ p− and if the
LCFA does not apply. In this case, since we usually con-
sider short pulses, we can assume for the sake of definite-
ness that |ϕ − ϕ′| ∼ 2π. By expanding the remaining
terms in 1/(1+m2r2⊥/p

2
−) in Eq. (16) up to first order in

m2r2⊥/p
2
− and by performing the integral in r⊥, one sees

that the resulting corrections can be considered small if
mξ0/p− ≪ 1 and if (p−/2ω)(χ0/ξ0)(m

2/p2−) ≪ 1, i.e., if
2ω ≫ ω0. The most restrictive condition is the first one,
which will be however fulfilled in present and upcoming
experiments in strong-field QED [51].

III. RESULTS

A. Validity of the LCFA

Our main conclusion about the validity of the LCFA
can be illustrated by means of an analogy with the more
familiar case of synchrotron radiation by an ultrarela-

tivistic electron with energy ε = mγ ≫ m moving in a
constant and uniform magnetic field of strength B (see,
e.g., the textbook [52]). By ignoring the trivial dynamics
along the magnetic field, the electron moves on a circle
with angular frequency ωB = |e|B/mγ and the whole
angular deflection undergone by the electron is 2π. Ac-
cording to the classical theory of synchrotron radiation,
the electron emits harmonics nωB of the fundamental an-
gular frequency ωB and the intensity of radiation is max-
imal for n ∼ γ3 ≫ 1, i.e., for ω ∼ γ3ωB ∼ χBε, where
χB = γB/Fcr. At such large values of n, the intensity of
the nth harmonic is essentially determined by combina-
tions of Airy functions evaluated at xn = n2/3(γ−2+θ2),
where θ ≪ 1 is the emission angle with respect to the
instantaneous velocity of the electron. As the Airy func-
tion is exponentially suppressed for large, positive argu-
ments, the harmonics corresponding n ∼ γ3 are mainly
emitted within an angle θ . 1/γ, much smaller than the
whole angular deflection (2π) and the LCFA is applica-
ble. However, at such low photon energies that n ∼ 1,
the ultrarelativistic limit γ ≫ 1 is not sufficient for the
LCFA to be applicable because radiation at large an-
gles θ ∼ 2π is not suppressed and contributions from the
whole trajectory are virtually important. Note that the
condition n ∼ 1 corresponds to emitted photon energies
ω ∼ χBε/γ

3.

Let us consider now the plane-wave case. In the
regime under consideration in which p− ≈ 2γm ≫ m,
and p− ≫ mξ0, the whole angular deflection under-
gone by the electron is of the order of mξ0/p−, whereas
the instantaneous emission still occurs along the veloc-
ity within a cone of angular aperture ∼ 1/γ ≈ 2m/p−.
Since, analogously to the synchrotron case, the intensity
of radiation is maximal for photon light-cone energies
k− ∼ χ0p−, the condition ξ0 ≫ 1 is sufficient to guaran-
tee that for these values of k− the LCFA applies. Thus,
the parameter ξ0 plays the role of γ in the synchrotron
case and, in analogy with the latter, we expect that for
such small light-cone energies k− . χ0p−/ξ

3
0 , the LCFA

fails even if ξ0 ≫ 1.

The validity of this condition can indeed be shown in
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a more quantitative and rigorous way by analyzing the
structure of the phase in Eq. (12). In fact, if the integral
in ϕ− in Eq. (11) is formed within a region |ϕ−| . ϕf/2
and ϕf (the laser formation phase) is much smaller than,
say, 2π, then we can expand the phase Φ(k−, ϕ−, ϕ+) as

Φ(k−, ϕ−, ϕ+) ≈
1

2

ξ0
ρ0(k−)

[

ϕ− +
1

12
ξξξ′ 2⊥ (ϕ+)ϕ

3
−

]

, (19)

where ρ0(k−) = χ0(p− − k−)/k−. By identifying
the formation phase ϕf as the value of ϕ− such that
|Φ(k−, ϕf/2, ϕ+) − Φ(k−,−ϕf/2, ϕ+)| = π and by as-
suming that |ξξξ′⊥(ϕ+)| ∼ ξ0, we obtain

ϕf =
8

|ξξξ′⊥(ϕ+)|
sinh

(

1

3
sinh−1

(

3π

4

ρ0(k−)

ξ0
|ξξξ′⊥(ϕ+)|

))

∼ 8

ξ0
sinh

(

1

3
sinh−1

(

3π

4
ρ0(k−)

))

.

