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Abstract Passive radio-frequency identification (RFID)

tags have long been thought to be too weak to implement

public-key cryptography: It is commonly assumed that the

power consumption, gate count and computation time of full-

strength encryption exceed the capabilities of RFID tags.

In this paper, we demonstrate that these assumptions are

incorrect. We present two low-resource implementations of a

1,024-bit Rabin encryption variant called WIPR—in embed-

ded software and in hardware. Our experiments with the soft-

ware implementation show that the main performance bot-

tleneck of the system is not the encryption time but rather

the air interface and that the reader’s implementation of the

electronic product code Class-1 Generation-2 RFID standard

has a crucial effect on the system’s overall performance.

Next, using a highly optimized hardware implementation,

we investigate the trade-offs between speed, area and power

consumption to derive a practical working point for a hard-

ware implementation of WIPR. Our recommended imple-

mentation has a data-path area of 4,184 gate equivalents, an

encryption time of 180 ms and an average power consump-
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tion of 11µW, well within the established operating envelope

for passive RFID tags.
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1 Introduction

1.1 Background

The electronic product code (EPC) system is one of the

world’s most ambitious pervasive computing projects. It aims

to replace today’s familiar 14-digit optical-scan universal

product code bar codes with radio-frequency identification

(RFID) tags operating in the ultra-high frequency (UHF)

band, which are based on the EPC standard [1]. As noted

in [2], the additional capabilities of EPC tags create con-

siderable privacy issues which did not exist with optical bar

codes. For example, it is possible to track individuals by

placing EPC readers in multiple locations and searching for

RFID tags carried by a person (for example on RFID-tagged

clothes or banknotes) as he moves between them. Clearly,

the EPC ecosystem will greatly benefit from the use of cryp-

tography to protect the communications between the tag and

the reader. However, adding cryptography to the EPC system

is far from trivial.

There are several factors which make it extremely chal-

lenging to introduce security and privacy into an RFID envi-

ronment. Most significantly, there is the issue of power

consumption—EPC tags are passively powered by the RFID

reader and, as such, have an extremely limited energy bud-

get. Since the power available to the tag decreases in propor-

tion to the square of its distance from the reader, increas-

ing a tag’s energy budget will force it to move closer to

the reader and severely limit its usability. According to [3],

the average power consumption of a typical UHF tag cannot
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exceed 30µW. This limits both the circuit size of the device

and its maximum clock rate. Another constraint is that of

gate count—EPC tags are designed to cost only a few cents,

imposing a severe limit on the chip area and thus on the gate

count. According to [4], the overall gate budget of a passive

RFID tag is on the order of 10,000 gate equivalents (GEs).

Because of these constraints, common wisdom holds that

public-key cryptography is too expensive for such RFID tags

[5]. Specifically, the perception is that full-strength cryptog-

raphy is too slow and that it requires too much energy and

too many gates. Hence, the vast majority of proposed security

schemes for RFID systems rely exclusively on symmetric-

key primitives [6]. However, RFID tags were shown to be vul-

nerable to reverse engineering, even by a moderately funded

adversary [7]. This makes it extremely problematic to store

sensitive data (such as symmetric encryption keys) on these

tags, since the entire system can be compromised as soon as

the secret key is recovered from even a single tag.

WIPR is an encryption scheme, first described in [8],

which is designed to address all three of these challenges—

power consumption, gate count and storage of sensitive data.

WIPR has a very simple design, allowing its implementa-

tion to have both low power consumption and a low gate

count. Significantly, since WIPR is an asymmetric (public-

key) encryption scheme, no sensitive data need to be stored

on the tag itself, dramatically reducing the damage caused by

reverse engineering attacks. WIPR also enjoys a very large

payload capacity, which enables a wide variety of applica-

tions, from supply-chain anti-counterfeiting to secure sensor

networks.

1.2 Related work

The WIPR scheme is based on the randomized variant of

the well-known Rabin cryptosystem [9], first discussed in

[10]. This scheme’s applicability to low-resource smart cards

was explored in [11,12] and later [13]. The Rabin cryptosys-

tem was first implemented in a low-resource setting by [5],

but was found to be unsuitable for the ultra-low-resource

RFID tags. Other public-key RFID contenders can be found

in works such as [14,15], but these implementations gener-

ally require more gates than can fit in a low-cost tag or rely

on uncommon features such as very large random sources.

Several authentication protocols based on other light-weight

primitives such as hash functions were also suggested in

[16,17].

The ultra-low-resource implementation of the Rabin pro-

tocol presented in [8,18] replaces the long pseudo-random

sequence, originally stored on EEPROM in [12], by a

reversible stream cipher using less than 300 bits of RAM,

with gate count estimate (based on partially simulating the

data path) of around 5,000 gate equivalents. A proposed

improvement, which claims reduced hardware requirements

and protects against some attacks, was also presented in

[19]. A prototype for a logistical system that uses WIPR is

described in [20].

Several other works have also evaluated concrete low-

resource implementations of public-key cryptography, as sur-

veyed recently by Najera et al. [21]. In [22], Plos et al.

present the design and implementation of a magnetically cou-

pled near-field communication tag system supporting high-

security features, including an elliptic curve digital signature

system. The gate count of the complete device, including an

analog front end, is 49,999 GEs. In [23], Wenger et al. eval-

uate the cost of adding support for elliptic curve cryptogra-

phy to several popular microcontrollers using instruction set

extensions. The gate cost of adding an ECC core to these

microcontrollers was simulated and found to be between

6,140 and 18,700 GEs excluding RAM, and between 16,786

and 32,034 GEs including RAM. Other works, such as that

of Batina et al. [24], propose additional public-key schemes

suitable for RFID tags, but these works do not discuss com-

plete implementations and as such are difficult to compare to

our system.

