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ImplementingOption Pricing Models 
When Asset Returns Are Predictable 
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ABSTRACT 

The predictability of a n  asset's returns will affect the prices of options on that asset, 
even though predictability is typically induced by the drift, which does not enter the 
option pricing formula. For discretely-sampled data, predictability is linked to the 
parameters that do enter the option pricing formula. We construct an adjustment 
for predictability to the Black-Scholes formula and show that this adjustment can 
be important even for small levels of predictability, especially for longer maturity 
options. We propose several continuous-time linear diffusion processes that can 
capture broader forms of predictability, and provide numerical examples that 
illustrate their importance for pricing options. 

THEREIS NOW A substantial body of evidence that documents the predictabil-
ity of financial asset returns.' Despite the lack of consensus as to the sources 
of such predictability-some attribute i t  to time-varying expected returns, 
perhaps due to changes in business conditions, while others argue that 
predictability is a symptom of inefficient markets or irrational 
investors-there is a growing consensus that predictability is a genuine 
feature of many financial asset returns. 

In this article, we investigate the impact of asset return predictability on 
the prices of an asset's options. A comparison between the polar cases of 
perfect predictability (certainty) and perfect unpredictability (the random 
walk) suggests that predictability must have an effect on option prices, 
although what that effect might be is far from obvious. However, in the 
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continuous-time no-arbitrage pricing framework of Black and Scholes (1973) 
and Merton (1973), and in the martingale pricing approach of Cox and Ross 
(1976) and Harrison and Kreps (1979), option pricing formulas are shown to 
be functionally independent of the drift of the price process. Since the drift is 
usually where predictability manifests itself-it is, after all, the conditional 
expectation of (instantaneous) returns-this seems to imply that predictabil- 
ity is irrelevant for option prices.2 

The source of this apparent paradox lies in the attempt to link the 
properties of finite holding-period returns, such as predictability, to the 
properties of infinitesimal returns, such as the instantaneous volatility a ,  
without properly fixing the appropriate quantities. In particular, while it is 
true that changes in predictability arising from the drift cannot affect option 
prices under the Black-Scholes assumption that a is fixed, fixing a implies 
that the unconditional variance of finite holding-period returns will change as 
predictability changes. But since the unconditional variance of returns is 
usually fixed for any given set of data irrespective of predictability-for 
example, the historical annual standard deviation of the return on the S&P 
500 Index is 19.9 percent-fixing a and varying predictability can yield 
counterfactual implications for the data.3 

The resolution of the paradox lies in the observation that if we fix the 
unconditional variance of the "true" (finite holding period) asset return 
process, i.e., the data, then as more predictability is introduced via the drift, 
the population value of the diffusion coefficient must change so as to keep the 
unconditional variance constant. Therefore, although the option pricing 
formula is unaffected by changes in predictability, option prices do change. 
In this respect, ignoring predictability in the drift is tantamount to commit- 
ting a specification error that can lead to incorrect prices just as any other 
specification error can (e.g., Merton (1976b)). 

But why should the unconditional variance be fixed? One answer is pro- 
vided by the fact that the marginal distribution of asset returns is a more 
fundamental or primitive object than the joint distribution of asset returns 
and other economic variables. Therefore, a logical sequence of investigation is 
to first match the marginal distribution of returns, and then focus on the 
implications for the joint and conditional distributions. This is the approach 
typically taken in studies of the predictability of asset returns. When regres- 

Predictability can also manifest itself in the diffusion coefficient, in the form of stochastic 
volatility with dynamics that depend on predetermined economic factors. However, since pre- 
dictability is more commonly modeled as part of the conditional mean, we shall focus solely on 
the drift. 

In fact, we argue more generally below that all of the unconditional moments of the marginal 
distribution of returns are "fixed," in the sense that empirical estimates of their values are 
readily obtained from the data, hence any economic or statistical model of predictability must be 
calibrated to these values to be of empirical relevance. But there is a compelling reason for 
focusing first on the unconditional variance of returns: any sensible comparative static analysis 
of predictability must keep fixed the unconditional variance of the variable to be predicted, since 
this is the benchmark against which the predictive power of a forecast is to be measured. 
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sors are added to or subtracted from a forecasting equation, the conditional 
moments of returns change, affecting the joint distribution of returns and 
predictors, but the unconditional moments of the marginal distribution of 
returns, e.g., mean, variance, skewness, kurtosis, etc., remain the same as 
long as the data are fixed.4 

Of course, when choosing among several competing specifications of the 
data, we hope to select the specification that matches most closely all of its 
properties, i.e., its finite-dimensional distribution^.^ But since our most basic 
understanding of and intuition for the data comes from its marginal distribu- 
tion, at  the very least we shall require that any plausible specification must 
match the marginal distribution's unconditional moment^.^ This is tanta- 
mount to fixing the mean, variance, skewness, etc. at  the "true" values. 

Alternatively, from a purely empirical standpoint, the unconditional 
sample moments of the data are fixed at a given point in time since we have 
only one historical realization of each asset return series. But the conditional 
moments of the data depend on the conditioning information, which changes 
as we learn more about the underlying economic structure of the data. The 
specification searches that we undertake can almost always be viewed as an 
attempt to fit a statistical model to these fixed sample moments. 

Finally, yet another symptom of the link between predictability and option 
prices is the observation that implied volatilities will generally be biased 
estimates of the sample volatility of finite holding-period asset returns in the 
presence of predictability (see, for example, equation (24) below). The nature 
and magnitude of such biases depend on the nature and magnitude of 
predictability. 

By fixing the unconditional moments of the data and specifying the form of 
predictability in asset returns, we show that changes in predictability affect 
the population value of the diffusion coefficient, and this in turn will affect 
option prices. The particular effect on option prices depends critically on how 
predictability is specified in the drift. For example, if the drift depends only 
on exogenous time-varying economic factors, then an increase in predictabil- 
ity unambiguously decreases option values. But if the drift also depends upon 
lagged prices, then an increase in predictability can either increase or de- 
crease option values, depending on the particular specification of the drift. 

This is also the approach taken in the growing "calibration" literature begun by Mehra and 
Prescott (1985). More recent examples include Abel (19921, Cecchetti, Lam, and Mark (19931, 
Heaton and Lucas (1992, 19941, Kandel and Stambaugh (1988, 19901, and Weil(1989). 

Although the finite-dimensional distributions do not completely determine a continuous-time 
stochastic process, for our purposes they shall suffice. More rigorously, the concepts of separabil- 
ity and measurability must be introduced to complete the definition of continuous-time processes 
s e e ,  for example, Doob (1953, Chapter 11.2). 

For convenience, we shall refer to the unconditional moments of the marginal distribution of 
returns as  simply the "unconditional moments." These moments are not to be confused with 
unconditional "co-moments," which are moments of the joint distribution of returns, not of the 
marginals. 
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We derive explicit pricing formulas for options on assets with predictable 
returns, and show that even small amounts of predictability can have a large 
impact on option prices, especially for longer maturity options. For example, 
under the standard Black-Scholes assumption of a geometric random walk for 
stock prices, the price of a one-year at-the-money call option on a $40 stock 
with a daily return volatility of 2 percent per day is $6.908. However, under a 
trending Ornstein-Uhlenbeck (0-U) price process-which yields serially cor- 
related returns-we show that a daily first-order autocorrelation coefficient 
of -0.20 and a daily return-volatility of 2 percent per day would yield an 
arbitrage-free option price of $7.660, an increase of about 11 percent (see 
Section 1I.C and Table I). Of course, the particular adjustment to option 
prices depends on the specification of the drift, and we propose several 
specifications that can account for a broad variety of predictability in asset 
returns and illustrate the importance of these adjustments with several 
numerical examples. 

In Section I we provide a brief review of the Black-Scholes option pricing 
model to clarify the role of the drift and to emphasize the distinction between 
the data-generating process and the "risk-neutralized" process for the under- 
lying asset's price. The implications of this distinction for option prices are 
developed in Section 11, where we present an adjustment for the volatility 
parameter a that accounts for the most parsimonious form of predictability: 
autocorrelation in asset returns. To account for more general forms of pre- 
dictability, we propose two classes of linear diffusion processes in Sections I11 
and IV, the bivariate and multivariate trending 0-U processes, respectively. 
In Section V we show how the parameters of these predictable alternatives 
can be estimated with discretely sampled data by recasting them in state- 
space form and using the Kalman filter to obtain the likelihood function. We 
consider several extensions and qualifications in Section VI, and we conclude 
in Section VII. 

I. The Black-Scholes Option Pricing Formula and the Drift 

The fundamental insight of the option pricing models of Black and Scholes 
(1973) and Merton (1973) is the existence of a dynamic investment strategy 
involving the underlying asset and riskless bonds that replicates the option's 
payoff exactly. In particular, if the underlying asset's price process P( t )  
satisfies the following stochastic differential equation: 

d log P ( t )  E dp(t)  = p(.) dt  + adW,  (1) 

where a is the diffusion coefficient, p(.) the drift coefficient, W(t) a standard 
Wiener process, and trading is frictionless and continuous, then the no-arbi- 
trage condition yields the following restriction on the call option price C: 
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where r is the instantaneous risk-free rate of r e t ~ r n . ~  Given the two bound- 
ary conditions for the call option, C(P(T), T )= Max[P(T) - K, 01 and C(0, t) 
= 0, there exists a unique solution to the partial differential equation (2), the 
celebrated Black-Scholes formula: 

where: 

and a(.)is the standard normal cumulative distribution function. 
Although it is well-known that the Black-Scholes formula does not depend 

on the drift p(.), it is rarely emphasized that the drift need not be a constant 
as in the case of geometric Brownian motion, but may be an arbitrary 
function of P and other economic variables.' This remarkable fact implies 
that the Black-Scholes formula is applicable to a wide variety of price 
processes, processes that exhibit complex patterns of predictability and de- 
pendence on other observed and unobserved economic factors (see, for exam- 
ple, the processes described in Sections I11 and IV below). 

