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Implementing Probabilistic Reasoning

Matthew L. Giusberg

The Logic Group
Knowledge Systems Laborarory
Department of Computer Science
Stanford University
Stanford, California 94305

~

Abstract. General problems in analyzing information in a probabilistic database are consid-
cred. The practical difficulties (and occasional advantages) of storing uncertain data, of using it in
conventional forward- or backward-chaining inference engines, and of working with a probabilistic
version of resolution are discussed. The background for this paper is the incorporation of uncertain
reasoning facilities in MRS, a general-purpose expert system building tool.

1. Introduction

There has been a great deal of work in the past few years concerning the theoretical under-
pinnings of various methods of inexact reasoning, including, among others, MYCIN-type certainty
factors [5], Zadel’s fuzzy sets [7] and Dempster-Shafer theory [1,4]. Inclusion of these ideas in
practical systems scems to have lagged, however, with the possible exception of the appcearance of
EMYCIN, an expert-system-building tool using MY CIN’s inference engine.

This is unsatisfactory for a variety of reasons. Most importantly, the true advantages of
the various competing paradigms which have been developed will only be apparent when these
paradigms have been incorporated in full-scale systems. Until that time, the merits of various
specifie schemes must remain only expectations.

In addition, the development of an implementation often serves to celarify theoretical points
which might otherwise go unnoticed; this has certainly been the case with the author’s experience
in incorporating a simplified version of Dempster’s rule into the MRS expert system tool.

It is in some sense a chronicle of this implementation that I would like to present in this
paper. Ideally, a deseription of this work will both encourage the proponents of other approaches
to undertake similar projects and make it casier for them to do so. It may he my personal view
that fuzzy sets are computationally intractable and that the unavailability ol prior probabilitics
makes Bayesianism too naive; the aim of this paper is to help the defenders of these methods prove
me wrong.

§2. An overview of MRS

MRS (“Meta-level Representation System™) is an expert system building tool currently used
by approximately twenty Al development groups. As of July 1984, it was purcly prv(ll('nh'-cnl('ulua
based: True facts were simply stored in the MRS database,

Not. surprisingly, the various MRS users have found this to be unsatisfaclory for the devel-
opment of systems operating in uncertain domains, Their solution has generally hidl to be to
incorporate some sort of certainty factors into MRS by hand, produecing rules such as

(if (and (cf premise $c) (> $c 0.8)) (cf conclusion $c)).
This amounts to saying that if the certainty factor assigned to the premise of some rule is greater

than 0.6, then the conelusion should receive the same certainty factor as the premise, (MRS prefixes
variables with $ signs.)
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The key idea belind MRS is that of user-specified control. Suppose that the user wants to
inform the system that to prove a statement of the form (foo $x), resolution should be used. He
would do this by adding the fact

(totruep '(foo $x) resolution) . (1)

to the MRS database. I the user now asked MRS to prove (foo fred) by typing
(truep '(foo fred)), MRS would proceed by first proving

(totruep ’(foo fred) $m).

This suceeeds, returning an answer with $m bound to resolution. MRS therelore vroceeds by
invoking the resolution theorem prover, evaluating (resolution ’(foo fred)).

The inference methods available to the MRS user incude simple lookup, forward and backward
chaining. and resolution. This was one of the reasous that incorporating probabilistic reasouning
facilities into the system was attractive from a rescarch point of view it would naturally provide
information regarding the relative ellicacy of uncertain reasoning within cach of these fechniques.

The appearance in MRS of -oeta-level rules such as (1) is another reason the incorporation
of probabilitics was of interest. The issue of coutrol is an extremely complicated one: it may well
be the case that control of inference in complex situations should proceed on a probahilistic basis.
Early results in the run-time control of backward chaining scem to support this [6].

The subsequent. sections of this paper will address the problems of dealing with the various MRS
inference techniques probabilistically. Scection three deals with the problent of simply storing and
retrieving information from a probabilistic database. As there appear to be significant advantages
to doing this using a belief-disheliel approach such as that in Dempster-Shafer theory, this section
will he directed substantially toward this sort of implementation.

The remaining sections will deal with probabilistic inference more generally, and will discuss
forward chaining, backward chaining and resolution in turn, The final section will sunmimarize some
ol the apparent practical advantages and dillicalties ol probabilistic inference.

