i

The following paper was originally published in the
Proceedings of the Third USENIX Conference on Object-Oriented Technologies and Systems
Portland, Oregon, June 1997

| mplementing Optimized Distributed Data Sharing
Using Scoped Behaviour and a Class Library

Paul Lu
Dept. of Computer Science
University of Toronto
Toronto, Ontario

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL: http://www.usenix.org

Implementing Optimized Distributed Data Sharing
Using Scoped Behaviour and a ClassLibrary

Paul Lu

Dept. of Computer Science
University of Toronto
10 King's College Road
Toronto, Ontario, M5S 3G4
Canada
paullu@sys.utoronto.ca

Abstract

Sometimes, it is desirable to alter or optimize the be-
haviour of an object according to the needs of a specific
portion of the source code (i.e., context), such as apartic-
ular loop or phase. One techniqueto support thisform of
optimizationflexibility isanovel approach called scoped
behaviour. Scoped behaviour alows the programmer to
incrementally tune applications on a per-object and per-
context basis within standard C++.

We explore the use of scoped behaviour in the imple-
mentation of the Aurora distributed shared data (DSD)
system. In Aurora, the programmer uses scoped be-
haviour as the interface to various data sharing optimiza-
tions. We detail how aclasslibrary implements the basic
data sharing functionality and how scoped behaviour co-
ordinates the compile-time and run-time interaction be-
tween classes to implement the optimizations. We aso
explorehow thelibrary can be expanded with new classes
and new optimization behaviours.

The good performance of Aurora suggests that using
scoped behaviour and aclass library is aviable approach
for supporting thisform of optimization flexibility.

1 Introduction

Optimizing a program’s data access behaviour can sig-
nificantly improve performance. ldeally, the program-
ming system should alow each object to be optimized
independently of other objects and each portion of the
source code (i.e., context) to be optimized independently
of other contexts. Towards that end, researchers have
explored various compiler and run-time techniques to
provide per-object and per-context flexibility in applying
an optimization.

We describe how scoped behaviour, a change in the

implementation of methodsfor thelifetime of alanguage
scope, can provide the desired optimization flexibility
within standard C++. A language scope (i.e.,, nested
braces in C++) around source code selects the context
and the re-defined methods implement the optimization.
Scoped behaviour requires less engineering effort to im-
plement than compiler extensions and it is better inte-
grated with the language, thus less error-prone to use,
than typical run-timelibraries.

Specifically, wefocusonasingleapplication of scoped
behaviour: supporting optimized distributed datasharing.
Sincethisdiscussionisclosely tied toaparticul ar problem
domain, we begin with abrief introductionto distributed
data sharing. Thenwe provide an overview of the Aurora
distributed shared data system [Lu97], detail how scoped
behaviour and the class library are implemented, and
discuss some performance issues.

2 Didtributed Data Sharing

Parallel programming systems based on shared memory
and shared data models are becoming increasingly pop-
ular and widespread. Accessing local and remote data
using the same programming interface (e.g., reads and
writes) is often more convenient than mixing loca ac-
cesses with explicit message passing.

On distributed-memory platforms, the lack of hard-
ware support to directly access remote memories has
prompted a variety of software-based, logically-shared
systems. Broadly speaking, there are distributed shared
memory (DSM) [Li88, BCZ90, ACD 96] and distributed
shared data (DSD) [BKT92, SGZ93, JKW95] systems.
Support for distributed data sharing, whether it is page-
based as with DSM, or object-based (or region-based) as
with DSD, isan active area of research. The spectrum of
implementation techniques spans special hardware sup-
port, run-timefunction libraries, and special compilers.

| Layer

| Main Componentsand Functionality

Programmer’s Interface

Scoped behaviour

Teams of threads for SPMD-style parallelism, active objects
Distributed vector and scalar objects

Shared-Data Class Library

Handle-body shared-data objects

Overloaded operators and special methods; immediate data access (default behaviour)
Data sharing optimizations

Owner-computes, caching data for reads, release consistency for writes

Run-Time System

Active objects and remote method invocation (currently, ABC++)
Threads (currently, pthreads)
Communication mechanisms (currently, shared memory and MPI)

Table 1. Layered View of Aurora

| (a) Original Loop

| (b) Optimized L oop Using Scoped Behaviour

GVector<int> vector1(1024);

for(int i =0; i <1024; i++)
vectorl[i] = someFunc(i);

GVector<int> vector1(1024);

{ // Begin new language scope

NewBehavi our (vectorl, GVRel easeC, int);
for(int i =0; i < 1024; i++)
vectorl[i] = someFunc(i);

} // End scope

Figure 1. Applying a Data Sharing Optimization Using Scoped Behaviour

In this context, the all-software Aurora DSD sys-
tem provides a shared-data programming model on
distributed-memory hardware. All shared dataare encap-
sulated as objects and are accessed using methods. To
overcome the latency and bandwidth performance prob-
lems of typical distributed-memory platforms, Aurora
providesa set of well-known data sharing optimizations.

Although other DSM and DSD systems also offer data
sharing optimizations, Auroraisuniquein how these opti-
mizations are integrated into the programming language.
Pragmatically, scoped behaviour alows the applications
to be incrementally tuned with reduced programmer ef-
fort. Also, as an experimenta platform, Aurora’s class
library approach is rel atively easy to extend with new be-
haviours. In particular, one of thegoal sof thisresearchis
to support common datasharing i dioms, specified and op-
timized using scoped behaviour, with good performance.

3 Overview of Aurora

Auroracan beviewed as alayered system (Table 1). The
key layers will be discussed later on, but we begin with a
quick overview.

Application programmers are primarily concerned
with the upper two layers of the system: the program-

mer’s interface and the shared-data class library. The ba-
sic data-parallel process modd isthat of teams of threads
operating on shared data in SPMD-fashion (single pro-
gram, multipledata). The basic shared-datamodel isthat
of a distributed vector object or a distributed scalar ob-
ject. Once created, a shared-data object is transparently
accessed, regardless of the physical location of the data,
using normal C++ syntax. By default, shared dataisread
from and written to immediately (i.e., synchronoudly),
even if the data is on a remote node, since that data ac-
cess behaviour has the least error-prone semantics.

