
The following paper was originally published in the
Proceedings of the Third USENIX Conference on Object-Oriented Technologies and Systems

Portland, Oregon, June 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Implementing Optimized Distributed Data Sharing
Using Scoped Behaviour and a Class Library

Paul Lu
Dept. of Computer Science

University of Toronto
Toronto, Ontario

Implementing Optimized Distributed Data Sharing
Using Scoped Behaviour and a Class Library

Paul Lu

Dept. of Computer Science
University of Toronto

10 King’s College Road
Toronto, Ontario, M5S 3G4

Canada
paullu@sys.utoronto.ca

Abstract

Sometimes, it is desirable to alter or optimize the be-
haviour of an object according to the needs of a specific
portion of the source code (i.e., context), such as a partic-
ular loop or phase. One technique to support this form of
optimization flexibility is a novel approach called scoped
behaviour. Scoped behaviour allows the programmer to
incrementally tune applications on a per-object and per-
context basis within standard C++.

We explore the use of scoped behaviour in the imple-
mentation of the Aurora distributed shared data (DSD)
system. In Aurora, the programmer uses scoped be-
haviour as the interface to various data sharing optimiza-
tions. We detail how a class library implements the basic
data sharing functionality and how scoped behaviour co-
ordinates the compile-time and run-time interaction be-
tween classes to implement the optimizations. We also
explore how the library can be expanded with new classes
and new optimization behaviours.

The good performance of Aurora suggests that using
scoped behaviour and a class library is a viable approach
for supporting this form of optimization flexibility.

1 Introduction

Optimizing a program’s data access behaviour can sig-
nificantly improve performance. Ideally, the program-
ming system should allow each object to be optimized
independently of other objects and each portion of the
source code (i.e., context) to be optimized independently
of other contexts. Towards that end, researchers have
explored various compiler and run-time techniques to
provide per-object and per-context flexibility in applying
an optimization.

We describe how scoped behaviour, a change in the

implementation of methods for the lifetime of a language
scope, can provide the desired optimization flexibility
within standard C++. A language scope (i.e., nested
braces in C++) around source code selects the context
and the re-defined methods implement the optimization.
Scoped behaviour requires less engineering effort to im-
plement than compiler extensions and it is better inte-
grated with the language, thus less error-prone to use,
than typical run-time libraries.

Specifically, we focus on a single application of scoped
behaviour: supporting optimized distributed data sharing.
Since this discussion is closely tied to a particular problem
domain, we begin with a brief introduction to distributed
data sharing. Then we provide an overview of the Aurora
distributed shared data system [Lu97], detail how scoped
behaviour and the class library are implemented, and
discuss some performance issues.

2 Distributed Data Sharing

Parallel programming systems based on shared memory
and shared data models are becoming increasingly pop-
ular and widespread. Accessing local and remote data
using the same programming interface (e.g., reads and
writes) is often more convenient than mixing local ac-
cesses with explicit message passing.

On distributed-memory platforms, the lack of hard-
ware support to directly access remote memories has
prompted a variety of software-based, logically-shared
systems. Broadly speaking, there are distributed shared
memory (DSM) [Li88, BCZ90, ACD+96] and distributed
shared data (DSD) [BKT92, SGZ93, JKW95] systems.
Support for distributed data sharing, whether it is page-
based as with DSM, or object-based (or region-based) as
with DSD, is an active area of research. The spectrum of
implementation techniques spans special hardware sup-
port, run-time function libraries, and special compilers.

Layer Main Components and Functionality

Programmer’s Interface Teams of threads for SPMD-style parallelism, active objects
Distributed vector and scalar objects
Scoped behaviour

Shared-Data Class Library Handle-body shared-data objects
Overloaded operators and special methods; immediate data access (default behaviour)

Data sharing optimizations
Owner-computes, caching data for reads, release consistency for writes

Run-Time System Active objects and remote method invocation (currently, ABC++)
Threads (currently, pthreads)
Communication mechanisms (currently, shared memory and MPI)

Table 1. Layered View of Aurora

(a) Original Loop (b) Optimized Loop Using Scoped Behaviour

GVector<int> vector1(1024); GVector<int> vector1(1024);

{ // Begin new language scope
NewBehaviour(vector1, GVReleaseC, int);

for(int i = 0; i < 1024; i++) for(int i = 0; i < 1024; i++)

vector1[i] = someFunc(i); vector1[i] = someFunc(i);

} // End scope

Figure 1. Applying a Data Sharing Optimization Using Scoped Behaviour

In this context, the all-software Aurora DSD sys-
tem provides a shared-data programming model on
distributed-memoryhardware. All shared data are encap-
sulated as objects and are accessed using methods. To
overcome the latency and bandwidth performance prob-
lems of typical distributed-memory platforms, Aurora
provides a set of well-known data sharing optimizations.

Although other DSM and DSD systems also offer data
sharing optimizations,Aurora is unique in how these opti-
mizations are integrated into the programming language.
Pragmatically, scoped behaviour allows the applications
to be incrementally tuned with reduced programmer ef-
fort. Also, as an experimental platform, Aurora’s class
library approach is relatively easy to extend with new be-
haviours. In particular, one of the goals of this research is
to support common data sharing idioms, specified and op-
timized using scoped behaviour, with good performance.

3 Overview of Aurora

Aurora can be viewed as a layered system (Table 1). The
key layers will be discussed later on, but we begin with a
quick overview.

Application programmers are primarily concerned
with the upper two layers of the system: the program-

mer’s interface and the shared-data class library. The ba-
sic data-parallel process model is that of teams of threads
operating on shared data in SPMD-fashion (single pro-
gram, multiple data). The basic shared-data model is that
of a distributed vector object or a distributed scalar ob-
ject. Once created, a shared-data object is transparently
accessed, regardless of the physical location of the data,
using normal C++ syntax. By default, shared data is read
from and written to immediately (i.e., synchronously),
even if the data is on a remote node, since that data ac-
cess behaviour has the least error-prone semantics.