The second and more modern approach to pricing options is to construct an 
equivalent martingale measure, which is always possible if prices are set so 
that arbitrage opportunities do not exist. The martingale pricing method 
explicitly exploits the fact that the pricing equation is independent of the 
drift. Since the drift p(.) does not enter into the pricing equation (21, for 
purposes of pricing options it may be set to any arbitrary function without 
loss of generality (subject to some regularity conditions). In particular, under 
the equivalent martingale measure in which all asset prices follow martin- 
gales, the option's price is simply the present discounted value of its expected 
payoff at  maturity, where the expectation is computed with respect to the 
risk-neutralized process P*(t) where: 

Although the risk-neutralized process is not empirically observable, it is 
nevertheless an extremely convenient specification for evaluating the price of 
an option on the stock with a data-generating process given by P(t). 

The two approaches to pricing derivative assets show that as long as the 
diffusion coefficient for the log-price process is a known constant a ,  then the 

" That C is a function only of P and t , twice differentiable in P and once differentiable in t are 
properties that can be derived from the replicating strategy and need not be assumed a priori. 
See Merton (1973) for further details. 

This was first observed by Merton (19731, and it  is also explicitly acknowledged by Jagan- 
nathan (1984) and Grundy (19911, but is far too often overlooked in textbook expositions of the 
Black-Scholes formula. Of course, p( . )must still satisfy some regularity conditions to ensure the 
existence of a solution to the stochastic differential equation (1). 
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Black-Scholes formula yields the correct option price regardless of the specifi- 
cation and arguments of the drift.g But the fact that the drift plays no role in 
determining a derivative's pricing formula belies its importance in the for- 
mula's implementation. Because the risk-neutral distribution and the true 
distribution of the data-generating process are linked, predictability can and 
generally does have an influence on the pricing of derivative assets, despite 
the fact that only the parameters of the risk-neutral distribution appear in 
derivative pricing formulas. As we show in the next sections, when we change 
the true distribution of the data-generating process, e.g., change predictabil- 
ity, the associated risk-neutral distribution also changes, and these changes 
will generally affect option prices. 

11. Option Prices and Predictability 

Although the same symbol a is used in both the risk-neutralized process 
P* and the data-generating process P ,  both the theoretical value and the 
empirical estimate of a are determined solely by the data-generating process, 
not by the risk-neutralized process, and both will be affected by the func- 
tional form of the drift. Predictability in the drift can be safely ignored when 
deriving the option pricing formula, but we shall argue below that it must be 
addressed explicitly for any given data-generating process. 

In Section II.A, we consider the most parsimonious form of 
predictability-autocorrelated asset returns-and show how it affects a 
directly in the specific case of a trending 0-U process for log-prices. We also 
provide a simple adjustment to the Black-Scholes formula that can account 
for it. More general and empirically plausible log-price processes, with consid- 
erably more flexible forms of predictability, are presented in Sections I11 and 
IV. 

A. The Trending 0 - U Process 

In distinguishing between the risk-neutral and true distributions of an 
option's underlying asset return process, Grundy (1991, p. 1049) observes 
that the Black-Scholes formula still holds for an 0-U log-price process, and 
we shall begin with a slight generalization of his example to illustrate the 
link between predictablity and option prices. Specifically, let the log-price 
process p(t)  satisfy the following stochastic differential equation: 

where y 2 0, p(0) = p,, and t E [0,a). Unlike the original Black-Scholes 
model, which assumes that log-prices follow an arithmetic random walk with 

More generally, it may be shown that for any derivative asset that can be priced purely by 
arbitrage, and where the underlying asset's log-price dynamics is described by an It8 diffusion 
with constant diffusion coefficient, the derivative pricing formula is functionally independent of 
the drift and is determined purely by the diffusion coefficient and the contract specifications of 
the derivative asset. 
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independently and identically distributed Gaussian increments, this log-price 
process is the sum of a zero-mean stationary autoregressive Gaussian process 
-an 0-U process-and a deterministic linear trend, so we call this the 
"trending 0 - U  process. Rewriting equation (6) as: 

shows that when p(t) deviates from its trend pt ,  it is pulled back a t  a rate 
proportional to its deviation where y is the "speed of adjustment."1° For 
notational convenience, we shall work with the detrended log-price process 
q(t) for the remainder of this article, where q(t) = p(t) - pt.  From equation 
(7), we have: 

dq(t)  = -Yq(t) dt + adW (8) 

and q(0) = q, = p,, which has the following explicit solution: 

To develop further intuition for the behavior of the trending 0-U process, the 
Appendix reports the moments of finite holding-period returns associated 
with the detrended log-price process in equation (8). 

Unlike the arithmetic Brownian motion or random walk, which is nonsta- 
tionary and often said to be "difference-stationary" or a "stochastic trend," 
the trending 0-U process is said to be "trend-stationary" since its deviations 
from trend follow a stationary process. An implication of trend-stationarity is 
that the unconditional variance of r-period returns has a finite limit as r 
increases without bound-in this case in contrast to the case of a 
random walk in which the unconditional variance increases linearly with r .  
This difference between the trending 0-U process and the random walk also 
exists for the conditional variance of continuously compounded returns r,(t) 
= p(t) - p(t - 7). In fact, for the trending 0-U process we have 

which does not equal a 2 r  as in the case of the random walk. The conditional 
variance of r-period returns also has a finite limit (when y > 0) as r -+ m.l1 

Note that the first-order autocorrelation of the trending 0-U increments is 
always less than or equal to zero, bounded below by - i,and approaches -
as r increases without bound (see equation (A4) in the Appendix). These, and 
other aspects of the trending 0-U process, will prove to be serious restrictions 
for many empirical applications and will motivate the alternative processes 
introduced in Sections I11 and IV, which have more flexible autocorrelation 

10 Note that y > 0 ensures the stationarity of p(t). 
11Observe that the conditional variance (equation (10)) is conditioned on only the current price 

p(t). Of course, more general conditioning information can be used, with potentially different 
implications. We discuss this further in Section 1II.B. 



94 The Journal of Finance 

functions.12 However, as an illustration of the impact of serial correlation on 
option prices the trending 0-U process is ideal. 

B. Relating Unconditional Moments to Parameters 

Despite the differences between the trending 0-U process and an arith- 
metic Brownian motion, Grundy (1991) points out that both data-generating 
processes yield the same risk-neutralized price process (equation (5 ) ) hence 
the Black-Scholes formula still applies to options on stocks with log-price 
dynamics given by equation (6). This may seem paradoxical, especially since 
the Black-Scholes formula is independent of the parameter y, which deter- 
mines the degree of autocorrelation in returns. After all, autocorrelation is a 
simple form of predictability, and we have argued in the introduction that 
predictability should have some impact on option prices. 

The paradox is readily resolved by observing that the two data-generating 
processes, equations (1) and (6), must fit the same price data-they are, after 
all, two competing specifications of a single price process, the "true" data-gen- 
erating process. Therefore, in the presence of autocorrelation, equation (6), 
the numerical value for the Black-Scholes input a will be different than in 
the case of no autocorrelation, equation (1). 

To be concrete, denote by F,, s2(r,), and ~ ~ ( 1 )the unconditional mean, 
variance, and first-order autocorrelation of r,(t), respectively, which may be 
defined without reference to any particular data-generating process.13 More- 
over, the numerical values of these quantities may also be fixed without 
reference to any particular data-generating process. All competing specifica- 
tions for the true data-generating process must match these moments a t  the 
very least to be plausible descriptions of that data (of course, the best 
specification is one that matches all the moments, in which case the true 
data-generating process will have been discovered). For the arithmetic Brow- 
nian motion, this implies that the parameters ( p,  a 2 )  must satisfy the 
following relations: 

12 While trend-stationary processes are often simpler to estimate, they have been criticized as 
unrealistic models of financial asset prices since they do not accord well with the common 
intuition that longer-horizon asset returns exhibit more risk or that price forecasts exhibit more 
uncertainty as the forecast horizon grows. However, if the source of such intuition is empirical 
observation, it may be consistent with trend-stationarity, since it  is now well known that for any 
finite set of data trend-stationarity and difference-stationarity are virtually indistinguishable 
(e.g., Campbell and Perron (1991) and the many other "unit root" papers cited in their refer- 
ences). Nevertheless, in Section IV we shall provide a generalization of the trending 0-U process 
that contains stochastic trends, in which case the variance of returns will increase without bound 
with the holding period 7. 

13 Of course, it  must be assumed that the moments exist. However, even if they do not, a 
similar but more involved argument may be based on location, scale, and association parameters. 
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From equation (12), we obtain the well-known result that the Black-Scholes 
input a 2  may be estimated by the sample variance of continuously com- 
pounded returns r,. However, in the case of the trending 0-U process, the 
parameters ( p, y, a ') must satisfy: 

FT = p~ (14) 

Observe that these relations must hold for the theoretical or population 
values of the parameters if the trending 0-U process is to be a plausible 
description of the data-generating process. Moreover, while equations (14) to 
(16) involve population values of the parameters, they also have implications 
for estimation. In particular, under the trending 0-U specification, the Sam- 
ple variance of continuously-compounded returns is clearly not an appropri- 
ate estimator for a '. 

Holding the unconditional variance of returns fixed, the particular value of 
a 2  now depends on y. Solving equations (15) and (16) for y and a 2  yields: 

which shows the dependence of a on y explicitly. 
In the second equation of expression (18), a has been re-expressed as the 

product of two terms: the first is the standard Black-Scholes input under the 
assumption that arithmetic Brownian motion is the data-generating process, 
and the second is an adjustment factor required by the trending 0-U specifi- 
cation. Since this adjustment factor is an increasing function of y, as returns 
become more highly (negatively) autocorrelated, options on the stock will 
become more valuable ceteris paribus. Specifically, substituting equation (17) 
into equation (18) and simplifying yields a 2as an explicit function of p,(l): 

where the restriction that pT(l) E ( - t,0] is equivalent to the restriction that 
y 2 0. 

More generally, suppose that returns of one holding period 7, are used to 
obtain the unconditional variance s2(rTl), and returns of another holding 
period 7, are used to obtain the first-order autocorrelation coefficient PT2(1). 
Since the data-generating process is defined in continuous time, this poses no 
problems for deriving the restrictions on the parameters ( p ,  y, a 2 ) ,  and 
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manipulating those restrictions yields the following version of equation (19): 


Without loss of generality and as a convenient normalization, let rl = 1and 
T2 = r ,  SO that the first-order autocorrelation coefficient p,(l) is defined over 
the holding period r ,  which in turn is measured in units of the holding period 
used to measure the unconditional variance of returns s2(rl), thus: 

This expression provides a simple adjustment for the Black-Scholes input a 
using the unconditional variance s2(rl)  of returns sampled at unit intervals, 
and the first-order autocorrelation p,(l) of returns sampled a t  r-intervals. 