Figure 1(a) demonstrates how a distributed vector ob-
jectisinstantiated and accessed. Gvect or isaC++ class
template provided by Aurora. Any built-in data type or
user-defined structure or class can be used as the tem-
plate argument. The size of the vector is a parameter
to the constructor and, currently, the vector elements are
block distributed across the physical nodes.

Now, for example, if a shared vector is updated in
aloop and if the updates do not need to be performed
immediately, then the loop can use release consistency
[GLL*90, AG96] and batch the writes (see Figure 1(b),
shown side-by-side for easy comparison). Without any
changes to the loop code itself, the behaviour of the up-
datesto vect or 1 is changed within the language scope.

(a) Common Preamble

int
IIP
int

i,
rototype of C-style function with innermost loop
dotProd(int * a, int * b, int j, int n);

(b) Sequential Code

(c) Optimized Parallel Code

/I mA, mB, mC are512 x 512 matrices

for(i =0; i <512; i++)
for(j =0; j <512; j++)
nClillj]l =

dotProd(&mA[i][0], nB,

/I mA, mB, mC are 512 x 512 G\ectors

{ /I Begin new language scope

NewBehavi our (mA, GVOaner Conputes, int);
NewBehavi our (nB, GVReadCache, int);
NewBehavi our (nC, GVRel easeC, int);

whi l e(mA. doParallel (nyTeam))
for(
for(j = 0;
nCilfil =
dot Prod(&mA[i][0],

} // End scope

j <512 j++)

i, 512); nB, j, 512);

Figure 2. Matrix Multiplicationin Aurora

i = mA begin();i < mend();i += mA step())

TheNewBehavi our macro specifiesthat therel ease con-
sistency optimization should be applied tovect or 1.

Therefore, scoped behaviour isthe main interface be-
tween the programming model and the data sharing opti-
mizations, providing:

o Per-object flexibility: The ability to apply an op-
timization to a specific shared-data object without
affecting the behaviour of other objects. Within a
context, different objects can be optimized in dif-
ferent ways (i.e., heterogeneous optimizations).

o Per-context flexibility: The ability to apply an op-
timization to a specific portion of the source code.
Different portions of the source code (e.g., differ-
ent loops and phases) can be optimized in different

ways.

The lowest layer of Aurora, the run-time system, pro-
vides the basic thread management and communication
mechanisms. The current implementation of Aurorauses
the ABC++ class library for its active object mecha
nism, an object that has a thread of control associated
with it, and remote method invocation (RMI) facilities
[OEPW96]. RMIs are syntactically similar to normal
method invocations, but RMIs can be between objectsin
different address spaces. If desired, the application pro-
grammer can directly utilize the active object and RMI
mechani smstoimplement amorecontrol-parallel process

model. Also, although ABC++ aready has a parametric
shared region (PSR) mechanism, itisnot used by Aurora.

In turn, ABC++ uses standard pthreads [Pth94] for
concurrency and either shared memory or MPl message
passing [GL S94] for communication.

4 Programmer’s|nterface

A more detailed description of the programmer’s inter-
face to Aurora can be found esewhere [Lu97], but we
briefly touch upon the main ideas with an example.

4.1 Example: Matrix Multiplication

For illustrative purposes, consider the problem of non-
blocked, dense matrix multiplication, as shown in Figure
2. The preamble is common to both the sequential and
paralel codes(Figure2(a)). Thebasic agorithmconsists
of three nested | oops, where theinnermost |oop computes
a dot product and can be factored into a separate C-
stylefunction. An appropriateindexing functionfor two-
dimensiona arraysin C/C++ is assumed.

Conceptually, we can view an optimi zation asachange
in the type of the shared object for the lifetime of the
scope. Thecurrent set of available behavioursis summa-
rized in Table 2. Asan example of per-object flexibility,
three different data sharing optimizations are applied to

| Scoped Behaviour | Description |

Owner-computes Threads access only co-located
data.

Caching for reads Create local copy of data.
Releaseconsistency | Buffer write accesses.
Special-purpose Used with owner-computes for
data movement specific applications (e.g., sten-

cilsin 2-D diffusion simulation).

Table 2. Some Scoped Behaviours

the sequential code in Figure 2(b) to create the parallel
codein Figure 2(c). Specificaly:

1. NewBehavi our (M, GVOaner Conput es, i nt):
To partitionthe parallel work, the owner-computes
techniqueis applied to distributed vector mA.

Within the scope, mA is an object of type
GvOaner Conput es and has specia methods
doParal l el (), begin(), end(), and step().
Only the threads (each represented by a locd
myTeam pointer) that are co-located with a por-
tion of mA's distributed data actually enter the
whi | e-loop and iterate over their ocal data. Also,
when dot Prod() iscaled, atype constructor for
GvOaner Conput es returnsaC-stylepointertothe
local data so that the function executes with maxi-
mum performance.

Although some changes to the source code are
required to apply owner-computes, they are rel-
atively straightforward. Other work partitioning
strategies, that do not use the special methods pro-
vided by Aurora, are allowed, but owner-computes
is both convenient and efficient.

2. NewBehavi our (nB, GVReadCache, int): To
automatically createalocal copy of distributed vec-
tor nB at the start of the scope, sinceit isread-only
and re-used many times, its type is changed to
GVReadCache.

The scoped behaviour of aread cache asoincludes
atypeconstructor sothat dot Pr od() canbecalled
with C-style pointers that point to the cache. Note
that no lexical changes to the loop’s source code
are required for this optimization.

3. NewBehavi our (nC, GVRel easeC, int): To
reduce the number of update messages to el ements
of distributed vector nC during the computation, its
typeis changed to GVRel easeC.

