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ABSTRACT
In the last years, lots of work have been devoted to multidi-
mensional modeling, star shape schemas and OLAP opera-
tions. However, “drill-across” has not captured as much at-
tention as other operations. This operation allows to change
the subject of analysis keeping the same analysis space we
were using to analyze another subject. It is assumed that
this can be done if both subjects share exactly the same
analysis dimensions. In this paper, besides the implemen-
tation of an algebraic set of operations on a RDBMS, we
are going to show when and how we can change the subject
of analysis in the presence of semantic relationships, even if
the analysis dimensions do not exactly coincide.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications

General Terms
Languages

Keywords
Star schema, OLAP operations, SQL, Drill-across, Semantic
Relationships

1. INTRODUCTION
OLAP tools facilitate the extraction of information from

the “Data Warehouse”. As defined in [19], OLAP function-
ality is characterized by dynamic multi-dimensional analysis
of consolidated enterprise data supporting end user analyti-
cal and navigational activities. In this context, “navigation”
means to interactively explore a data cube by drilling, rotat-
ing and screening. In [10], we can see that the typical end
user operations performed on the data cubes are “roll-up”
(increase the level of aggregation), “drill-down” (decrease
the level of aggregation), “screening and scoping” (select
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by means of a criterion evaluated against the data of a di-
mension), “slicing” (specify a single value for one or more
members of a dimension), and “pivot” (reorient the multidi-
mensional view). Other authors, like [22] add “drill-across”
(combine data cubes that share one or more dimensions) to
those operations.
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Figure 1: Example of multi-star schema

Multidimensional analysis is based on the separation of
factual and dimensional data. Along this paper, we will use
the terminology introduced in [2], where a Dimension (sub-
class of UML Classifier) contains Levels (subclass of UML
Class) representing different granularities (or levels of de-
tail) to study data, and a Level contains Descriptors (sub-
class of UML Attribute). On the other hand, Fact (subclass
of UML Classifier) contains Cells (subclass of UML Class),
which contain Measures (subclass of UML Attribute). One
Cell represents those individual cells of the same granular-
ity that show data regarding the same Fact. One Fact and
several Dimensions to analyze it give raise to a Star. As al-
ready discussed in [1], we consider that it is important to be
able to relate different Stars to facilitate the Drill-across

operation. Thus, as we can see in figure 1, we could find
two Facts (i.e. Production and Order) sharing Dimensions
(i.e. Time and Product). However, this is not the only way
to relate Stars. Semantic relationships (like Generalization,
Association, Derivation, or Flow) could also appear between
both Stars, so that they can be used to “drill-across”, as we
will see.
[15] shows how a Star should be implemented on a “Rela-

tional Database Management System” (RDBMS), with one
table for the Fact and one table for every Dimension, the
latter being pointed by “foreign keys” (FK) from the “fact
table”, which compose its “primary key” (PK). [18] goes
further and shows how some kinds of multi-star schemas
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should be implemented. Besides having FK from different
“fact tables” pointing to the same “dimension table”, they
also allow to have FK in a “fact table” pointing to another
“fact table”. If that is the case, the FK between “fact ta-
bles” provide the ability to “drill-down” between levels of
detail.
Once we have seen how to implement Stars, let’s see the

standard SQL’92 template query as presented in [15] (from
here on, we will refer to it as cube-query):

SELECT LevelID1, ..., LevelIDn, FUNCTION(f.Measure1), ...
FROM Fact f, Dimension1 d1, ..., Dimensionn dn
WHERE f.key1=d1.ID AND ... AND f.keyn=dn.ID

AND di.attr=value AND ...
GROUP BY LevelID1, ..., LevelIDn
ORDER BY LevelID1, ..., LevelIDn

The FROM clause contains the “fact table” and the “di-
mension tables”. These tables are linked in the WHERE
clause, which also contains selection conditions defined over
the columns of the “dimension tables”. The GROUP BY
clause shows the identifiers of the Levels at which we want
to aggregate data. Those columns in the grouping must also
be in the SELECT clause, besides the Measures aggregated
by some SQL function, in order to identify the values in the
result. Finally, the ORDER BY clause is explicited to sort
the output of the query by these same identifiers.
In spite of the fact that the basic structure of the cube-

query is well known, there is not yet a well established set
of end user operations to navigate multidimensional data.
Some sets of operations have been proposed, as we will see
in section 2. However, some of them do not directly map to
SQL and, in general, none of them treats “drill-across” and
“pivoting” as first class citizens. Section 3 presents an alge-
braic set of conceptual operations, that eases the navigation
of multidimensional data and specifically facilitates and ex-
tends the functionality of “drill-across” and “pivoting”. As
shown in section 4, these operations can be smoothly trans-
lated to modifications on the cube-query. Finally, section 5
shows the implementation of new semantic possibilities to
drill across, and section 6 concludes the paper.