Returning to the simpler relation, equation (19), between a 2  and the 
first-order autocorrelation coefficient, and holding fixed the unconditional 
variance of returns s2(rT), observe that the value of a 2  increases without 
bound as the absolute value of the autocorrelation increases from 0 to +.I4 
This implies that a specification error in the dynamics of p(t) can have 
dramatic consequences for pricing options. We shall quantify the magnitudes 
of such consequences in Sections 1I.C and 111. B below. 

C. Implications for Option Prices 

Expression (19) provides the necessary input to the Black-Scholes formula 
for pricing options on an asset with the trending 0-U dynamics. In particular, 
if the unconditional variance of daily returns is s2(rl), and if the first-order 
autocorrelation of r-period returns is p7(1), then the price of a call option is 

14 We focus on the absolute value of the autocorrelation to avoid confusion in making 
comparisons between results for negatively autocorrelated and positively autocorrelated asset 
returns. For example, whereas in this case an increase in the absolute value of autocorrelation 
increases the option's value, in Section 1II.B we provide an example of a positively autocorre- 
lated asset return process for which an increase in autocorrelation decreases the option's value. 
These two cases are indeed polar opposites, and for important reasons. But without focusing on 
the absolute value of the autocorrelation, they seem to be in agreement: in both cases, the option 
price is a decreasing function of the algebraic value of the autocorrelation. 
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given by: 

but where a is given by: 

This is simply the Black-Scholes formula with an adjusted volatility input, 
adjusted to account for the negative autocorrelation in the trending 0-U 
process.15 In particular, the adjustment factor multiplying s2(r1)/7 in equa- 
tion (25) is easily tabulated (see Table V and the discussion in Section VI. B),  
hence in practice it is a simple matter to adjust the Black-Scholes formula for 
negative autocorrelation of the form in equation (16): multiply the usual 
variance estimator s2(r1)/7 by the appropriate factor from Table V and use 
this as a in the Black-Scholes formula. 

Note that for all values of p,(l) in ( - i,01, the factor multiplying s2(r1)/7 
in equation (25) is greater than or equal to one, and increasing in the 
absolute value of the first-order autocorrelation coefficient. This implies that 
option values under the trending 0-U specification are always greater than 
or equal to option values under the standard Black-Scholes specification, and 
that option values are an increasing function of the absolute value of the 
first-order autocorrelation coefficient. These are purely features of the trend- 
ing 0-U process and do not generalize to other specifications of the drift, as 
we shall see below. 

To gauge the empirical relevance of this adjustment for autocorrelation, 
Tables I to I11 report a comparison of Black-Scholes prices under arithmetic 
Brownian motion and under the trending 0-U process for various holding 
periods, strike prices, and autocorrelations for a hypothetical $40 stock. Table 
I reports option prices for values of daily autocorrelations from -5 to -45 
percent, and Tables I1 and I11 report prices for weekly and monthly autocor- 
relations of the same numerical values. For all three tables, the unconditional 
standard deviation of daily returns is held fixed a t  2 percent per day. The 
Black-Scholes price is calculated according to equation (3), setting a equal to 
the unconditional standard deviation. The trending 0-U prices are calculated 
by solving equations (15) and (16) for a given 7 and the return autocorrela- 
tions p7(1) of -0.05, -0.10, -0.20, -0.30, -0.40, and -0.45, and using 
these values of a in the Black-Scholes formula (equation (3)). In Table I, 
T = 1; in Tables I1 and 111, 7 = 7 and 364/12, respectively. 

Panel A of Table I shows that even extreme autocorrelation in daily returns 
does not affect short-maturity in-the-money call option prices very much. For 

15 Since s2(r , )is the unconditional variance of daily returns, observe that m 2  is also measured 
in days, as is the time-to-maturity T - t and the interest rate r. 
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Table I 


Option Prices Under the Trending Ornstein-Uhlenbeck 

Process (Daily Frequency) 


Comparison of Black-Scholes call option prices on a hypothetical $40 stock under an arithmetic 
Brownian motion versus a trending Omstein-Uhlenbeck (0-U) process for log-prices, assuming a 
standard deviation of 2 percent for daily continuously-compounded returns, and a daily continu- 
ously-compounded riskfree rate of log(1.05)/364. As autocorrelation becomes larger in absolute 
value, option prices increase. 

Strike Black-Scholes Trending 0-U Price, with Daily p,(l) = 

Price Price -0.05 -0.10 -0.20 -0.30 -0.40 -0.45 

Panel A. Time-to-Maturity T - t = 7 Days 

Panel B. Time-to-Maturity T - t = 91 Days 

Panel C, Time-to-Maturity T - t = 182 Days 

11.336 11.394 11.548 11.786 
7.646 7.746 7.998 8.365 
4.851 4.976 5.286 5.728 
2.922 3.048 3.361 3.812 
1.687 1.797 2.073 2.482 

Panel D. Time-to-Maturity T - t = 273 Days 

12.113 12.198 12.415 12.745 
8.698 8.824 9.139 9.596 
6.039 6.191 6.565 7.099 
4.082 4.239 4.627 5.185 
2.702 2.849 3.217 3.753 

Panel E. Time-to-Maturity T - t = 364 Days 

example, a daily autocorrelation of -45 percent has no impact on the $30 
7-day call; the price under the trending 0-U process is identical to the 
standard Black-Scholes price of $10.028. But even for such a short maturity, 
differences become more pronounced as the strike price increases; the at-the- 
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Table I1 


Option Prices Under the Trending Ornstein-Uhlenbeck 

Process (Weekly Frequency) 


Comparison of theoretical call option prices on a hypothetical $40 stock under an arithmetic 
Brownian motion versus a trending Ornstein-Uhlenbeck (0-U) process for log-prices, assuming a 
standard deviation of 2 percent for daily continuously-compounded returns, and a daily continu- 
ously-compounded riskfree rate of log(1.05)/364. As autocorrelation becomes larger in absolute 
value, option prices increase. 

Strike Black-Scholes Trending 0-U Price, with Weekly p,(l) = 

Price Price -0.05 -0.10 -0.20 -0.30 -0.40 -0.45 

Panel A. Time-to Maturity T - t = 7 Days 

Panel B. Time-to-Maturity T - f = 91 Days 

Panel C. Time-to-Maturity T - t = 182 Days 

30 11.285 11.292 11.300 11.320 11.348 11.398 11.449 
35 7.558 7.570 7.584 7.619 7.668 7.752 7.838 
40 4.740 4.756 4.774 4.817 4.878 4.983 5.089 
45 2.810 2.826 2.844 2.887 2.949 3.055 3.162 
50 1.592 1.605 1.620 1.658 1.711 1.803 1.897 

Panel D. Time-to-Maturity T - t = 273 Days 

Panel E. Time-to-Maturity T - t = 364 Days 

30 12.753 12.766 12.781 12.816 12.867 12.956 13.047 
35 9.493 9.512 9.532 9.582 9.654 9.777 9.902 
40 6.908 6.930 6.954 7.014 7.099 7.244 7.390 
45 4.941 4.964 4.989 5.052 5.141 5.294 5.448 
50 3.489 3.511 3.536 3.597 3.683 3.832 3.982 

money call is worth $0.863 in the absence of autocorrelation but increases to 
$1.368 with an autocorrelation of -45 percent. 

As the time to maturity increases, the remaining panels of Table I show 
that the impact of autocorrelation also increases. With a -10 percent daily 
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Table I11 


Option Prices Under the Trending Ornstein-Uhlenbeck 

Process (Monthly Frequency) 


Comparison of theoretical call option prices on a hypothetical $40 stock under an arithmetic 
Brownian motion versus a trending Ornstein-Uhlenbeck (0-U) process for log-prices, assuming a 
standard deviation of 2 percent for daily continuously-compounded returns, and a daily continu- 
ously-compounded riskfree rate of log(1.05)/364. As autocorrelation becomes larger in absolute 
value, option prices increase. 

Strike Black-Scholes Trending 0-U Price, with Monthly pT(l)= 

Price Price -0.05 -0.10 -0.20 -0.30 -0.40 -0.45 

Panel A. Time-to-Maturity T - t = 7 Days 

30 10.028 10.028 10.028 10.028 10.028 10.028 10.028 
35 5.036 5.036 5.036 5.036 5.037 5.037 5.037 
40 0.863 0.864 0.864 0.866 0.869 0.874 0.879 
45 0.011 0.011 0.011 0.011 0.011 0.012 0.012 
50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Panel B. Time-to-Maturity T - t = 91 Days 

30 10.526 10.527 10.528 10.529 10.532 10.537 10.541 
35 6.331 6.332 6.334 6.339 6.346 6.359 6.371 
40 3.270 3.273 3.276 3.283 3.293 3.310 3.327 
45 1.459 1.462 1.464 1.471 1.480 1.496 1.512 
50 0.574 0.575 0.577 0.581 0.588 0.598 0.609 

Panel C. Time-to-Maturity T - t = 182 Days 

30 11.285 11.287 11.289 11.293 11.300 11.310 11.321 
35 7.558 7.561 7.564 7.572 7.583 7.602 7.621 
40 4.740 4.744 4.748 4.758 4.772 4.796 4.820 
45 2.810 2.814 2.818 2.828 2.842 2.866 2.890 
50 	 1.592 1.595 1.598 1.607 1.619 1.640 1.660 

Panel D. Time-to-Maturity T - t = 273 Days 

Panel E. Time-to-Maturity T - t = 364 Days 

autocorrelation, an at-the-money 1-year call is $7.234, and rises to $10.343 
with a daily autocorrelation of -45 percent, compared to the standard 
Black-Scholes price of $6.908. This pattern is not surprising, given the 
autocorrelation (equation (16)) of the trending 0-U process, since longer- 
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horizon returns are more highly negatively autocorrelated and, therefore, 
depart more severely from the standard Black-Scholes paradigm than 
shorter-horizon returns. 