Within the scope, the overloaded operators batch
the updates into a per-target address space buffer

and messages are only sent when the buffer isfull
or when the scopeisexited. Also, multiplewriters
to the same distributed vector are alowed. No
lexical changes to the source code are required.

Theresult of thisheterogeneous set of optimizationsis
that the nested | oops can execute without remote data ac-
cesses and the parallel program can usethe same efficient
dot Prod() functionasin the sequential program.

4.2 Discussion: Programming in Aurora

The typica methodology for devel oping Auroraapplica
tionsconsistsof three main steps. First, thecodeisported
to Aurora. Shared arraysand shared scal ars are converted
to Gvect or s and GScal ars. Although the default im-
mediate access policy can be dow, its performance can
be optimized after the program has been fully debugged.

Second, the work is partitioned among the processors
and threads. Owner-computes and SPMD-style paral-
Ielism are common and effective strategies for many ap-
plications. However, the application programmer may
implement other work partitioning schemes.

Lastly, various data sharing optimizationscan betried
on different bottlenecksin the program and on different
shared-data objects. Often, the only required changes
are a new language scope and a NewBehavi our macro.
Sometimes, straightforward changes to the looping pa-
rameters are needed for owners-computes. For example,
in the matrix multiplication program, owner-computes
can beappliedto vector nCinstead, with read caches used
for both vector mA and vector nB. Thedot Prod() func-
tion and the data access source code remain unchanged.
The new optimization strategy uses more resources for
read caches than the origina strategy, but, since nC is
being updated, it is perhaps a more conventiona appli-
cation of owner-computes. Reverting back to the orig-
ina strategy is aso relatively easy. For the application
programmer, the ability to experiment with different op-
timizations, with limited error-prone code changes, can
be valuable.

5 Scoped Behaviour

Scoped behaviour is a change in the implementation of
selected methods for the lifetime of alanguage scope.
For the Auroraprogrammer, scoped behaviour is how
an optimization is applied to a shared-data object. For
the system and class designer, scoped behaviour is an
interface between collaborating classes that changes the
implementation of the selected methods. Some of the
ideas behind scoped behaviour have been explored as
part of the handle-body and envelope-letter idioms in
object-oriented programming [Cop92] (to be discussed

(a) Scoped Behaviour Macro

#define NewBehaviour (XX, YY, ZZ)\
YY<ZZ> XX(AU ## XX);

tenpl ate <class C.OrigHandl e>
class GPortal
{
private:
COigHandl e * save;
public:

}; I/ GPortal

GPortal <Gvect or <ZZ> > AU_ ## XX(XX); \

GPortal (COigHandle & h') { save = &h; }
operator COrigHandle &) { return *save; }

/I Macro provided by aurora.H

/I Class template provided by aurora.H

/I Saved handle

/I In: Constructor
/] Out: Type constructor

| (b) SourceCode |

(c) After Standard Preprocessor Pass |

{ // Begin new language scope

NewBehavi our (vectorl, GVRel easeC, int);

for(int i
vectorl]

} // End scope
vectorl[0] = 1;

=0; i <1024; i++)
i]

= soneFunc(i);

// 'mmediate update

{ /I Begin new language scope
GPort al <GVector<int> > AUvector1(vectorl);
GVRel easeC<i nt > vector1(AUvectorl);

for(int i
vectorl]

} // End scope
vectorl[0] = 1;

=0; i <1024; i++)
i]

= soneFunc(i);

/I lmmediate update (still)

Figure 3. Aurora s Scoped Behaviour Macro

further in Section 6.1). Scoped behaviour builds upon
theseidess.

5.1 Language Scopes and Scoped Behaviour
Objects

The main motivation for using language scopes to define
the context of scoped behaviour isto exploit the property
of name hiding. In block-structured languages, an iden-
tifier can be re-used within a nested language scope, thus
hiding the identifier outside of the scope.

Instantiations of a class that are designed to be used
within alanguage scope, and which hide objects outside
the scope, are called scoped behaviour objects.

5.2 Implementing Scoped Behaviour

As shown in Figure 3(a), Aurora provides the scoped
behaviour macro NewBehavi our and the class template
GPor t al viaaheader file. Figure 3(b) showstheoriginal
programmer’ ssource codeand Figure 3(c) showsthecode
after the standard preprocessor of the C++ compiler has
expanded the macro. Again, the code is shown side-by-
sidefor comparison.

The NewBehavi our macro is parameterized by the

name of the origina shared-data object, the type of the
new scoped behaviour object, and the type of the vector
glements! The macro ingtantiates two objects. The
first object, AU.vect or 1, is of type GPort al . Its sole
functionisto cache apointer to the original object, which
is passed as a constructor argument, and then pass it
along to the scoped behaviour object’s constructor. The
second object, the scoped behaviour object vect or 1 of
type GVRel easeC<i nt >, hides the origina object but
can access itsinternal state using the pointer passed by
AUvector1l. Thus, the scoped behaviour object can
mimic or change the functionality of the original shared-
data object.

Wewill discusstheimplementation of these classesin
more detail in Section 6, but we provide an overview of
the basic idess.

Since the scoped behaviour object has the same name
as the origina vector 1, the compiler will generate

I Note that it isamulti-line macro and the ## symbol is the standard
preprocessor operator for lexical concatenation. Also, the prefix AU_is
arbitrary and can be redefined, if necessary.

Unfortunately, the more concise syntax of GVRel easeC<i nt >
vector1(vectorl) conflicts with the C++ standard (i.e, the
new vect or 1 is passed areferenceto itself, instead of to the original
object), so an intermediary object is required. Fortunately, the macro
hides the existence of the intermediary object.

the loop body code according to class GvRel easeC in-
stead of the original object’s class. However, the user’s
source code does not change. Even though the origi-
nal and scoped behaviour objects collaborate to imple-
ment scoped behaviour, we can conceptualize it as tem-
porarily changing the type of the original object. The
NewBehavi our macro helps to hide this abstraction.
Note that source code outside of the context of the op-
timization continues to refer to the original Gvect or.
Therefore, immediate update remains the default be-
haviour outside of the scope, illustrating per-context flex-
ibility.