1.3 Our contribution

In [8], Oren and Feldhofer presented a preliminary possible

implementation of WIPR’s data path and presented an esti-

mate on the area and power consumption of a device built

using this design. This implementation was improved in the

work of [18], which also presented a deployment scenario

for the WIPR scheme. However, the question of the scheme’s

practicality remained unresolved.

In this contribution, we present detailed software and hard-

ware implementations of WIPR and use them to explore the

technological design space and its limitations.

Our first implementation target was a slow microcontroller-

based software implementation on a custom programmable

RFID tag [25]. We used this implementation to experi-

ment with the protocol, the air interface and the connec-

tion between the tag and the reader. We discovered that the

main performance bottleneck was not the encryption time,

but rather the EPC Class1 Generation2 (C1G2) air interface

and the way the protocol was implemented in the reader.

Our second implementation target was a detailed ASIC

implementation. We used this implementation to explore the

design space of a hardware implementation of WIPR, which

presents a trade-off between area, power, energy and time

for encryption. Through extensive gate-level simulation, we

identified a recommended working point within this design

space which is fast-performing yet frugal enough, both in

its area and in its power consumption, to fit into a passive

supply-chain tag: Our recommended implementation has a

data-path area of 4,184 GEs, an encryption time of 180 ms
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and an average power consumption of 11µW, well within

the established operating envelope for passive RFID tags.

1.4 Document structure

In Sect. 2, we describe the WIPR cryptographic scheme. In

Sect. 3, we describe our embedded software implementation

and experiments. In Sect. 4, we describe our detailed ASIC

implementation. Finally, we conclude our paper in Sect. 5.

2 The WIPR cryptographic scheme

2.1 Theoretical basis

WIPR is a variant of the Rabin’s encryption scheme presented

in [9], first discussed in [10], which is provably as secure

as factoring large numbers. In Rabin’s scheme, the private

key consists of two large prime numbers p and q. These are

multiplied to form the public key n = p · q. The plaintext

P is typically generated from a shorter string (in our case an

ID) by padding it with random bits until it is as long as n. To

encrypt a plaintext P in this scheme, the sender calculates

the ciphertext M as its square, reduced modulo n:

M = P2 (mod n)

To decrypt a ciphertext, the receiver calculates the square

roots of M modulo p and q, and then combines the resulting

values using the Chinese Remainder Theorem [26, §2.4.3].

Each ciphertext has two possible roots modulo p and two

roots modulo q (±m (mod p) and ±m (mod q)), leading

to four possible plaintexts for each ciphertext. To allow the

receiver to determine which of the four possible plaintexts is

the correct one, the sender typically adds some redundancy

to the message (in our case, the reader’s challenge serves this

purpose).

The encryption element of Rabin’s scheme is relatively

easy to implement, requiring only a single multiplication

and modular reduction. However, modular reduction is a

RAM-intensive process, a fact that limits the applicabil-

ity of Rabin’s algorithm to low-resource devices such as

smart cards. To reduce the resource requirements of Rabin’s

scheme, Naccache in [11] and Shamir in [12] and later [13]

suggested a RAM efficient variant, replacing the modular

reduction step by an addition of a large random multiple of

n, where the size of the random value r is at least 80 bits

longer than the size of n (to have no detrimental effects on

security):

M = P2 + r · n

The decryption algorithm is precisely identical to Rabin’s

original scheme. Shamir proved that the security of this

resource-reduced scheme and the original Rabin scheme are

equivalent. The reduced scheme is easier to implement since

it has only multiplication operations and not modular reduc-

tions. In terms of space requirement, the problem of storing

P2 was replaced by the challenge of storing the large ran-

dom number r . However, since r is written to only once per

protocol execution [12], suggested that it should be stored in

EEPROM, which is plentiful on smart cards, and not on the

more scarce RAM. However, rewritable EEPROM is cheap

on smart cards and prohibitively expensive on RFID tags,

due to the high power cost of the write operation.

The final resource reduction in the Rabin scheme was pre-

sented in the WIPR scheme [8,18]. WIPR replaces r with the

output of a low-resource reversible stream cipher. This cipher

is implemented by creating a Feistel structure [27], a well-

known cryptographic construct used in symmetric ciphers

such as DES and TEA. To make use of this cryptographic

building block to provide secure identification, a challenge-

response construction was used, adding a reader-supplied

random challenge to the plaintext P .

2.2 Protocol steps

Given the above description, following is an outline of the

protocol steps:

1. Setup: The tag is provided with the public key n and a

signed unique identifier I D. The reader is provided with

the private key (p, q).

2. Boot: The reader generates a random bit string Rr , where

|Rr | = α. The tag generates two random bit strings Rt1

and Rt2, where |Rt1| = |n|−α−|I D| and |Rt2| = |n|+β.

and α, β are security parameters (both set to 80 in our

implementation).

3. Challenge: The reader sends Rr to the tag.

4. Response: The tag generates a plaintext as follows: P =

Rr #Rt,1#I D, where # denotes concatenation, and then

transmits the following message:

M = P2 + Rt2 · n

5. Verification: The reader uses the private key to decrypt

M . There are four candidate decryptions, so the reader

checks which of the four possible decryptions contain

the value of the challenge Rr it sent to the tag. If such a

plaintext is found, the reader outputs the value of I D. In

all other cases, the authentication fails.

The WIPR protocol is based on public-key cryptography—

the public key stored on the tag allows messages to be

encrypted, but does not allow messages to be decrypted, even

if those messages were previously transmitted by the same

tag. In contrast, a system based on secret-key cryptography

must use the same key both on the reader and on the tag,
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and this secret key can be used to encrypt and decrypt all

messages. In such a scenario, capturing and reverse engineer-

ing a tag may compromise the entire authentication system.