(20)

In the nonlinear regime ξ0 ≫ 1, the laser formation
phase is much smaller than 2π for ρ0(k−) . 1. How-
ever, for sufficiently small values of k− for a given value
of χ0, the quantity ρ0(k−) can become so large that the
LCFA can be invalidated, because for ρ0(k−) ≫ 1, then

ϕf ∼ 4(3π/2)1/3ρ
1/3
0 (k−)/ξ0. Indeed, the parametric

condition for the validity of the LCFA coincides with the
one given above in analogy with the synchrotron case.
Correspondingly, we show below that the corrections to
the laser formation phase in Eq. (20) scale with the

square of the parameter ρ
1/3
0 (k−)/ξ0. We have also seen

that if one looks at sufficiently small values of k− for a
given value of χ0, the quantity ρ0(k−) can become so
large that the LCFA can be invalidated. We use the ex-

pression of ϕf in this limit [ϕf ∼ 4(3π/2)1/3ρ
1/3
0 (k−)/ξ0]

to determine the correction to the laser formation phase
arising from higher-order terms in the expansion of the
function ξξξ⊥(ϕ+ + ϕ̃) around ϕ̃ = 0. Now, the next term
δΦ(k−, ϕ−, ϕ+) in the mentioned expansion is given by
(see also [24, 30])

δΦ(k−, ϕ−, ϕ+) = ξ0
ξξξ′′ 2⊥ (ϕ+) + 3ξξξ′⊥(ϕ+) · ξξξ′′′⊥ (ϕ+)

ρ0(k−)

ϕ5
−

1440
.

(21)
By defining the formation length as in the main text with
the expression of Φ(k−, ϕ−, ϕ+) expanded up to ϕ5

− and
by estimating |ξξξ′′ 2⊥ (ϕ+) + 3ξξξ′⊥(ϕ+) · ξξξ′′′⊥ (ϕ+)| ∼ ξ20 , we
obtain that the absolute value of the correction δϕf to
the phase formation length at 1 ≪ ρ0(k−) ≪ ξ30 scales as

|δϕf | ∼
ρ0(k−)

ξ30
=⇒ |δϕf |

ϕf
∼ ρ

2/3
0 (k−)

ξ20
≪ 1. (22)

The corrections arising both in the phase and in the pre-
exponential function in Eq. (11) show the same scal-
ing such that we expect substantial deviations from the

LCFA for ρ
2/3
0 (k−) & ξ20 , i.e., for k−/p− . χ0/ξ

3
0 , which

indeed is the parameter determining the scaling of the
field-dependent terms in the phase Φ(k−, ϕ−, ϕ+) [see
Eq. (12)].

ω[MeV]

m
d
P
/d

ω

k
−
/p

−

2
m

d
P
/d
k
−

FIG. 1. Exact (solid red curve) vs local constant field ap-
proximated (dotted black curve) differential photon emission
probability for an electron with initial energy of 10 GeV col-
liding head-on with a plane wave pulse of 5 fs FWHM dura-
tion and 4.4 × 1020 W/cm2 peak intensity. The dashed blue
curve shows the same probability obtained via the numeri-
cal code presented in [54], with the improved emission model
as described in the text. The inset shows the correspond-
ing probabilities with the same color code and calculated via
the numerical code in [54] in the case of an electron beam
with 10 GeV average energy and 10% energy spread collid-
ing head-on with a focused Gaussian laser beam with 30 fs
FWHM duration, 4.4× 1020 W/cm2 peak intensity and 8 µm
waist radius.