More formally, since the Black-Scholes formula applies to both arithmetic 
Brownian motion and the trending 0-U process, the impact of a specification 
error in the drift can be related to the sensitivity of the Black-Scholes formula 
to changes in volatility a . This sensitivity is measured by the derivative of 
the call price with respect to a ,  and is often called the option's "vegan 
dC/da = p( t ) JT- t@ '(dl), where d, is defined in equation (4). From this 
expression, we see that the prices of shorter-maturity options are less sensi- 
tive to changes in a , while the prices of longer-maturity options are more 
sensitive. 

This is also apparent in the patterns of Tables I1 and 111, which are similar 
to those in Table I but much less striking since the same numerical values of 
p7(1) are now assumed to hold for weekly and monthly returns, respectively. 
As Tables I to I11 show, the impact of a -45 percent autocorrelation in 
monthly returns is considerably less than the same autocorrelation in daily 
returns. 

In contrast to Table I, where an at-the-money 1-year call increases from 
$6.908 to $10.343 as the autocorrelation decreases from 0 to -45 percent, in 
Table I11 the same option increases from $6.908 to only $7.018. We shall see 
in Table V of Section V1.B that this is a symptom of all diffusion processes, 
since the increments of any diffusion process becomes less autocorrelated as 
the differencing interval declines. In particular, Table V will show that the 
impact of a -45 percent autocorrelation in monthly returns is considerably 
less than the same autocorrelation in daily returns. Indeed, from equation 
(16), a -45 percent autocorrelation in monthly returns implies an autocorre- 
lation of only -0.97 percent in daily returns. Therefore, the importance of 
autocorrelation for option prices hinges critically on the degree of autocorrela- 
tion for a given return horizon T and, of course, on the data-generating 
process that determines how rapidly this autocorrelation decays with T .  For 
this reason, in the next section we introduce several new stochastic processes 
that are capable of matching more complex patterns of autocorrelation and 
predictability than the trending 0-U process. 

111. The Bivariate Trending 0-UProcess 

An obvious deficiency of the trending 0-U process as a general model of 
asset prices is the fact that its returns are negatively autocorrelated a t  all 
lags, which is inconsistent with the empirical autocorrelations of many 
traded assets. For example, Lo and MacKinlay (1988, 1990) show that equity 
portfolios tend to be positively autocorrelated a t  shorter horizons, while Fama 
and French (1988) and Poterba and Summers (1988) find negative autocorre- 
lation a t  longer horizons. Moreover, since the trending 0-U's drift depends 
only on q(t), it leaves no role for other economic variables to play in 
determining the predictability of asset returns. 
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To address these shortcomings, we propose the "bivariate trending 0-U 
process in the following sections. Although it is a special case of a bivariate 
linear diffusion process, and is therefore extremely tractable, it exhibits a 
surprisingly wide variety of autocorrelation patterns (see, for example, Figure 
1).Moreover, as its name suggests, the bivariate trending 0-U process allows 
the log-price process to depend upon a second process, which may be inter- 

Figure 1. First-order autocorrelation of stock returns as a function of the length of 
holding period for the bivariate trending Ornstein-Uhlenbeck process. The figure plots 
the first-order autocorrelation of stock returns, pT(l), as a function of the length of holding 
period, 7,  when log-prices follow a bivariate trending Ornstein-Uhlenbeck (0-U) process. y is the 
coefficient for q(t), and h is the coefficient for X(t) in the linear drift of the detrended log-price 
process. 6 is the mean-reversion coefficient of X(t). a and a, are the diffusion coefficients for 
q(t) and X(t), respectively, and K is the correlation coefficient between the diffusion terms of 
q(t) and X(t). For this figure, the following parameters are fixed at: 6 = 0.6, a 2= 0.5, 0: = 0, 
and K = 0. 
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preted as a time-varying expected return factor that may or may not be 
observable. 

A. Basic Properties 

Let the detrended log-price process q(t) = p(t) - p t  satisfy the following 
pair of stochastic differential equations: 

where y 2 0, 6 2 0, q(O) = q,, X(0) = X,, and t E [0,m). Wq and W, are two 
standard Wiener processes such that dWq dW, = K dt, and X(t) is another 
stochastic process that may or may not be observable. For reasons that will 
become apparent below, we shall call this system the "bivariate trending 
0 - U  process. 

The bivariate system (equations (26) to (27)) contains several interesting 
special cases. For example, when A = 0 it reduces to the univariate trending 
0-U process of Section 1I.A in which asset returns are always negatively 
autocorrelated. When y = 0, the drift of the detrended log-price process is 
AX(t), which is stochastic and mean reverting to its unconditional mean of 
zero. In the more general case when y # 0, the detrended log-price process 
may be rewritten as: 

which shows that q(t) is mean reverting to a stochastic mean (A/-y)X(t), 
with "speed of adjustment" y. Since equations (26) to (27) is a system of 
linear stochastic differential equations, it may be solved explicitly as: 

where t 2 0 and q, = p, and (q, X) is jointly normally distributed given its 
initial value (q,, X,) a t  t = 0.16 From this explicit solution, the joint mo-
ments of (q, X) are easily obtained and given in the Appendix. 

As in the case of the univariate trending 0-U process, the bivariate process 
is trend-stationary, the variance of its increments approaches a finite limit of 
2Var[q(t)] and the first-order autocorrelation p,(l) of 7-period returns ap- 

16 Even if {go,X,) are stochastic, as  long as they are drawn from their stationary joint normal 
distribution, { q ( t ) ,  X ( t ) )  is still jointly normally distributed. 
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proaches - $ as r increases without bound. Both of these restrictions are 
relaxed in the multivariate version of Section IV. 

To see that the bivariate trending 0-U process can capture more complex 
patterns of autocorrelation than its univariate counterpart, consider the 
behavior of its first-order autocorrelation function as a function of the holding 
period r for the special case where h = y. As r increases without bound, p,(l) 
approaches - as it must be for the continuously compounded r-period 
return of any stationary process. As 7 decreases to 0, p,(l) also approaches 
zero as it must for any diffusion process, since diffusions have locally inde- 
pendent increments by construction. For small r ,  we have: 

where p = Cov[ q(t), X(t)]/Var[ q(t)]. Unlike the univariate trending 0-U 
421

process, in this case p,(l) can be either positive or negative, depending 
on whether Pqx is greater than or less than y/(y + 6). Therefore, when 
Pyx> y/(y + 6), the bivariate trending 0-U process will display an autocor- 
relation pattern that matches the empirical findings of both Lo and MacKin- 
lay (1988) and Fama and French (1988) simultaneously: positive autocorrela- 
tion for short horizons, and negative autocorrelation for long horizons. Some 
other examples of first-order autocorrelation functions of the bivariate trend- 
ing 0-U process are given in Figure 1.For further intuition into the correla- 
tion structure of the bivariate trending 0-U process, we present its general 
autocorrelation function in the Appendix. 

B. Predictability versus Autocorrelation 

We have argued in Section I1 that the numerical value of the Black-Scholes 
input a depends on our assumption about the data-generating process when 
we have discretely-sampled data. In the particular case of the univariate 
trending 0-U process of Section II.A, the numerical value of a increases 
with the absolute value of the return autocorrelation, given a fixed numerical 
value for the unconditional variance of returns. However, in the case of the 
bivariate trending 0-U process, there is no longer such a simple relation 
between autocorrelation and a .  

For example, consider the special case of the bivariate trending 0-U 
process in which y = 0, hence hX(t) is the drift of the detrended log-price 
process, and the system reduces to: 

For simplicity, also let K = 0 so that dWq and dW, are statistically indepen- 
dent. In this special case, asset returns are positively autocorrelated a t  all 
leads and lags. We may calculate the unconditional variance and autocorrela- 
tion of returns by taking the limit of y -+ 0 in equations (A10) and (A12). 
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Then, for any holding period T we have: 

Observe that 0 < a&5 1, and that a&. is an increasing function of A. Since 
pT(l) is an increasing function of a&, it is also an increasing function of A. By 
increasing A while holding fixed the unconditional variance of returns, we 
can see the effects of increasing autocorrelation on the Black-Scholes input a.  
Rearranging equation (34) yields: 

which shows that an increase in the return autocorrelation (through an 
increase in A) is accompanied by a decrease in a and a corresponding 
decrease in the Black-Scholes call option price.17 Increasing return autocorre- 
lation in this case has precisely the opposite effect on option prices than in 
the case of the univariate trending 0-U process, in which an increase in the 
absolute value of the return autocorrelation increases the numerical value of 
a ,  increasing option prices (recall that in that case, the autocorrelation is 
always nonpositive). 

While increasing autocorrelation can either increase or decrease option 
prices, depending on the particular specification of the drift, the special case 
of equations (32) and (33) does illustrate a general relation between option 
prices and predictability. To see this, we must first define predictability 
explicitly. Perhaps the most common definition is the R2  coefficient, or the 
fraction of the unconditional variance of the dependent variable that is 
"explained" by the conditional mean or predictor. Higher R2s  are generally 
taken to mean more predictability, and this interpretation is appropriate in 
our context with three additional restrictions: 

Restriction 1: The unconditional variance of returns r,(t) is fixed. 

Restriction 2: The drift is not a function of the log-price process p(t). 

Restriction 3:  W, is statistically independent of W,. 

The first restriction has already been discussed above-the very nature of 
prediction takes as given the object to be predicted, and meaningful compar- 

17 It  is easy to show that the expression (1 - uz*,)/[l - 6:%(1 - e - S T ) / 6 ~ ]decreases as  ut*, 
increases. It  then follows that increasing A will increase its value since u,*, will increase. 
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isons of alternate prediction equations cannot be made if the "target" is 
allowed to change in any way. In particular, if the unconditional variance of 
r,(t) is not fixed, a reduction in the prediction error variance need not imply 
better predictability because it may be accompanied by a more-than-pro-
portionate reduction in the unconditional variance to be predicted. 

Restrictions 2 and 3 eliminate feedback relations between the conditional 
mean and the prediction error or residual, so that the discrete-time represen- 
tation of the continuous-time system is a genuine prediction equation, i.e., the 
conditional expectation of the residual, conditioned on the drift, is zero. 