As discussed in [20], building a system around public- key

cryptography provides additional security guarantees to the

users of the system and dramatically simplifies the logistics

involved with creating, distributing and deploying the tags.

3 Embedded software implementation

3.1 Objectives

WIPR was shown in [18] to have an acceptable gate count

and power consumption, but the time presented in [18] was

600 ms per encryption, a delay which might be considered

too much in a supply-chain scenario. Through the software

implementation, we wanted to discover whether the crypto-

graphic operation is indeed an inherent time bottleneck, or

whether it can be sped enough to make the system usable.

We also wanted to address the system issues and find out

whether a practical public-key system can be created using

today’s hardware and standards.

3.2 Design

The system we built consists of an EPC C1G2-compliant

RFID tag, an EPC C1G2-compliant RFID reader and two

PC workstations.

The system setup is presented in Fig. 1. Our system used

the UHF Demotag, a hardware prototyping platform devel-

oped by IAIK TU Graz. As stated in [25], the tag is battery-

powered, but behaves like a fully passive tag in the reader

field. It is fully compatible to ISO 18000-6c and EPC C1G2

standards. The tag is optimized for easy adaptability to allow

fast development of prototypes. It features a ATMega128

microcontroller with JTAG and ISP interface for program-

ming. An RS232 interface is available for configuration and

logging. The front end consists of discrete devices on a

Fig. 1 System setup

PCB, with a PCB antenna that is tuned to 868 MHz. The

tag is connected via a serial RS232 communication link

to a Linux workstation running the CrossStudio for AVR

embedded development environment by Rowley Associates,

version 1.4. The firmware executes on power-on from the

Atmega128’s on-chip flash memory. As a reader, we chose

the CAEN RFID DK828EU reader. It features a controller

module with embedded EPC C1G2 reader firmware which is

controlled via USB link by a Windows workstation running

Matlab. The DK828EU reader conforms with European ETSI

power requirements [28]. In our laboratory tests, we found

that this reader has an average read rate of approximately

15 kbps, a fact which dominated the overall performance of

our system. The IAIK SCA Toolkit provides the connection

between the reader’s software libraries and Matlab. Finally,

an RFID wireless link is established between the Demotag

and the reader.

Figure 2 demonstrates the full WIPR protocol flow

through an EPC C1G2 air interface using standard EPC pro-

tocol commands. The reader first sends the standard INVEN-

TORY command. WIPR tags do not respond to this command

with the full EPC, which may be sensitive and should not be

disclosed. Instead, the tag sends a special EPC value indicat-

ing that it is a WIPR tag and possibly disclosing a limited

subset of the EPC which is sufficient for use with non-secure

readers. To allow for a single WIPR tag to be successfully

singulated when multiple WIPR tags are present, part of this

special EPC value will be a random value computed on boot.

Fig. 2 The full WIPR implemented using mandatory C1G2 commands

(based on [1], [annex E])
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The reader then starts sending the 80-bit cryptographic chal-

lenge Rr . This operation is performed through the standard

EPC C1G2 WRITE command. After the challenge is sent, the

tag automatically encrypts its payload of data (consisting of

its ID, the challenge and the locally generated random string

Rt1) and places it in the SRAM buffer on the ATMega128

chip. Once the reader issues a standard BLOCK_READ com-

mand to the tag, the ciphertext is read out from the tag.

The reader is free to initiate as many cycles of data trans-

fer as it wishes between 1 and 138 16-bit words (the entire

encrypted payload). As shown in the following subsection,

larger block sizes result in a faster and more efficient data

transfer.

It is important to note the three times marked in Fig. 2 as

Tchallenge, Tencrypt and Tresponse. While Tchallenge and Tresponse

are determined by the speed of the link between the tag and

the reader, Tencrypt is solely a function of the implementation

quality of the WIPR algorithm. It can also be noted that only

a part of Tresponse (marked as Tresponse′) happens after encryp-

tion is completed. As we discuss in the following subsection,

this is due to a special property of the WIPR algorithm which

allows for the ciphertext to be generated byte by byte.

3.3 Implementation

The tag is provided with a 1,024-bit public key n, which

is stored in the tag’s ROM and can be copied to the heap

on boot to improve performance. The tag also stores its

signed ID, which can be up to 864 bits long (for reference,

a high-security ECDSA signature is 320 bits long). When

issued with a fresh challenge Rr , the tag generates two ran-

dom bit strings Rt1 (between 80 and 1,024 bits) and Rt2

(1,104 bits).

When the tag receives the challenge Rr sent by the reader,

it stores it in heap memory. It then creates its response mes-

sage P = Rr #Rt1#I D—i.e., Rt1 is used as random padding

to bring the plaintext to 1,024 bits. Beginning at the least

significant byte, the encrypted message M = P2 + Rt2 · n

is computed using multiplication by convolution. Note that

there is no modular reduction, so the message M is 2,208 bits

long. The response bytes are then stored in SRAM memory.

The WIPR algorithm structure allows encryption in a byte

by byte on demand fashion, supporting devices with limited

memory and also allowing the response to be generated in

the background.