B. Numerical evaluation: exact results vs LCFA

Let us consider now a numerical example in which a
linearly polarized plane wave with ω0 = 1.55 eV and
peak intensity I0 = E2

0/4π = 4.4 × 1020 W/cm2 (ξ0 ≈
10), and an electron initially counterpropagating with
respect to the plane wave with ε = 10 GeV (χ0 ≈ 1.2).
The laser pulse shape is chosen in such a way that if
A⊥(ϕ) = A⊥,0ψ(ϕ), with n · A⊥,0 = 0 and |A⊥,0| =
E0/ω0, then ψ(ϕ) = exp(−ϕ2/∆ϕ2) sin(ϕ + ϕ0). Here,
ϕ0 is the carrier envelope phase and the width ∆ϕ is
related to the full width half maximum (FWHM) of the
intensity by the relation ∆ϕ = FWHM/

√
2 log 2. We

have set ϕ0 = π/2 and the FWHM corresponding to 5 fs.
Since in this case the approximation k− ≈ 2ω is valid for
ω ≫ ω0 (see the Appendix A), the photon probability
2dP/dk− ≈ dP/dω in units of 1/m as a function of k−/p−
is shown in Fig. 1, where the solid red curve corresponds
to the exact calculation from Eq. (11) and the dotted
black curve to the one within the LCFA, which we denote
by dPLCFA/dk− (see, e.g., [53]).

The figure clearly shows that although ξ0 ≫ 1 the
LCFA fails in the infrared region where it predicts a quan-
titatively and qualitatively different behavior of the pho-
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ton probability with respect to the exact result. In fact,
the LCFA predicts that the differential photon probabil-
ity diverges as (p−/k−)

2/3 in the limit k−/p− → 0 (see,
e.g., [53]), whereas the exact differential photon proba-
bility approaches the constant value

dP

dk−

∣

∣

∣

∣

0

= lim
k−→0

dP

dk−
=
α

2

1

p−

ξ0
χ0

∫

dϕξξξ2⊥(ϕ) (23)

in the same limit. This result is derived an-
alytically in the Appendix A. However, since
limk−→0 Φ(k−, ϕ−, ϕ+) = 0 [see Eq. (12)] we ex-
pect that nonlinear effects are suppressed for k− → 0
(see also [29]), which results in dP/dk−|0 being pro-
portional to ξ20 . Thus, we have been able to derive
this result also by starting from the differential cross
section dσ/dk− of linear Compton scattering [see, e.g.,
Eq. (86.6) in [1]]. In fact, in our notation and in the
limit of vanishing photon recoil (k− ≪ p−) this quantity
reads limk−→0 dσ/dk− = dσ/dk−|0 = 2πα2/ωlp

2
−, where

we have assumed that the incoming (laser) photon has
angular frequency ωl. Now, by introducing the Fourier
transform ÃAA⊥(ωl) =

∫

dφAAA⊥(ϕ)e
iωlφ, the number

dNl/dΣdωl of incoming laser photons per unit surface

Σ and unit frequency ω is given by (4π2)−1ωl|ÃAA⊥(ωl)|2.
Thus, the above given asymptotic value of the photon
probability is obtained by multiplying dσ/dk−|0 by
dNl/dΣdωl, by integrating with respect to ωl and by
exploiting the Parseval identity.
Note that the probability ∆P of emitting a photon

with k− between zero and ∆k− tends to zero for ∆k− →
0. For the numerical parameters employed in Fig. 1, it is
2mdP/dk−|0 ≈ 1.01 × 10−3 in excellent agreement with
the numerical value 1.05×10−3 at k− = 5×10−6p−. As a
check of the analytical predictions of the values of k− be-
low which the LCFA fails, one can verify that at k−/p− ≈
3×10−3 and for the above mentioned parameters, the cor-
rection to the LCFA is expected to scale as the param-
eter (χ0p−/k−)