Figure 1(a) demonstrates how a distributed vector ob-
ject is instantiated and accessed. GVector is a C++ class
template provided by Aurora. Any built-in data type or
user-defined structure or class can be used as the tem-
plate argument. The size of the vector is a parameter
to the constructor and, currently, the vector elements are
block distributed across the physical nodes.

Now, for example, if a shared vector is updated in
a loop and if the updates do not need to be performed
immediately, then the loop can use release consistency
[GLL+90, AG96] and batch the writes (see Figure 1(b),
shown side-by-side for easy comparison). Without any
changes to the loop code itself, the behaviour of the up-
dates to vector1 is changed within the language scope.

(a) Common Preamble

int i, j;

// Prototype of C-style function with innermost loop
int dotProd(int * a, int * b, int j, int n);

(b) Sequential Code (c) Optimized Parallel Code

// mA, mB, mC are 512� 512 matrices // mA, mB, mC are 512� 512 GVectors

{ // Begin new language scope
NewBehaviour(mA, GVOwnerComputes, int);

NewBehaviour(mB, GVReadCache, int);

NewBehaviour(mC, GVReleaseC, int);

while(mA.doParallel(myTeam))

for(i = 0; i < 512; i++) for(i = mA.begin();i < mA.end();i += mA.step())

for(j = 0; j < 512; j++) for(j = 0; j < 512; j++)

mC[i][j] = mC[i][j] =

dotProd(&mA[i][0], mB, j, 512); dotProd(&mA[i][0], mB, j, 512);

} // End scope

Figure 2. Matrix Multiplication in Aurora

The NewBehaviour macro specifies that the release con-
sistency optimization should be applied to vector1.

Therefore, scoped behaviour is the main interface be-
tween the programming model and the data sharing opti-
mizations, providing:

� Per-object flexibility: The ability to apply an op-
timization to a specific shared-data object without
affecting the behaviour of other objects. Within a
context, different objects can be optimized in dif-
ferent ways (i.e., heterogeneous optimizations).

� Per-context flexibility: The ability to apply an op-
timization to a specific portion of the source code.
Different portions of the source code (e.g., differ-
ent loops and phases) can be optimized in different
ways.

The lowest layer of Aurora, the run-time system, pro-
vides the basic thread management and communication
mechanisms. The current implementation of Aurora uses
the ABC++ class library for its active object mecha-
nism, an object that has a thread of control associated
with it, and remote method invocation (RMI) facilities
[OEPW96]. RMIs are syntactically similar to normal
method invocations, but RMIs can be between objects in
different address spaces. If desired, the application pro-
grammer can directly utilize the active object and RMI
mechanisms to implement a more control-parallel process

model. Also, although ABC++ already has a parametric
shared region (PSR) mechanism, it is not used by Aurora.

In turn, ABC++ uses standard pthreads [Pth94] for
concurrency and either shared memory or MPI message
passing [GLS94] for communication.

4 Programmer’s Interface

A more detailed description of the programmer’s inter-
face to Aurora can be found elsewhere [Lu97], but we
briefly touch upon the main ideas with an example.

4.1 Example: Matrix Multiplication

For illustrative purposes, consider the problem of non-
blocked, dense matrix multiplication, as shown in Figure
2. The preamble is common to both the sequential and
parallel codes (Figure 2(a)). The basic algorithm consists
of three nested loops, where the innermost loop computes
a dot product and can be factored into a separate C-
style function. An appropriate indexing function for two-
dimensional arrays in C/C++ is assumed.

Conceptually, we can view an optimization as a change
in the type of the shared object for the lifetime of the
scope. The current set of available behaviours is summa-
rized in Table 2. As an example of per-object flexibility,
three different data sharing optimizations are applied to

Scoped Behaviour Description

Owner-computes Threads access only co-located
data.

Caching for reads Create local copy of data.
Release consistency Buffer write accesses.
Special-purpose
data movement

Used with owner-computes for
specific applications (e.g., sten-
cils in 2-D diffusion simulation).

Table 2. Some Scoped Behaviours

the sequential code in Figure 2(b) to create the parallel
code in Figure 2(c). Specifically:

1. NewBehaviour(mA,GVOwnerComputes,int):
To partition the parallel work, the owner-computes
technique is applied to distributed vector mA.

Within the scope, mA is an object of type
GVOwnerComputes and has special methods
doParallel(), begin(), end(), and step().
Only the threads (each represented by a local
myTeam pointer) that are co-located with a por-
tion of mA’s distributed data actually enter the
while-loop and iterate over their local data. Also,
when dotProd() is called, a type constructor for
GVOwnerComputes returns a C-style pointer to the
local data so that the function executes with maxi-
mum performance.

Although some changes to the source code are
required to apply owner-computes, they are rel-
atively straightforward. Other work partitioning
strategies, that do not use the special methods pro-
vided by Aurora, are allowed, but owner-computes
is both convenient and efficient.

2. NewBehaviour(mB, GVReadCache, int): To
automatically create a local copy of distributed vec-
tor mB at the start of the scope, since it is read-only
and re-used many times, its type is changed to
GVReadCache.

The scoped behaviour of a read cache also includes
a type constructor so that dotProd() can be called
with C-style pointers that point to the cache. Note
that no lexical changes to the loop’s source code
are required for this optimization.

3. NewBehaviour(mC, GVReleaseC, int): To
reduce the number of update messages to elements
of distributed vector mC during the computation, its
type is changed to GVReleaseC.

