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Implementing Over 100 Command Codes for a
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Using Concurrent P300 and SSVEP Features
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Abstract—Objective: Recently, electroencephalography
(EEG)- based brain-computer interfaces (BCIs) have made
tremendous progress in increasing communication speed.
However, current BCI systems could only implement a
small number of command codes, which hampers their
applicability. Methods: This study developed a high-speed
hybrid BCI system containing as many as 108 instruc-
tions, which were encoded by concurrent P300 and steady-
state visual evoked potential (SSVEP) features and de-
coded by an ensemble task-related component analysis
method. Notably, besides the frequency-phase-modulated
SSVEP and time-modulated P300 features as contained in
the traditional hybrid P300 and SSVEP features, this study
found two new distinct EEG features for the concurrent
P300 and SSVEP features, i.e., time-modulated SSVEP and
frequency-phase- modulated P300. Ten subjects spelled in
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both offline and online cued-guided spelling experiments.
Other ten subjects took part in online copy-spelling ex-
periments. Results: Offline analyses demonstrate that the
concurrent P300 and SSVEP features can provide adequate
classification information to correctly select the target from
108 characters in 1.7 seconds. Online cued-guided spelling
and copy-spelling tests further show that the proposed BCI
system can reach an average information transfer rate (ITR)
of 172.46 ± 32.91 bits/min and 164.69 ± 33.32 bits/min
respectively, with a peak value of 238.41 bits/min (The
demo video of online copy-spelling can be found at https://
www.youtube.com/watch?v=EW2Q08oHSBo). Conclusion:
We expand a BCI instruction set to over 100 command
codes with high-speed in an efficient manner, which sig-
nificantly improves the degree of freedom of BCIs. Signifi-
cance: This study hold promise for broadening the applica-
tions of BCI systems.

Index Terms—P300, steady-state visual evoked potential
(SSVEP), high-speed, hybrid BCI, concurrent EEG features,
large instruction set.

I. INTRODUCTION

B
RAIN-COMPUTER interfaces (BCIs) provide a special

pathway for the brain to directly communicate with the

environment, which does not depend on the peripheral neuro-

muscular system [1], [2]. Recently, vision-based BCI systems,

which have higher bit rates over other BCI systems, have made

tremendous progress and gained increasing attention from re-

searchers [3]–[8]. Specifically, P300-based speller [8]–[12], the

steady-state visual evoked potential (SSVEP)-based BCI [13]–

[15] and their hybrids [16]–[19] are the most popular paradigms.

A new visual BCI paradigm has been recently developed to sig-

nificantly reduce visual fatigue by sharply reducing the stimulus

size [20].

The performance of a BCI is normally evaluated by the total

number of commands, the time needed to output a command and

command-selection accuracy. Information transfer rate (ITR)

[1], [21] quantitatively formulates the relation between these

three factors and system performance. Previous BCI studies

mainly focused on how to increase accuracy and decrease the

time needed to output a command to improve the system perfor-

mance but show less interest in the expansion of the instruction

set. Since the first P300-speller, which was developed in 1988

[22], there have always been only up to tens of instructions for
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BCI systems. Specifically, Hwang introduced an SSVEP-based

BCI keyboard with 30 LEDs flicking at different frequencies

[23]. Chen et al. proposed a joint frequency-phase modulation

method (JFPM) that encoded 40 instructions for SSVEP-BCI

[21], [24]. Townsend et al. developed a P300-based BCI with 72

alphanumeric characters and keyboard commands [25]. Jin et al.

designed an adaptive method for P300 speller to encode 84 in-

structions [26]. It is worth noting that there exists a compromise

between the number of instructions and the other two factors,

i.e., a larger number of instructions would often increase the time

needed to output a command and reduce accuracy to complete a

mental selection, which would in return hurt the ITR. Therefore,

increasing the number of instructions might reduce the overall

performance of the BCI system. However, if this attempt proves

successful, it will considerably improve the practicality of BCIs

in real-world applications. To our best knowledge, no study has

yet implemented over 100 commands for BCIs, which requires

a delicate design to balance the aforementioned factors.

The encoding strategy is an eternal topic of BCIs. From the

view of telecommunication systems, the information stream

of visual BCIs is analogous to the signal in multiple access

channels [5]. Specifically, a P300 speller has the same idea

of time division multiple access (TDMA), which assigns each

character to an independent time interval. The SSVEP-based

BCI uses the frequency division multiple access (FDMA), which

tags each character with a specific flickering square whose

frequency is different from each other. Theoretically, the P300

speller could encode an infinite number of instructions, but the

overall performance will sharply degrade when the consuming

time increases [27]. In contrast, the time used for encoding

SSVEP-BCI instructions is very short, but the narrow EEG band

limits the number of SSVEP frequencies [28], [29]. Therefore,

a combination of the two BCI paradigms may overcome their

shortcomings and expand the instruction set in an efficient

manner. Previous studies on the hybrid P300-SSVEP BCIs have

demonstrated the advantages of such combination [17]–[19],

[30], [31].