2/3/ξ20 ≈ 0.5, which coincides with the
relative difference 2|dP/dk− − dPLCFA/dk−|/(dP/dk− +
dPLCFA/dk−) ≈ 0.5. We also stress that, although pho-
tons with k− ≈ 3 × 10−3 p− are identified as “infrared”,
they have an energy of ω ≈ k−/2 = 30 MeV. However,
since the differences between the exact spectrum and the
one calculated within the LCFA arise for photon energies
much smaller than the electron energy, we expect that
the effects investigated here will not have a dramatic im-
pact on the dynamics of the emitting electron, except
as a cumulative effect in the case of several emissions.
Nevertheless, the photon spectra, which also represent
an important physical observable, show substantial dif-
ferences if the exact formulas are employed instead of the
LCFA. In this respect, we point out as a final remark that
the total probability of emitting a photon is 0.69 accord-
ing to the exact QED expression from Eq. (11), which is
significantly smaller than the value of 0.93 predicted by
the LCFA.
At this point, it is also interesting to study the in-

frared behavior of the differential probability per unit

phase dP/dk−dϕ+, because this is precisely the quantity
employed in numerical codes, and the difference between
the LCFA and the exact theory is even more striking
than for the integrated quantities investigated above. In
fact, the double differential probability dPLCFA/dk−dϕ+

within the LCFA shows the same asymptotic behavior
∼ (p−/k−)

2/3 in the infrared region as dPLCFA/dk− =
∫

dϕ+ dPLCFA/dk−dϕ+, because dPLCFA/dk−dϕ+ is pro-

portional to χ2/3(ϕ+) in that region, which is integrable
in ϕ+ for a pulsed plane wave. In sharp contrast, the
general expression dP/dk−dϕ+ in Eq. (11), with the
limitations indicated below Eq. (12), tends to zero as
(k−/p−)[log(p−/k−) + b] in the limit k− → 0, with the
quantity b being independent of k− (see Appendix A).

C. Improved LCFA

Having elucidated the shortcomings of the LCFA at
low photon energies, we describe now a possible scheme
to implement the probability of nonlinear Compton scat-
tering beyond the LCFA in advanced numerical codes
aiming at describing laser-matter interaction including
quantum effects. The method is based on the above re-
mark that at very low light-cone energies, nonlinear ef-
fects become less important such that the probability of
linear Compton scattering is expected to work reason-
ably well. This probability can be easily derived from the
cross section of linear Compton scattering given in Eq.
(86.6) in [1]. However, only photons with k− ≤ k−,LCS =
p−/(1+ξ0/2χ0) can be emitted via linear Compton scat-
tering [1]. Also, according to the above findings, we de-
cide to use the LCFA for k− > k−,LCFA, where k−,LCFA

is such that the formation length ϕf in Eq. (20) is, for
the sake of definiteness, equal to 2π, which gives

k−,LCFA =
p−

1 + 4
3πχ0

sinh
(

3 sinh−1
(

π
4 ξ0

)) . (24)

Since it is k−,LCFA ≤ k−,LCS, at each space-time point
the numerical code evaluates the local values of k−,LCS

and k−,LCFA and uses the probability of linear Comp-
ton scattering for k− ≤ k−,LCFA and the LCFA for
k− > k−,LCFA(ϕ+). It is worth pointing out that the em-
ployed local photon emission probability per unit k− and
unit ϕ+ exhibits a discontinuity at k−,LCFA(ϕ+). How-
ever, the physical origin of this discontinuity is clear, as
the LCFA takes into account the absorption of an arbi-
trary number of laser photons, whereas the linear the-
ory only includes the absorption of a single laser photon.
Moreover, the integrated probability over k−, which is
used in the code, is continuous like the resulting emis-
sion spectrum (see Fig. 1).
We have implemented this method in the multiparticle