The class template GV/Rel easeC is designed to be-
have exactly like Gvect or, except that the overloaded
operators now buffer updates to the vector el ements.
Read accesses to the vector continue to be performed
immediately, even if the data is remote. Thus, the
class of a scoped behaviour object can selectively re-
define behaviour on a method-by-method and operator-
by-operator basis.

Also, sincevect or 1 isanew object within the scope,
dynamic run-time actions can be associated with the var-
ious constructors and the destructor. In particular, the
destructor flushes the update buffersto the vector so that
all updatesareguaranteed to be performed when the scope
isexited.

Although this description has centered on a particu-
lar class, the basic scoped behaviour technique can be
applied to a variety of classes and objects. The owner-
computes, caching for reads, and other behavioursusethe
same NewBehavi our macro and are based on the same
design principles.

Of course, the basic ideas behind the implementation
of scoped behaviour are not new. The notion of nested
scopesisfundamental to block-structured sequential lan-
guages. The association of data movement actions with
C++ constructorsand destructorsisalso not new (for ex-
ample, in ABC++). However, scoped behaviour isunique
in that it coordinates the interaction of different classes
to create per-object and per-context behaviours.

5.3 Advantages and Disadvantages

The advantages of scoped behaviour include:

1. Sandards-based implementation. Scoped be-
haviour can be implemented within standard C++
as a preprocessor macro. The class library, to be
discussed in the next section, isalso standard C++.

2. Flexibility of experimentation. Scoped behaviour
makes it easy to add, modify, and remove be-
haviours with minimal or no lexical source code
changes.

3. Flexibility of implementation. The compile-time
aspect of scoped behaviour alows the compiler
(and implementor) to generate behaviour-specific
code based on different classes. The run-time
aspect of scoped behaviour alows dynamic be-
haviour, such as data movement and interactions
with the run-time system, to be associated with
constructors and destructors.

A disadvantage of scoped behaviour isthat, sinceitis
aprogramming techniqueinstead of afirst-class compiler
feature, it cannot access the compiler’'s symbol table for
high-level analyses. A moregeneral disadvantageisthat,
sincetherun-timebehaviour depends on constructorsand
destructors with static invocation points, it cannot be di-
rectly ported to a language like Java [Sun96]. Java is
a garbage-collected language and the current definition
does not have destructorsin the same sense as C++.

Compared to some other DSM and DSD systems,
scoped behaviour has safety and performance benefits.

For example, GVRel easeC has been explicitly imple-
mented with a constructor that takes a parameter of type
GVect or & Therefore, programming errorsinvolvingin-
compatible objects, such as trying to use release consis-
tency withnormal C++ arrays, will resultin compile-time
errors. More generally, as with al object-oriented sys-
tems, methodsareinvoked on objectsand thusitisimpos-
sible to pass the wrong shared-data object as a function
call parameter. Also, the automatic construction and de-
struction of scoped behaviour objects make it impossible
for the programmer to omit arequired data movement ac-
tion at theend of acontext. Non-object-oriented function
libraries may only be able to catch these forms of errors
at run-time, if at all.

As with some other systems, performance benefits
can arise from exploiting high-level data access seman-
tics. For example, G/ReadCache is intended for data
that is read-only and where most of the elements will be
accessed during the context. Therefore, Aurora can read
the data in bulk rather than demanding-in each portion
of the data with a separate data movement action. Also,
GVRel easeC isintended for datathat is updated but not
read. Therefore, unlike some other systems, Aurora can
avoid the overhead of demanding-in the remote data be-
fore overwriting it.

6 Shared-DataClassLibrary

In this section, we take a detailed ook at the design and
implementation of the C++ classes for the shared-data
objects and data sharing optimizations. By design, these
classes collaborate to support scoped behaviour.

Node / Address Space 0

/7 Handle

Partition Object

. . Shared-M RMI
Directory Object are emory

Programmer’s

Overloaded Operators

Special Methods
(incl. constructors
and destructors)

-~

Body 0 N\ . .
\ I:I Passive Object
Synchronization and
Permissions
,,,,,, I:I Active Object

Composite Object
Boundary

|
|
|
|
|
Interface |
|
|
|
|
!

No\i\e / Address Space 1

\ Message—based RMI

Body 1

Synchronization and
Permissions

[——

Figure 4. Handle-Body Composite Objects

6.1 Handle-Body Composite Objects
The main architectural feature of the shared-data class
library isthe use of the handle-body idiom to create com-
posite objects [Cop92, OEPW96] for shared data (Figure
4). The handleobject defines the programmer’ sinterface
to the shared data. The body object (or objects) contain
the actual data

The extralevel of indirection afforded by a composite
handle-body approach alowsfor:

1. Data distribution. A distributed vector is a set of
body objectsand each body object can belocatedin
adifferent address space or on a different physical
node. The handle includes a partition object to
abstract the distribution strategy and a directory
object to keep track of the location of the bodies.
A distributed scalar has a single body object.

Figure 4 shows a distributed vector object with a
handle and two body objects, where one of the
body objectsison adifferent nodethan the handle.

Location-transparent data accesses. Through
overloaded operatorsin the handle, the distributed
data can be accessed through a uniform interface,
regardless of the location of the actual data. Thus,
for a given vector index, the partition object deter-
mines which body holdsthe data and the directory
object provides a pointer to the body object.

3. Cheap parameter passing of shared data. Only

handles are passed across function cals; the data
in the bodies are not copied. Handles can aso be
passed between address spaces, if desired, since
the partition and directory objects are sufficient to
locate any body object from any address space.

For performance-sensitive functions, such as
dot Prod() inFigure2, the overheads of indirection can
be avoided in controlled ways through type constructors
that return C-style pointers.