2. RELATED WORK
In the last years, lots of work have been devoted to model-

ing multidimensionality (i.e. [17], [4], [11], [8], [12], [7], [27],
[16], and [21]). Each one of these models offers an algebraic
set of operations (some of them also offer a calculus). How-
ever, none of them offers the translation of the operations to
SQL (rather they propose alternatives to SQL and relational
algebra). Those models proposing alternatives to SQL ar-
gue that RDBMS are not well suited for multidimensional
purposes. However, the importance of “Relational OLAP”
(ROLAP) tools in the market contradicts that, and outlines
the importance of research on improving the usage of SQL
to query multidimensional data.
[24] presents an end user oriented algebra of multidimen-

sional operations. Nevertheless, it is neither translated to
SQL, nor considers drilling across, nor any kind of seman-
tic relationship. An approach limited to operations over
Dimensions is in [14]. In this case SQL is extended to facil-
itate handling dimensional data. Obviously, since it focuses
on Dimensions, “drill-across” is not even mentioned.
Semantic relationships are often underestimated, as we

can see in [5], whose methodology for multidimensional de-
sign proposes the transformation of generalizations into ag-
gregations and classes. Some few conceptual models, [26]
and [25], allow the representation of semantic relationships.
However, these neither present a set of operations to manip-
ulate data, nor study their usage to drill across.
Some models offer a “join” operation that would allow

some kind of “drill across”. Nevertheless, this operation is
far away from end user multidimensional concepts, and the
benefits of semantic relationships are not explored in any
case.

3. A MULTIDIMENSIONAL ALGEBRA
In this section we are going to see the algebraic oper-

ations of YAM2 (a multidimensional model presented in
[2]), which focus on identifying and uniformly manipulating
sets of data, namely Cubes.

Definition 1. A Cube is an injective function from an n-
dimensional finite space (defined by the cartesian product of n
functionally independent Levels {L1, .., Ln}), to the set of in-
stances of a Cell (Cc).

c : L1 × .. × Ln → Cc, injective

We generally say that a query is from (or over) its input
schema to its output schema. Thus, there exists an input
m-dimensional Cube (ci), and we want to obtain an output
n-dimensional Cube (co). Since, we defined a Cube as a
function, operations must transform a function into another
function.

x .. x Lo xj1Lo .. x Lo
n C o

c

x .. x Li xk1Li .. x Li
m C i

c

ci

co

f h g

Figure 2: Multidimensional operations as composi-
tion of functions

As shown in figure 2, we have three families of functions
(i.e. f , g, and h), that can be used to transform a Cube.
Obtaining co from ci can be seen as mathematical composi-
tion of functions (co = ψ ◦ ci ◦ φ, with ψ and φ belonging to
the families of functions g and f , respectively). Relationships
in section 5 can be used for this purpose. Those functions
of the family h define aggregation hierarchies and are used
to roll data up.

ChangeBase: This operation reallocates exactly the same
instances of a Cell in a new n-dimensional space with
exactly the same number of points, by composing the
Cube with a function of the family of functions f .
Thus, it actually modifies the analysis dimensions used.
Functions relating different Dimensions belong to the
family f .

φ : Lo1 × .. × Lon → Li1 × .. × Lim, injective

co(x) = γφ(ci) = ci(φ(x))
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Drill-across: This operation changes the image set of the
Cube by means of an injective function ψ of the family
g. The n-dimensional space remains exactly the same,
only the cells placed in it change. Functions relating
instances of different Facts belong to the family g.