quantum code presented in [54], which describes the in-
teraction of electrons, positrons and photons with an in-
tense laser field of arbitrary space-time structure includ-
ing the two basic quantum processes: nonlinear Compton
scattering and nonlinear Breit-Wheeler pair production.
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As a benchmark, the results above for the numerical ex-
ample are reported in Fig. 1 (dashed blue curve). The
figure shows good agreement between the exact red curve
and the implemented model. In particular, the latter
predicts a total probability of 0.71 while the exact value
is 0.69. We also note that our model cannot reproduce
the oscillations shown by the red curve in Fig. 1, which
arise from the interference among the amplitudes corre-
sponding to the absorption of different number of laser
photons. Other two benchmark examples are shown in
the Appendix B.
The results of the simulation of a more realistic sit-

uation, where the laser beam is also spatially focused
and a bunch of electrons with a given initial spatial and
momentum distribution collides with the laser field, is
shown in the inset of Fig. 1. Our main aim concerning
this example is to show that our method can also be im-
plemented in situations where each electron on average
emits more than one photon. The linearly polarized laser
field is now modeled by a Gaussian field with waist size
8 µm and pulse duration 30 fs, with the other parame-
ters coinciding with those in the plane-wave case. More-
over, a beam of 108 electrons has been simulated with
transverse diameter of 8 µm, length of 10 µm, Gaus-
sian energy distribution centered at 10 GeV, 10% en-
ergy spread, and 1 mrad angular aperture. The results
have been obtained with the code described in [54], with
the probability of photon emission given either by the
LCFA (dotted black curve) or by the improved method
described above (dashed blue curve). The inset clearly
shows the significant difference in the low-energy part of
the photon spectra as compared to the results obtained
by employing exclusively the LCFA. The total number of
photons after the interaction according to the LCFA is
4.4×108, whereas our improved model predicts 3.1×108

produced photons.

IV. CONCLUSIONS

In conclusion, we have found in the case of non-linear
Compton scattering that even for a plane wave such that
the condition ξ0 ≫ 1 is fulfilled, the local constant field
approximation predicts a photon yield, which qualita-
tively and quantitatively differs from the exact one at
sufficiently low emitted photon energies. Since numeri-
cal codes exclusively employ emission probabilities within
the local constant field approximation, we have worked
out an improved implementation of the (differential) pho-
ton emission probability, which remedies the shortcom-
ings of the local constant field approximation in the low-
energy region of the spectrum. Our numerical simula-
tions indicate that the studied effects and differences can
be measured in principle already with available technol-

ogy.
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Appendix A: Asymptotic behavior of the photon

emission probability for k
−

→ 0

In this appendix we derive the asymptotic behavior
of dP/dk−dϕ+ and dP/dk− in the limit k− → 0. In
the first case, we can conveniently write the probability
dP/dk−dϕ+ as the sum of the two terms dP0/dk−dϕ−

and dPf/dk−dϕ+, with the pre-exponential function of
the term dP0/dk−dϕ+ (dPf/dk−dϕ+) being independent
of (dependent on) the external field [see Eq. (11)]. Now,
the term dP0/dk−dϕ+ can be written as

dP0

dk−dϕ+
=
α

π

1

p−

ξ0
χ0

Im

∫ ∞

0

dϕ−

ϕ−

[

eigΨ(ϕ−,ϕ+) − eigϕ−

]

,

(A1)
where g = (1/2)(k−/p

′
−)(ξ0/χ0) and where Ψ(ϕ−, ϕ+) =

Φ(k−, ϕ−, ϕ+)/g ≡ ϕ− + Ψf (ϕ−, ϕ+). The asymptotic
behavior for k− → 0 (i.e., g → 0) is found by splitting the
integral into two regions by introducing an intermediate
scale ϕ∗

− such that 1 ≪ ϕ∗
− ≪ 1/g. In the final result

the intermediate scale ϕ∗
− drops out and one easily finds

that

dP0

dk−dϕ+

∣

∣

∣

∣

k−→0

∼ α

2π

k−
p2−

ξ20
χ2
0

{[

log

(

2χ0

ξ0

p−
k−

)

− C

]

×Ψf (∞, ϕ+)−
∫ ∞

0

dϕ− log(ϕ−)
∂Ψf (ϕ−, ϕ+)