This study aimed to explore a new hybrid P300-SSVEP BCI

system that can effectively communicate a large number of

instructions. By incorporating the steady-state visual stimulus

(SSVS) into the P300 speller, we developed a 108-instruction

BCI system containing twelve parallel 3 × 3 P300 sub-spellers.

Notably, different from the traditional P300 paradigm, char-

acters in each sub-speller were individually highlighted by a

200 ms-long SSVS rather than a transient visual stimulus. There-

fore, the target stimulus could elicit both a larger P300 and

a larger time-modulated SSVEP than the non-target stimulus.

As the SSVS were different for each sub-speller, they would

elicit different SSVEPs. According to our previous studies [30],

[32], [33], the transient event-related potentials (ERP) would

be modulated into different shapes by the different background

SSVEPs, as phase resetting may explain the generation of ERP,

which is a non-linear process. Thus, both P300 and SSVEP

should contribute to the recognition of the target character and

the sub-speller, resulting in efficient target identification. The

time needed to output a command is 1 second in this design,

which is sufficient for all participants to perform a correct

selection together with an additional cue time of 0.7 seconds.

It’s worth noting that the proposed hybrid system had two

advantages. One advantage was that it successfully expanded

the instruction set to 108 while ensuring the speed of BCI. The

other advantage was that the SSVS duration of each character

was only 200 ms in this study, which was considerably shorter

than the previous lowest limit of 300 ms [34]. The decrease

of the SSVS duration can effectively reduce the risk of visual

fatigue.

II. MATERIALS AND METHODS

A. Subjects

Ten healthy volunteers (3 females and 7 males, 21-26 years

of age, all right handed) with normal or corrected to normal

vision participated in both offline and online cue-guided spelling

experiments. Another group of ten subjects participated in an

online copy-spelling experiment. Three of them (i.e., S3, S5,

S9) also took part in the offline and online cued-guided spelling

experiments (corresponding to S1, S2, S7, respectively). The

Institutional Review Board at Tianjin University approved the

experimental procedures. All subjects were fully informed of

all procedures and signed an informed consent agreement, in

accordance with the Declaration of Helsinki, and including a

statement that they have known all possible consequences of the

study.

B. A Hybrid P300-SSVEP BCI Speller Paradigm

The visual stimuli were presented on a 27-inch liquid-crystal

display (LCD) monitor whose resolution was 1,920 × 1,080

pixels and refresh rate was 120 Hz. A 9 × 12 matrix showed

108 black characters on a white background (see Fig. 1(a)). They

were further divided into 12 small 3 × 3 matrices. Each small

matrix was an independent P300 sub-speller whose characters

were individually highlighted by a gray square in a random and

ergodic sequence. Each stimulation square subtended 1.49 de-

grees of visual angle in the vertical direction and 1.78 degrees in

the horizontal direction. The stimulus duration for each character

was 200 ms and the inter-stimulus interval (ISI) was -100 ms.

It was worth noting that the duration of the inter-target stimulus

was greater than 700 ms (the interval for cue presentation and

gaze switching).

So there were no attentional blink and repetition blindness.

All sub-spellers were triggered at the same time. Therefore, it

needed only 1 second to run a complete cycle for 108 characters,

which was defined as a ‘round’ in this study. Different from the

traditional P300 paradigm, the stimulation square changed its

grayscale in a sinusoidal mode whose frequency and initial phase

were different for each sub-speller, as shown in Fig. 1(b), 1(c)

and 1(d). This study used the sampled sinusoidal stimulation

method [15] to present visual flickers using the refresh rate.

The frequencies and phases of the 12 flickering stimuli were

determined with the JFPM method [21]. To separate the SSVEP

frequency band from the P300 frequency band, the 12 flickering

frequencies were selected above 12 Hz, from 12.4 to 14.6 Hz

with a step of 0.2 Hz. According to [35], SSVEPs with any
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Fig. 1. Illustration of the stimulation in the hybrid BCI speller. (a) Distribution of 108 characters on the screen was divided into 12 sub-spellers
by the red dash lines. The characters on the stimulus interface were distributed according to a certain rule. For example, alphanumeric keys were
arranged in order and were placed at sub-speller 2, sub-speller 3, sub-speller 6, and sub-speller 7 (i.e., the center of the interface). (b) The selected
frequency and initial phase of stimulation squares were displayed for each sub-speller. (c) Stimulation process for sub-speller 1. The red dotted
lines with arrows indicate specific time points. (d) Stimulation process for sub-speller 8.

stimulation phase for 40 frequencies (ranging from 8 Hz to

15.8 Hz with step of 0.2 Hz), which covered all the stimulation

frequencies of this experiment, can be simulated by a simulation

method. Therefore, the initial phases were optimized by a search

of phase interval (from 0 to 2π with a step of 0.05π) of the

JFPM method on a public SSVEP dataset using the simulation

method with a stimulus duration of 200 ms, resulting in a phase

interval of 0.35 π between two neighboring frequencies. For

more details, please refer to [35]. The stimulation program

was developed under MATLAB (MathWorks, Inc.) using the

Psychophysics Toolbox Version3.