Our software implementation of the WIPR scheme had a

very minor effect on the resources of the IAIK Demotag. The

code section of a firmware design with the complete WIPR

implementation requires 33,540 bytes, only 7.5 % (2,534

bytes) more than the standard version of the firmware without

WIPR support. WIPR uses only 660 bytes of the available

4 KB of SRAM in its most RAM-heavy implementation.

3.4 Evaluation

Three possible scenarios were evaluated: First we evaluated

a naïve implementation which does not cache the values of

P and Rt2 values in SRAM prior to the multiplication by

convolution, but instead recalculates them on demand. Next,

we tried caching the value of P before convolution. Finally,

we tried caching the values of both P and Rt2. As depicted in

Fig. 3, caching data on the heap has a dramatic effect on the

execution time. The first scenario required 7 s to encrypt. The

second scenario (caching only P) took 1.18 s, while the third

scenario (caching both values prior to the convolution) sped

the calculation to 180 ms. The convolution was implemented

using the ATMega128’s built-in hardware multiplier for all

scenarios.

Figure 4 shows the value of Tresponse as a function of the

amount of bits accessed in each block read operation. Recall

that the computed result of 2,208 bits is read from the tag

in a sequence of BLOCK_READ operations, and the block

size is an implementation parameter of the reader’s software.

If a single 16-bit word is read in every round trip, the 138

read commands issued by the reader take 6.5 s to transfer the

entire payload. On the other hand, a block size of 34 bytes

(272 bits, the maximum size supported by our laboratory

setup) allows the same payload to be transferred in only 0.46 s

using 8 block reads. Upon further investigation, we found that

the system’s bottleneck is concentrated in the CAEN reader

firmware, which takes about 40 ms to perform a single read

Fig. 3 Tencrypt as a function of heap size

Fig. 4 Tresponse as a function of block read size. The solid line shows

the measured time, while the dotted line is the calculated maximum
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operation, regardless of the size of the data exchanged. This

happens because the reader performs a fresh singulation pro-

tocol each time a tag is accessed, even if the tag is already in

the SECURED state. The singulation process results in three

unnecessary protocol round trips per command, dramatically

reducing the I/O performance. The reader we used also pow-

ers up the radio circuit before each command and shuts it

down again after the command concludes, further reducing

performance. The dashed line in Fig. 4 shows an estimated

performance of the same reader assuming the tag enters the

read process powered on and singulated and that the reader

does not repeat the singulation protocol between commands.

Table 1 estimates the values of Tresponse for a reader-tag

link using an optimized EPC C1G2 flow. The estimation

assumes the fixed cost of 40 ms related to powering up and

singulating the tag was already incurred when the challenge

was sent, so all the time incurred is related to the propagation

delay of BLOCK_READ operations performed at 15 kbps.

The current reader’s configuration did not allow us to inter-

fere with its order of execution or implement any protocol

optimization.

3.5 Further optimizations

The results we measured are for a completely serialized oper-

ation, with the transmission of the ciphertext starting only

after the last byte of ciphertext is calculated (Tresponse =

T
response

′ ). In addition, the current firmware of the Demo-

tag supports writes of no more than 2 bytes and reads of

no more than 34 bytes, resulting in 5 commands for writ-

ing the challenge and at least eight for reading the response.

Finally, the off-the-shelf reader we evaluated communicates

with tags in an inefficient way, as discussed previously. By

implementing relatively minor tweaks to these limitations,

we believe that the operation of the system can be dramat-

ically improved. Table 2 shows the estimated performance

gains of these optimization steps.

The first and immediate improvement could be achieved

by better use of the air interface. By sending the challenge in

a single 80-bit packet and keeping the tag in the SECURED

Table 1 Tresponse as a function of block read size

Ciphertext bytes

read per block

Measured

Tresponse (s)

Estimated

Tresponse (s)

1 13.1 1.02

2 6.5 0.57

4 3.2 0.34

14 1.1 0.18

28 0.52 0.15

34 0.46 0.14

276 Unsupported 0.12

state, we can reduce Tchallenge from 200 ms to an estimated

85 ms. Next, we can remove the unnecessary singulation

steps by making sure the reader keeps the tag powered on

and in the SECURED state throughout the response phase. In

addition, we can pipeline the encryption and response trans-

mission: Using WIPR, the tag can compute the ciphertext

in 34-byte blocks and send them to the reader as soon as

they are ready. The total time to perform the entire protocol

in this case is equivalent to the time required to power on

the tag and send it a challenge (85 ms), the time required for

the tag to calculate the full response (180 ms) and the time

required to send the final 34-byte chunk, which is ready only

after encryption is finished (60 ms). Under these minor mod-

ifications, we estimate the entire protocol (including both

identification and authentication) will take 325 ms.

For a more dramatic optimization, we can read the entire

276-byte response in a single read command which is issued

immediately after the challenge is sent. This is possible since

the tag can be designed to concurrently transmit the initial

bytes of the ciphertext while it calculates the following ones.

Since the data link takes only 112 ms to transfer 2,208 bits,

the entire protocol time is dominated in this case by Tencrypt,

leading to a total estimated time of 265 ms for the entire

protocol.

Passive UHF tags communicate with the reader using

modulated backscatter—instead of explicitly transmitting a

signal back to the reader, the tag rapidly varies the impedance

of its antenna, causing a variation in the phase or amplitude

of the signal it reflects toward the reader [29]. Thus, in con-

trast to traditional radio-based systems, a passive UHF tag

does not consume significantly more power while it is com-

municating with the reader. This property allows the tag to

simultaneously encrypt and transmit without requiring a high

peak power consumption.

3.6 Discussion

We consider the general-purpose 8-bit microcontroller

present on the Demotag to be inherently slower than a cus-

tom designed ASIC implementation. Indeed, a naïve software

implementation of the WIPR protocol which was function-

ally identical to the ASIC’s implementation took an unaccept-

able 7 s to perform an encryption. However, as illustrated in

Fig. 3, the addition of RAM significantly sped up the soft-

ware implementation to the point that the entire encryption

took 180 ms.