∂ϕ−

}

,

(A2)

where C = 0.577... is the Euler constant. The asymptotic
behavior of the remaining term dPf/dk−dϕ+ is easily
obtained because the external field in the pre-exponent
ensures the convergence of the integral in ϕ−:

dPf

dk−dϕ+

∣

∣

∣

∣

k−→0

∼ α

4π

k−
p2−

ξ20
χ2
0

∫ ∞

0

dϕ−

ϕ−
Ψ(ϕ−, ϕ+)

×
[

ξξξ⊥

(

ϕ+ − ϕ−

2

)

− ξξξ⊥

(

ϕ+ +
ϕ−

2

)]2

.

(A3)

We pass now to the asymptotic behavior of dP/dk− in
the same limit k− → 0. For the sake of definiteness, we
assume that the laser field is linearly polarized along the
x direction. Thus, Eq. (17) can be written in the form
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dP

dk−
=

α

8π2

k−
p−p′−

ξ40
χ2
0

∫

dϕdϕ′

{

ψ(ϕ)ψ(ϕ′)

[

p2− + p′ 2−
p−p′−

I0,0(k−, ϕ, ϕ
′)− 8I2,2(k−, ϕ, ϕ

′)

]

+ ξ0[ψ(ϕ)ψ
2(ϕ′) + ψ(ϕ′)ψ2(ϕ)]

[

p2− + p′ 2−
p−p′−

I1,1(k−, ϕ, ϕ
′)− 4I1,2(k−, ϕ, ϕ

′)

]

+ξ20ψ
2(ϕ)ψ2(ϕ′)

[

p2− + p′ 2−
p−p′−

I0,1(k−, ϕ, ϕ
′)− 2I0,2(k−, ϕ, ϕ

′)

]}

,

(A4)

where we have introduced the integrals

Ij,k(k−, ϕ, ϕ
′) = Re

∫

d2s⊥
sjx

(1 + s2⊥)
k

× e
i 1
2

k−

p′
−

ξ0
χ0

∫ ϕ

ϕ′ dϕ̃ {1+[s⊥+ξ⊥(ϕ̃)]2}
,

(A5)

with j, k = 0, 1, 2, with respect to the already introduced
dimensionless transverse vector s⊥ = (p−/k−)k⊥/m −
p⊥/m. A straightforward power-law analysis of the in-
tegrand in Eq. (A5) shows that both I0,2(k−, ϕ, ϕ

′)
and I1,2(k−, ϕ, ϕ

′) are finite in the limit k− → 0

(I0,2(0, ϕ, ϕ
′) = π and I1,2(0, ϕ, ϕ

′) = 0), whereas
I0,1(k−, ϕ, ϕ

′) and I2,2(k−, ϕ, ϕ
′) diverge logarithmically

in the same limit. The analysis of the remaining inte-
grals I0,0(k−, ϕ, ϕ

′) and I1,1(k−, ϕ, ϕ
′) is more involved

and we present here some details. Starting from the in-
tegral I1,1(k−, ϕ, ϕ

′), a straightforward power-law anal-
ysis of it would indicate a linear divergence in the limit
k− → 0. However, one can qualitatively observe that
the leading term in k− → 0 vanishes due to the symme-
try properties of the integrand (the integral is rigorously
speaking divergent). More quantitatively by performing
the integral in the angular polar coordinate, one obtains

I1,1(k−, ϕ, ϕ
′) =− πη(ϕ,ϕ′)Re eiΦ̃(k−,ϕ,ϕ′)

∫ ∞

0

dr
1

√

1 + r2 + 2rb(ϕ,ϕ′)

×
[

1− 2r

1 + r +
√

1 + r2 + 2rb(ϕ,ϕ′)