Within the scope, the overloaded operators batch
the updates into a per-target address space buffer

and messages are only sent when the buffer is full
or when the scope is exited. Also, multiple writers
to the same distributed vector are allowed. No
lexical changes to the source code are required.

The result of this heterogeneous set of optimizations is
that the nested loops can execute without remote data ac-
cesses and the parallel program can use the same efficient
dotProd() function as in the sequential program.

4.2 Discussion: Programming in Aurora

The typical methodology for developing Aurora applica-
tions consists of three main steps. First, the code is ported
to Aurora. Shared arrays and shared scalars are converted
to GVectors and GScalars. Although the default im-
mediate access policy can be slow, its performance can
be optimized after the program has been fully debugged.

Second, the work is partitioned among the processors
and threads. Owner-computes and SPMD-style paral-
lelism are common and effective strategies for many ap-
plications. However, the application programmer may
implement other work partitioning schemes.

Lastly, various data sharing optimizations can be tried
on different bottlenecks in the program and on different
shared-data objects. Often, the only required changes
are a new language scope and a NewBehaviour macro.
Sometimes, straightforward changes to the looping pa-
rameters are needed for owners-computes. For example,
in the matrix multiplication program, owner-computes
can be applied to vector mC instead, with read caches used
for both vector mA and vector mB. The dotProd() func-
tion and the data access source code remain unchanged.
The new optimization strategy uses more resources for
read caches than the original strategy, but, since mC is
being updated, it is perhaps a more conventional appli-
cation of owner-computes. Reverting back to the orig-
inal strategy is also relatively easy. For the application
programmer, the ability to experiment with different op-
timizations, with limited error-prone code changes, can
be valuable.

5 Scoped Behaviour

Scoped behaviour is a change in the implementation of
selected methods for the lifetime of a language scope.

For the Aurora programmer, scoped behaviour is how
an optimization is applied to a shared-data object. For
the system and class designer, scoped behaviour is an
interface between collaborating classes that changes the
implementation of the selected methods. Some of the
ideas behind scoped behaviour have been explored as
part of the handle-body and envelope-letter idioms in
object-oriented programming [Cop92] (to be discussed

(a) Scoped Behaviour Macro

#define NewBehaviour(XX, YY, ZZ) n // Macro provided by aurora.H

GPortal<GVector<ZZ> > AU ## XX(XX); n

YY<ZZ> XX(AU ## XX);

template <class C OrigHandle> // Class template provided by aurora.H
class GPortal

{

private:

C OrigHandle * save; // Saved handle

public:

GPortal(C OrigHandle & h) { save = &h; } // In: Constructor
operator C OrigHandle &() { return *save; } // Out: Type constructor

}; // GPortal

(b) Source Code (c) After Standard Preprocessor Pass

{ // Begin new language scope { // Begin new language scope
NewBehaviour(vector1, GVReleaseC, int); GPortal<GVector<int> > AU vector1(vector1);

GVReleaseC<int> vector1(AU vector1);

for(int i = 0; i < 1024; i++) for(int i = 0; i < 1024; i++)

vector1[i] = someFunc(i); vector1[i] = someFunc(i);

} // End scope } // End scope
vector1[0] = 1; // Immediate update vector1[0] = 1; // Immediate update (still)

Figure 3. Aurora’s Scoped Behaviour Macro

further in Section 6.1). Scoped behaviour builds upon
these ideas.

5.1 Language Scopes and Scoped Behaviour
Objects

The main motivation for using language scopes to define
the context of scoped behaviour is to exploit the property
of name hiding. In block-structured languages, an iden-
tifier can be re-used within a nested language scope, thus
hiding the identifier outside of the scope.

Instantiations of a class that are designed to be used
within a language scope, and which hide objects outside
the scope, are called scoped behaviour objects.

5.2 Implementing Scoped Behaviour

As shown in Figure 3(a), Aurora provides the scoped
behaviour macro NewBehaviour and the class template
GPortal via a header file. Figure 3(b) shows the original
programmer’s source code and Figure 3(c) shows the code
after the standard preprocessor of the C++ compiler has
expanded the macro. Again, the code is shown side-by-
side for comparison.

The NewBehaviour macro is parameterized by the

name of the original shared-data object, the type of the
new scoped behaviour object, and the type of the vector
elements.1 The macro instantiates two objects. The
first object, AU vector1, is of type GPortal. Its sole
function is to cache a pointer to the original object, which
is passed as a constructor argument, and then pass it
along to the scoped behaviour object’s constructor. The
second object, the scoped behaviour object vector1 of
type GVReleaseC<int>, hides the original object but
can access its internal state using the pointer passed by
AU vector1. Thus, the scoped behaviour object can
mimic or change the functionality of the original shared-
data object.

We will discuss the implementation of these classes in
more detail in Section 6, but we provide an overview of
the basic ideas.

Since the scoped behaviour object has the same name
as the original vector1, the compiler will generate

1Note that it is a multi-line macro and the ## symbol is the standard
preprocessor operator for lexical concatenation. Also, the prefix AU is
arbitrary and can be redefined, if necessary.

Unfortunately, the more concise syntax of GVReleaseC<int>
vector1(vector1) conflicts with the C++ standard (i.e., the
new vector1 is passed a reference to itself, instead of to the original
object), so an intermediary object is required. Fortunately, the macro
hides the existence of the intermediary object.

the loop body code according to class GVReleaseC in-
stead of the original object’s class. However, the user’s
source code does not change. Even though the origi-
nal and scoped behaviour objects collaborate to imple-
ment scoped behaviour, we can conceptualize it as tem-
porarily changing the type of the original object. The
NewBehaviour macro helps to hide this abstraction.
Note that source code outside of the context of the op-
timization continues to refer to the original GVector.
Therefore, immediate update remains the default be-
haviour outside of the scope, illustratingper-context flex-
ibility.