We found that the real bottleneck is in communication,

with the dominant parameter being the number of round trips

made by the reader. This problem is even more acute if the

reader being used does not recognize the concept of sessions

and repeats the singulation process with the tag every time it

wishes to send it a command. It will be interesting to investi-

gate whether other reader vendors handle multi-request ses-
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Table 2 Performance of the complete WIPR protocol under various optimizations (all times are in ms)

Protocol Step Current results Partial pipelining Full pipelining Optimization step

Tchallenge 200 85 85 Write all 80 bits of the challenge in a single round trip

Tencrypt 180 180 180

Tresponse 460 180 112 Keep tag alive and singulated

T ′
response 460 60 0 Pipeline encryption and transmission

(via FIFO or via background calculation)

Total 840 325 265

sions to a single tag more efficiently. If the tag can calculate

the response bits faster than they are transmitted, optimal per-

formance can be achieved by a pipeline design which trans-

mits the ciphertext byte by byte as it is being generated within

the context of a single large read command. This results in

a very efficient performance and a saving of valuable RAM.

Even when using minimal optimizations, the time required

for the complete protocol is quite reasonable (≈ 325 ms).

4 Detailed ASIC implementation

4.1 Objectives

In this part of the work, we wanted to test the feasibility

of a realistic ASIC-based implementation of WIPR, beyond

the sketches of [8,18], and to evaluate whether indeed it fits

the constraints of EPC C1G2 tags. Our first objective was to

present a fully functional implementation of a WIPR tag in

RTL, including data-path control logic and test-bench stim-

uli. The next objectives were to propose optimizations for

gate cost and power consumption, implement and analyze

the alternatives.

4.2 Design

4.2.1 Design flow and tool-chain

We used Cadence’s Incisive tool suite version 11.10.006 [30]

for compilation, elaboration, simulation and debug using the

following commands—ncvhdl, ncvlog, ncelab, ncsim, irun.

The RC tools-suite version 11.23.000 was used for synthesis

and power analysis.

We selected TSMC’s T SMC65L P 65nm low-power

process silicon process [31] due to our experience and its

maturity and reliability. Virage [32] was selected to provide

standard cell libraries for the above process.

The reference gate size (used to convert area to gate equiv-

alents) for this technology is 1.8µm · 0.8µm = 1.44 µm2,

and VDD of 1.08 V. For reference, dynamic power dissipa-

tion, a single data flip-flop of the simplest kind (positive-

edge triggered, q-only) consumes an energy of 0.0188 pJ

when clocked and both input (D) and output (Q) are tog-

gling. Assuming that an RFID tag has an average power of

20µW and a clock rate of 1 MHz, this allows for approxi-

mately 1,000 flip-flops to toggle every clock period.

4.2.2 Original hardware architecture of a WIPR tag

Our starting point was the hardware architecture first pre-

sented in [8] and [18], with chosen protocol parameters

of n = 1,024, α = 80, β = 80 to achieve an 80-

bit security level, comparable with 1,024-bit RSA [33].

The properties and total resource requirements of this

implementation sketch are presented in Table 3. Note that

the numbers for area and power in this table refer to

an implementation with a different process, standard cell

libraries and tools, and are therefore not directly compara-

ble with the implementation alternatives presented in this

work.

The protocol requires two online multiplications: M =

P2 + r · n. This multiplication step can readily be performed

on a multiply-accumulate (MAC) register by convolution.

Assuming a word size of 8 bits (byte), a single multiply-

accumulate register can carry out this multiplication in about

216 steps using 25 bits of carry memory (enough to accu-

mulate 512 8-bit multiply operations). The ciphertext can be

transmitted byte by byte (LSB first) as soon as it is com-

puted, minimizing the need for intermediate registers. The

data-path architecture is depicted in Fig. 5.

The public key (n) is selected as a composite number with

a predefined upper half, thus reducing the ROM cost by half

(see for example [34]), by setting the upper half to a value

easily represented in hardware.

Table 3 Properties of the original ASIC design of WIPR, presented in

[18]

Cipher strength 1,024 bits

Challenge size 80 bits

Response size 2,208 bits

Payload capacity 864 bits

Area (GE) 4,682

Total current draw (µA) 14.2
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Fig. 5 Data-path architecture of WIPR

As suggested in [8], we replace the long random strings

generated by the tag with pseudo-random outputs from a

reversible stream cipher. Instead of storing the entire random

string, we store short seed values (one for Rt2 and two for

each end of Rt1, denoted Rt1a and Rt1b in Fig. 5), and use

the stream cipher operation to evolve them over time. Due

to the sequential nature of accesses to the random strings,

only a single “roll left” or “roll right” operation is required

for each convolution step. The reversible stream cipher was

implemented using a Feistel structure [27] and a represen-

tative one-way function (OWF), as shown in Algorithm 4.1

and Fig. 6.

Algorithm 4.1 Rolling algorithm used to create pseudo-

random sequence

Roll Right:

left_in <= right_out;

right_in <= left_out xor oneway(right_out);

Roll Left:

right_in <= left_out;

left_in <= right_out xor oneway(left_out);

The random bit string Rr which is the challenge provided

by the reader must be stored in a RAM due to the random

access nature of the read transactions.

4.3 Implementation

The WIPR tag was implemented in RTL, written in the

VHDL hardware description language. The design hierar-

chy of the WIPR tag includes a top level which is the test-

bench stimuli, encapsulating the control logic FSM (finite

state machine) which controls the data path through a com-

mon AMBA [35] wrapper. The data path itself has a lower

hierarchy of modules—arithmetic (multiplier, adder, accu-

State

State

Roll Left

Roll Right

Function

Function

Fig. 6 Creating a reversible stream cipher using a Feistel structure and

an arbitrary OWF

Fig. 7 Design hierarchy of the WIPR tag

mulator register), logic (multiplexers, free logic) and stor-

age (RAM, n_const, Feistel). This hierarchy is depicted in

Fig. 7.