83. Probabilistic databases

The idea here is a simple one: Tustead of simply storing facts in a database, pairs are stored,
where the first element of the pair is the fact to be stored and the second is the probabilistic truth
value.

In the MRS implementation, the truth values consist of pairs (a . b) where-a corresponds
to the extent to which the available evidence confirms the fact and b to the extent to which it
discontirms it.  (As a consequence, a + b < 1 for all facts in the database.) True, or totally
conlirmed facts, have truth value (1 . 0). False, or totally disconfirmed facts, have truth value
(0 . 1). Thus, to assert (not (foo fred)), we could stash into the database either of the pairs

( (not (foo fred)) (1 . 0) )

or
( (foo fred) (0 . 1))

This was deemed to be unacceptable.  One of the principal advantages of the Dempster-
Shaler approach is that it enables one to combine information about both the confirmation and
disconfirmation ol a single hypothesis; it therelore seemed natural to choose the second of the above
expressions. In general, when the user altempts to stash (not $x) in the database with troth value
(a . b), the action taken hy MRS is to stash $x with truth value (b . a).
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A similar modification was required when information was retrieved from the database. A
lookup of (foo fred) isinterpreted as a request for the confirmation of (foo fred), and the system
therefore returns simply the conlirmmation in the associated truth value. Since the confirmation of
(not (foo fred)) is the same as the disconfirination of (foo fred), the value returned from
looking up (rot (foo fred)) is the disconfirmation of the truth value associated with (foo fred).

There proved to be other usefid results that could be returned from a given truth value. In
looking up (unknown (foo fred)) for cxaniple, it scems natural to return 1 — a — b where a is the
confirmation and b the disconfirmation of (foo fred).

A function which converts a truth value (a . b) to a single number will be referred to as a
tag. In addition to the three already discussed,

t:(a.b)—a
not:(a . b)—b

unknown: (a . b) - 1—a~—b

there are also
‘poss:(a .b)—=1-D
poss-not: (a . b) > 1l —a
mass : (a . b) —»a+b.

Poss measures the extent to which a given statement is possible (i.c., not disconfirmed), and poss-
not the extent to which it is possibly false. Mass mcasures the total extent to which information
about the stateruent is available in the database.

In the implementation, there is a single function lookup which accepts three arguments: a
sentence such as (foo $x). a tag (which defaults to t) and a cutoff (which defaults to 1.0). If
a fact matching the supplicd one can be found in the database such that the result of applying
the supplied tag to the truth value of the database fact is no less than the supplied cutoff, an
appropriate binding list is returned. Thus, if in our database we had

(foo fred) (0.3 . 0.2)
(foo harry) (0.7 . 0.0)

the vesult of (lookup (foo $x) t 0.5) would be a list binding $x to harry, since only
(foo harry) has conlirmation of 0.5 or greater.

§4. Forward chaining

In conventional forward chaining, when a new fact is added to the databasce, its consequences
are also added. It is generally assumed that each of these consequences is consistent, with the other
information in the database, so forward chaining is simply a matter of applying cach of the rules
in the database to the new picce of information and its consequences.

This ix not satislactory probabilistically.  The reason is thal it is very commonly the case
that the information being added Lo the database is inconsistent with knowledge already there.
Typically, some stalement such as (foo fred) will be stored in the database with truth value
(a . b), and the new information being passed to the forward chainer is that the truth value
should in fact be (¢ . d). Not only will the truth value assigned to (foo fred) nced to be
changed, but the truth values of its consequences will need to be modified as well. The problem
persists if some other sort of probabilistic representation is used.

In order that we have a conercte example, suppose that we have in our database the rule

(if (foo $x) (goo $x)). (2)
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If we now replace the truth value of (foo fred) with (¢ . d), it follows that there will be a new
contribution of (¢ . d) to the truth value of (goo fred). (Again, the points I am about to make
hold for other probabilistic inference schemes as well; T amn using the confirmation/disconfirmation
representation only for definiteness.)

A simplistic approach at this point would be to simply replace the truth value of (goo fred)
with (c . d), but this does not account for the fact that the truth value of (goo fred) may in
fact be the result of combining contributions from many different sources. In actuality, if the rule
(2) has been applied using (foo fred)’s previous truth value (a . b), only the contribution to the
truth value of (goo fred) gencrated by this application nceds to be retracted .when the forward
chainer is invoked.