C. BCI Experiment

Participants sat in front of the monitor screen with a distance

of 60 cm. They were asked to focus on the target character indi-

cated beforehand and count the number of times the target was

highlighted. In the offline experiment, the character specified for

selection would be indicated by an underneath red triangle with

0.79 degrees of visual angle for 0.7 seconds. Then the visual

stimulus ran for five successive rounds for all the characters,

which last 5 seconds, i.e., the subject chose the same target

for five times. Each round contained 1 target stimulus and 8

non-target stimuli. All subjects were required to spell all 108

characters on the screen, which were divided into three blocks

(36 characters in each block). They would have a break of several

minutes between two successive blocks. The offline experiment

lasted about 13 minutes for each subject.

In the online experiments, all subjects were asked to spell

24 specified characters (two characters in each of the twelve

sub-spellers). There were two types of online tasks (i.e., cued-

guided spelling and copy-spelling experiments). Classification

algorithm and the other aspects of the two online experiments

were completely consistent except for with or without visual

cues. For online cued-guided spelling experiments, the subjects

were the same as the offline experiments. The target character

would be indicated by an underneath red triangle for 0.7 seconds

within which the subjects need to shift their attention to the char-

acter and be prepared for the upcoming stimuli. Visual feedback

(i.e., the target character determined by an online data analysis
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Fig. 2. The total flow diagram of signal processing.

program) was presented to the text input field on the top of the

speller (see Fig. 1(a)) in real time. The online copy-spelling ex-

periments were implemented with another group of ten subjects.

Before the experiment, the subjects were trained to remember

the position of each character and they were told the characters

they would spell in the experiment. Therefore, they were able to

shift their fixation points very fast from character to character

in 0.7 second without visual cues at the target characters. All

target characters were presented in a line on top of the text

input field during the copy-spelling task. Visual feedbacks of

characters determined by the online data analysis program were

typed below the line of target characters in real time. For each

subject, the same offline data collection and analysis procedures

were implemented before the online copy-spelling experiment.

In both cued-guided and copy-spelling experiments, only one

round was used for the online spelling test.

D. EEG Recording and Processing

EEG signals were recorded using a Neuroscan Synamps2

system with 13 electrodes placed at Fz, Cz, Pz, PO3, PO4,

PO5, PO6, PO7, PO8, POz, O1, Oz and O2 according to the

International 10/20 system. The reference electrode was placed

on the left mastoid and the ground electrode was placed on the

prefrontal lobe. The recorded signals were band-pass filtered at

0.1–200 Hz and notch filtered at 50Hz, digitized at a rate of

1,000 Hz and then stored in a computer.

In the recognition process, there were two sequential steps:

(1) recognizing the sub-speller containing the target charac-

ter and then (2) recognizing the target character within the

identified sub-speller, as shown in Fig. 2. Fig. 3 shows the

signal-processing flows and the corresponding methods used

in this study. Here, we compared the classification results of

single-modality EEG features (i.e., P300, SSVEP) and hybrid

EEG features using different classification methods for both

recognition steps. The parameters of time windows and filters

were selected according to previous studies [21], [24] and fur-

ther optimization towards the best classification performance in

offline data analysis.

Fig. 3(a) shows the process of sub-speller recognition using

SSVEP. The EEG signals of nine channels (Pz, PO5, PO3, POz,

PO4, PO6, O1, O2, and Oz) [34] were filtered by a filter bank

(containing seven Chebyshev Type I filters) into [X Hz, 92 Hz]

(X = 11, 22, 34, 46, 58, 70 and 82), and then down-sampled to

250 Hz. For each sub-band, the SSVEP samples were extracted

from 140 ms to 340cms. The extended canonical correlation

analysis (CCA) [21] and ensemble task-related component anal-

ysis (TRCA) [34] were then used to recognize SSVEP. The

outputs indicated the predicted sub-speller.

Fig. 3. The flow diagram of signal processing. The sub-speller was
identified using (a) single SSVEP feature, (b) single P300 feature or
(c) hybrid features. The target character within sub-speller was identified
using (d) single SSVEP feature, (e) single P300 feature or (f) hybrid
features.