Under these restrictions, it may be shown that an increase in predictability 
-as measured by R2-always decreases a and therefore decreases option 
prices.18 The intuition for this relation is clear: holding fixed the uncondi- 
tional variance of returns, an increase in the variability of the conditional 
mean must imply a decrease in the variability of the residual. More formally, 
the unconditional variance of returns may always be written as the following 
sum: 

where R, is the conditioning information set. Holding the left-hand side of 
equation (37) fixed, an increase in the first term of the right-hand side, i.e., 
an increase in predictability, must be accompanied by an equal decrease in 
the second term of the right-hand side. Furthermore, under Restrictions 1to 
3, the variability of the residual can be shown to be monotonically related to 
the continuous-time parameter a ,  hence increasing predictability implies 
decreasing option prices. 

In particular, under the bivariate trending 0-U process, increasing A has 
the effect of increasing the variability of the conditional mean. Holding the 
unconditional variance of the returns s2(r,) fixed, an increase in A will 
therefore increase the predictability of returns, implying that the value of a 
must decrease since Restrictions 1to 3 are satisfied by equations (32) and 
(33).19 As A increases without bound so that progressively more variation in 
returns is attributable to the time-varying drift, returns become progressively 
more predictable, a approaches 0 and the option's value approaches its lower 

18 It is important to note that, here and throughout this article, we consider changes in 
predictability or R2  only through changes in the specification or functional form of the drift. 
Another way to change predictability, which we do not consider, is to change the information set 
under a given specification of the continuous-time process. 

Another way to see this is to consider the special case where the conditioning information set 
a t  t is the whole sample path of X(.)from t to t + 7, i.e., at = [ X , :  t I s I t + 71. In this case, 

Thus, the residual variance is simply U ~ LIncreasing h increases the predictability in returns 
and decreases u 2  holding Var[r,(t)] fixed. We thank the referee for suggesting this special case. 
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bound of e - r ( T - t ) ~ a x [ ~ ( ~ )  - K, 01.~' Only if predictability is defined in this 
narrow sense, and only under Restrictions 1 to 3 is there an unambiguous 
relation between predictability and option prices. 

Under more general conditions, however, a simple relation between pre- 
dictability and option prices is not available, and the very notion of pre- 
dictability need not be well-defined. For example, Restriction 2 is violated by 
the univariate trending 0-U process of Section II.A, and in that case, while 
increasing predictability does decrease the variance of the prediction error of 
r,(t), it also increases a .  

C. A Numerical Example 

To illustrate the importance of predictability in determining the Black- 
Scholes input a ,  we use historical daily returns of the Center for Research in 
Security Prices (CRSP) value-weighted market index from 1962 to 1990 to 
calibrate the bivariate trending 0-U process and evaluate a explicitly. Since 
all second-order moments of continuously compounded returns depend on the 
six underlying parameters of the bivariate process, y, 6, A, a ,  a, and K,  we 
may choose any six moments and solve for the six underlying parameters. 
Moreover, if y # 0, we can set A = y without loss of generality, which 
reduces the total number of free parameters to five. To further simplify the 
calibration exercise, we set K = 0. Thus, we require only four second-order 
moments to determine y, 6, a ,  and a,. 

For the four second-order moments, we use the sample variance of the 
returns Var[r,(t)], the first-order autocorrelation coefficient p,(l), and two 
higher-order autocorrelation coefficients. If the bivariate trending 0-U pro- 
cess is the true data-generating process and we possessed the actual popula- 
tion values of the moments, then of course the choice of which two higher 
order autocorrelation coefficients to fit is arbitrary, since they will arrive a t  
the same parameter values. However, since we are using actual data to 
perform the calibration and are not estimating the parameters of the system, 
some care is required in selecting the moments to match. In particular, since 
the autocorrelation function of the bivariate trending 0-U process can change 
sign only once (from positive to negative), we must choose our moments to be 
consistent with this restriction. With this in mind, we select the following 
four moments for our calibration: s(r,) = 0.0085, p,(l) = 0.1838, p,(5) = 

0.0323, and p,(25) = -0.0092, where p,(k) denotes the kth order autocorre- 
lation of T-period returns. Calibrating the parameters to these moments yield 
the following values:21 y = 0.3748, 6 = 0.0106, a, = 0.0128, and a = 0.0074. 
Observe that the value of the Black-Scholes input a under the bivariate 
trending 0-U specification, 0.0074, is approximately 13 percent smaller than 

20 Note that this particular limit is economically unrealizable because even though the stock 
price is still stochastic when o vanishes (due to the drift), it is once-differentiable and therefore 
admits arbitrage (see Harrison, Pitbladdo, and Schaefer (1984)). 

21 Note that the solution for y ,  6, and ox is not unique; however, the solution for u is. 
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the standard deviation of continuously compounded returns 0.0085, which is 
the value of o under an arithmetic Brownian motion specification. 

The theoretical call option prices for a hypothetical $40 stock in Table IV 
show that such a difference can have potentially large effects, particularly for 
longer maturity options .just as in Tables I to 111. However, in this case the 
naive Black-Scholes prices are overestimates of the correct call price, since 
the a that accounts for predictability is lower than the a obtained under an 
assumption of independently and identically distributed (i.i.d.) returns. 

IV.The Multivariate Trending 0-U Process 

Despite the flexibility of the bivariate trending 0-U process, as a model of 
asset prices it has at  least three unattractive features that are both related to 
the behavior of its increments as the differencing interval increases without 
bound: the variance of its increments approaches a finite limit, its first-order 
autocorrelation function approaches a limit of - and can change sign only 
once. Moreover, the bivariate process does not allow for additional economic 
or "state" variables that might affect the drift. 

In this section we present a multivariate extension of the bivariate trend- 
ing 0-U process that addresses all of these concerns. By allowing the drift to 
depend linearly on additional state variables, resulting in the "multivariate 
trending 0-U process," richer patterns of autocorrelation can be captured 
without sacrificing tractability. If the state variables are stationary, then 
log-prices are trend-stationary as in the bivariate case. If the state variables 
are random walks, then log prices will contain stochastic trends, in which 
case the variance of its increments can increase without bound and the 

Table IV 


Option Prices Under the Bivariate Trending 

Ornstein-Uhlenbeck Process (Daily Frequency) 


Comparison of theoretical call option prices on a hypothetical $40 stock under an arithmetic 
Brownian motion versus a bivariate trending Ornstein-Uhlenbeck (0-U) process for log-prices, 
both calibrated to match the daily CRSP value-weighted returns index from 1962 to 1990. The 
time-to-maturity is given by T - t ,  entries under the " B - S  heading are call prices calculated 
under the Black-Scholes assumption of arithmetic Brownian motion [for which (T = 0.00851, and 
entries under the "0-U" heading are call prices calculated under the bivariate trending 
Ornstein-Uhlenbeck [for which = 0.00741. A daily continuously-compounded risk-free rate of (T 

log(1.05)/364 is assumed. 

Strike T - t = 7 T - t = 9 1  T - t = 1 8 2  T - t = 2 7 3  T - t = 3 6 4  

Price B-S 0-U B-S 0-U B-S 0-U B-S 0-U B-S 0-U 



109 Option Pricing When Asset Returns Are Predictable 

first-order autocorrelation can approach 0 as the differencing interval in- 
creases. 

In a straightforward generalization of the bivariate case, we let the de- 
trended log-price process q(t) fluctuate around a stochastic mean, now 
governed by a multivariate linear process. Specifically, let: 

and q(0) = q,, X(0) = X,, and t E [O,x.), where X(t) is an m-dimensional 
random process, W,(t) is a k-dimensional standard Wiener process, y and a 
are scalar parameters, and A,  A, B, are (1 x m), (m x m), (m x k) matrix 
parameters, respectively. Without loss of generality we assume that A is 
diagonal, i.e., A = diag{S,}. The linear system [q(t)X(t)'] defined by equations 
(38) and (39) has the following explicit solution: 

where I is the (m x m) identity matrix.22 Since A is diagonal, e-a(t-" = 

diag{e-'~(~-"}. Given equations (40) and (40,  we can readily derive the 
unconditional moments of q(t) and X(t) (if they exist), as well as those of 
returns over any finite holding period 5-23. 

If the diagonal matrix A contains strictly positive diagonal entries Si, then 
the log-price process is trend-stationary as in the case of the bivariate 
trending 0-U process. The unconditional moments of the detrended log-price 
process and returns follow analogously from equations (40) and (41) and some 
of these are reported in the Appendix. 

Alternatively, if at  least one of the state variables follows a random walk or 
is "difference-stationary" (and there are no degeneracies due to cointegration), 
then the log-price process will also be difference-stationary and the variance 
of its increments will increase without bound as the differencing interval 
approaches infinity. For example, consider the following trivariate special 
case of equation (39). Let X(t) = [X(t) Z(t)lt, A = diag(6, 6,), 6, = 0, B, = 

diag(u,, a,), and d W, = [dW, dW,]'. In this case, X(t) follows an 0-U 
process while Z(t) follows a random walk. Assume that y > 0. Without loss of 

22 We have implicitly assumed that y # S,, i = I , .. . ,m so that the inverse of y I  - A exists. If 
not, we can derive the corresponding solution by taking the appropriate limit. 

23 AS in the bivariate case, when A is not of full rank, i.e., when 6, = 0 for some i, or when 
y = 0, the unconditional moments of q ( t )no longer exist. However, the unconditional moments 
of returns do exist, and they can be calculated by taking the appropriate limits; see the 
discussion in Section IV. 
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generality, we can let A = [ y  y ] .  Then the explicit solution for the detrended 
price process q(t) is: 

Observe that q(t) can be decomposed into two components: a stationary 
component @(t) and a random walk component Z(t), where the stationary 
component @(t) behaves like the detrended log-price in the stationary bivari- 
ate 0-U case. However, in contrast to the trend-stationary case, the existence 
of a random walk component in the detrended log-price implies that the risk 
of holding the asset increases with the holding period. 

Of course, when q(t) is nonstationary, the unconditional moments of q(t) 
are no longer well defined. However, the unconditional moments of the 
increments of q(t), which are simply the de-meaned continuously com-
pounded returns, are well defined and may be obtained from the results for 
the stationary case by taking the limit 6, -+ 0. 