The class template GVReleaseC is designed to be-
have exactly like GVector, except that the overloaded
operators now buffer updates to the vector elements.
Read accesses to the vector continue to be performed
immediately, even if the data is remote. Thus, the
class of a scoped behaviour object can selectively re-
define behaviour on a method-by-method and operator-
by-operator basis.

Also, since vector1 is a new object within the scope,
dynamic run-time actions can be associated with the var-
ious constructors and the destructor. In particular, the
destructor flushes the update buffers to the vector so that
all updates are guaranteed to be performed when the scope
is exited.

Although this description has centered on a particu-
lar class, the basic scoped behaviour technique can be
applied to a variety of classes and objects. The owner-
computes, caching for reads, and other behaviours use the
same NewBehaviour macro and are based on the same
design principles.

Of course, the basic ideas behind the implementation
of scoped behaviour are not new. The notion of nested
scopes is fundamental to block-structured sequential lan-
guages. The association of data movement actions with
C++ constructors and destructors is also not new (for ex-
ample, in ABC++). However, scoped behaviour is unique
in that it coordinates the interaction of different classes
to create per-object and per-context behaviours.

5.3 Advantages and Disadvantages

The advantages of scoped behaviour include:

1. Standards-based implementation. Scoped be-
haviour can be implemented within standard C++
as a preprocessor macro. The class library, to be
discussed in the next section, is also standard C++.

2. Flexibility of experimentation. Scoped behaviour
makes it easy to add, modify, and remove be-
haviours with minimal or no lexical source code
changes.

3. Flexibility of implementation. The compile-time
aspect of scoped behaviour allows the compiler
(and implementor) to generate behaviour-specific
code based on different classes. The run-time
aspect of scoped behaviour allows dynamic be-
haviour, such as data movement and interactions
with the run-time system, to be associated with
constructors and destructors.

A disadvantage of scoped behaviour is that, since it is
a programming technique instead of a first-class compiler
feature, it cannot access the compiler’s symbol table for
high-level analyses. A more general disadvantage is that,
since the run-time behaviour depends on constructors and
destructors with static invocation points, it cannot be di-
rectly ported to a language like Java [Sun96]. Java is
a garbage-collected language and the current definition
does not have destructors in the same sense as C++.

Compared to some other DSM and DSD systems,
scoped behaviour has safety and performance benefits.

For example, GVReleaseC has been explicitly imple-
mented with a constructor that takes a parameter of type
GVector&. Therefore, programming errors involving in-
compatible objects, such as trying to use release consis-
tency with normal C++ arrays, will result in compile-time
errors. More generally, as with all object-oriented sys-
tems, methods are invoked on objects and thus it is impos-
sible to pass the wrong shared-data object as a function
call parameter. Also, the automatic construction and de-
struction of scoped behaviour objects make it impossible
for the programmer to omit a required data movement ac-
tion at the end of a context. Non-object-oriented function
libraries may only be able to catch these forms of errors
at run-time, if at all.

As with some other systems, performance benefits
can arise from exploiting high-level data access seman-
tics. For example, GVReadCache is intended for data
that is read-only and where most of the elements will be
accessed during the context. Therefore, Aurora can read
the data in bulk rather than demanding-in each portion
of the data with a separate data movement action. Also,
GVReleaseC is intended for data that is updated but not
read. Therefore, unlike some other systems, Aurora can
avoid the overhead of demanding-in the remote data be-
fore overwriting it.

6 Shared-Data Class Library

In this section, we take a detailed look at the design and
implementation of the C++ classes for the shared-data
objects and data sharing optimizations. By design, these
classes collaborate to support scoped behaviour.

Directory Object

Special Methods
 (incl. constructors
 and destructors)

Overloaded Operators

Partition Object Synchronization and
 Permissions

Synchronization and
 Permissions

Node / Address Space 0

Node / Address Space 1

Handle Body 0

Body 1

Local Data 0

Local Data 1

Shared−Memory RMI

Message−based RMI

Programmer’s
Interface

Passive Object

Active Object

Composite Object
Boundary

Figure 4. Handle-Body Composite Objects

6.1 Handle-Body Composite Objects

The main architectural feature of the shared-data class
library is the use of the handle-body idiom to create com-
posite objects [Cop92, OEPW96] for shared data (Figure
4). The handle object defines the programmer’s interface
to the shared data. The body object (or objects) contain
the actual data.

The extra level of indirection afforded by a composite
handle-body approach allows for:

1. Data distribution. A distributed vector is a set of
body objects and each body object can be located in
a different address space or on a different physical
node. The handle includes a partition object to
abstract the distribution strategy and a directory
object to keep track of the location of the bodies.
A distributed scalar has a single body object.

Figure 4 shows a distributed vector object with a
handle and two body objects, where one of the
body objects is on a different node than the handle.

2. Location-transparent data accesses. Through
overloaded operators in the handle, the distributed
data can be accessed through a uniform interface,
regardless of the location of the actual data. Thus,
for a given vector index, the partition object deter-
mines which body holds the data and the directory
object provides a pointer to the body object.

3. Cheap parameter passing of shared data. Only

handles are passed across function calls; the data
in the bodies are not copied. Handles can also be
passed between address spaces, if desired, since
the partition and directory objects are sufficient to
locate any body object from any address space.

For performance-sensitive functions, such as
dotProd() in Figure 2, the overheads of indirection can
be avoided in controlled ways through type constructors
that return C-style pointers.