Fig. 3(b) shows the process of sub-speller recognition using

P300. It is typically measured most strongly by the electrodes

covering the parietal lobe [18]. The EEG signals of six channels

(Fz, Cz, Pz, PO7, PO8, and Oz) were filtered to 1–10 Hz with

Chebyshev type I filters, and then down-sampled to 250 Hz. The

P300 features extracted from 0 ms to 800 ms were classified

by the extended CCA and ensemble TRCA, respectively. The

outputs indicated the predicted sub-speller.

Fig. 3(c) shows the process of sub-speller recognition using

hybrid features. The EEG signals of eight channels (Fz, Cz,

Pz, PO7, PO8, O1, O2, and Oz) were filtered by a filter bank

(including eight Chebyshev Type I filters) into [X Hz, 92 Hz] (X

= 1, 11, 22, 34, 46, 58, 70 and 82). As shown in Fig. 4, the hybrid

features were significantly separable between 100 and 400 ms.

And after experimenting with different time windows, we found

that the time window of 50–450 ms achieved better results for

the hybrid features. Extended CCA and TRCA were then used

to recognize SSVEP, respectively. The outputs indicated the

predicted sub-speller.

Fig. 3(d) shows the process of character recognition within

sub-speller using SSVEP. Parameters and settings were the same

as Fig. 3(a). The outputs indicated the predicted character within

the sub-speller.

Fig. 3(e) shows the process of character recognition within

sub-speller using P300. The classic stepwise linear discriminant

analysis (SWLDA) was used and compared with the extended

CCA and the ensemble TRCA. The EEG signals of channel Fz,

Cz, Pz, PO7, PO8, and Oz were filtered to 1–10 Hz with Cheby-

shev type I filters, and then down-sampled to 20 Hz for SWLDA
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classification, and 250 Hz for extended CCA and TRCA. The

P300 features used for classification were extracted from 0 ms

to 800 ms. The outputs indicated the predicted character within

the sub-speller.

Fig. 3(f) shows the process of character recognition within

sub-speller using hybrid features. For the extended CCA and

ensemble TRCA, the parameters were the same as Fig. 3(c). For

the SWLDA, the data were filtered to 1–17 Hz and extracted

from 0 ms to 800 ms.

E. Step-Wise Linear Discriminant Analysis

SWLDA works well in recognizing P300 potentials for the

hybrid P300-SSVEP BCIs [37]. SWLDA is an extension of

Fisher linear discriminant (FLD) analysis, which reduces fea-

ture space by selecting the most significant features for the

discriminant function. A combination of forward and backward

stepwise analyses was implemented in SWLDA. The input

features are weighted using ordinary least-squares regression

(equivalent to FLD) to predict target class labels. Starting with no

initial features in the discriminant function, the most statistically

significant input feature for predicting target label is added to the

discriminant function. After each new entry to the discriminant

function, a backward stepwise analysis is performed to remove

the least significant input features. This procedure ensures that

the regression equation only contains significant variables before

each new variable is introduced. This process is repeated until

the discriminant function includes a predetermined number of

features or until no additional features satisfy entry/removal

criteria. In this study, the p-value for entry was set to <0.1,

while for removal was set to >0.15. The predetermined number

of features was set to 60.

F. Extended Canonical Correlation Analysis

CCA is a statistical way to measure the linear relation-

ship between two multidimensional variables, which may have

some underlying correlation [38], [39]. Considering two mul-

tidimensional variables X, Y and their linear combinations

x = XTWX(X,Y ) and y = Y TWY (X,Y ), CCA finds the

weight vectors,WX(X,Y )andWY (X,Y ), which maximize the

correlation between x and y. For the extended CCA, there are

three multi-dimensional variables: multi-channel EEG test data

X(m) ∈ R
Nc×Ns×Nt, individual template obtained by averag-

ing multiple training trials as χ̄(m) ∈ R
Nc×Ns, and sine-cosine

reference signals Yf [21]. Nc is the number of channels, Ns is

the number of sample points, and Nt is the number of trials. The

correlation coefficient between the projections of two variables

using the CCA-based method is used to identify the target. We

define the following three weight vectors obtained by CCA:

(1) as shown bottom of this page, W
(m)
X (X(m), Yf )between the

test data X(m)and reference signals Yf ; (2) W
(m)
X (X(m), χ̄

(m)
n )

between the test data X(m) and individual template χ̄
(m)
n ; (3)