V. Maximum Likelihood Estimation 

The fact that the univariate and the bivariate trending 0-U processes 
imply such different relations between autocorrelation and option values 
illustrates the complexity and importance of correctly identifying the data- 
generating process before implementing an option pricing formula. In the 
previous sections, we have shown that, holding fixed the unconditional 
moments of the true data-generating process, a change in the specification of 
the drift can change the population value of the Black-Scholes input a.As a 
result, a change in the specification of the drift can also change the empirical 
estimate of a. 

Perhaps the most direct approach to addressing these issues is to propose a 
reasonably flexible specification of the drift that can capture a wide variety of 
autocorrelation patterns, derive the exact discrete-time representation of the 
log-price process, estimate all the parameters of this discrete-time process 
simultaneously, and then solve for the parameters of the continuous-time 
process-which includes u-as a function of the parameter estimates of the 
discretely sampled data. Since all three of our specifications for the drift are 
linear, their discrete-time representations are readily available and are also 
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linear processes, to which maximum likelihood estimation may be applied, as 
described in Lo (1986, 1988). 

To this end, denote by t, the sampling dates, where k = 1,2, .. . , n, and let 
t, - th-l  = r be a constant, hence t, = kr .24  Let q, = q(t,) = p(t,) - pt, 
and assume that q, is observed. Of course, in practice the trend rate p must 
be estimated, but as long as a consistent estimator of p is available, replacing 
p with f i  will have no effect upon the asymptotic properties of the parameter 
estimates. 

A. Estimating the Uniuariate Trending 0-U Process 

From the explicit solution of equation (9) of the univariate trending 0-U 
process, it is easy to obtain a recursive representation of q, which shows that 
its deviations from trend follow an AR(1): 

qk = e-"q,-, + r,, E, = vAthe-y(t"s'dW(s). (46) 
k - 1  

For this simple process, the maximum likelihood estimator of the discrete-time 
parameters is asymptotically equivalent to the ordinary least squares estima- 
tor applied to detrended log-prices. The continuous-time parameters p,  o, 
and y may then be obtained from the discrete-time parameter estimates. 

B. Estimating the Biuariate Trending 0 - U  Process 

Let X, 3X(th). Then from equations (26) and (27), we have: 

q, = a,qk-l + W k - 1  + E q , k  (47) 

Xk = a x X h - l +  E,,,, (48) 

where a, 3 e-Y', a, = e-", #I = - S))(a, - a,), and 

Observe that [ E,,, E,,,]' is a bivariate normal vector that is temporally 
independently and identically distributed, with mean 0 and covariance ma- 
trix ST given in the Appendix. Rewriting equations (47) and (48) in vector 
form yields: 

This last assumption is made purely for notational convenience-irregularly sampled data 
may be just as easily accommodated but is notationally more cumbersome. 

24 
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This is simply a bivariate AR(1) process, where the second component, X,, 
may or may not be observed. The parameters of this discrete-time process 
may be estimated by maximum likelihood by casting equation (51) in state- 
space form and applying the Kalman filter (e.g., Harvey (1989a) or Liitkepohl 
(1991)). There are seven parameters to be estimated: p,  a,, a,, +, and the 
elements of the symmetric (2 x 2) matrix ST. From the definition of these 
discrete-time parameters, we can uniquely determine the seven parameters 
of the underlying continuous-time process, p,  y, 8, A, o, o,, and K (see 
equations (A21), (A22), (A23), and (A24) in the Appendix), hence the principle 
of invariance yields maximum likelihood estimators for these as well. 

C. Estimating the Multivariate Trending 0 - U Process 

The discrete-time representation of equations (38) and (39) is a straightfor- 
ward generalization of the bivariate case: 

qk = aqqk-l + @Xk-1-t E q , k  (52) 

X h  = A x X k - 1 + 'x, k (53) 

where qk = q(th), Xk = X(tk), aq= ePYT,A, = eCA7, = A(y1 - A)-'(A, -
a,I), and 

c,,, e-A(th-"~,dW,(s). (55)- it* 
k - 1  

Observe that e, = [ E,,, EL,  , I '  is an (m + 1)-dimensional normal random 
variable which is temporally independently and identically distributed. In 
vector form, we have: 

which is a VAR(l), and given observations {ph}, or {ph} and some components 
of {X,}, we can obtain maximum likelihood estimates of its parameters by 
applying the Kalman filter to the state-space representation as before.25 

In our trivariate example, equation (42) of Section IV, which is difference 
stationary, the discrete-time representation of equations (42) to (45) is: 

25 However, in the general multivariate case, identification is not guaranteed and is often 
difficult to verify. See Liitkepohl (1991, Chapter 13.4.2) for further discussion. 
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where 2, = Z(t,), and E,-, ,, E,,  ,, and E,,  ,are i.i.d. Gaussian shocks derived 
from the stochastic intervals in equations (43), (441, and (45). Since q, is 
nonstationary here, prices cannot be used directly to estimate the parame- 
ters. Instead, de-meaned continuously compounded returns may be used 
since they are stationary under this current specification. Define F, = q, -
q k  vk = Xk -X k  and e, = [ E , - ,  , E, ,  , E, ,  , I t .  We then have: 

which is simply a multivariate ARMA(1,l) process. Once again, given obser- 
vations {r,}, or {r,, v,} maximum likelihood estimation of the discrete-time 
parameters may be readily performed as in the trend-stationary case via its 
state-space representation. 

VI. Extensions and Other  Issues 

There are several other aspects of the impact of predictability on option 
prices that deserve further discussion, such as extensions to option pricing 
models other than the Black-Scholes model, implications of the distinction 
between discrete and continuous time, the relation of our findings to those 
surrounding "estimation risk," and the interpretation of implied volatilities in 
the presence of predictability. We shall consider each of these issues in turn 
in the following sections. 

A. Extensions to Other Derivative Pricing Models 

Although we have confined our attention so far to the case where the 
diffusion coefficient o is constant-the Black-Scholes case-predictability 
can affect other option and derivative pricing formulas in a similar fashion. 
Since analytical derivative pricing formulas are almost always obtained from 
no-arbitrage conditions, the drift plays no role in determining the formula but 
plays a critical role in determining both the population values and empirical 
estimates of the parameters that enter the formula as arguments. For 
example, although the drift does not enter into Merton's (1976a) jump-diffu- 
sion option pricing formula, its specification will affect the values of a (the 
volatility of the diffusion component), 8 (the volatility of the logarithm of the 
jump magnitude), k (the expectation of the logarithm of the jump magnitude), 
and A (the mean rate of occurrence of the Poisson jump). Since all of our drift 
specifications in Sections 11, 111, and IV are linear, they may be readily 
incorporated into more complex stochastic processes. 

B. Discrete versus Continuous Time 

Clearly, the importance of the drift in implementing option pricing formu- 
las comes from the fact that the data are sampled at discrete time intervals, 
while the theoretical models are formulated in continuous time. Now it is well 
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known that the diffusion coefficient is a "sample-path property," so that any 
single realization of a continuous sample path over a finite interval is 
sufficient to reveal the true value of a .  However, continuous sample paths 
are practically unrealizable; therefore, we are always confronted with some 
sampling error in our attempts to estimate a .  Assuming for the moment that 
the diffusion coefficient o is indeed constant, the sampling error of any 
estimator of a can be traced to two distinct sources: misspecification of the 
drift and the discreteness of the sampling interval. 

Of course, these two sources of sampling error are closely related. For 
example, the effects of misspecifying the drift diminishes as the sampling 
frequency increases, and in the limit there is no sampling error in estimating 
o ,  hence misspecification of the drift is irrelevant. In particular, consider the 
relation between the continuous-time parameter a 2  and the finite holding- 
period return variance s2(r,) for the univariate trending 0-U case of Section 
1I.A. For any fixed value of a 2 ,  equation (18) shows thab as the return 
horizon r decreases to 0, the ratio of 02 to s2(r,)/r approaches 1, hence a 2  
may be recovered exactly in the limit of continuous sampling. This is a 
general property of diffusions (equation (1)) with a constant diffusion coeffi- 
cient-the unconditional variance s2(r,) approaches [dq(t)12 = a 2 d t  as the 
holding period r approaches zero.26 Alternatively, a 'dt may be viewed as the 
conditional variance of dq, conditional on the drift. But since all the infinites- 
imal variation in dq is attributable to the diffusion term a2dW (recall that 
the drift is of order dt and the diffusion term is of order a),the conditional 
and unconditional variance of the stochastic differential dq are effectively the 
same (see Sims (1984) for further details). 

This limiting result may lead some to advocate using the most finely 
sampled data available to compute s2(r,)/r, SO as to minimize the effects of 
the drift of the data-generating process. Of course, whether or not the most 
finely sampled data available is fine enough to render s2(rT)/7 an adequate 
approximation to a is an empirical issue that depends critically on what the 
true data-generating process is and on the types of market microstructure 
effects that may come into play. 

It is also conceivable that the sampling error in & induced by a misspecifi- 
cation of the drift is not nearly so great as the sampling error induced by 
discrete sampling. While specifying a "better" drift may yield a closer approx- 
imation to the continuous-time process, it may not improve the performance 
of & for a given set of discretely sampled data. 

The potential importance of both sources of sampling error are, of course, 
empirical issues that must be resolved on an individual basis with a particu- 
lar application and dataset at  hand. For example, consider the univariate 
trending 0-U process of Section II.A, and recall from equations (20) to (22) 
that A(1, r ,  pT(l)) provides a convenient measure of the impact of serial 

26 In fact, even if the diffusion coefficient is time varying, it  may be estimated with arbitrary 
precision by sampling more frequently within a fixed time span. See Huang and Lo (1994) for 
further details. 
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correlation on the Black-Scholes input a 2  as a function of the first-order 
autocorrelation coefficient pT(l) for r-period returns. 