The current implementation of Aurora creates handles
as passive (i.e., regular) C++ objects. However, each in-
dividual body is implemented as an active object, which
is useful for implementing any necessary synchroniza-
tion behaviour. Handle and body interact using remote
method invocations. The run-time system automatically
selects between shared-memory and message-based com-
munication mechanisms for transmitting RMIs.

6.2 Class Hierarchy for Handles

Since most of the data sharing functionality is imple-
mented in the handles, this discussion will focus on the
handle classes. Briefly, however, the body classes sup-
port get() and put() data access methods, including
batch update and block-read variations. For the current
data sharing optimizations in Aurora, this simple func-
tionality is all that is required.

Figure 5 is a diagram of the main classes in the class hi-

GHandle

GVHandle

GVScopedHandle

GSHandle

GScalar GVector GVOwnerComputes GVReleaseCGVReadCache

GVRWBehaviour

GPointerSC

GPointerRC

U
se

r
S

ys
te

m
is−a relationship

holds−a relationship

creates−a relationship

No template
arguments.

2 template
arguments:
1. Element type
2. Body class

1 template
argument:
1. Element type

Figure 5. Class Hierarchy for Handles

erarchy for shared-data handles.2 Aside from the names
of the classes, the diagram shows the relationship be-
tween classes. The is-a relationship is the usual notion
of inheritance. For example, class GHandle is the base
class for all handles. Common access methods are fac-
tored into the base class. The holds-a relationship exists
when a class contains a pointer (or pointers) to an in-
stance of another class. This is used, for example, to
allow one object to access the internal state of another
object. The creates-a relationship exists when at least
one of the methods of a class returns an object of another
class. For example, an overloaded subscript operator
(i.e., operator[]) can return an object which encodes
information about a specific vector element [Cop92].

We can also distinguish the classes by the way they are,
or are not, templated. Class GHandle is not templated
in order to simplify the implementation of mechanisms
that only require limited functionality from a handle. For
example, querying about the number of vector elements
does not require knowledge about template arguments.
However, the most important class templates for the sys-
tem implementor are parameterized by both the data ele-
ment type and the class of the body object.

In general, the application programmer is only ex-
pected to use the classes with a single template argument
for the data element type (labelled “User” in Figure 5 and
highlighted in gray). These classes hide the more com-

2The notation is based on Booch [Boo91], but with some simplifi-
cations and changes to better suit this presentation.

plex templating and class hierarchy considerations that
the “System” must deal with.

For data sharing using immediate access, the important
classes are GSHandle and GVHandle (shown inside the
box in Figure 5). These classes encapsulate member data
to keep track of the body or bodies.

Figure 6 provides a more detailed look at the interfaces
for the classes that implement the shared vector. Class
GHandle, which is not templated, is a convenient base
class within which to implement methods common to all
handles. Class GVector does little more than specify
the specific body class (i.e., LVector) for the second
template argument to GVHandle and call the appropriate
constructors.

Most of the functionality for the shared vector is imple-
mented by class GVHandle. In particular, the overloaded
subscript operator returns an object of typeGPointerSC,
which is a pointer object. When evaluating C++ expres-
sions involving objects and overloaded operators, tempo-
rary objects represent the result of sub-expressions. Since
the actual data for a term may be a remote shared data
element, the temporary object points to the body object
with the data. Class GPointerSC has data members to
store the vector index and a pointer to the specific body
object with that element. Reading from or writing to the
vector element invokes the appropriate type constructors
and the overloaded assignment operator of GPointerSC,
resulting in an immediate remote memory access.

// Base class. Not templated.
class GHandle
{

private:

int numElements; // Number of vector elements

// ...other data members...
public:

// ...various constructors and destructor...
int size() { return numElements; } // Common access method

// ...other methods...
}; // GHandle (System)

// Template argument C Data is the element type; C LV is the body class.
// Classes GVScopedHandle, Partition, Directory, GPointerSC are provided by Aurora.
template <class C Data, class C LV>

class GVHandle : public GHandle // is-a GHandle

{

// GVScopedHandle needs access to internal state (for holds-a)
friend GVScopedHandle<C Data, C LV>;

protected:

Partition<MAX LOCALS> partition; // Distribution strategy
Directory<C LV> directory; // Location of body object(s)

// ...other data members...
public:

GVHandle(int numElements); // Construct with size of vector

˜GVHandle();

GPointerSC<C LV, C Data> operator[] (int index); // Immediate data access (creates-a)
// ...other methods...

}; // GVHandle (System)

// Template argument C Data is the element type; LVector (provided by Aurora) is the body class.
template <class C Data>

class GVector : public GVHandle<C Data, LVector<C Data> > // is-a GVHandle

{

public:

GVector(int numElements) : // Construct with size of vector

GVHandle<C Data, LVector<C Data> >(numElements) {}

˜GVector();

// ...inherits operator[] and other methods...
}; // GVector (User)

Figure 6. Interface for Shared Vector: GVector

// Template argument C Data is the element type; C LV is the body class.
// Remember that I am a friend of GVHandle.
template <class C Data, class C LV>

class GVScopedHandle : public GHandle // is-a GHandle
{

protected:

GVHandle<C Data, C LV> * origHandle; // To access internal state of original object (holds-a)
// ...other data members...

public:

GVScopedHandle(GVHandle<C Data, C LV> & gv) // Construct with original handle
{ origHandle = &gv; } // Cache the handle

˜GVScopedHandle();

// ...other methods...
}; // GVScopedHandle (System)

// Template argument C Data is the element type; C LV is the body class.
// Classes Cache, BatchWrite, and GPointerRC are provided by Aurora.
template <class C Data, class C LV>

class GVRWBehaviour : public GVScopedHandle // is-a GVScopedHandle

{

protected:

Cache<C Data, C LV> * readCache; // Configurable read cache

BatchWrite<C Data, C LV> * updateBuf[MAX LOCALS]; // Configurable buffer for release consistency

// ...other data members...
public:

GVRWBehaviour(GVHandle<C Data, C LV> & gv) : // Construct with original handle

GVScopedHandle<C Data, C LV> >(gv) {}

˜GVRWBehaviour(); // Destructor flushes update buffers if necessary

createCache(); // Method to create read cache

allowUpdateBuf(); // Method to allow update buffers
GPointerRC<C LV, C Data> operator[] (int index); // Data access via cache/buffer (creates-a)

// ...other methods...
}; // GVRWBehaviour (System)

// Template argument C Data is the element type; LVector (provided by Aurora) is the body class.
template <class C Data>

class GVReleaseC : public GVRWBehaviour<C Data, LVector<C Data> > // is-a GVRWBehaviour

{

public:

GVReleaseC(GVector<C Data, C LV> & gv) : // Original handle via GPortal of NewBehavour macro

GVRWBehaviour<C Data, LVector<C Data> >(gv)

{ allowUpdateBuf(); } // Construct to allow update buffers

˜GVReleaseC();

// ...inherits operator[] and other methods...
}; // GVReleaseC (User)

Figure 7. Interface for Release Consistency Scoped Behaviour: GVReleaseC

6.3 Data Sharing Optimizations: Scoped Be-
haviour Objects

For the data sharing optimizations, the parent class
GVScopedHandle extracts and maintains information
about the internal state of a given GVHandle, as per the
holds-a relationship (Figure 7). This functionality is an
important part of implementing scoped behaviour. The
partition and directory objects of the GVHandle are not
copied, thus reducing the construction costs of a scoped
behaviour object.

Class GVOwnerComputes, in its constructor, uses the
extracted internal state to determine the address of the
body object’s data. Therefore, GVOwnerComputes can
return a C-style pointer from the appropriate type con-
structor and from the overloaded subscript operator. As
previously discussed, GVOwnerComputes also defines
special functions to support easy iterating over the local
data.

Class GVRWBehaviour can, optionally, create a
read cache for shared data and create update buffers
to shared data (Figure 7). Classes that derive from
GVRWBehaviour explicitly configure the caching and
buffering options. The overloaded subscript operator in
GVRWBehaviour returns an object of class GPointerRC,
which is similar in concept to class GPointerSC, but
with two important differences. First, if the read cache
exists and is loaded, then GPointerRC is configured
to access data from the cache instead of from the re-
mote body. Second, if the update buffers are enabled
in GVRWBehaviour, then GPointerRC is configured to
store updates in the buffer rather than initiate a remote
memory access. GVRWBehaviour creates the buffers on
demand. Depending on the configuration of the cache
and buffers, GPointerRC will access shared data appro-
priately.

Therefore, the constructor of classGVReadCache calls
the appropriate GVRWBehaviour methods to create and
load the read cache. Thus, when the subscript operator
for GVReadCache, which is inherited from the parent
class, creates a GPointerRC object, it will always access
the cache. GVReadCache also defines a type constructor
to return a C-style pointer to the cache.

Similarly, class GVReleaseC calls the appropriate
GVRWBehaviour constructor and enables the use of up-
date buffers (Figure 7). Thus, when the subscript opera-
tor for GVReleaseC, which is inherited from the parent
class, creates a GPointerRC object, it will always use
the buffers. The destructor for class GVRWBehaviour

makes sure all buffers are flushed.

7 Extending the Library

Within the class hierarchy, new data sharing optimiza-
tions can be implemented. We consider a trivial but il-
lustrative example. For example, a new class could both
cache data for reading and buffer updates. The new class
would derive from GVRWBehaviour. The new class’s
constructor creates the read cache and also enables the
update buffers. The GPointerRC objects created by the
new class would always read from the cache and always
buffer updates. By default, updates are also mirrored in
the cache. Admittedly, this “new” data sharing optimiza-
tion is easy to add because of the design and existing
functionality of GVRWBehaviour and GPointerRC, but
the basic techniques can be used for more complex addi-
tions to the library.

There are three main techniques for extending the li-
brary of data sharing optimizations. The techniques can
also be combined.

1. New classes. Define new classes for partition, di-
rectory, body, and pointer objects.

Currently, only a block-distributed partition object
is implemented. If a cycle-distributed object is
required in the future, a new partition class could
abstract the distributiondetails. Finally, as we have
seen, classes like GPointerSC and GPointerRC

are useful for defining new memory access be-
haviours.

2. New methods. Inherit from a parent class, then add
new scoped behaviour with new methods.

For example, GVOwnerComputes adds new meth-
ods for iterating over local data.

3. Re-define methods. Inherit from a parent class,
then re-define behaviour through constructors, the
destructor, methods, operators, and type construc-
tors.

For example, GVReleaseC relies on its parent class
for most of its functionality. GVReleaseC merely
configures the update buffers appropriately in its
constructor.

8 Performance

To date, we have experimented with three Aurora pro-
grams [Lu97]. The programs are matrix multiplication
(Figure 2), a 2-D diffusion simulation, and Parallel Sort-
ing by Regular Sampling (PSRS) [SS92, LLS+93]. Re-
cent performance results are shown in Table 3. Speedups
are computed against C implementations of the same al-
gorithm (or against quicksort in the case of the parallel

Speedup
Program Data Set Network 2 PEs 4 PEs 8 PEs

Matrix Multiply 704� 704 Fast Ethernet 1.85 3.51 6.40
(175 sec. seq.)
512� 512 Fast Ethernet 1.79 3.37 5.89
(65.8 sec. seq.)