The current implementation of Auroracreates handles
as passive (i.e, regular) C++ objects. However, each in-
dividua body isimplemented as an active object, which
is useful for implementing any necessary synchroniza-
tion behaviour. Handle and body interact using remote
method invocations. The run-time system automatically
sel ects between shared-memory and message-based com-
muni cation mechanisms for transmitting RMIs.

6.2 ClassHierarchy for Handles

Since most of the data sharing functionality is imple-
mented in the handles, this discussion will focus on the
handle classes. Briefly, however, the body classes sup-
port get () and put () data access methods, including
batch update and block-read variations. For the current
data sharing optimizations in Aurora, this simple func-
tionality isall that isrequired.

Figure5isadiagram of themain classesintheclasshi-

= is—arelationship
No template m—— e holds-a relationship
arguments. GHandle
\\ (creates—a relationship
£ 2template GSHandle GVHandle (GPointerSC
= arguments: =
@ | 1. Element type -
| 2. Body class \.
GVScopedHandle
GVRWBehaviour (GPointerRC

o 1 template GScalar GVector 5VOwnerComputes GVReadCache GVReleaseC
0N argument:
O | 1. Element type

Figure5. Class Hierarchy for Handles

erarchy for shared-data handles.? Aside from the names
of the classes, the diagram shows the relationship be-
tween classes. The is-a relationship is the usua notion
of inheritance. For example, class GHandl e isthe base
class for al handles. Common access methods are fac-
tored into the base class. The holds-a relationship exists
when a class contains a pointer (or pointers) to an in-
stance of another class. This is used, for example, to
allow one object to access the interna state of another
object. The creates-a relationship exists when at least
one of the methods of a class returnsan object of another
class. For example, an overloaded subscript operator
(i.e., operator[]) can return an object which encodes
information about a specific vector element [Cop92].

We can al so distinguish the classesby theway they are,
or are not, templated. Class GHandl e is not templated
in order to simplify the implementation of mechanisms
that only requirelimited functionality from ahandle. For
example, querying about the number of vector elements
does not require knowledge about template arguments.
However, the most important class templates for the sys-
tem implementor are parameterized by both the dataele-
ment type and the class of the body object.

In general, the application programmer is only ex-
pected to use the classes with a single templ ate argument
for the dataelement type (labelled “User” in Figure5 and
highlighted in gray). These classes hide the more com-

2The notation is based on Booch [Boo91], but with some simplifi-
cations and changesto better suit this presentation.

plex templating and class hierarchy considerations that
the “System” must deal with.

For datasharing using immedi ate access, theimportant
classes are GSHandl e and GvHandl e (shown inside the
box in Figure5). These classes encapsulate member data
to keep track of the body or bodies.

Figure6 providesamoredetailed ook at theinterfaces
for the classes that implement the shared vector. Class
GHandl e, which is not templated, is a convenient base
class within which to implement methods common to all
handles. Class Gvect or does little more than specify
the specific body class (i.e., LVector) for the second
template argument to GvHandl e and call the appropriate
constructors.

Most of thefunctionality for theshared vector isimple-
mented by class GvHandl e. In particular, the overloaded
subscript operator returnsan object of typeGPoi nt er SC,
whichis apointer object. When evaluating C++ expres-
sionsinvolving objects and overloaded operators, tempo-
rary objectsrepresent theresult of sub-expressions. Since
the actual data for a term may be a remote shared data
element, the temporary object points to the body object
with the data. Class GPoi nt er SC has data members to
store the vector index and a pointer to the specific body
object with that element. Reading from or writing to the
vector element invokes the appropriate type constructors
and the overl oaded assignment operator of GPoi nt er SC,
resulting in an immediate remote memory access.

/I Base class. Not templated.
cl ass GHandle

{
private:
int nunkl enents; /I Number of vector elements
/I ...other data members...
publi c:
/I ...various constructorsand destructor...
int size() { return nuntl enents; } /I Common access method

/I ...other methods...
}; /l GHandle (System)

// Template argument C_Data is the element type; C_LV is the body class.
/I Classes GVScopedHandle, Partition, Directory, GPointer SC are provided by Aurora.
tenpl ate <class CData, class CLV>
cl ass GVHandle : public GHandl e /I is-a GHandle
{
/I GVScopedHandle needs accessto internal state (for holds-a)
friend GY/ScopedHandl e<CData, CLV>;

protected:
Partiti on<MAX_LOCALS> partition; /I Distribution strategy
Di rectory<CLV> directory; /I Location of body object(s)
/I ...other data members...

publi c:
GvHandl e(int nunEl enents); /I Construct with size of vector
“GvHandl e() ;
GPoi nter SC<CLV, CData> operator[] (int index); /I |mmediate data access (creates-a)

/I ...other methods...
}; /I GVHandle (System)

// Template argument C_Data is the element type; L\ector (provided by Aurora) is the body class.
tenpl ate <cl ass C.Dat a>

cl ass GVector : public GvHandl e<CData, LVector<CData> > /lis-a GVHandle
{
publi c:
Gvector(int nunEl enents) : /I Construct with size of vector
GVvHandl e<CData, LVector<CData> >(nunEl ements) {}
“GVector();

/I ...inherits operator[] and other methods...
}; /I GVector (User)

Figure 6. Interface for Shared Vector: Gvect or

// Template argument C_Data is the element type; C_LV is the body class.
/' Remember that | ama friend of GVHandle.
tenpl ate <class CData, class CLV>

cl ass GVScopedHandle : public GHandl e /I is-a GHandle
{
protected:
GvHandl e<C.Data, CLV> * origHandl e; /I To accessinternal state of original object (holds-a)
/I ...other data members...
publi c:
GvScopedHandl e(GvHandl e<CData, CLV> & gv) /I Construct with original handle
{ origHandl e = &gv; } /I Cachethe handle

~ GvScopedHandl e() ;
/I ...other methods...
}; /I GVScopedHandle (System)