W
(m)
χ̄n

(χ̄
(m)
n , Yf ) between individual template χ̄

(m)
n and refer-

ence signals Yf. Furthermore, in CCA between X(m) and

χ̄
(m)
n , W

(m)
X (X(m), χ̄

(m)
n ) and W

(m)
χ̄n

(X(m), χ̄
(m)
n ) represent

the weight vector for X(m) and χ̄
(m)
n , respectively. The cor-

relation coefficient is calculated as [21], [34]
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(1)

where m indicates the index of sub-bands designed by filter bank

(mǫ[1, Nb]), n indicates the index of sub-spellers (nǫ[1, 12]) and

ρ(a, b) indicates the Pearson’s correlation analysis between a

and b. The five features and correlation coefficients in different

sub-bands are weighted by the following equations [24]:

R(m)
n =

5
∑

l=1

sign
(

r
(m)
n,l

)

∗ (r
(m)
n,l )

2 (2)

ρn =

Nb
∑

m=1

(

m−1.25 + 0.25
)

∗ (R(m)
n )2 (3)

where sign () is symbolic function and Nb indicates the number

of sub-bands (The value of Nb using different selected features

was different. For P300, Nb = 1. For SSVEP, Nb = 7. For hybrid

features, Nb = 8.). In practice, target can be identified by the

following equation:

τt = arg max
n

ρn (4)

where n is the index of test data trials (The number of n was

different in different conditions. For sub-speller recognition,

n ranged from 1 to 12. For character recognition within the

specified sub-speller, n ranged from 1 to 9). Target class τt can

be identified by equation (4).

G. Ensemble Task-Related Component Analysis

The Ensemble TRCA has been proved the most power-

ful recognition algorithm for SSVEP classification [34], [40].

TRCA is an algorithm that finds projection matrix W =
[wj1wj2 . . . wNc]

T to maximize the covariance of task-related

components between trials [41]. j1 and j2 refer to the index of

channels. Specifically, for the recorded NC-channels EEG signal

x(t) ∈ R
Nc (The value of Nc using different features varied. For

P300, Nc = 6. For SSVEP, Nc = 9. For hybrid features, Nc =
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8.), all possible combinations of trials are summed as:

Ntrial
∑

h1,h2=1
h1 �=h2

Ch1,h2
=

Ntrial
∑

h1,h2=1
h1 �=h2

NC
∑

j1,j2=1

wj1wj2Cov
(

x
(h1)
j1

(t), x
(h2)
j2

(t)
)

= WTSW (5)

Here, the matrix S = (Sj1j2)1≤j1,j2≤Nc is defined as:

Sj1j2 =

Nt
∑

h1,h2=1

h1 �=h2

Cov
(

x
(h1)
j1

(t) , x
(h2)
j2

(t)
)

(6)

where,Cov(a, b) refers to the covariance between a and b,Ntrial

refers to the number of training trials, h1 and h2 refer to the

index of training trials. The periods of x
(h)
j1 (t) are fixed as t ∈

[th, th +T]. Here th is the beginning of the h-th trial and T is

the duration of the h-th trial. In order to obtain the final result,

the following restriction is defined as:

Var(y(t)) =

Nc
∑

j1,j2=1

wj1wj2Cov(xj1(t), xj2(t))

= WTQW = 1 (7)

At this point, looking for the best projection direction can be

transformed into the following optimization problems:

ŵ = arg max
W

(

WTSW
)

/
(

WTQW
)

(8)

For the optimization, Lagrange multiplier method is effective.

The optimal spatial filter is solved as the eigenvector of the

matrix Q−1S. All spatial filters corresponding to all stimulus

frequencies are integrated as following equations:

Wm =
[

Wm
1 Wm

2 . . . . . . Wm
Nf

]

(9)

where Nf is the number of stimulus frequency. The correlation

coefficient between the projection of test data X(m) and aver-

aged individual template χ̄(m) is calculated as:

Rm
n = ρ

(

(Xm)TWm, (χ̄m
n )TWm

)

(10)

Finally, correlation coefficients in different sub-bands are

weighted by equation (3). The target can be identified by

equation (4).

H. Performance Evaluation

To evaluate the performance of the high-speed BCIs, this

study uses classification accuracy and ITR as evaluation indi-

cators, which have been widely adopted in BCI research. The

ITR can be calculated as [1]:

ITR = {log2N + P log2P + (1− P )

× log2((1− P )/(N − 1))} × (60/T ) (11)

where N is the number of instruction sets, P is the classifi-

cation accuracy and T is consuming time for each selection,

i.e., cue time plus flashing time. In this study, the consuming

Fig. 4. (a) Transient ERPs at electrode Cz, Pz and Oz were averaged
across all subjects and all sub-spellers. A band-pass filter of [1 Hz,
10 Hz] was applied to remove the SSVEP influence. (b) Grand average
amplitudes of fundamental SSVEP components at electrode Cz, Pz, and
Oz were displayed across all subjects and all sub-spellers. A band-pass
filter between 11 and 17 Hz was applied to remove the transient ERP in-
fluence. The SSVEP amplitude was indicated by its envelope calculated
by the Hilbert transform. The gray blocks presented significant statistical
differences (p < 0.05) across subjects by paired t-tests between the
target and the non-target conditions in the corresponding periods.

time was 1.7 s, 2.7 s, 3.7 s, 4.7 s, and 5.7 s for 1 to 5 rounds,

respectively.