ψ : Cic → Coc , injective

co(x) = δψ(ci) = ψ(ci(x))

Dice: By means of a predicate P over Descriptors, this op-
eration allows to choose the subset of points of interest
out of the whole n-dimensional space.

co(x) = σP (ci) =

�
ci(x) if P (x)
undef if ¬P (x)

Projection: This just selects a subset of Measures from
those available in the Cube.

co(x) = πm1,..,mk (ci) = ci(x)[m1, .., mk]

Roll-up: It groups cells in the Cube based on an aggrega-
tion hierarchy. This operation modifies the granularity
of data, by means of an exhaustive function ϕ of the
family h (i.e. ϕ relates instances of two Levels in the
same Dimension, corresponding to a part-whole rela-
tionship).

co(x) = ρϕ(ci) =
[

ϕ(y)=x

ci(y)

Union: Similar to operations between functions (f op g =
f(x) op g(x)), we can also define operations between
Cubes, if both are defined over the same domain (n-
dimensional space). By means of this operation we can
recover the cells removed by means of Dice.

c1 ⊕ c2 = c1(x) ⊕ c2(x)

In the sense of [3], these operations are conceptually a
“procedural language”, because queries are specified by a
sequence of operations that construct the answer. For in-
stance, with this set of operations, we can derive Slice (which
reduces the dimensionality of the original Cube by fixing a
point in a Dimension) by means of Dice and ChangeBase

operations.

co(x) = sliceLi=k(ci) = γL1×..×Li−1×Li+1×..×Ln (σLi=k(ci))

Drill-down (i.e. the inverse of Roll-up) is not defined, be-
cause as argued in [12], we can only apply it, if we previously
performed a Roll-up and did not lose the correspondences
between cells. This can be expressed as an “undo” of Roll-

up, or if we do not want to keep track of results, by means of
views over the atomic data as in [27]. Therefore, it cannot
be part of a true sequence of operations. The same could
be said for Dice and Projection. If all we have to answer a
query is the current Cube, we can neither recover cells (lost
by dicing) nor Measures (lost by projecting). Nevertheless,
while the only solution to Drill-down is to throw away the
current Cube and go to the source, we can keep our Cube

and add diced cells by means of Union and projected Mea-

sures by means of a sort of reflexive Drill-across to the same
Fact.

4. TRANSLATING OPERATIONS TO SQL
In this section we are going to show the translation of

those algebraic operations to modifications over the cube-
query introduced in section 1.

A := σTime.year=2003(Order)

SELECT d1.product, d2.day, d3.retailer, d4.client, Sum(f.unitsSold)
FROM Order f, Product d1, Time d2, Retailer d3 , Client d4
WHERE f.product=d1.product AND f.day=d2.day

AND f.retailer=d3.retailer AND f.client=d4.client AND d2.year=2003
GROUP BY d1.product, d2.day, d3.retailer, d4.client
ORDER BY d1.product, d2.day, d3.retailer, d4.client

B := ρClient::All(ρRetailer::All(A))

SELECT d1.product, d2.day, “All”, “All”, Sum(f.unitsSold)
FROM Order f, Product d1, Time d2
WHERE f.product=d1.product AND f.day=d2.day AND d2.year=2003
GROUP BY d1.product, d2.day
ORDER BY d1.product, d2.day

C := γProduct×Time(B)

SELECT d1.product, d2.day, Sum(f.unitsSold)
FROM Order f, Product d1, Time d2
WHERE f.product=d1.product AND f.day=d2.day AND d2.year=2003
GROUP BY d1.product, d2.day
ORDER BY d1.product, d2.day

D := δProduction(C)

SELECT d1.product, d2.day, Sum(f.unitsSold), SUM(f′ .unitsProduced)
FROM Order f, Production f′, Product d1, Time d2
WHERE f.product=d1.product AND f.day=d2.day

AND f′.product=d1.product AND f′.day=d2.day AND d2.year=2003
GROUP BY d1.product, d2.day
ORDER BY d1.product, d2.day

E := πunitsProduced(D)

SELECT d1.product, d2.day, Sum(f.unitsProduced)
FROM Production f, Product d1, Time d2
WHERE f.product=d1.product AND f.day=d2.day AND d2.year=2003
GROUP BY d1.product, d2.day
ORDER BY d1.product, d2.day

F := E ⊕ γProduct×Time(ρFactory::All(σTime.year=2002(Production)))

SELECT d1.product, d2.day, Sum(f.unitsProduced)
FROM Production f, Product d1, Time d2
WHERE f.product=d1.product AND f.day=d2.day

AND (d2.year=2003 OR d2.year=2002)
GROUP BY d1.product, d2.day
ORDER BY d1.product, d2.day

Figure 3: Sequence of operations

Taking into account that end users desire to navigate from
Cube to Cube, the idea is to consider that last query (or its
partial results) has been materialized (or kept in memory),
so that we can use it to solve the next one. In figure 3 we
see a sequence of operations, and how they affect the cube-
query step by step. Notice that one Cube could always be
used in the obtaining of the next one.

