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Abstract

Pure Adaptive Search (PAS) is an idealised stochastic algorithm
for unconstrained global optimisation. The number of PAS iterations
required to solve a problem increases only linearly in the domain di-
mension. However, each iteration requires the generation of a random
domain point uniformly distributed in the current improving region. If
no regularity conditions are known to hold for the objective function,
then this task requires a number of ‘classical’ function evaluations
varying inversely with the proportion of the domain constituted by
the improving region, entirely counteracting PAS’s apparent speed-up.
Grover’s quantum computational search algorithm provides a way to
generate the PAS iterates. We show that GAS realizes Pure Adaptive
Search for functions satisfying certain conditions, and (when quantum
computers are available) will be a practical algorithm.
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1 Introduction

Pure Adaptive Search (PAS) is a theoretical stochastic global optimisation
algorithm. If PAS could be implemented efficiently, then under certain condi-
tions the number of PAS iterations required to solve a problem would increase
only linearly in the dimension of the domain [10, 11]. The algorithm speci-
fies, though, that each iteration requires the generation of a random domain
point uniformly distributed in the current improving region, that is, the sub-
set of the domain on which the objective function takes better values than
any yet seen. If no regularity conditions are known to hold for the objective
function, then the generation of this random point in the improving region
requires a number of ‘classical’ function evaluations varying inversely with
the proportion of the domain constituted by the improving region, annulling
completely PAS’s apparent exponential efficiency gain. However, Grover’s
quantum computational search algorithm provides a way to generate the
PAS iterates. We show that GAS realizes Pure Adaptive Search for func-
tions satisfying certain conditions, and (when quantum computers become
available) will be a practical algorithm.

This article merges known results from the theories of global optimisation
and quantum computation. Section 2 describes Pure Adaptive Search, from
the literature of stochastic global optimisation theory. Section 3 briefly in-
troduces quantum computation in general, and Section 4 describes Grover’s
search method, an algorithm for execution on quantum computers. What is
known about the durations required for these two algorithms is then com-
bined in Section 5 to explore the future feasibility of implementing PAS on
quantum computers using the Grover method. We term the combined algo-
rithm Grover Adaptive Search.

Terminology and Notation

We consider the following finite global optimization problem:

minimize f(x)

subject to x ∈ S

where f(x) is a real valued function on a finite set S.
The following algorithms for finite optimisation are considered in this pa-

per: Pure Random Search (PRS) [2] samples the domain at each iteration
according to a fixed distribution. Pure Adaptive Search (called Strong-PAS
in [11]) samples from that part of the domain giving a strictly improving ob-
jective function value at each iteration. Hesitant Adaptive Search (HAS) [3]
behaves like PAS, except that each iteration is only successful with a certain
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probability; otherwise the iteration passes with no improvement found. The
success probability in HAS is a function of the best objective function value
yet at hand.

Grover Adaptive Search (GAS), introduced here, is a stochastic algorithm
using at each step a Grover Quantum Search [4] to find a point with a strictly
improving objective function value. This is a direct application of Grover
Quantum Search, where the ‘marked’ points are those with function values
better than the best value seen up to that iteration.

Throughout this paper we associate with the objective function f the fol-
lowing definitions. Let N denote the size of the domain S. Let `1 < . . . < `K

be the distinct objective function values, that is, the distinct levels appearing
on the graph of f . Notice that there may be more than K points in S; in
fact the most interesting cases are when K � N . Given the uniform prob-
ability measure µ on S, we define a probability measure π = (π1, . . . , πK)
on the range of f as follows. Let πj be the probability that any iteration
of pure random search attains a value of `j . That is, πj = µ(f−1(`j)) for
j = 1, 2, . . . , K, so more common range values are more likely under π. Let
pj denote

∑j
i=1 πi, the probability that PRS attains a value of `j or less. In

particular, pK = 1.

2 Pure Adaptive Search

The Pure Adaptive Search algorithm, introduced in [7], is a stochastic al-
gorithm for unconstrained global optimisation which has a very favourable
convergence rate, but which has been thought impossible to implement ef-
ficiently. The algorithm states simply that each sample point should be
distributed uniformly in the current improving region, that is, in the set
of points yielding objective function values better than any yet seen. We
will consider only PAS in the case of a finite domain and a uniform initial
sampling distribution. Formally,

Pure Adaptive Search
? Generate a PRS iterate x1 ∈ S, and set y1 = f(x1).
? For i = 1, 2, . . ., as long as yi 6= `1, do:

? Define Si = {x ∈ S : f(x) < yi}.
? Randomly generate x′ uniformly from Si.
? Set y′ = f(x′).
? Set xi+1 = x′ and yi+1 = y′

The Hesitant Adaptive Search algorithm [3] is a simple generalisation of
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PAS. Define a success (or “bettering”) probability function b : R → (0, 1].
The algorithm is as follows:

Hesitant Adaptive Search
? Generate a PRS iterate x1 ∈ S, and set y1 = f(x1).
? For i = 1, 2, . . ., as long as yi 6= `1, do:

? Define Si = {x ∈ S : f(x) < yi}.
? With probability b(yi),

? Randomly generate x′ uniformly from Si.
? Set y′ = f(x′).
? Set xi+1 = x′ and yi+1 = y′.