III. RESULTS

A. EEG Features Analyses

As mentioned in Introduction, the concurrent P300 and

SSVEP features should have four different kinds of EEG fea-

tures, i.e., time-modulated P300, frequency-phase- flickering-

modulated P300, time-modulated SSVEP, and frequency-phase-

modulated SSVEP. As the transient ERP is mainly distributed

in the low-frequency band of 1–10 Hz while the fundamental

SSVEP frequencies used in this study were higher than 12 Hz,

they could be isolated from each other using different band-pass

filters.

First, we analyzed the time-modulated EEG features between

the target and non-target stimuli within the same sub-speller.

Fig. 4(a) shows the transient ERP waveforms at Cz, Pz, and Oz,

which were band-pass-filtered between 1 and 10 Hz. Consistent

with previous studies, the target stimulus could induce a larger

potential than the non-target stimulus. Moreover, the SSVEP

feature was also discriminative between the target and non-target

conditions in this study, as shown in Fig. 4(b). Specifically, the

amplitude of the SSVEP recorded at Oz increased from 60 to

560 ms after the stimulus onset for the target condition but not

for the non-target condition. It implies both EEG features can

be used to recognize the target character within sub-speller in

this study.

Then, we analyzed the frequency-phase modulated EEG fea-

tures across different sub-spellers. As expected, the SSVEP

waveforms induced by the short-duration SSVS had different

shapes among sub-spellers, as shown in Fig. 5. Specifically, the

latency of the largest peak was the shortest for sub-speller 3 but

the longest for sub-speller 9. Furthermore, sub-speller 10 had
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Fig. 5. The average SSVEP at electrode Oz across all subjects from
−200 ms to 800 ms for each sub-speller. Time 0 represents the onset of
stimulus. The band-pass filter was set to [11 Hz, 17 Hz].

Fig. 6. ERP variations of different sub-spellers are displayed at Cz
(left), Pz (middle), and Oz (right). The band-pass filter was set to [1 Hz,
10 Hz]. The temporal waveforms were averaged across all subjects for
each sub-speller.

six evident SSVEP cycles while sub-speller 3 had only three

evident cycles. As to the transient ERP (Fig. 6), the sub-spellers

had a variety of P300 potentials recorded at both Cz and Pz.

Furthermore, the P1-N1 complex recorded at Oz was also dif-

ferent among sub-spellers. Specifically, sub-speller 5 had the

largest P1 while sub-speller 3 had the smallest one. Sub-speller

6 had the largest N1 while sub-speller 8 had the smallest one.

Sub-speller 12 had the largest P300 while sub-speller 8 had

the smallest one. The variability of transient ERP might be

caused by the non-linear phase resetting of neural oscillations,

which is sensitive to the initial conditions of background EEG

[30], [32], [33].

B. Offline BCI Performance

In this section, offline accuracies were calculated and com-

pared between single EEG features and hybrid EEG features

using different classification methods. A leave-one-out cross-

validation, which meant the data of 1 character was used as the

test set and the data of the other 107 characters were used as the

training set in each of the 108 validation steps, was adopted to

ensure the robustness of the classification accuracy. Fig. 7 shows

the accuracy of the sub-speller recognition against the number

of rounds. It’s obvious that the hybrid EEG features achieved

higher accuracies than the single SSVEP feature regardless

of classification methods. Specifically, compared to the single

SSVEP feature, the hybrid EEG features had an improvement

of 7.87%, 4.63%, 2.77%, 2.50% and 1.48% on average at 1 to 5

Fig. 7. Average accuracies of sub-speller recognition across subjects
are displayed against the number of rounds, which are achieved by using
different classification algorithms and different EEG features. The red
dash line indicates the theoretical chance level of the classification (i.e.,
1/12). The error bars indicated standard errors.

rounds, respectively, when using the ensemble TRCA, and had

an improvement of 7.68%, 4.81%, 5.84%, 4.91% and 2.03%

on average when using the extended CCA. Two-way repeated

measures ANOVA showed the improvement was significant for

both algorithms (ensemble TRCA: F(1,9) = 7.95, p < 0.05;

extended CCA: F(1, 9) = 8.77, p < 0.05). Furthermore, the

ensemble TRCA performed significantly better than extended

CCA for both the single SSVEP feature (F(1, 9) = 54.63, p <
0.001) and the hybrid EEG features (F(1, 9)= 43.24, p< 0.001).