There are two implications to this. The first is that the rule of combination being used in a
probabilistic inference scheme must be invertible. In the example we are considering, if the truth
value of (goo fred) is an accumulation from various sources, it must be possible to remove one
term in this accumulation without affecting the others. The combining rule used in MRS is that
which T presented at AAAI-84 [2]; T noted there that the rule was invertible, and described the
inverse to it. :

The second point to be made is that probabilistic inference schemes must be equipped w1th
some minimal sort of reason maintenance facility. We noted above that the result of applying (2)
to (foo fred) nceded to be inverted if (2) had been applied to (foo fred) s previous truth value.
It follows that the forward chainer needs access to a list of the rules in the database which have
already been applied, together with the truth values of the antecedents at the time of application.

There are also representational issues that need to be addressed in the forward chainer and
in probabilistic inference generally. The rale (2) above states that (foo $x) implies (goo $x).
Suppose, however, that we wanted the rule to state that (foo $x) implied (not (goo $x)). Oune
solution would be to stash (2) in our database with truth value (0 . 1) (i.c., false). The difficulty

with this is that
(not (if (foo $x) (goo $x))) (3)

is not logically cquivalent to
(if (foo $x) (not (goo $x))). (4)
It scems in fact that probabilistic rules must in fact be of the form
(if premise consequence truth-value), (5)
where truth-value is the truth value to be assigned to the consequence if the premise is true.
How to propagate partial truths throngh a rule such as (5) is a theoretical question which will
need to be addressed by the probabilistic 1]1(‘01y being considered. The solution used in the MRS

implenmentation is desceribed in [2].
The rule (1) now can be represented as

(if (foo $x) (goo $x) (0 . 1)),
while the statement (3) can be recorded by storing

(if (foo $x) (goo $x) (1 . 0))
in the database with truth value (0 . 1).

The appearauce of the extra truth value in (5) can also be understood in terms of a differ-
ence between the conditional probability p(A|B) and the probability of a conditional p(A — B).
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Instances of = A will increase the probability p(A4 — B) while having no cffect on p{A|B); any
inference scheme which generalizes predicate calculus needs to preserve this distinction.

It is also interesting to note that because the value in (5) is that of the conditional probability,
it will not be affected by negative.instances of the premise: thus a non-black non-crow cannot be
interpreted as coufirmation for the hypothesis that all crows are black, since there is no uscful
relationship between the conditional probabilities p(A|B) and p(—B|-A).

4.1 Control of forward chaining

Finally, supposc that instead of (2) we had
(if (foo $x) (goo $x) (0.01 . 0.0)),

so that the truth of (foo $x) increased the confirmation of (goo $x) very slightly. If the truth
value of (foo $x) changes only marginally, it may well be the case that the corresponding increment
to the truth value of (goo $x) is so small that we do not wish to consider consequences of it. A
convenient way to implement this is to take advantage of the reason maintenance facilities described
carlier: If the truth value of the premise of a rule changes only very little, the previous result is
not retracted, and the rule is not re-fived. MRS uses a variable inference-cutoff ;if the mass of
the difference between the previous and current truth values of the premise of a rule is less than
inference-cutoff,the forward chainer takes no action when the rule is encountered.

§5. Backward chaining

Conventional logical backward chainers proceed very simaply: Given a fact to be proved, they
first scarch the databasce for the fact. If it is not found, they find a rule whose consequent matches
the fact. Having found one, the backward chainer recursively Lries to prove the premise of the rule.
Success at any point represents a prool of the original assertion.

The probabilistic case is complicated by the fact that truth values accumulate from a variety
of sources. Suppose we arce trying to prove (flies Tweety) for some bird Tweety, and have rules
in our database

(if (bird $x) (flies $x) (0.7 . 0.0))
(if (ostrich $x) (flies $x) (0 . 1))

In proving (flies Tweety), it does not suflice Lo apply the first of these and suceeed - the second
must also be considered. In this simple case, we must save the (accumulated) truth value of
(flies Tweety) and countinuce with the derivation until there are no more possible rules aflecting
the truth value of the supplied conclusion.

The situation is complicated further by the fact that the statement being proved may not be
grounded. MRS iuterprets an attempt to prove (flies $x) as an attempt Lo find a binding for $x
which make (£lies $x) true; in proving such a statement, it is necessary to store a list of bindings
for the variables in the original statement with associated truth valiues accumulated for cach.

In fact, this problen can occur even if the proposition being proved s grounded. Consider the
rule:

(if (steals $person $object) (crook $person)).