? otherwise,
? Set xi+1 = xi and yi+1 = yi.

Pure Adaptive Search is just HAS with b equal to the constant function 1.
In [11], the expected number of iterations before termination has been shown
to equal

∑K
j=2 πj/pj , and thus to be bounded above by ln(1/p1). This con-

vergence rate of PAS is very appealing. It equates to a linear dependence
on domain dimension (see for instance [10] and [11]), whereas typically the
effort required to solve global optimisation problems using known practical
methods increases exponentially with domain dimension.

The flaw preventing practical use of PAS can be seen in the step requiring
the generation of the random point x′. If the objective function is unknown
(as with a problem of the “black-box” type), or unless it yields readily to
analytical study, the improving region may be unknown at each iterate. In
addition, even the task of generating uniformly distributed points in known
regions can present computational difficulties. Attempts to implement PAS,
either exactly or approximately, have concentrated on methods for produc-
ing points distributed approximately uniformly in the unknown improving
region: for instance, the Improving Hit-and-Run algorithm in [12] uses the
first sample from a Markov chain whose limiting distribution is known to be
the required uniform distribution on the improving region.

Recently, however, physicists studying quantum computing have provided
a method that opens up the possibility of an efficient implementation of PAS
in the future. A broad overview of this method will be provided in Sections 3
and 4. Some readers may wish to skip directly to the summary at the end
of Section 4, where this overview closes and the pertinent quantum result is
given.
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3 Quantum Computation

The Grover mechanism referred to in this article is one of the major advances
to date in the fledgling field of quantum computation, the study of the work-
ings of quantum computers. Quantum computers are predicted technology;
research into the hardware implementation of these ideas is still in the very
early experimental stages [6]. But the continuing miniaturisation of electron-
ics, combined with our growing awareness of the possible benefits of quantum
computation over conventional computation, suggest that these devices are
likely to appear within a few decades.

The characteristic feature of a quantum computer is that, in place of a
conventional computer’s bits , it uses quantum bits , or qubits . A qubit is a
quantum system with two eigenstates, denoted |0〉 and |1〉. (Dirac notation
is used in this and the following section to describe quantum states, as is
standard in quantum mechanics. If the possible states of a quantum system
are situated in a Hilbert space H, then the general element of H is denoted
by |u〉.) Whereas the state of an ordinary bit can be either 0 or 1, the state
of a qubit can be any combination

α|0〉 + β|1〉,

where α and β are complex numbers with |α|2 + |β|2 = 1. When the value
stored in a qubit in this state is measured, an output of either 0 or 1 is ob-
served: 0 is observed with probability |α|2, and 1 is observed with probability
|β|2.

That a qubit can be in a simultaneous superposition of “off” and “on”
eigenstates presents the possibility of what has been called quantum paral-
lelism , where a single quantum circuit can simultaneously perform a calcu-
lation on a superimposed input, corresponding to very many conventional
inputs.

The study of quantum computation received a marked increase in atten-
tion in 1994 with the publication of Shor’s factoring algorithm [8]. This and
other developments of the theory have indicated that quantum computers
may one day enjoy a huge speed advantage over conventional computers for
many types of problems.

4 Grover Search

The quantum procedure germane to our purposes is Grover Search. This
section introduces it, and defines the Grover probability distribution (1).
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Consider the following general search problem. Let n be a positive integer,
and let S = {0, 1}n, so that the domain size N = 2n. Let g : S → {0, 1},
and assume that we have a black-box quantum circuit implementing g, called
the oracle. We wish to find a point u ∈ S such that g(u) = 1. We call such
points marked , we denote the set of marked points by M ⊆ S, and we denote
the number of marked states by m = |M |. We may or may not be aware of
the value of m.

Grover introduced in [4] a means of implementing a certain phase-space
rotation of the state of a quantum system encoding points in the domain S.
This rotation can be used to move toward the unknown marked states. The
description here draws heavily from [1].