• Dice selects the desired points by and ing the corre-
sponding predicate over Descriptors to the WHERE
clause. The new predicate to be anded can only regard
grouping attributes or attributes that functionally de-
pend on them. In the example, d2.year=2003 is added
to the WHERE clause.

• Roll-up changes the identifiers in the GROUP BY
clause by those of the Levels above. The SELECT and
ORDER BY clauses must be modified appropriately,
so that the Descriptors coincide in all three. To roll
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Clause ChangeBase Drill-across Dice Roll-up Projection Union

SELECT Replace (LevelID) Add (Measure) Replace (LevelID) Remove (Measure)
FROM Add (Dimensions) Add (Facts)
WHERE Add (links) Add (links) AND (conditions) OR (conditions)
GROUP BY Replace (LevelID) Replace (LevelID)
ORDER BY Replace (LevelID) Replace (LevelID)

Table 1: SQL query sentence and multidimensional operations

up to Level All, all Descriptors of a Dimension are
removed from the GROUP BY, and “All” is placed in
the corresponding position in SELECT clause. In the
example, two Roll-ups are performed up to Level All

along Retailer and Clients, so that no column of the
corresponding tables is present neither in the GROUP
BY nor in the ORDER BY nor SELECT clause, where
they are substituted by ‘‘All’’.

• ChangeBase allows two different kinds of changes in
the base of the space. Firstly, we can just rearrange
the multidimensional space (B × A instead of A × B)
by modifying the order of Level identifiers in ORDER
BY and SELECT clauses (this would be equivalent
to the “pivot” operation). Moreover, this operation
extends “pivoting” functionality, because if there exist
more than one set of Dimensions that identify the
points in the space, we can change the Dimensions, by
just adding the new “dimension tables” to the FROM
and the corresponding links to the WHERE clause.
Identifiers in the SELECT, ORDER BY and GROUP
BY clauses must be replaced. For instance, if we are
analyzing inventory transactions, our space would be
defined by Product×Time×Order, but since one vendor
only places one order per warehouse per day. In the
example, since two Dimensions already contain only
one point, we can just remove the ‘‘All’’ from the
SELECT clause to convert a four-dimensional space
into a two-dimensional one, we could also see data in
the space Product×Time×Day×Vendor×Warehouse.

• Drill-across changes the subject of analysis by adding
a new “fact table” to the FROM, its Measures to the
SELECT, and the corresponding links to the WHERE
clause. The links added will depend on the seman-
tic relationship used to Drill-across, as we will see in
section 5. In general, if we are not using any Re-

lationship, a new “fact table” can always be added
to the FROM clause if the attributes composing the
identifier of the desired Cell point to the already used
“dimension tables”. In the example, a new Measure

unitsProduced is added to the SELECT clause, the
“fact table” Production to the FROM, and the cor-
responding links to the WHERE clause.

• Projection removes Measures from the SELECT. If
there is not any Measure left, COUNT is assumed. In
the example, the Measure of Order table is removed
(since the table is then useless, it is also removed).

• Union unites two Cubes if their spaces exactly coin-
cide, which translated to the cube-query means that
Levels in SELECT, GROUP BY, and ORDER BY
clauses must coincide. Therefore, to unite two cube-
queries both WHERE clauses just need to be ored ap-
propriately. In the example, by means of Dice, Roll-

up, and ChangeBase, we obtain a Cube compatible to

the existing one. Afterwards, we can or both selection
conditions in the same WHERE clause.

Let’s analize now the properties of this set of operations
regarding the cube-query:

Property 1. The algebra composed by these operations is clo-

sed (i.e. they operate on cube-queries and, since none of them

modifies the structure of the query, the result of all operations is

always a cube-query).

Property 2. The algebra composed by these operations is com-

plete (i.e. since any clause can be modified, any valid cube-query

can be computed as the combination of a finite set of operations

applied to the appropriate Cube). Table 1 summarizes the effects

of the different operations:

SELECT Measures can be added and removed. Descriptors

actually need to be replaced to keep the size of the space.

They can be replaced based on aggregation hierarchies or

Dimension relationships.