The data-path module’s interface which is controlled by

the control logic includes the following types of ports:

addresses (for controlling the various memory blocks),

enable signals, select lines (for controlling the multiplexers),

input buses for external data (challenge) and internal data

(e.g., tag I D) and various controls such as shift and reset.

During the course of the RTL implementation, we needed

to overcome three major issues for the design to work (before

any optimization stage):

1. A single port RAM was not enough, due to the fact that

at some steps of the calculation of P2, different bytes of
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Rr are required to be multiplied by each other. The triv-

ial (though inefficient) solution is placing two identical

instances of this single port RAM—one for each version

of P . This solution was later optimized (see Sect. 4.4).

2. At some steps of the calculation of P2, the strings Rt1a

and Rt1b are required to be multiplied by each other,

therefore should both move at the same step (either left

or right). However, only a single Feistel logic module

exists in the design, so they cannot both move at the same

cycle. Adding another Feistel logic is a costly alternative;

therefore, the control was altered to allow a two-cycle step

only for those specific cases.

3. At each cycle, the Feistel logic outputs two 48-bit halves,

but only a single byte from the Feistel state is fed to the

multiplier. The function which reduces these two halves

into a single byte must be symmetric such that it returns

the same value even if the direction was flipped. We used

the following symmetric function: out = xor(le f t[47 :

40], right[47 : 40]).

4.4 RTL optimizations

Given a functional, bit-accurate design which complies with

the properties of the protocol, the next stage was optimizing

it. The optimizations concentrated mainly, but not solely, on

the data-path module. The first-order optimization parame-

ter was area, while the second-order optimization parameter

was power. Speed was not found to be a real constraint, as

described below.

Three main improvements were introduced:

1. RAM reads—As mentioned above, the single RAM had

to be duplicated for the design to be functional. Two main

optimization alternatives were considered:

(a) A two-cycle read step—each multiplication which

requires two different bytes of Rr simultaneously will

happen during two cycles, reading the multiplicand

in the first cycle and reading the multiplier and mul-

tiplying it by the multiplicand in the second cycle.

This solution requires some added complexity to the

control logic, a few more cycles to the protocol and

more importantly a temporary register to hold the

multiplicand which was read at the first cycle. This

implementation was not as efficient as the next one.

(b) A dual-port-read RAM—allowing two cells (bytes)

of the RAM to be read simultaneously through a dou-

ble interface. Typical RAM architectures (SRAM,

DRAM) do not allow parallel access to all their bit

cells. However, since the RAM was small enough to

be implemented with sequential logic (flip-flops), the

double read interface was rather cheap—only another

set of read multiplexers was required.

2. RAM writes—Rr is stored only once, at the initialization

process of the protocol before calculations take place so

a serial-in random-out implementation was found to be

more efficient than the typical symmetric (read/write)

RAM which was originally designed. There was no

address required for write transactions as they entered

the RAM serially, similar to a typical shift register. Also,

a single write port is all that is needed and writes could

be separated in time from reads, so the existing the read

port can also serve as a bi-directional write port.

3. The security level required 80 bits, but in the original

design, there were 16 bytes. Reducing it to 10 bytes saved

valuable area (even though 10 is not a power of 2, so each

read multiplexer still required a 4-bit select line).

To summarize, out of the several design alternatives, the

chosen RAM architecture consisted of two parallel, random

access read ports and one single serial write port as depicted

in Fig. 8.

4.4.1 Clock gating

Clock gating is a popular technique for reducing dynamic

power dissipation by adding more logic to a circuit to prune

the clock tree. Pruning the clock disables portions of the cir-

cuitry so that the flip-flops in them do not have to switch

states, thus do not consume dynamic power. Clock gating

works by taking the enable conditions attached to registers,

and uses them to gate the clocks. Clock gating can save sig-

nificant die area as well as power, since it removes large num-

bers of multiplexers, or flip-flops with enable ports, replac-

ing them with clock gating logic which is usually a dedicated

optimized library cell.

The synthesis tool rc claims to identify these enable con-

ditions automatically and replace them with CG cells. There-

fore, our first step was having the tool perform its semi-

automatic clock gating process, and indeed all the D-FF

cells which included an enable port were converted to D-FF

Fig. 8 Illustration of the selected RAM architecture (an example with

three RAM cells). The write-path is indicated in blue. Read-paths are

indicated in red (color figure online)
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with no enable port. However, this semi-automatic process

depends on the tool’s static analysis of the design and does

not take into account implicit information which the designer

is aware of. For example consider the multiplexer implemen-

tation described in Algorithm 4.2:

Algorithm 4.2 Example of muxing between buses according

to a select control signal

if (Rt1[a]_moves) then

mux_select <= "00";

else if (Rt1[b]_moves) then

mux_select <= "01";

else // select Rt2

mux_select <= "10";

When both Rt1[a] and Rt1[b] do not move, the mux selects

Rt2 even when it does not need to move (when nothing

moves). In that case, the tool lacks the explicit enable con-

dition which can be automatically translated into clock gat-

ing logic when Rt2 is not actually moving. We implemented

manual clock gating to capitalize on this.

Another manual clock gating was explicitly implemented

for the result register (accumulator), such that when the mul-

tiplication result equals 0 (or alternatively, when one of the

multiplier’s inputs equals 0), the accumulation register is not

enabled.