For any real numbers k and l such that mk2 + (N − m)l2 = 1, define

|Ψ(k, l)〉 =
∑
u∈M

k|u〉 +
∑

u∈S\M

l|u〉.

The pivotal step of the Grover algorithm is an efficient method for trans-
forming the quantum state |Ψ(k, l)〉 into the state

∣∣∣∣Ψ
(

N − 2m

N
k +

2N − 2m

N
l,
−2m

N
k +

N − 2m

N
l
)〉

,

using a single (superimposed) oracle query.
As explained in [4, 1] this is a rotation in the plane spanned by the vectors

1√
m

∑
u∈M

|u〉 and
1√

N − m

∑
u∈S\M

|u〉,

by an angle determined by m and N . Note that the equal amplitude state

1√
N

∑
u∈S

|u〉,

which is relatively simple to prepare within a quantum computer, lies in this
plane. When the equal amplitude state is transformed by the Grover rotation
operator r times in succession, we call it a Grover run of r rotations , and
the resulting quantum state is

sin((2r + 1)θ)√
N sin θ

∑
u∈M

|u〉 +
cos((2r + 1)θ)√

N cos θ

∑
u∈S\M

|u〉,

where θ ∈ [0, π
2
] is such that sin2 θ = m

N
. If this state is then observed, it

will collapse to each eigenstate (element of S) with probability equal to the
squared modulus of that eigenstate’s amplitude in the quantum state.
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Grover Run and Distribution

Thus if S is a finite set with a marked subset M ⊂ S with |M | = m, and if we
can construct a quantum circuit (the oracle) to test individual domain points
for membership of M , and if θ ∈ [0, π

2
] is such that sin2 θ = m

N
, and r ∈ N,

then we can execute a Grover run of r rotations , for a cost in proportion to
that of r + 1 oracle queries, in order to generate domain points according to
the probability distribution γ on S with

γ({x}) =




sin2(2r+1)θ

N sin2 θ
, x ∈ M,

cos2(2r+1)θ
N cos2 θ

, x ∈ S\M.
(1)

We define G(S, M, r), the Grover distribution on S with parameters (M, r),
to equal this distribution.

If X ∼ G(S, M, r), then

P[X ∈ M ] =
∑
u∈M

P[X = m] =
m sin2(2r + 1)θ

N sin2 θ
= sin2(2r + 1)θ.

We define a new function gr and summarise this section:

Axiom There is a search procedure on a quantum computer called a Grover
run of r rotations that will find a marked state with probability

gr(p) = sin2 [(2r + 1) arcsin
√

p]

when the proportion of marked states is p.

5 Grover Adaptive Search

The Grover mechanism described in the previous section is the key opening
up the possiblity of efficient general implementation of PAS (that is, imple-
mentations for use in the absence of known regularity conditions). In this
section, we define an algorithm using the Grover distribution, and provide
the main result of this paper.

Let r be a fixed positive integer, called the rotation count . Then Grover
Adaptive Search with r rotations per step, or GAS(r), is as follows:
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Grover Adaptive Search
? Generate a PRS iterate x1 ∈ S, and set y1 = f(x1).
? For i = 1, 2, . . ., as long as yi 6= `1, do:

? Define Si = {x ∈ S : f(x) < yi}.
? Set x to the observed output of a Grover run of r rotations, starting

from the equal amplitude vector, with the states in Si considered
“marked”.

? Do a classical evaluation to determine y = f(x).
? If y < yi, then

? Set yi+1 = y.
? otherwise,

? Set yi+1 = yi.

In the algorithm as presented, the number of Grover rotations used in
each step is constant, r. Variations of this algorithm are possible, in which
the number of rotations per step varies, either according to a fixed schedule,
or adaptively.

Markov Chain Description

The stochastic process {Yk : k = 1, 2, . . .} for GAS can be modeled as a
Markov chain with states `1, . . . , `K , where state `1 represents the global
optimum. The initial probability distribution Y1 is given by π (i.e., we begin
with a PRS step). In standard Markov chain terminology [5, 11], `1 is the
absorbing state of this chain and all other states are transient. GAS converges
when the chain reaches the absorbing state.

A GAS iteration will always return a value less than or equal to the best
so far. If the best so far is `m+1, the Grover run of r rotations succeeds with
probablility gr(pm). In that event, all domain points in the improving region
are equally likely, so the K by K transition matrix P , in standard form,
having the i, jth element P[Yk = `j|Yk−1 = `i], for GAS is as follows. Note
that the (2, 1)-entry is equal to gr(p1), but is written as gr(p1)

π1
p1

to clarify
the structure of the matrix.