// Template argument C_Data is the element type; C_LV is the body class.
/I Classes Cache, BatchWrite, and GPointer RC are provided by Aurora.
tenpl ate <class CData, class CLV>

cl ass GVRWBehaviour : public GvScopedHandl e Il is-a GVScopedHandle
{
protected:
Cache<CData, CLV> * readCache; /I Configurableread cache
Bat chWite<CData, CLV> * updateBuf[MAXLOCALS]; /I Configurablebuffer for release consistency
/I ...other data members...
publi c:
GVRWBehavi our (GvHandl e<CData, CLV> & gv) : /I Construct with original handle
GVScopedHandl e<CData, CLV> >(gv) {}
~“ GVRWBehavi our () ; /I Destructor flushes update buffersif necessary
createCache(); /I Method to create read cache
al | owUpdat eBuf () ; /I Method to allow update buffers
GPoi nter RC<CLV, CData> operator[] (int index); /I Data accessvia cache/buffer (creates-a)

/I ...other methods...
}; /I GVRWBehaviour (System)

// Template argument C_Data is the element type; L\ector (provided by Aurora) is the body class.
tenpl ate <cl ass C.Dat a>

cl ass GVReleaseC : public GVRWBehavi our <CData, LVector<CData> > Il is-a GVRWBehaviour
{
publi c:
GVRel easeC(Gvector<CData, CLV> & gv) : /I Original handle via GPortal of NewBehavour macro
GVRWBehavi our <CData, LVector<CData> >(gv)
{ all owmUpdat eBuf (); } /I Construct to allow update buffers
" GVRel ease(() ;

/I ...inherits operator[] and other methods...
}; /I GVReleaseC (User)

Figure 7. Interface for Release Consistency Scoped Behaviour: GVRel easeC

6.3 Data Sharing Optimizations. Scoped Be-
haviour Objects

For the data sharing optimizations, the parent class
GvScopedHandl e extracts and maintains information
about theinternal state of a given GvHandl e, as per the
holds-a relationship (Figure 7). This functionality is an
important part of implementing scoped behaviour. The
partition and directory objects of the GvHandl e are not
copied, thus reducing the construction costs of a scoped
behaviour object.

Class GvOaner Conput es, initsconstructor, usesthe
extracted internal state to determine the address of the
body object’s data. Therefore, GvOaner Conput es can
return a C-style pointer from the appropriate type con-
structor and from the overloaded subscript operator. As
previously discussed, GvOaner Conput es aso defines
special functionsto support easy iterating over the loca
data

Class GVRWBehavi our can, optionaly, create a
read cache for shared data and create update buffers
to shared data (Figure 7). Classes that derive from
GVRVBehavi our explicitly configure the caching and
buffering options. The overloaded subscript operator in
GVRWBehavi our returnsan object of classGPoi nt er RC,
which is similar in concept to class GPoi nt er SC, but
with two important differences. First, if the read cache
exists and is loaded, then GPoi nt er RC is configured
to access data from the cache instead of from the re-
mote body. Second, if the update buffers are enabled
in GVRWBehavi our , then GPoi nt er RC is configured to
store updates in the buffer rather than initiate a remote
memory access. GVRWBehavi our creates the buffers on
demand. Depending on the configuration of the cache
and buffers, GPoi nt er RC will access shared data appro-
priately.

Therefore, theconstructor of classGvReadCache cdls
the appropriate GYRWBehavi our methods to create and
load the read cache. Thus, when the subscript operator
for GVReadCache, which is inherited from the parent
class, creates aGPoi nt er RC object, it will waysaccess
the cache. GYReadCache aso defines atype constructor
to return a C-style pointer to the cache.

Similarly, class GVRel easeC cdls the appropriate
GVRWBehavi our constructor and enables the use of up-
date buffers (Figure 7). Thus, when the subscript opera-
tor for GvRel easeC, which isinherited from the parent
class, creates a GPoi nt er RC object, it will aways use
the buffers. The destructor for class GVRWBehavi our
makes sure al buffers are flushed.

7 ExtendingthelLibrary

Within the class hierarchy, new data sharing optimiza
tions can be implemented. We consider a trivia but il-
lustrative example. For example, a new class could both
cache datafor reading and buffer updates. The new class
would derive from GVRvWBehavi our. The new class's
constructor creates the read cache and also enables the
update buffers. The GPoi nt er RC objects created by the
new class would aways read from the cache and always
buffer updates. By default, updates are also mirrored in
the cache. Admittedly, this“new” data sharing optimiza-
tion is easy to add because of the desigh and existing
functionality of GVRWBehavi our and GPoi nt er RC, but
the basi ¢ techniques can be used for more complex addi-
tionsto thelibrary.

There are three main techniques for extending the li-
brary of data sharing optimizations. The techniques can
also be combined.

1. New classes. Define new classes for partition, di-
rectory, body, and pointer objects.

Currently, only a block-distributed partition object
is implemented. If a cycle-distributed object is
required in the future, a new partition class could
abstract thedistributiondetails. Findly, aswehave
seen, classes like GPoi nt er SC and GPoi nt er RC
are useful for defining new memory access be-
haviours.

2. New methods. Inherit from a parent class, then add
new scoped behaviour with new methods.

For example, GvOaner Conput es adds new meth-
odsfor iterating over loca data.

3. Re-define methods. Inherit from a parent class,
then re-define behaviour through constructors, the
destructor, methods, operators, and type construc-
tors.

For example, GVRel easeCreliesonitsparent class
for most of its functionality. GVRel easeC merely
configures the update buffers appropriately in its
constructor.