Therefore, the hybrid EEG features with ensemble TRCA had

the highest accuracy among all conditions, which achieved

75.37%, 89.91%, 94.07%, 95.09% and 96.39% on average at

1 to 5 rounds, respectively.

Fig. 8 shows the accuracy of the character recognition within

sub-speller across rounds. For the SWLDA algorithm, the single

P300 feature achieved higher accuracies than the hybrid EEG

features. However, the situation reversed when using the en-

semble TRCA or extended CCA as the classification method.

Specifically, for the ensemble TRCA, the hybrid EEG features

achieved 91.85%, 97.31%, 99.17%, 99.44% and 99.53% at 1

to 5 rounds, respectively, which were significantly higher than

the single P300 feature (F(1, 9) = 46.17, p < 0.001). For the

extended CCA, the hybrid EEG features brought about 82.59%,

92.96%, 97.50%, 98.89% and 98.79% at 1 to 5 rounds, re-

spectively, which were significantly higher than the single P300

feature (F(1, 9) = 114.82, p < 0.001). Overall, the hybrid EEG

features with the ensemble TRCA achieved the highest accu-

racy, which was significantly superior to the other conditions at

first round by paired t-test (hybrid ensemble TRCA vs. hybrid

extended CCA: t9 = 1.95 × 10−3, p < 0.005; hybrid ensemble

TRCA vs. hybrid SWLDA: t9= 4.89 × 10−7, p< 0.001; hybrid

ensemble TRCA vs. P300 ensemble TRCA: t9 = 2.23 × 10−6,

p < 0.001; hybrid ensemble TRCA vs. P300 extended CCA: t9

= 6.49 × 10−8, p < 0.001; hybrid ensemble TRCA vs. P300

SWLDA: t9 = 1.36 × 10−5, p < 0.001; hybrid ensemble TRCA
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Fig. 8. Average accuracies of character recognition within sub-spellers
across subjects are displayed against the number of rounds, which are
achieved by using different classification algorithms and different EEG
features. The red dash line indicates the theoretical chance level of the
classification (i.e., 1/9). The error bars indicated standard errors.

Fig. 9. The highest accuracies and the corresponding ITRs of sub-
speller recognition, character recognition within sub-spellers, and overall
target recognition across subjects are displayed against the number of
rounds, which are achieved by using the ensemble TRCA and hybrid
EEG features. The error bars indicated standard errors.

vs. SSVEP ensemble TRCA: t9= 1.91× 10−2, p< 0.05; hybrid

ensemble TRCA vs. SSVEP extended CCA: t9 = 1.65 × 10−4,

p < 0.001).

Fig. 9 compares the highest accuracies and the corresponding

ITRs of sub-speller recognition, character recognition within

sub-speller, and overall target recognition. As the combination

of hybrid EEG features and ensemble TRCA performed best

on recognizing both sub-spellers and characters within sub-

speller, it was used to calculate the overall accuracy of target

character recognition among all 108 characters. As shown in

Fig. 9, the average accuracy had a rising trend against the

number of rounds, which increased from 73.80% at 1 round to

96.29% at 5 rounds. The corresponding simulated online ITRs

were calculated, which added another 0.7 s as the cue time for

each selection. The results showed the average ITR reached a

maximum of 150.09 bits/min at 1 round. Therefore, only one

round was used for the following online test.

TABLE I
RESULTS OF ONLINE CUED-GUIDED SPELLING EXPERIMENTS

TABLE II
RESULTS OF ONLINE COPY-SPELLING EXPERIMENTS

C. Online BCI Performance

In both online cued-guided spelling and copy-spelling exper-

iments, the classification algorithm for each subject was trained

with offline data collected before the online experiment. All

subjects were asked to spell 24 characters equally from 12

sub-spellers. For each selection in two online experiments, only

1.7 seconds were used, including 1 second for flickering and 0.7

second for shifting attention. The parameters of online experi-

ments (i.e., the corresponding processing flow of output 6 and

output 14 in Fig. 3) were selected according to the optimization

of offline analyses (Fig. 7, Fig. 8 and Fig. 9), i.e., the time window

was 50–450 ms and the ensemble TRCA algorithm was used.

Specially, the sample rate was 250 Hz. The EEG signals of eight

channels (Fz, Cz, Pz, PO7, PO8, O1, O2, and Oz), which were

filtered by a filter bank (including eight Chebyshev Type I filters)

into [X Hz, 92 Hz] (X = 1, 11, 22, 34, 46, 58, 70 and 82), were

used for target identification.