FROM Dimension and fact tables can be added depending on

the existing semantic relationships in the multidimensional

schema. We consider that any table is automatically re-

moved if after an operation it does not affect the result

of the query (see figure 3, where Order is removed after

Projection, and Client and Retailer are removed after

Roll-up).

WHERE Links as well as conditions can be added. Unneces-

sary links are also removed when the corresponding table

is. By means of semantic optimization techniques, unnec-

essary conditions over Descriptors can also be removed.

Just notice that the predicate can be restricted by means of

Dice and relaxed by means of Union.

GROUP BY Columns can be replaced and eventually removed

(rolling up to All) from GROUP BY clause. The groups

can always be fused, but never split, because as explained

before we do not consider Drill-down. If we would con-

sider such operation, they could.

ORDER BY Their columns exactly correspond to those De-

scriptors in the SELECT clause. Therefore, they are

modified as the former are, being able to sort them by

means of ChangeBase.

Property 3. The algebra composed by these operations is mi-

nimal (i.e. none can be expressed in terms of others, nor can any

operation be dropped without affecting its functionality). Roll-up

and Drill-across affect the same clauses, but the modifications

are based on aggregation hierarchies and Dimension relation-

ships respectively. Regarding the cube-query, since some opera-

tions affect more than one clause, these are not atomic. However,
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they represent the basic end user multidimensional concepts, and

if more than one clause is affected by the same operation, it is just

to keep the cube-query structure (remember, for instance, that at-

tributes in SELECT, GROUP BY and ORDER BY clauses must

coincide in a cube-query, and tables must be linked).

5. NEW DRILL-ACROSS POSSIBILITIES
In [15], we can see that we can use two “fact tables” to-

gether if the common dimensions are exactly the same. In
[1], we systematically showed how and which semantic rela-
tionships can be used to relate multidimensional constructs.
Semantic relationships in the multidimensional schema de-
fine functions between Classes. By composing those func-
tions appropriately, we can obtain the desired vision of data.
If we want to analyze instances of a given Class in the space
defined by the cartesian product of a set of Classes, all we
have to do is to find the appropriate composition of func-
tions. If that path of functions exists, we can analyze data
in the desired way.

X := γProduct×Retailer×Client(ρTime::All(σTime.year=2003(Order)))

SELECT d1.product, d3.retailer, d4.client, Sum(f.unitsSold)
FROM Order f, Product d1, Time d2, Retailer d3 , Client d4
WHERE f.product=d1.product AND f.day=d2.ID

AND f.retailer=d3.retailer AND f.client=d4.client AND d2.year=2003
GROUP BY d1.product, d3.retailer, d4.client
ORDER BY d1.product, d3.retailer, d4.client

Figure 4: Example of condition kept on otherwise
unused Dimensions

Our approach is more powerful than just sharing “dimen-
sion tables”, because it allows to drill-across even if those
tables do not exactly coincide. Moreover, since Change-

Base and Drill-across do not remove tables from the FROM
clause, but link new tables to the existing ones, we can, for
instance, keep conditions over Dimensions or Levels that do
not participate in the definition of the space. As exemplified
in figure 4, the Dice puts a condition on Time.year Level,
and even after the data is rolled up above that Level and
the Dimension is removed from the space by means of the
ChangeBase, the condition is kept in the WHERE clause.

(from Core)
Association

(from Core)

(from Core)

2..*

Flow

Classifier

(from Core)

targetsource
suplier

client

(from Core)

(from Core)
ModelElement

Relationship

Generalization

Generalization
Association

GeneralizableElement
(from Core)

parent child

Derivation
(from Core)

<<stereotype>>

Figure 5: UML Relationships between model ele-
ments

UML, in [20], provides four different kinds of Relation-

ships: Generalization, Flow, Association, and Dependency. As
depicted in figure 5, Generalization relationships relate two
GeneralizableElements, one with a more specific meaning than
the other. Any kind of Classifier is a GeneralizableElement.
Flow relationships relate two elements in the model, so that

both represent different versions of the same thing. Associ-

ation, as specified in UML, defines a semantic relationship
between Classifiers. Finally, UML allows to represent differ-
ent kinds of Dependency relationships between ModelElements
like Binding, Usage, Permission, or Abstraction. We are not
going to consider the three first, because they are rather used
on application modeling. Moreover, due to the same reason,
out of the different stereotypes of Abstraction we are only go-
ing to use Derivation. Derivability, also known as “Point of
View”, helps to represent the relationships between model
elements in different conceptions of the UoD.
We are going to see now how these kinds of Relationships

would be implemented on a relational star schema, and how
they would be used to either change the base of the space
or drill across subjects (notice that we do not forbid to drill
across when “dimension tables” exactly coincide, but open
new possibilities to do it). On the one hand, if two sets
of Dimensions are semantically related, we may be able to
change the base. On the other hand, if two Facts are se-
mantically related, we may be able to drill across.