8 Performance

To date, we have experimented with three Aurora pro-
grams [Lu97]. The programs are matrix multiplication
(Figure 2), a2-D diffusion simulation, and Parallel Sort-
ing by Regular Sampling (PSRS) [SS92, LLS'93]. Re-
cent performance results are shown in Table 3. Speedups
are computed against C implementations of the same al-
gorithm (or against quicksort in the case of the paralld

Speedup
Program Data Set Networ k 2PEs | 4PEs | 8PEs
Matrix Multiply 704 x 704 Fast Ethernet | 1.85 351 6.40
(175 sec. seq.)
512 x 512 Fast Ethernet | 1.79 3.37 5.89
(65.8 sec. seq.)
2-D Diffusion 1526 x 1526, 32 time-steps Fast Ethernet | 1.27 213 3.86
(47.8 sec. seq.)
1024 x 1024, 32 time-steps Fast Ethernet | 1.07 191 3.45
(20.3 sec. seq.)
PSRS 10 million keys Fast Ethernet | n/a 224 3.72
(60.4 sec. seq.)
6 million keys Fast Ethernet | 1.21 2.05 3.22
(33.9 sec. seq.)

Table 3. Aurora Programs on a Network of Workstations

sort). Inparticular, the sequential implementationsdo not
suffer from the overheads of either operator overloading
or scoped behaviour.

The distributed-memory platform used for these ex-
perimentsisacluster of PowerPC 604 workstationswith
133 MHz CPUs, 96 MB of main memory, and a sin-
gle, non-switched 100 Mbit/s Fast Ethernet network.
The software includes IBM’s AIX 4.1 operating sys-
tem, AlX’s pthreads, and the MPICH (version 1.0.13)
[DGLS93] implementation of MPI.

Two trends can be noted in the performance results.
First, for these three programs, additional processorsim-
proves speedup, abeit with diminishing returns. Second,
asthesize of thedata set increases, theoverall granularity
of work, and thus speedup, aso increases.

Contention for the single network and areduced gran-
ularity of work can account for the diminishing returns
for more processorswith afixed problemsize. For exam-
ple, sincetheread cache' s data requirements are constant
per-processor, communication costs and network con-
tention grows when replicating vector nB in matrix mul-
tiplication. Communications costs under contention aso
account for the overheads in the parallel sort program,
sincethealgorithmincludesakey exchange. For the2-D
diffusionsimulation, thegranularity of atime-step before
abarrier quickly fallsto below one second as processors
are added. Fortunately, if the problem size increases, the
computation’soverall granularity also increases resulting
in better absolute speedups.

The performance of Aurora programs on this particu-
lar hardware platform is encouraging, but there remains
twoimportant avenues for futurework: different network
technology and new scoped behaviours. An 155 Mbit/s
ATM network has been installed on the platform, but it
is not yet fully exploited by the run-time system. How-

ever, early experience indicates that the additional band-
width and improved contention characteristics of ATM
will benefit Auroraprograms. Also, thereiscurrently no
overlap between communication (for reads) and compu-
tation in the existing scoped behaviours. For simplicity,
GVReadCache loadsall of the data before allowing com-
putation to continue. Using the techniques described in
this paper, the library of scoped behaviours will be ex-
tended to better hide the read latency of the distributed-
memory hardware.

9 Discussion and Related Work

Distributed data sharing is an example of a problem do-
main where per-object and per-context optimization flex-
ibilityisdesirable. The dataaccess behaviour of ashared-
data object can change depending on theloop or program
phase, so asingledata sharing policy is often insufficient
for al contexts. In genera, optimization flexibility can
be supported through compiler annotationsor a run-time
system interface, but scoped behaviour offers advantages
intermsof engineering effort, safety, and i mplementation
flexibility.

Sincelvy [Li88], thefirst DSM system, alarge body of
work has emerged in the area of DSM and DSD systems
(for example, [BCZ90, BKT92, BZS93, SGZ93, IKW95,
ACDT96]). Related work in parallel array classes (for
example, [LQ92]) has aso addressed the basic problem
of transparently sharing data.

Different access patterns on shared data can be opti-
mized through type-specific protocols and run-time an-
notations. Both Munin [BCZ90] and Blizzard [FLR*94]
provide protocols customized to specific data sharing
behaviours. Run-time libraries, such as shared regions
[SGZ93], SAM [SL94], and CRL [JKW95], associate

coherence actions with access annotations (i.e., function
cals). Unlike Munin, Aurora does not require special
compiler support and different optimizations can be used
in different contexts. Unlike Blizzard, Auroraintegrates
the optimizationsinto the programming language to gen-
erate custom code for different coherence actions, for
added implementation and performance flexibility. Un-
like function libraries, the automatic construction and
destruction of scoped behaviour objects make it impossi-
blefor the programmer to omit an annotation and miss a
coherence action.

Aurora shandle-body object architectureand the asso-
ciation of data movement with constructors and destruc-
tors are inspired by the parametric shared region (PSR)
mechanism of ABC++. However, there are some signif-
icant differences between Aurora's shared-data objects
and PSRs. First, Aurora allows distributed vectors to be
partitioned between different address spaces to improve
scalability and to support owner-computes using multi-
plenodes. A PSR hassinglehomenode, therefore shared
datacannot be partitioned and owner-computes cannot be
used within a PSR. Second, Aurora uses operator over-
loading and pointer objects, which gives the system more
flexibility to generate behaviour-specific code, and to op-
timize the read and write behaviour of shared data sepa-
rately. Aurora can aso return C-style pointers to shared
dataunder controlled circumstances. ThedatainaPSRis
alwaysaccessed using C-stylepointers, whichisefficient,
but it does not alow the system to selectively intervene
in data accesses. Lastly, Aurora supports multiple writ-
ers to the same distributed vector object, which can be
important for performance [ACD* 96], while PSRs only
alow asinglewriter.

10 Concluding Remarks

Researchers have explored a variety of different imple-
mentation techniques for DSM and DSD systems. The
Aurora DSD programming system is an example of a
software-only implementation that uses data sharing op-
timizationsto achieve good performance on a set of par-
alel programs.

What distinguishes Aurorafrom other DSM and DSD
systems isits use of scoped behaviour as an interface to
a set of data sharing optimizations. Scoped behaviour
supports per-context and per-object flexibility in apply-
ing the optimizations. This novel level of flexibility is
particularly useful for incrementaly tuning multi-phase
paralel programsand programsin which different shared
objects are accessed in different ways. The performance
of Aurorais encouraging and future work will explore
new data sharing optimizationsand how they can exploit
different network performance characteristics.