4.4.2 Reset logic

Initially, some of the sequential logic had been given an asyn-

chronous reset. However, functionally it is not necessary for

the circuit to be reset in that manner, so all the flip-flops were

eventually provided with a synchronous reset.

The accumulator register which had an asynchronous reset

was upgraded to receive a synchronous reset through a reg-

reset control signal initiated by the control logic, resulting

in 13 % area decrease. More specifically, it allowed the syn-

thesis to replace the F D P RB Q library cells (D-Flip-Flop,

positive-edge triggered, lo-async-clear, q-only) with F D P Q

cells (D-Flip-Flop, positive-edge triggered, q-only).

The Feistel states for Rt1[a], Rt1[b] and Rt2 need also an

initial seed value to start with. In our baseline design, this was

implemented using flip-flops with asynchronous set/reset.

We optimized the design via a control sequence which loads

the random seed values into the Feistel states using exist-

ing data paths. These random data are loaded 48 bit per cycle

over 6 cycles to the 3×96 bit Feistel state registers, through an

input multiplexer which is already connected to the Feistel

logic. This allowed to replace F D P RB Q cells (lo-async-

clear) and F D P SB Q cells (lo-async-set) with F D P Q (no

async-set/clear) which translates to 13 and 17 % area reduc-

tion accordingly.

4.4.3 Move-flip Feistel architecture

Each of the strings Rt1[a], Rt1[b] and Rt2 has an instanta-

neous Feistel state composed of two halves– right and left,

48 bit each. As the multiplications of the long strings are

done in a convolutional manner over small chunks (a single

byte each), the corresponding memory accesses to the long

strings are of a sequential nature. Flipping the direction of

movement (from right to left and vice versa) for a given string

was initially performed inside the Feistel logic using a set of

four 2:1 48-bit multiplexers to control which half is fed to

which part of the logic. This baseline architecture is depicted

in Fig. 9.

We observed that when a given Feistel state starts rolling

in a certain direction, it keeps rolling that way until the cur-

rent ciphertext byte is calculated, then flipping its direction

and rolling the other way. We also notice that the rolling oper-

ation is completely symmetric. So, if we can flip directions

cheaply, only once per ciphertext byte, and get rid of the large

multiplexers we can save significant area and power.

This was the incentive to get rid of left–right architecture

and replace it by a novel move-flip notion—a string moves in

a certain direction (whatever that is) for many cycles and is

then flipped in a single extra cycle. The calculations now take

slightly longer due to the extra cycle per flip, but the extra

logic for flipping directions is very cheap, much cheaper than

the above-mentioned multiplexers. This new architecture is

depicted in Fig. 10, which also presents the above-mentioned

synchronous reset logic which feeds in the RAND_IN bus

upon a reset condition.

The control logic was altered accordingly to provide the

flip and move controls instead of the roll-right, roll-left con-

trols.

4.5 Evaluation and discussion

4.5.1 Data analysis

The activity-based reports of the gate-level data-path module

were examined and compared according to the three parame-

ters (in descending priority order): area, power and speed. We

compared three implementations:

1. Baseline—‘naïve’ implementation, based on the proof-

of-concept implementation, after making the necessary

fixes and additions to make it functionally correct and

identical with the reference model.

2. RTL optimized—including optimizations which do not

require knowledge of the WIPR protocol:

(a) Semi-automatic clock gating using the rc tool

(b) Simple dual-port RAM
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Fig. 9 Baseline architecture of

Feistel state and logic

MUX MUX

Fig. 10 New architecture of Feistel state and logic

3. Fully optimized—including all relevant optimizations,

detailed in Sect. 4.4

The graphs in the following sub-sections present the area and

power as function of speed for the three different levels of

optimization.

Fig. 11 Area as function of speed for the three optimization levels—

baseline (dashed), RTL optimized (dotted) and fully optimized (solid)

Table 4 Summary of area for the three implementations

Area Gate Equivalents %

Baseline 7,160 100

RTL optimized 5,579 78

Fully optimized 4,184 58

4.5.2 Area improvements

Figure 11 and Table 4 show the area versus speed for

the three implementations. Each step provided a 20–25 %

improvement over the previous one with a bottom line of
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Table 5 Breakdown of the data-path area for its composing sub-modules

Sub-module Area (gate equivalents) Fully optimized/baseline (%)

Baseline RTL optimized Fully optimized

Rt2Feistel state 767 579 495 65

Rt1[a] Feistel state 767 579 495 65

Rt1[b] Feistel state 771 579 495 64

Feistel logic + OWF 1,374 1,376 906 66

Rr Memory 2,381 1,365 710 30

Constant n 208 208 208 100

Multiplexers 99 99 99 100

Multiplier 402 402 402 100

Adder 115 115 115 100

Accumulator 203 203 184 91

Free logic 74 74 76 102

Total data-path area 7,160 5,579 4,184 58

Fig. 12 Average power (static + dynamic) for two optimization

levels—baseline (dashed) and fully optimized (solid)

4,184 gate equivalents, which stand for a 42 % improvement

over the baseline implementation.

For a detailed analysis of the results, we observed the

breakdown of the data-path design into its sub-blocks to see

what is the improvement factor for each sub-module and vali-

date it with our initial assumptions. The detailed list is shown

in Table 5. This table shows that the pure sequential parts (the

Feistel states and the accumulator) improved by 10–35 %,

mainly due to clock gating and new reset logic. The Feistel

logic (including the OWF) improved by 1/3, mainly due to

the new move-flip architecture. The RAM improved signifi-

cantly by 70 % due to the series of improvements detailed in

Sect. 4.4, while the free logic and arithmetic operations did

not improve at all as none of the applied methods was related

to them.