5.1 Derivation

Derivation would be implemented on a RDBMS by means
of views (in this section we only consider updatable views,
so that we can identify each tuple in the view with its coun-
terpart in the table). We can find that a “dimension table”
is a view over either another “dimension table” or “fact ta-
ble”, and a “fact table” could be a view over another “fact
table”. A “fact table” cannot be a view over a “dimension
table”, because Facts represent measured data.
Firstly, we could find that the “dimension table” (Di) in

the space of the input cube (ci) is a view over the “dimen-
sion table” (Do) in the space of the output cube (co). In
this case, we can change the base of the space adding Do
to the FROM clause and linking it to Di by appropriately
equaling the identifiers of the table and the view (the PK of
Di should have been derived from attributes in Do). How-
ever, if Do was derived from Di we would only be able to
change the base of the space if the WHERE clause of the
cube-query corresponding to ci is subsumed by the view
predicate. Otherwise, we will find points in the space of ci
without counterpart in the space of co (we would lose points
in the analysis space).
As Dimensions, Facts can also be related by derivation.

If the “fact table” (Fi) of ci is a view over the “fact table”
(Fo) of co, we can add Fo to the FROM clause and link the
identifiers of the table and the view (as before, the PK of
Fi should have been derived from attributes in Fo). In the
other way, if Fo is derived from Fi, we can still link them.
However, if some rows of Fi do not belong to its view Fo,
completely empty cells will appear in co. We should perform
an outer join to keep, at least, the Measures of Fi in the
output.
Finally, the “Pull” operation in [4] could be obtained by

ChangeBase, if Do is a view over Fi. This would allow
to change to a new space based on the Measures in the
current, by directly linking Do to Fi in the WHERE clause.
Notice that this Relationship can only be used if the new set
of Dimensions form a base for the same space (we should
probably change more than one Dimension at once). The
counterpart “Push” operation would be obtained by rolling
up to Level All along the pushed Dimension and drilling
across to the Fact that was used in the derivation of the
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Dimension. However, this is the classic Drill-across, where
“dimension tables” must be shared, and would not really
need the Derivation relationship to be performed.

5.2 Generalization

Even though an specific syntax has been defined in [13]
and new techniques experimented in [6], without loss of
generality, we assume that Generalizations would be imple-
mented on a RDBMS with one table for the superclass, and
another table for each of the subclasses. The PK of each
subclass would point to that of the superclass. We argued
in [1] that Generalizations can only be found between either
two Dimensions or two Facts. Dimensions and Facts are
so different, that they can only be related by Derivation or
Association.
If Do is a superclass of Di, we will always be able to change

the base of the space by adding the new table and linking it
to its subclass. On the other hand, if Di is superclass of Do,
we can only change the base if the specialization criterion of
Do subsumes the condition of the WHERE clause of ci.
Regarding Generalization between Facts, we can always

Drill-across from Fi to Fo, if Fo is superclass of Fi. If Fi
is superclass of Fo and the specialization criterion does not
subsumes the WHERE condition in ci, then it will be neces-
sary to use an outer join to keep on obtaining the Measures
in Fi. If the Generalization is part of a partition, an alter-
native to the outer join would be to unite co to the result of
drilling across to the other subclasses of Fi in the partition.

5.3 Association

The implementation of Associations on a RDBMS depends
on their multiplicities. If the multiplicity is one-to-one or
one-to-many, they can easily be implemented by means of a
FK. If the multiplicity is many-to-many, they can be imple-
mented using a “bridge table”. Associations exist between
two Dimensions, two Facts or a Fact and a Dimension.
If there is a one-to-one Association between Di and Do, it

will always be possible to link Do to Di, and substitute the
corresponding attributes in the SELECT clause of the cube-
query, and the set of Dimensions will still be a base of the
space. If the multiplicity is one-to-many or many-to-many
and we replace Di by Do, the size of the space would not
be preserved. Nevertheless, these kinds of Associations could
still be used if we replace more than one Dimension at once,
and there exist such one-to-one relationship between both
sets of Dimensions. For example, there is a one-to-many
association between Day and Order, but a one-to-one between
Day×Vendor×Warehouse and Order, as explained before.
Between two Facts, again, there is not any problem if the