For example, let s2(r l )  be defined for daily returns, and suppose that the 
first-order autocorrelation of daily returns is -30 percent. Table V shows 
that A(l, l ,  -0.30) = 1.527, hence the value of s2(rl)  must be increased by 
52.7 percent to yield the correct value for the Black-Scholes input If, 
however, a -30 percent first-order autocorrelation is observed for 5-day 
returns, this should yield a smaller autocorrelation for daily returns (recall 
that in the limit, the autocorrelation vanishes), which is confirmed by Table 
V's entry of 1.094 for A(1,5, -0.30), i.e., a 2  is only 9.4 percent larger than 
s2(rl)  in this case. Even in the extreme case of a -45 percent autocorrela- 
tion, if this autocorrelation is for 25-day returns, a 2  is only 4.7 percent 
larger than s2(rl), whereas the same autocorrelation for daily returns im- 
plies that a 2  is 156 percent larger than s2(rl). Contrary to conventional 
wisdom, the autocorrelation coefficient is not unitless, and has an often-ne- 
glected time dimension to it. 

A second method of gauging the relative importance of a misspecification of 
the drift in the sampling error of & in the case of the univariate trending 0-U 
process is to perform a simple Monte Carlo simulation experiment. For a 
given sample size, say 250 observations, consider simulating a sample path of 
daily returns under the univariate trending 0-U specification, estimating o 
with and without an adjustment for the drift, and repeating this 5,000 times 
to obtain the finite-sample distribution of the two estimators. 

Table VI reports the outcome of such an experiment for sample sizes 
ranging from 250 to 1,250 daily observations (roughly 1 to 5 years of daily 
data), and for first-order autocorrelations pl ranging from - 10 to -45 
percent, and holding the daily unconditional variance fixed at 2 percent. The 
first two columns report the parameter values of the simulation-note that o 
changes with pl since we have fixed the daily unconditional variance at 2 
percent. Columns 3 and 4 report the percentage bias of the naive estimator 6 
(which is simply the sample standard deviation of daily returns) and the 
estimator & that adjusts for the mean-reverting drift (based on equation 
(19)), where the expected value of each of the two estimators is computed over 
the 5,000 replications of each simulation. 

The first row of Panel A of Table VI shows that s  ̂ is considerably more 
biased than 6 : -5.1 percent for 6 versus 0.5 percent for 6.For more extreme 
values of p,, the biases of both estimators worsen, but even in the worst case 
when pl is -45 percent, 6 is more biased than 6 : -37.3 versus 12.1 percent. 
The relative performance of s  ̂ and & is similar for larger sample sizes. 

Table VI also reports the theoretical value of A, which relates a to s 
according to equation (20), and its expectation over each of the 5,000 replica- 

27 An alternate interpretation of the entries in Table V is the bias in using implied volatility as 
an estimator of the standard deviation of returns when the trending 0-U process is the 
data-generating process. For example, the entry 1.527 that corresponds to A(1,1, -0.30) suggests 
that when asset returns have a serial correlation coefficient of -30 percent, the upward bias in  
implied volatility as a n  estimator of the standard deviation is 52.7 percent. 
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Table V 


Ratio of Instantaneous Variance a2to the 

Variance of Returns s2(r ,) under the Trending 


Ornstein-Uhlenbeck Process 

Ratio of 0' to the variance of returns sZ(r,) under the trending Ornstein-Uhlenbeck (0-U) 
process, for various values of the first-order autocorrelation pJl) and holding period T,where T 
is measured in units of the holding period used to construct s2(r,). 

tions. For most sample sizes and values of p, ,  A and are fairly close, which 
explains the superiority of 6 to 6. 

A somewhat more subtle issue surrounding the distinction between dis- 
crete and continuous time is the fact that while we have used the Black- 
Scholes formula to gauge the effects of asset return predictability on option 
prices, it may be argued that the Black-Scholes formula holds only if continu- 
ous trading is possible and costless. Indeed, to implement the replicating 
strategy literally requires observing the sample path of prices continuously, 
which eliminates the need for estimating o altogether. In this case, the 
relation between predictability and option prices still exists but is irrelevant 
since the true a can always be recovered exactly. 

However, the continuous trading assumption underlying the pricing formu- 
las does not invalidate our main conclusion: whenever option pricing formu- 
las are implemented with discretely sampled data, the drift matters. 
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Of course, ideally we should also incorporate the effect of discreteness into 
the pricing formulas to provide a complete and empirically relevant theory of 
option pricing. One approach is to simply impose discrete trading, e.g., Black 
and Scholes (1972) and Boyle and Emanuel (1980). Another approach is to 
take into account directly the economic causes of discrete trading, such as 
transactions costs, in constructing replicating strategies, e.g., Leland (1985). 
These approaches will yield either approximate pricing formulas or bounds 
for option prices, and, in both cases, the results will certainly depend on the 
numerical value of the diffusion coefficient a which in turn will depend on 
the specification of the drift, ceteris paribus. Therefore, despite the fact that 
in the continuous-time limit o becomes known, any empirical implementa- 
tion must incorporate the effects of predictability on option prices. 

C. Estimation Risk 

The effects of predictability on option prices are closely related to, but not 
synonymous with, the problem of "estimation risk" (e.g., Barry, French, and 
Rao (1991)). As we discuss in Section VI.B, the fact that o2 must be 
estimated from discretely sampled data provides the primary motivation for 
our analysis. But the link between a2 and asset return predictability exists 
even when a2 is known without error. Of course, if a2 is known, then the 
degree of predictability in asset returns is irrelevant for purposes of pricing 
options even if the link is present. However, when a2 is unknown, the 
precise form of asset return predictability will affect both the estimate and 
the estimation risk of a2. 

D. Implied Volatilities 

A consequence of the Black-Scholes model is that the parameter o may be 
recovered from option prices directly by inverting equation (3). Therefore, 
why go through the trouble of relating asset return predictability to a?The 
response to this simple but perplexing question is quite straightforward. The 
relevance of the implied volatility relies on the proper specification of the 
option pricing formula. If prices were truly Black-Scholes prices, then implied 
volatilities would be irrelevant, since the Black-Scholes model requires that a 
is known. But if the market price is not truly a Black-Scholes price, then an 
implied volatility obtained from the Black-Scholes formula is difficult to 
interpret and use. 

Alternatively, for the Black-Scholes formula to yield the correct prices, 
some investors must know the true value of o (or equivalently, must observe 
a continuous sample path of the stock price over a finite time interval) and 
must be able to trade continuously. If these conditions held, other investors 
could obtain the true value of a by simply inverting the Black-Scholes 
formula. If, however, all investors do not know the true value of a but only 
observe (and trade at) prices at  discrete time intervals, then they will have to 
infer the value of a from the data instead of the Black-Scholes formula, 
which no longer holds exactly. This is the situation we consider here. In this 
case, the market prices of options do not provide any information about the 
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Table VI 

Impact of Estimation Error on the Autocorrelation 
Adjustment For Volatility u Under the Trending 

Ornstein-Uhlenbeck Process 
Monte Carlo simulation of the sample standard deviation estimator s  ̂ and autocorrelation- 
adjusted estimator & of Black-Scholes volatility input a for various sample sizes and first-order 
autocorrelation coefficients p,. Each row corresponds to an independent simulation of 5,000 
sample paths, where each path is generated according to a univariate trending Ornstein-Uhlen- 
beck (0-U) process calibrated to daily returns with a standard deviation of 2 percent per day. 
Note that (T changes with p ,  because the unconditional standard deviation is fixed a t  2 percent 
per day for all the simulations. Standard errors (SE) are given in parentheses. 

Percentage Percentage 
Bias (s^) Bias ( 6 )  m 

P1 a x 100 (SE) (SE) 6 (SE) 

Panel A. Sample Size = 250 

- 0.10 2.1126 -5.1488 0.5048 1.0563 1.0377 
(0.0614) (0.0852) (0.0597) 

-0.20 2.2601 - 11.4339 0.4501 1.1301 1.1349 
(0.0598) (0.1000) (0.0406) 

-0.30 2.4716 - 19.0601 0.7178 1.2358 1.2458 
(0.0569) (0.1263) (0.0528) 

-0.40 2.8368 -29.4781 3.6719 1.4184 1.4378 
(0.0515) (0.2851) (0.0908) 

-0.45 3.1990 -37.3341 12.1053 1.5995 1.5053 
(0.0469) (0.04813) (0.1279) 

Panel B. Sample Size = 500 

- 0.10 2.1126 -5.3581 0.0625 1.0563 1.0531 
(0.0439) (0.0610) (0.0415) 

-0.20 2.2601 -11.3826 0.3298 1.1301 1.1326 
(0.0414) (0.0679) (0.0336) 

-0.30 2.4716 - 19.1139 0.2136 1.2358 1.2396 
(0.0395) (0.0844) (0.0427) 

-0.40 2.8368 -29.5296 1.1622 1.4184 1.4348 
(0.0364) (0.1465) (0.0689) 

-0.45 3.1990 -37.4316 6.4146 1.5995 1.5886 
(0.0333) (0.3412) (0.1148) 

Panel C. Sample Size = 750 

- 0.10 2.1126 -5.3334 0.0766 1.0563 1.0566 
(0.0354) (0.0492) (0.0303) 

-0.20 2.2601 -11.4443 0.1975 1.1301 1.1317 
(0.0333) (0.0560) (0.0301) 

-0.30 2.4716 -19.0865 0.1785 1.2358 1.2385 
(0.0326) (0.0683) (0.0380) 

-0.40 2.8368 -29.4002 0.9319 1.4184 1.4308 
(0.0297) (0.1083) (0.0593) 

-0.45 3.1990 -37.5009 4.3151 1.5995 1.6121 
(0.0273) (0.2665) (0.1037) 
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Table VI-Continued 

Percentage Percentage 
Bias ($1 Bias (G) m 

P1 a X 100 (SE) (SE) a (SE) 

Panel D. Sample Size = 1,000 

Panel E. Sample Size = 1,250 

underlying stock price process other than what can be inferred from the data, 
such as the true value of a.28In other words, market option prices imply the 
true value of a only if some investors actually know o.Market prices cannot 
reveal something that nobody knows.29 

Even in the case where some investors may have better information about 
a ,  other investors can rely completely on the implied volatility from market 
prices only if the prices are informationally efficient (see footnote 29). If there 
is noise in market option prices due to market imperfections, e.g., frictions, 

It should be emphasized that our analysis of the impact of predictability on option prices 
does not hinge on the particular pricing model we use. In particular, we focus on the Black-Scholes 
formula solely because of its simplicity. The fact that the Black-Scholes formula may not be 
correct in its exact form under the maintained assumptions of our analysis-that only discretely 
sampled data is observed and investors may not be able to trade continuously-affects only the 
numerical values of our examples, and not the substance of our conclusions. 