As for speed dependency, when the speed is higher, the

synthesis tends to use cells with larger drive strength which is

also larger in size, thus increasing the area of the circuit. The

maximum speed is then limited also by the driving strength

of the library cells in hand. This explains the increase in area

seen in Fig. 11 as the clock rate approaches 100 MHz.

Fig. 13 Total energy consumption for two optimization levels—

baseline (dashed) and fully optimized (solid)

4.5.3 Power/energy improvements and speed trade-offs

The next graphs show power and energy as function of speed.

The measured power in Fig. 12 is the average combined

(dynamic and static) power for the duration of the whole

simulation (not instantaneous power). The measured energy

in Fig. 13 is the total energy spent during the entire sim-

ulation. The performance of the RTL-optimized version is

essentially equal to that of the fully optimized version and is

omitted for clarity.

As mentioned in [36], the power dissipation of a digital cir-

cuit is determined by the following formula P = Pd + Ps =

C · V 2 · f + Ps , where Pd is the dynamic power dissipation,

Ps is the static power dissipation, f is the circuit frequency,

V is the supply voltage and C is a process-dependent con-

stant. Thus, if the dynamic power dissipation is much larger

than the static power dissipation, which is typically the case

when the circuit is operating, we can say that the total power

dissipation is linear with the frequency. A second-order phe-

nomenon is an increase in the static power when the dynamic
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power is high, due to temperature effects (heating causes

more leakage).

The absolute numbers for our design are shown in the

following results:

1. Energy consumption of 1.5–3µJ in the interesting speed

range (where area stays constant) and specifically 2µJ

for a clock frequency of 467 KHz, which corresponds to

a protocol duration of 180 ms.

2. Power dissipation of less than 20µW for clock frequen-

cies below 800 KHz.

3. Current draw of 4.2µA at 100 KHz, compared to 14.2µA

reported for a similar frequency in the proof-of-concept

design of [18].

Comparing the three implementations led to the following

observations. First, the average power and energy improve-

ment for the fully optimized implementation over the base-

line implementation are around 20 %. Second, it can be seen

on the power graph (Fig. 12) that the power is linear with

the frequency for all speed ranges, as expected. Note that the

x-axis is logarithmic, and hence, a linear dependence appears

as an exponential curve. Third, the energy is increasing with

simulation duration as the static power (leakage) is accumu-

lated in time, while the dynamic power contribution stays

approximately the same.

4.5.4 Recommended working point

Given the above results, we can summarize:

1. Any speed below 10 MHz is slow enough not to incur in

area penalty.

2. Any speed below 1 MHz is slow enough not to surpass

the 30µW power budget listed by [3], as seen in Fig. 12.

Our recommendation is to work in the 100 KHz–1 MHz fre-

quency range, depending on the application. This translates to

a protocol duration of 800–80 ms, correspondingly. In partic-

ular for a clock rate of 467 KHz, the total energy consumption

is 2µJ and the average power dissipation is 11µW, values

which were shown in [3] to be suitable for typical passive

UHF RFID tags up to a range of 8.5 m.

The EPC standard establishes time constraints for protocol

execution. For example, there is a T1 timing boundary, typi-

cally on the order of 20µs, that establishes the maximum

delay from the interrogator transmission to tag response.

Designing a WIPR implementation that can perform an entire

encryption within this duration would require a high clock

rate and increased power consumption. To allow a WIPR-

based tag to comply with the strict timing requirements of

the EPC standard while remaining at a low clock rate, the

WIPR protocol was designed to employ a challenge-response

mechanism based on memory-mapped I/O [37]. Under this

design, the WIPR challenge is written to the tag in one EPC

command, while the response is read back in one or more

additional commands. Thus, the WIPR tag can always pre-

calculate a few bytes of its response and store them in RAM,

making them immediately available to the reader—the first

precalculation is performed immediately after the challenge

has been written to the tag, and subsequent precalculations

take place immediately after the tag has finished sending

a ciphertext block to the reader. Our software implementa-

tion, which used this mechanism, was tested without issue

against a standard EPC reader with standard timing para-

meters (see Sect. 3). As shown in Sect. 3.4, the amount

of ciphertext bytes sent to the reader in each read opera-

tion has a direct effect on the overall throughput of the tag.

Thus, a trade-off exists between the RAM consumption of

the tag (and thus its overall chip area) and the tag’s read

rate.

5 Conclusions

Public-key cryptography was previously claimed to be

impractical for RFID tags. The reasons for this claim were the

high cost (in gate count and power consumption) of public-

key encryption and its slow performance when compared to

secret-key ciphers or hash functions. In our software imple-

mentation, we demonstrated that even on an inherently slow

8-bit microcontroller, encryption speed was not a bottleneck.

We were able to run the entire encryption in 180 ms using only

standard EPC commands.

We found that the real bottleneck is in communication,

with the dominant parameter being the number of round trips

made by the reader. This problem is even more acute if the

reader being used does not recognize the concept of ses-

sions and repeats the singulation process with the tag every

time it wishes to send it a command. It will be interesting

to investigate whether other reader vendors handle multi-

request sessions to a single tag more efficiently. If the tag

can calculate the response bits faster than they are trans-

mitted, optimal performance can be achieved by a pipeline

design which transmits the ciphertext byte by byte as it is

being generated within the context of a single large read

command.

We also presented an optimized WIPR implementation

which is small enough to fit on an RFID tag: Using a variety

of hardware design optimization techniques, we were able to

identify a working point that is well within a tag’s power and

area budgets, and is fast enough for the intended application.

We conclude that the public-key approach is a viable design

alternative for supply-chain RFID EPC tags.
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