If we try to prove the ground assertion (crook Nixon), the recursive definition of hackward chaining
will result in our attempling to prove the non-grounded stalement (steals Nixon $object).
The problem of accumulating truth values is especially difficult if the backward chainer is
agenda-based. (As the MRS backward chainer is, to allow for maximum use of meta-level control
information.) The reason for this is that many tasks on the agenda will need to access the same
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list of bindings and partial truth values, and it is quite possible that the list used by some task ¢
will be modified by other probabilistic inferences between the time ¢ is added to the agenda and
the time ¢ is actually excecuted.

5.1 Controlling backward inference

As in forward chaining, it may be desirable to cut off a backward infercence if its total effect
on the truth value of the statement being proved is small. If we had the rule

(if (politician $p) (crook $p) (0.1 . 0.0))

it might well be that proviug someone to be a politician would have an cffect small enough on the
truth value of his being a crook as to be negligible---in the MRS implementation, the inference is
again terminated if the mass of the cventual contribution can be shown to be less than inference-
cutoff. A similar facility appears in EMYCIN, which does not consider the application of rules
of inference which will affect the certainty factor associated to a given conclusion by an amount of
0.2 or less.

Another way in which backward inference can be terminated carly is hinted at in the bird/os-
trich example above. In situations where the speed of inference is critical, it may be desirable to
simply accepl a statement with a confirmation of 0.9 (say) as true, and not to expend additional
effort in trying to prove it false. This is implemented in MRS through the variable accept-as-
true; if the confirmation or disconfirmation of a particular statement is greater than or equal to
this value, the stacment is accepted as confirmed or disconfirmed even though subsequent analysis
might conceivably overturn this conclusion.

§6. Resolution

Resolution has proven to be the most difficult of the MRS inference methods to implement
probabilistically. In addition to the reappearance of the practical difficulties described for backward
chaining, there are also significant theoretical issues to be resolved. I discuss these elsewhere [3);
let me confine myself here to a few comnents about the nature of the ditHculty.

The basic resolution rule of inference is a consequence of the logical implication

PV A(EpVr) = (qVr). ()

Probabilistically, the truth value of p V q also contains information about the truth of =(p V q); it
is therefore possible to “resolve” (pV q) with (p V r) using the implications

“(pVa) A-(pVr)— =(qVvr) (7)

and
(Vg A=-(pVvr)V~(pVa ApVr) —(qVvr). (8)

A probabilistic resolution theorem prover should incorporate inferences made possible by these
implications.

An additional dilliculty arises becanse of the nature of the implications (6) (8) themselves.
I evaluating the truth value to be associated Lo a coujunction, the individual conjuncts are often
assumed to be independent; in an expression such as the one appearing on the lefthand side of (6),
this is explicitly not the case. The truth value associated to the premise of this rule must therefore
be evalnated bearing this in mind. Again, details can be found in [3].

§7. Conclusion

Relative to my expectations when I began this work, there were two surprising sources of dif-
ficulty and two unforeseen advantages to implementing non-motiotonic reasoning probabilistically.
Let me smmmarize the advantages first.
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The first has to do with the possibility of terminating probabilistic inference early if cither
the conclusion becomes extremely likely or the contribution resulting from the inference under
consideration will be small.  Although these procedures arc not non-monotonically sound, they
allow a practical implementation to avoid the problems that would otherwise arise due to the fact
that non-monotonic inference is fundamentally undecidable.

The second advantage is the uniform treatment of negation allowed by a probabilistic scheme.
The previous version of MRS stored (foo fred) and (not (foo fred)) separately in the databasc;
a probabilistic scheme makes clear the conncection between the two.

Surprisingly, this uniform treatment of negation was the source of many. of the difficulties
encountered. The need to rewrite implications such as

(if (foo $x) (not (goo $x)))

caused a considerable amount of difficulty; the treatment of negation also led to theoretical problems
in dealing with resolution.

The most serious difficulty encountered, however, has proven to be the need to keep a list
of “partial answers” in any backward-directed inference procedure (cither backward chaining or
resolution). As mentioned carlier, the fact that the chosen implementation needed to be agenda-
based only compounded this problem,

The probabilistic version of MRS is scheduled to be released publicly later in 1985, The author
is looking forward both to its reception by the user community, and to the possibility of comparing
the performance of Dempster-Shafer methods with implementations based on different theories.
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