29 Of course, one can construct situations where prices can reveal information that no single 
investor has (see Grossman (1976)), but this is achievable only in the extreme case where prices 
can efficiently aggregate all the information in the market, i.e., full informational efficiency. For 
both theoretical and practical reasons, this case is of little interest in modeling financial markets 
(see Grossman and Stiglitz (1980)). 
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deviations from perfect competition, etc., less informed investors will have to 
rely on their own information as well in making inferences about a ,  such as 
discretely sampled stock prices (see Figlewski (1989) and Grossman and 
Stiglitz (1980)). 

VII. Conclusion 

The fact that asset return predictability has nontrivial implications for 
option prices provides a link between two seemingly disparate strands of the 
asset pricing literature: linear multifactor models of time-varying expected 
asset returns and arbitrage-based models of derivative asset prices.30 Heuris- 
tically, when predictability is well defined, i.e., when the asset return's 
conditional mean does not depend upon past prices or returns, and when the 
conditional expectation of the prediction error is zero, then increases in 
predictability generally decrease option prices when the unconditional vari- 
ance of asset returns is fixed. In such cases, an increase in predictability is 
equivalent to a reduction in the asset's residual uncertainty or prediction- 
error variance, and since option prices are monotonically increasing in the 
volatility of this residual uncertainty in the Black-Scholes case where the 
diffusion coefficient a is constant, option prices decline as predictability 
increases. 

This has an intriguing implication for the evolution of option premia 
through time: as we are better able to model the time variation in the 
expected returns of an asset, option premia on that asset should fall, ceteris 
paribus. Alternatively, the fact that option premia are positive may imply an 
upper bound on the predictability of the underlying asset's returns, which 
may partly address Roll's (1988) lament that R2s  in financial applications 
are disappointingly low. We hope to explore these implications in future 
research. 

For alternatives to the Black-Scholes case, such as those with stochastic 
volatility or jump components, predictability also affects option prices non- 
trivially, but in considerably more complex ways. To capture such effects, 
each of our drift specifications can be paired with a particular specification 
for the diffusion coefficient. While closed-form adjustments for predictability 
may not always exist in these more general cases, maximum likelihood 
estimation is almost always feasible for our linear drift specifications. 

Despite the fact that the drift of a diffusion process plays virtually no role 
in deriving theoretical pricing formulas for derivative assets, its importance 
cannot be overemphasized in the implementation of these formulas. The 
practical value of arbitrage-based models of derivative prices rests heavily on 
the existence of an empirically plausible and stable model of the true data- 
generating process for the underlying asset's price. Although changing speci- 
fications for the drift does not influence the derivative pricing formula, it does 

30At least four other articles have hinted a t  such a link: Dybvig and Ingersoll (19821, Grundy 
(1991), Lo (1987), and Sternberg and Ying (1992). 
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influence both the theoretical value and empirical estimate of the parameteds) 
on which the formula depends. 

Moreover, although our approach begins by first specifying the true distri- 
bution of the data-generating process (which includes the modeling of 
predictability) and then deriving its implications for the risk-neutral dis- 
tribution, it is also possible to do the reverse. Taking the properties of the 
risk-neutral distribution implicit in derivative asset prices as a starting 
point, it is possible to infer the properties of the true data-generating process 
(see Grundy (1991), for example). The fact that the risk neutral distribution 
and the true distribution of the data-generating process are linked makes 
both directions of inference possible and empirically relevanL3l 

Appendix 

A. The Trending 0 - U  Process 

Under the trending 0-U specification (equation (6)) for the detrended price 
process q(t), the unconditional moments and co-moments of continuously 
compounded r-period returns r,(t) =p ( t )  -p( t  - r )  = pr + q(t) - q(t - 7) 
follow readily from the explicit solution in equation (9).32 

E[r,(t)l = pr (Al) 

31 Which approach to take, ours or Grundy's, may depend on which market is considered more 
"efficient" in conveying information: the market for an underlying asset or the market for 
derivatives of that asset. For example, some have argued that options markets are often more 
liquid and "informed than their corresponding spot markets. In such cases, i t  may well be easier 
to use option prices to infer predictability in  the underlying asset's returns than to study the 
asset's returns directly. However, since the many recent studies of predictability focus exclu- 
sively on the behavior of the underlying asset's data-generating process, we take the true 
distribution of the data-generating process as our starting point. 

32 Since we have conditioned on q(0) = q, in defining the detrended log-price process, we must 
be more precise about what we mean by an "unconditional" moment. If q, is assumed to be 
stochastic and drawn from its stationary distribution, then an unconditional moment of a 
function of q(t) may be defined as the expectation of the corresponding conditional moment 
(conditional upon q,), where the expectation is taken with respect to the stationary distribution 
of q,. Alternatively, if q(t) is stationary, as it is in equation (81, the unconditional moment may 
be defined as the limit of the corresponding conditional moment as  t increases without bound. 
We shall adopt this definition of an unconditional moment throughout the remainder of the 
article. In deriving the unconditional moments of T-period returns, we have assumed that y > 0. 
In the special case that y = 0, the moments can be obtained by simply taking the limit y -,0 in 
equations (All)  to (A14). 
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Since equation (6) is a Gaussian process, the moments (Al) to (A3) completely 
characterize the finite-dimensional distributions of r,(t). 

B. The Biuariate Trending 0 - U Process 

From equations (29) and (30) we can readily derive the properties of the 
asset return series that (q, X) generates. To do this, observe that when y > 0 
and 6> 0, both q(t) and X(t) are stationary and their first two uncondi- 
tional moments are: 

The unconditional moments of continuously compounded T-period returns 
then follow from equations (29) and ( 3 0 ) : ~ ~  

33 If y = 0 or S = 0, the unconditional moments of q ( t )and X ( t ) may not exist. However, the 
unconditional moments of returns are always well defined and may be obtained by taking the 
appropriate limits in the following results. 
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where pqx= C O V [ ~ ( ~ ) ,X(t)]/Var[q(t)] and P7(l) is the first-order autocorre- 
lation function of T-period returns. 

A closely related quantity that may help to develop further intuition for the 
bivariate trending O-U process is the general autocorrelation function pT(k), 
defined as the correlation between two T-period continuously compounded 
returns that are (k - 1 ) ~periods apart, i.e., 

Observe that the first-order autocorrelation function p,(l), defined in equa- 
tion (A4), is indeed a special case of this more general definition. In the case 
of the bivariate trending O-U process, the autocorrelation function is given 
by: 

where 

To derive equations (47) and (48), observe that from equations (26) and (27) 
we have: 

Define a, = eCYT,a, = e-", 4 = h(ax - aq)/(y - 61, and 

We then have: 
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Clearly, E,, and E,, are independently and identically distributed over time 
and jointly normally distributed. Furthermore, 

There is a one-to-one mapping between the parameters of the discretely 
sampled system, a,, a,, 4 ,  si , , ,  s:,,, and s , ,,,, and the parameters of the 
underlying continuous-time process,. y, 6, A, a ,  a,, and K .  Specifically, 
normalize the time units so that T = 1and observe that: 

4(log a, - log a,) 
y = - l o g a , ,  6 = - l o g a , ,  A= . (A241 

- a, 

Substituting equation (A24) into equations (A21) to (A23) then yields three 
equations that are linear in a 2 ,  a:, and ~ a a , ,  hence the remaining three 
continuous-time parameters may be easily recovered from these equations. 

Since (p,, Xk) follows a bivariate AR(1) process, a closed-form expression 
for the likelihood function of pk may be obtained that can be used in the 
maximum likelihood estimation (e.g., Jazwinski (1970)). 

C. The. Multiuariate Trending 0 - U Process 

The multivariate trending 0-U process (q(t), X'(t)) is defined by the follow- 
ing It8 integrals: 

where I is the (m x m) identity matrix. When y and the real parts of all of 
the eigenvalues of A are strictly positive, (q(t),Xt(t)) is stationary. The 
unconditional moments of q(t) and X(t) may be readily obtained from equa- 
tions (A25) and (A26). 
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Since W,(t) is a k-dimensional standard Wiener process E[d  W, d Wi] = I d t  
where I is the identity matrix of order k.34 Let adW,B,d W, = K d t  where K 
is a (k x 1) vector. For notational convenience, define 2 = {aij}= B,%, 
a , =  { w ~ ~ ( T ) }  where wij(r) -- ai j [ l  - + Sj) and E ,e- (61+6~)7]/(Si = {ijij(r)) 
where tCj(r) --= a i j [ l  e-(Y+6~)71/(y- + Sj). 
Then we have: 

From these expressions, the moments of r,(t) follow directly: 

where b = Cov[ q(t), X(t)]/Var[ q(t)]. The return autocorrelation function may 
then be obtained from these moments. 

I t  is straightforward to derive the discrete-time representation of the 
system (q(t), Xf(t)): 

34 There is no loss of generality by assuming that W , ( t ) has independent components since 
components of X(t ) can have arbitrary covariance structure through B,. 
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where qk = q(tk), Xk - X(tk), T = tk - tk- l ,  a, 9 A x == epY7 = ePAT, 
A(YI - A)-~(A,- a q ~ )  
and 

It is easy to show that 

Similar to the bivariate case, the mapping between the parameters of the 
discrete-time representation, a,, A,, 8 ,s;, ,, s:, ,, and s,,, and the parame- Ti 


ters of the underlying continuous-time process, y, A, A, a , C, and K is one 
to one.35 Let T = 1, we have 

where ai = {A,},, (note that A, is diagonal). From s:, ,, we can solve for R,, 
C and E,: 

We can then solve for K given s,,, .: 

K = [l - + A)[s,,,, - (R, - E,)(yI - A)-'A'].e p ( y l + A ) ~ p l ( y ~  (A44) 

From the definition of s;, ,, we can further solve for a '. 

35 Note that B, is simply the Cholesky decomposition of 2. 
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