2-D Diffusion 1526� 1526, 32 time-steps Fast Ethernet 1.27 2.13 3.86
(47.8 sec. seq.)
1024� 1024, 32 time-steps Fast Ethernet 1.07 1.91 3.45
(20.3 sec. seq.)

PSRS 10 million keys Fast Ethernet n/a 2.24 3.72
(60.4 sec. seq.)
6 million keys Fast Ethernet 1.21 2.05 3.22
(33.9 sec. seq.)

Table 3. Aurora Programs on a Network of Workstations

sort). In particular, the sequential implementations do not
suffer from the overheads of either operator overloading
or scoped behaviour.

The distributed-memory platform used for these ex-
periments is a cluster of PowerPC 604 workstations with
133 MHz CPUs, 96 MB of main memory, and a sin-
gle, non-switched 100 Mbit/s Fast Ethernet network.
The software includes IBM’s AIX 4.1 operating sys-
tem, AIX’s pthreads, and the MPICH (version 1.0.13)
[DGLS93] implementation of MPI.

Two trends can be noted in the performance results.
First, for these three programs, additional processors im-
proves speedup, albeit with diminishing returns. Second,
as the size of the data set increases, the overall granularity
of work, and thus speedup, also increases.

Contention for the single network and a reduced gran-
ularity of work can account for the diminishing returns
for more processors with a fixed problem size. For exam-
ple, since the read cache’s data requirements are constant
per-processor, communication costs and network con-
tention grows when replicating vector mB in matrix mul-
tiplication. Communications costs under contention also
account for the overheads in the parallel sort program,
since the algorithm includes a key exchange. For the 2-D
diffusionsimulation, the granularity of a time-step before
a barrier quickly falls to below one second as processors
are added. Fortunately, if the problem size increases, the
computation’s overall granularity also increases resulting
in better absolute speedups.

The performance of Aurora programs on this particu-
lar hardware platform is encouraging, but there remains
two important avenues for future work: different network
technology and new scoped behaviours. An 155 Mbit/s
ATM network has been installed on the platform, but it
is not yet fully exploited by the run-time system. How-

ever, early experience indicates that the additional band-
width and improved contention characteristics of ATM
will benefit Aurora programs. Also, there is currently no
overlap between communication (for reads) and compu-
tation in the existing scoped behaviours. For simplicity,
GVReadCache loads all of the data before allowing com-
putation to continue. Using the techniques described in
this paper, the library of scoped behaviours will be ex-
tended to better hide the read latency of the distributed-
memory hardware.

9 Discussion and Related Work

Distributed data sharing is an example of a problem do-
main where per-object and per-context optimization flex-
ibilityis desirable. The data access behaviour of a shared-
data object can change depending on the loop or program
phase, so a single data sharing policy is often insufficient
for all contexts. In general, optimization flexibility can
be supported through compiler annotations or a run-time
system interface, but scoped behaviour offers advantages
in terms of engineering effort, safety, and implementation
flexibility.

Since Ivy [Li88], the first DSM system, a large body of
work has emerged in the area of DSM and DSD systems
(for example, [BCZ90, BKT92, BZS93, SGZ93, JKW95,
ACD+96]). Related work in parallel array classes (for
example, [LQ92]) has also addressed the basic problem
of transparently sharing data.

Different access patterns on shared data can be opti-
mized through type-specific protocols and run-time an-
notations. Both Munin [BCZ90] and Blizzard [FLR+94]
provide protocols customized to specific data sharing
behaviours. Run-time libraries, such as shared regions
[SGZ93], SAM [SL94], and CRL [JKW95], associate

coherence actions with access annotations (i.e., function
calls). Unlike Munin, Aurora does not require special
compiler support and different optimizations can be used
in different contexts. Unlike Blizzard, Aurora integrates
the optimizations into the programming language to gen-
erate custom code for different coherence actions, for
added implementation and performance flexibility. Un-
like function libraries, the automatic construction and
destruction of scoped behaviour objects make it impossi-
ble for the programmer to omit an annotation and miss a
coherence action.

Aurora’s handle-bodyobject architecture and the asso-
ciation of data movement with constructors and destruc-
tors are inspired by the parametric shared region (PSR)
mechanism of ABC++. However, there are some signif-
icant differences between Aurora’s shared-data objects
and PSRs. First, Aurora allows distributed vectors to be
partitioned between different address spaces to improve
scalability and to support owner-computes using multi-
ple nodes. A PSR has single home node, therefore shared
data cannot be partitionedand owner-computes cannot be
used within a PSR. Second, Aurora uses operator over-
loading and pointer objects, which gives the system more
flexibility to generate behaviour-specific code, and to op-
timize the read and write behaviour of shared data sepa-
rately. Aurora can also return C-style pointers to shared
data under controlled circumstances. The data in a PSR is
always accessed using C-style pointers, which is efficient,
but it does not allow the system to selectively intervene
in data accesses. Lastly, Aurora supports multiple writ-
ers to the same distributed vector object, which can be
important for performance [ACD+96], while PSRs only
allow a single writer.

10 Concluding Remarks

Researchers have explored a variety of different imple-
mentation techniques for DSM and DSD systems. The
Aurora DSD programming system is an example of a
software-only implementation that uses data sharing op-
timizations to achieve good performance on a set of par-
allel programs.

What distinguishes Aurora from other DSM and DSD
systems is its use of scoped behaviour as an interface to
a set of data sharing optimizations. Scoped behaviour
supports per-context and per-object flexibility in apply-
ing the optimizations. This novel level of flexibility is
particularly useful for incrementally tuning multi-phase
parallel programs and programs in which different shared
objects are accessed in different ways. The performance
of Aurora is encouraging and future work will explore
new data sharing optimizations and how they can exploit
different network performance characteristics.