multiplicity of the Association is one-to-one. If not, we do
not have an injective function as required to perform the
Drill-across. If we have more than one instance of Fo per
instance of Fi, we should Drill-across to an upper aggrega-
tion level of Fo where the correspondence were one-to-one.
On the other hand, if we have more than one instance of Fi
per instance of Fo, we would get the same data more than
once, placed at different points in the analysis space, giving
raise to a double-counting problem. Moreover, if minimum
multiplicity of the association is zero, i.e. if we could find in-
stances of Fi associated with zero instances of Fo, we should
use the outer join in order to keep the Measures of Fi in co.
The most common multiplicity between Dimension and

Fact is one-to-many. However, in some special cases, we

could find many-to-many Associations. [23] analyzes the dif-
ferent existing possibilities to implement such Associations
between Dimensions and Facts on a RDBMS. Nevertheless,
using them during navigation would mean that the same cell

should be placed at different points in the space, giving rise
again to a double-counting problem (our Cube would not be
injective). This problem is similar to the Drill-down prob-
lem, where we should decide how cells are decomposed into
different parts. [23] proposes a weighting factor to solve this
case. Thus, we should place the “bridge table” and “fact
table” in the FROM clause, link them appropriately, and
weight the Measures in the SELECT clause.

5.4 Flow

This kind of Relationship should be implemented again by
means of FK between old and new versions of tuples. As it
was said before, a Dimension cannot eventually evolve into
a Fact, nor vice-versa.
The simple evolution case is when every instance in the

old Dimension evolved into exactly one instance in the new
Dimension, and no new instances appeared. We just need
to add Do to the FROM clause and link both tables ap-
propriately. If there is not such one-to-one correspondence
between old and new instances, we should use “transforma-
tion matrices” (similar to the “weighting factor” of many-
to-many Associations) as explained in [9] (notice that in
this case we could be modifying the number of points in the
space, nevertheless we consider this an exception to the rule,
because the Dimension and Level do not actually change).
If Di is the old “dimension table” and some of its instances
disappeared in the new version Do, we need to assure that
they are not selected before performing ChangeBase. The
same happens if Do is the old version of Di and new in-
stances appeared in the evolution, these instances should be
removed from the space before the ChangeBase could be
performed.
Drilling across by means of a Flow between two Facts

means analyzing the old one from the new point of view,
or vice-versa. If instances appear or disappear in the evo-
lution, we should use the outer join appropriately to avoid
loosing the Measures of Fi in co. Moreover, Drill-across

using Flow between the Facts should only be used if there is
a one-to-one correspondence between instances of new and
old Facts. Notice that if there exists a one-to-many corre-
spondence (instances were either fused or split during the
evolution process), then it is due to the same happened to
the Dimensions, because it is necessary to have new PK
values to identify the new instances of the Fact. Thus, we
should firstly change the base to that of Fo using Flow Re-

lationships between the Dimensions, so that we would not
need to use the Flow between the Facts to perform Drill-

across.

6. CONCLUSIONS
This paper presents a set of algebraic operations to nav-

igate multidimensional schemas. Each of these operations
can be smoothly translated to SQL. Two operations stand
out from the rest, i.e. Drill-across and ChangeBase, whose
functionality has no counterpart in other models. They work
on semantic relationships between different Stars and were
not treated as first class citizens in any other multidimen-
sional model before. ChangeBase operation extends the
well known “pivoting” functionality, so that it can be used as
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a step towards Drill-across. Thus, it is shown how we could
drill across not only if “dimension tables” are shared, but
also if either Dimensions or Facts are related by different
kinds of UML Relationships (i.e. Derivation, Generalization,
Association, and Flow).
In our navigational approach for building cube-queries,

conditions in the WHERE clause are not explicitly removed.
This allows to keep conditions when rolling-up and drilling-
across, which offers the possibility of placing conditions on
Levels and Dimensions that do not form the space of the an-
alyzed cube. We assume that unnecessary conditions, links
and tables are removed by means of semantic optimization
mechanisms. As future work, we plan to study the imple-
mentation of such mechanisms, as well as how SQL’99 could
improve the implementation of the Relationships.
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