]

e
i 1
2

k−

p′
−

ξ0
χ0

ϕ−[1+η2(ϕ,ϕ′)]r
,

(A6)

where η(ϕ,ϕ′) = (ϕ − ϕ′)−1
∫ ϕ

ϕ′ dϕ̃ ψ(ϕ̃), Φ̃(k−, ϕ, ϕ
′) =

Φ(k−, ϕ − ϕ′, (ϕ + ϕ′)/2) (see Eq. (12)), and b(ϕ,ϕ′) =
[1 − η2(ϕ,ϕ′)]/[1 + η2(ϕ,ϕ′)]. From this expression one
can easily show that I1,1(0, ϕ, ϕ

′) = −πη(ϕ,ϕ′). Finally,
we consider the integral I0,0(k−, ϕ, ϕ

′) and we observe
that rigorously speaking it is not convergent. For this

reason, in order to obtain its correct value in the limit
k− → 0, it is easier to return to the original order of
integration, where the integral in s⊥ is performed after
the integral in ϕ. Since the presence of the functions
ψ(ϕ) and ψ(ϕ′) in the pre-exponent limits the effective
range of the variables ϕ and ϕ′, we can write that

lim
k−→0

Re

∫

d2s⊥

∫

dϕdϕ′ ψ(ϕ)ψ(ϕ′)e
i 1
2

k−

p′
−

ξ0
χ0

∫ ϕ

ϕ′ dϕ̃ {1+[s⊥+ξ⊥(ϕ̃)]2}
≈ lim

k−→0

∫

d2s⊥

∣

∣

∣

∣

∫

dϕψ(ϕ)e
i 1
2

k−

p−

ξ0
χ0

ϕs2
⊥

∣

∣

∣

∣

2

. (A7)

By appropriately rescaling the variable s⊥, it is clear
that this integral turns to be inversely proportional to
k−. Thus, this term provides the leading contribution to
dP/dk− in the limit k− → 0 and we have that

lim
k−→0

dP

dk−
=

α

2π

1

p−

ξ0
χ0

∫ ∞

0

dρ |ξ̃ξξ⊥(ρ)|2, (A8)

where ξ̃ξξ⊥(ρ) =
∫

dϕξξξ⊥(ϕ)e
iρϕ is the Fourier transform

of the field ξξξ⊥(ϕ). By using the Parseval identity, one

finally obtains

lim
k−→0

dP

dk−
=
α

2

1

p−

ξ0
χ0

∫

dϕξξξ2⊥(ϕ). (A9)

Going back to Eq. (17), we notice that it is crucial that
the integral in r⊥ is performed over the whole plane, i.e.,
that the limit r⊥ → ∞ is performed before the limit
k− → 0. In fact, the two limits do not commute, which
is not surprising because the definition of r⊥ includes k−.
Thus, if we perform the integral in r⊥ up to a fixed R⊥,
the resulting probability would tend to zero (it is also
evident that limk−→0 dP/dk−d

2r⊥ = 0).
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FIG. 2. Exact (solid red curve) vs local constant field ap-
proximated (dotted black curve) differential photon emission
probability for an electron with initial energy of 10 GeV col-
liding head-on with a plane wave pulse of 2.5 fs FWHM dura-
tion and 4.4 × 1020 W/cm2 peak intensity. The dashed blue
curve shows the same probability obtained via the numerical
code presented in [54], with the improved emission model as
described in the main text.

Appendix B: Benchmark examples of the numerical

implementation

Below we provide two numerical examples as bench-
mark of the photon emission probability beyond the
LCFA described in the main text.

In the first example we have considered the same nu-
merical parameters as in the main text except that the
laser full width half maximum (FWHM) of the intensity
is 2.5 fs (see Fig. 2). The integrated probability is 0.34
according to the exact expression of the probability from
Eq. (11) and 0.36 according to the improved emission
model with respect to the LCFA, whereas the latter pre-
dicts 0.46.

In the second example we have considered the same
numerical parameters as in the main text except that
the laser intensity is 2.7 × 1020 W/cm2, corresponding
to ξ0 = 8 (see Fig. 3). The integrated probability is
0.50 according to the exact expression of the probability
from Eq. (11) and 0.54 according to the improved emis-
sion model with respect to the LCFA, whereas the latter
predicts 0.72.
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