Scoped behaviour can be implemented in standard

C++ without special compiler support and it offers impor-
tant safety benefits over typical run-time libraries. The
technique appears to be a viable approach for supporting
this form of optimization flexibility.

11 Acknowledgments

Thank you to Ben Gamsa, Eric Parsons, Karen Reid,
Jonathan Schaeffer, Ken Sevcik, Michael Stumm, Greg
Wilson, Songnian Zhou, and the anonymous referees for
their comments and support during this work. Thank you
to the Department of Computer Science and NSERC for
financial support. Thank you to ITRC and IBM for their
support of the POW Project.

References

[ACD+96] C. Amza, A.L. Cox, S. Dwarkadas, P. Keleher,
H. Lu, R. Rajamony, W. Yu, and W. Zwaenepoel.
TreadMarks: Shared Memory Computing on Net-
works of Workstations. IEEE Computer, 29(2):18–
28, February 1996.

[AG96] S.V. Adve and K. Gharachorloo. Shared Memory
Consistency Models: A Tutorial. IEEE Computer,
29(12):66–76, December 1996.

[BCZ90] J.K. Bennett, J.B. Carter, and W. Zwaenepoel.
Munin: Distributed Shared Memory Based on
Type-Specific Memory Coherence. In Proc. 1990
Conference on Principles and Practice of Parallel
Programming. ACM Press, 1990.

[BKT92] H.E. Bal, M.F. Kaashoek, and A.S. Tanenbaum.
Orca: A Language for Parallel Programming of
Distributed Systems. IEEE Transactions on Soft-
ware Engineering, 18(3), March 1992.

[Boo91] G. Booch. Object-Oriented Design with Applica-
tions. Benjamin/Cummings, 1991.

[BZS93] B.N. Bershad, M.J. Zekauskas, and W.A. Sawdon.
The Midway Distributed Shared Memory System.
In Proc. 38th IEEE International Computer Con-
ference (COMPCON Spring’93), pages 528–537,
February 1993.

[Cop92] J.O. Coplien. Advanced C++: Programming
Styles and Idioms. Addison–Wesley, 1992.

[DGLS93] N.E. Doss, W.D. Gropp, E. Lusk, and A. Skjellum.
A Model Implementation of MPI. Technical Re-
port MCS-P393-1193, Mathematics and Computer
Science Division, Argonne National Laboratory,
Argonne, IL, 1993.

[FLR+94] B. Falsafi, A.R. Lebeck, S.K. Reinhardt,
I. Schoinas, M.D. Hill, J.R. Larus, A. Rogers,
and D.A. Wood. Application-Specific Protocols
for User-Level Shared Memory. In Proc. Super-
computing ’94, pages 380–389, November 1994.

[GLL+90] K. Gharachorloo, D.E. Lenoski, J. Laudon, P. Gib-
bons, A. Gupta, and J.L. Hennessy. Memory Con-
sistency and Event Ordering in Scalable Shared-
Memory Multiprocessors. In Proc. 17th Inter-
national Symposium on Computer Architecture,
pages 15–26, May 1990.

[GLS94] W.D. Gropp, E. Lusk, and A. Skjellum. Us-
ing MPI: Portable Parallel Programming with the
Message-Passing Interface. MIT Press, 1994.

[JKW95] K.L. Johnson, M.F. Kaashoek, and D.A. Wallach.
CRL: High-Performance All-Software Distributed
Shared Memory. In Proc. 15th ACM Symposium
on Operating Systems Principles, pages 213–228,
December 1995.

[Li88] K. Li. IVY: A Shared Virtual Memory System for
Parallel Computing. In Proc. 1988 International
Conference on Parallel Processing, volume II,
pages 94–101, August 1988.

[LLS+93] X. Li, P. Lu, J. Schaeffer, J. Shillington, P.S. Wong,
and H. Shi. On the Versatility of Parallel Sorting by
Regular Sampling. Parallel Computing, 19:1079–
1103, 1993.

[LQ92] M. Lemke and D. Quinlan. P++, a C++ Vir-
tual Shared Grids Based Programming Environ-
ment for Architecture-Independent Development
of Structured Grid Applications. In Proc.CONPAR
92–VAPP V. Springer-Verlag, September 1992.

[Lu97] P. Lu. Aurora: Scoped Behaviour for Per-Context
Optimized Distributed Data Sharing. In Proc.
11th International Parallel Processing Sympo-
sium, Geneva, Switzerland, April 1997. Available
at http://www.cs.utoronto.ca/˜paullu/.

[OEPW96] W.G. O’Farrell, F.Ch. Eigler, S.D. Pullara, and
G.V. Wilson. ABC++. In Gregory V. Wilson
and Paul Lu, editors, Parallel Programming Us-
ing C++. MIT Press, 1996.

[Pth94] Draft Standard for Information Technology—
Portable Operating Systems Interface (Posix),
September 1994.

[SGZ93] H.S. Sandhu, B. Gamsa, and S. Zhou. The Shared
Regions Approach to Software Cache Coherence.
In Proc. Symposium on Principles and Practices of
Parallel Programming, pages 229–238, May 1993.

[SL94] D.J. Scales and M.S. Lam. The Design and Eval-
uation of a Shared Object System for Distributed
Memory Machines. In Proc. 1st Symposium on Op-
erating Systems Design and Implementation, pages
101–114, November 1994.

[SS92] H. Shi and J. Schaeffer. Parallel Sorting by Regu-
lar Sampling. Journal of Parallel and Distributed
Computing, 14(4):361–372, 1992.

[Sun96] Sun Microsystems. The Java Language Specifi-
cation, Version 1.0, August 1996.
http://www.javasoft.com/doc/language specifica-
tion/.