1 0 0 . . . 0 0
gr(p1)

π1
p1

1 − gr(p1) 0 . . . 0 0

gr(p2)
π1

p2
gr(p2)

π2

p2
1 − gr(p2) . . . 0 0

...
...

...
...

...
gr(pK−1)

π1

pK−1
gr(pK−1)

π2

pK−1
gr(pK−1)

π3

pK−1
. . . gr(pK−1)

πK−1

pK−1
1 − gr(pK−1)




It follows that P[Yk = `i], the probability of objective function value `i

for GAS on the kth iteration, is the ith entry of πP k−1.
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Note that for the variation of GAS with a schedule of different rotation
counts, the corresponding stochastic process would be modelled by a nonho-
mogeneous Markov chain.

Realisation of HAS

Hitherto HAS and PAS have been viewed primarily as theoretical tools, but
quantum computing casts these algorithms in a new light.

Theorem GAS is an implementation of HAS. The number of GAS(r) it-
erations before termination has expectation

K∑
j=2

πj

gr(pj)pj
.

and variance
K∑

j=2

(
2

gr(pj)
− πj

gr(pj)pj
− 1

)
πj

gr(pj)pj
.

Proof: Using any improvement probability function b satisfying b(`i) =
gr(pi) for each i ∈ {1, . . . , K} reveals GAS as an implementation of HAS.
The moment results follow from Corollary 3.2 in [9].

Note that all higher moments are also available [9].

Realisation of PAS

The exact expressions given in the theorem are valid for an arbitrary distribu-
tion reflected by π. However, if the distribution is particularly well-behaved,
GAS becomes PAS.

Corollary If a function f has associated pj satisfying gr(pj) = 1, then
GAS(r) realizes PAS for this f .

Proof: The matrix P reduces to the transition matrix for strong-PAS in
[11] since gr(pj) = 1 for all j = 1, . . . , K.
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Figure 1: A computer-generated example objective function

Example

As an example, consider the univariate function depicted in Figure 1. This
is a function on a domain of size 10000, whose image consists of 624 dis-
tinct values. The relative frequency distribution of these values is shown in
Figure 2.

When applied to this function, the number of iterations required by
GAS(65) before termination has expectation 8.9 and standard deviation 3.0.
For the same function, the number of PRS iterations before termination has
expectation 6736 and standard deviation 8495.

To compare these results fairly, recall that each iteration performed by
GAS(65) uses 65 Grover rotations, each requiring a single oracle query,
followed by a classical evaluation, that is, 66 function evaluations. Thus
GAS(65) has an expected effort comparable to 587.1 PRS iterations, with a
standard deviation comparable to 198.5 PRS iterations.

Note that the behaviour of GAS on this function depends only on the
distribution given in Figure 2. We generated the example by first building
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Figure 2: Relative frequency distribution of values taken by the objective
function in Figure 1

a monotone function with the distribution shown in Figure 2 and then shuf-
fling to produce the function shown in Figure 1. This example was made
using some very preliminary results aimed at identifying characteristics of
functions for which GAS(r) will be particularly suited. A more thorough
study is planned for future work. Briefly, though, we chose r = 65 because
2r + 1 is prime, and constructed a distribution for which gr gave values of
at least 0.8 at all points. As expected, this example required very few iter-
ations of GAS(65), and it is encouraging to see that this advantage remains
pronounced when total effort is considered.
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6 Discussion

Remarks

Throughout this article it has been assumed that the domain’s cardinality
is a power of two. Where this is not the case, note that the domain can be
artifically couched within a larger domain whose cardinality is a power of
two. The artificial domain need not be larger than twice the size of the true
domain. An objective function can be extended to have maximal value on
the artifically added points, and similarly a marking oracle can merely ignore
(not mark) the artificial points. Thus this restriction is vacuous.

The study of stochastic algorithms has often been seen as less worthwhile
than that of deterministic ones. In the future, with quantum machines in-
trinsically based on physics showing stochastic behaviour, it would appear
that algorithms such as PAS and HAS will come to the fore.

Further Work

As mentioned earlier, it might be expected that efficiency gains could be
made by allowing the rotation count to vary from one GAS step to another,
either according to a fixed schedule, or dynamically, depending on which
Grover runs yielded improvements.

A future paper will investigate convergence time bounds for GAS which
apply under certain favourable conditions.

7 Summary

Physicists studying quantum computing have provided a method that opens
up the future possibility of an efficient global optimisation algorithm. Grover
Adaptive Search (GAS) realises Hesitant Adaptive Search and on occasions
Pure Adaptive Search, which up to now have been thought of primarily as
theoretical tools.
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