Scoped behaviour can be implemented in standard

C++ without special compiler support and it offersimpor-
tant safety benefits over typical run-time libraries. The
technique appears to be a viable approach for supporting
thisform of optimization flexibility.

11 Acknowledgments

Thank you to Ben Gamsa, Eric Parsons, Karen Reid,
Jonathan Schaeffer, Ken Sevcik, Michael Stumm, Greg
Wilson, Songnian Zhou, and the anonymous referees for
their comments and support during thiswork. Thank you
to the Department of Computer Science and NSERC for
financial support. Thank you to ITRC and IBM for their
support of the POW Project.

References

[ACD*96] C. Amza, A.L. Cox, S. Dwarkadas, P. Keleher,
H. Lu, R. Rgamony, W. Yu, and W. Zwaenepoel.
TreadMarks: Shared Memory Computing on Net-
worksof Workstations. |EEE Computer, 29(2):18—
28, February 1996.

S.V. Adve and K. Gharachorloo. Shared Memory
Consistency Models: A Tutorial. |EEE Computer,
29(12):66-76, December 1996.

JK. Bennett, JB. Carter, and W. Zwaenepoel.
Munin: Distributed Shared Memory Based on
Type-Specific Memory Coherence. In Proc. 1990
Conferenceon Principles and Practice of Parallel
Programming. ACM Press, 1990.

H.E. Bal, M.F. Kaashoek, and A.S. Tanenbaum.
Orca: A Language for Parallel Programming of
Distributed Systems. |EEE Transactions on Soft-
ware Engineering, 18(3), March 1992.

[AGY6]

[BCZ90]

[BKT92]

[Boo91l] G. Booch. Object-Oriented Design with Applica-

tions. Benjamin/Cummings, 1991.

B.N. Bershad, M.J. Zekauskas, and W.A. Sawdon.
The Midway Distributed Shared Memory System.
In Proc. 38th IEEE International Computer Con-
ference (COMPCON Spring’' 93), pages 528-537,
February 1993.

J.O. Coplien. Advanced C++: Programming
Sylesand |dioms. Addison—Wesley, 1992.

N.E. Doss, W.D. Gropp, E. Lusk, and A. Skjellum.
A Model Implementation of MPI. Technical Re-
port MCS-P393-1193, Mathematicsand Computer
Science Division, Argonne Nationa Laboratory,
Argonne, IL, 1993.

B. Falsafi, A.R. Lebeck, SK. Reinhardt,
I. Schoinas, M.D. Hill, JR. Larus, A. Rogers,
and D.A. Wood. Application-Specific Protocols
for User-Level Shared Memory. In Proc. Super-
computing ' 94, pages 380—389, November 1994.

[BZS93]

[Cop92]

[DGLS93]

[FLRT94]

[GLL*90]

[GLS94]

[JKWO5]

[Lissg]

[LLS*93]

[LQ92]

[Lu97]

K. Gharachorloo, D.E. Lenoski, J. Laudon, P. Gib-
bons, A. Gupta, and J.L. Hennessy. Memory Con-
sistency and Event Ordering in Scalable Shared-
Memory Multiprocessors. In Proc. 17th Inter-
national Symposium on Computer Architecture,
pages 15-26, May 1990.

W.D. Gropp, E. Lusk, and A. Skjellum. Us
ing MPI: Portable Parallel Programming with the
Message-Passing Interface. MIT Press, 1994.

K.L. Johnson, M.F. Kaashoek, and D.A. Wallach.
CRL: High-Performance All-Software Distributed
Shared Memory. In Proc. 15th ACM Symposium
on Operating Systems Principles, pages 213228,
December 1995.

K. Li. IVY: A Shared Virtual Memory System for
Parallel Computing. In Proc. 1988 International
Conference on Parallel Processing, volume I,
pages 94-101, August 1988.

X. Li, P.Lu, J. Schaeffer, J. Shillington, P.S. Wong,
and H. Shi. Onthe Versatility of Parallel Sorting by
Regular Sampling. Parallel Computing, 19:1079—
1103, 1993.

M. Lemke and D. Quinlan. P++, a C++ Vir-
tual Shared Grids Based Programming Environ-
ment for Architecture-Independent Development
of Structured Grid Applications. In Proc. CONPAR
92-VVAPP V. Springer-Verlag, September 1992.

P. Lu. Aurora: Scoped Behaviour for Per-Context
Optimized Distributed Data Sharing. In Proc.
11th International Parallel Processing Sympo-
sium, Geneva, Switzerland, April 1997. Available
at http://www.cs.utoronto.ca/"paullu/.

[OEPW96] W.G. O'Farrell, F.Ch. Eigler, SD. Pullara, and

[Pth94]

[SGZ93]

[SL94]

[SS92]

[SUn9e6]

G.V. Wilson. ABC++. In Gregory V. Wilson
and Paul Lu, editors, Parallel Programming Us-
ing C++. MIT Press, 1996.

Draft Standard for Information Technology—
Portable Operating Systems Interface (Posix),
September 1994.

H.S. Sandhu, B. Gamsa, and S. Zhou. The Shared
Regions Approach to Software Cache Coherence.
In Proc. Symposiumon Principlesand Practices of
Parallel Programming, pages229-238, May 1993.

D.J. Scalesand M.S. Lam. The Design and Eval-
uation of a Shared Object System for Distributed
Memory Machines. In Proc. 1st Symposiumon Op-
erating SystemsDesign and | mplementation, pages
101-114, November 1994.

H. Shi and J. Schaeffer. Parallel Sorting by Regu-
lar Sampling. Journal of Parallel and Distributed
Computing, 14(4):361-372, 1992.

Sun Microsystems. The Java Language Specifi-
cation, Version 1.0, August 1996.

http://ww.javasoft.com/doc/language_ specifica-
tion/.