Table I lists the results of the online cued-guided spelling

tests for the ten subjects. As a result, subject 1 achieved the

highest ITR of 238.41 bits/min with an accuracy of 100%. Two

subjects achieved higher than 90% in accuracy and higher than

200 bits/min in ITR. The average accuracy was 81.67% and the

average ITR was 172.46 bits/min across all subjects. Table II lists

the results of the online copy-spelling tests. In this session, the

subjects were trained to remember the position of each character
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according to character distribution rule and were able to shift

their fixation points very fast in 0.7 seconds. The mean accuracy

was 79.17% and the mean ITR was 164.69 bits/min across the ten

subjects. These results indicated the feasibility and effectiveness

of the proposed high-speed BCI system with a large instruction

set.

IV. DISCUSSION

A. Advantages of the Concurrent P300 and
SSVEP Features

It has been demonstrated in previous studies that hybrid

P300 and SSVEP features are effective in controlling BCIs.

As they represent two different aspects of EEG features, i.e.,

from the time and frequency domains, respectively, the two

features were often addressed in an independent manner to

indicate the user’s intent [18], [30], [42]. However, they were

not two absolutely independent components when concurrently

induced in this study. The frequency and phase characteristics

of SSVEP can impose a great influence on the concurrent ERP,

while the SSVEP duration is restricted by the target stimulus

period. Therefore, besides the traditional time-modulated P300

and frequency-phase-modulated SSVEP features, two additional

new EEG features, i.e., frequency-phase-flickering-modulated

P300 and time-modulated SSVEP, could be elicited for the

concurrent P300 and SSVEP features. As a result, the con-

current P300 and SSVEP features provide more useful infor-

mation than the traditional hybrid P300 and SSVEP features

for BCIs.

Although previous studies have indicated that ERPs vary

with different SSVEP background, the corresponding features

were too weak to be extracted and used in the past [30],

[32], [33]. To deal with this problem, this study addressed

the ERP variation and SSVEP as a whole rather than sep-

arate features. When taking the ERP variation as an aspect

of SSVEP signals, the recognition of ERP variation could be

regarded as the recognition of SSVEP differences. Because

minor differences among SSVEP signals could be accurately

identified using the ensemble TRCA [34], the ERP variation

embedded in the SSVEP would be more effectively recog-

nized. As expected, the results showed that adding the ERP

variation into the SSVEP features led to a significant improve-

ment in recognizing sub-spellers than purely using the SSVEP

features.

Recent studies have strikingly boosted the ITR of the SSVEP-

based BCIs [21], [24], [34]. However, the problem of visual

fatigue still remains to be addressed for SSVEP-based BCIs.

Besides our previous attempt to reduce the stimulus size [20],

another remedy to this problem is to reduce the duration of

SSVS. Currently, a period of 300 ms of SSVS was considered

the lower limit for SSVEP classification, and a further reduction

would degrade the BCI performance [34]. This study used only

200 ms of SSVS. To compensate the SSVEP degradation, a

concurrent P300 feature was added to the SSVEP classification.

The results demonstrated the feasibility of further shortening

the SSVS duration by using the concurrent P300 and SSVEP

features.

Fig. 10. A comparison of the instruction number and ITRs of online
hybrid P300-SSVEP BCI spellers in the past decade (2008–2018).

B. Compare With Previous Hybrid P300-SSVEP
BCI Studies

The counteraction between the instruction amount and ITR

has restricted the performance of hybrid P300-SSVEP BCIs

in the past. This study proposed a new P300-SSVEP BCI

speller that expands the instruction set while keeping a high

ITR. We further compared this study with the previous hybrid

P300-SSVEP BCI studies in the last decade with a focus on

online BCIs [16], [18], [19], [30], [42]–[45]. It is worth noting

that since not all studies adopted copy-spelling experiment, we

used the results of online cued-guided spelling experiment for

comparison. The instruction number and ITR for each study are

indicated by a solid dot in Fig. 10. For the previous studies, the

largest instruction set contained 64 commands and the highest

average ITR was 56.44 bits/min, which were much lower than

those in this study. The X marks the average instruction set

and ITR across previous studies, which was 31.50 commands

at 38.33 bits/min. Overall, the proposed P300-SSVEP speller

had almost triple numbers of instructions and quadruple ITRs

relative to the traditional hybrid P300-SSVEP speller.

V. CONCLUSION

This study implements an ever-largest instruction set (over

100 command codes) for a high-speed BCI system using con-

current P300 and SSVEP features. An elaborate hybrid paradigm

was developed to make a compromise between the instruc-

tion number, accuracy, and target-selection time. The ensemble

TRCA algorithm was adopted to classify the concurrent P300

and SSVEP features. Consequently, only 1.7 seconds were

needed for a correct target selection in online tests, resulting in a

maximum ITR of 238.41 bits/min with an average of 172.46 ±
32.91 bits/min in the cue-guided spelling task and an average of

164.69 ± 33.32 bits/min in the copy-spelling task. The results

demonstrate that the proposed BCI system realizes high-speed

and accurate target selection from a large number of instructions,

which has broad application prospects.
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