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a b s t r a c t

Linear least squares problems are commonly solved by QR factorization. When multiple
solutions need to be computed with only minor changes in the underlying data, knowledge
of the difference between the old data set and the new can be used to update an existing
factorization at reduced computational cost. We investigate the viability of implementing
QR updating algorithms on GPUs and demonstrate that GPU-based updating for removing
columns achieves speed-ups of up to 13.5� compared with full GPU QR factorization. We
characterize the conditions under which other types of updates also achieve speed-ups.
� 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/3.0/).

1. Introduction

In a least squares problem we wish to find a vector x such that:

minxjjAx� bjj2

where A is an m� n matrix of input coefficients with mP n and b is a length m vector of observations. To do this we can use
the QR factorization of A:

jjAx� bjj2 ¼ jjQTAx� Q Tbjj22 ¼ jjRx� djj22 ¼
R1
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¼ jjR1x� f jj22 þ jjgjj22:

R1 is upper triangular and thus jjR1x� f jj22 ¼ 0 can be solved by back substitution, leaving jjgjj22 as the minimum residual.
This approach fits a linear model to observed data. For example, we can use it to model the relationship between an indi-

vidual’s wage and variables such as their age, education and length of employment. Each row of A will contain the values of
these variables for one person, with the corresponding entry in b being the observed value of their pay. In order to incorpo-
rate extra observations (in this example, people) we add rows to A, while if we wish to remove observations we must delete
rows. Similarly, we can add variables to the problem by adding columns to A and remove them by deleting columns.

QR factorizations are computationally expensive, but when elements are added to or removed from A it is not always nec-
essary to recompute Q and R from scratch. Instead, it can be cheaper to update the existing factorization to incorporate the
changes to A. We aim to accelerate the updating algorithms originally presented in [1] by implementing them on a GPU using
CUDA. These algorithms have been shown to outperform full QR factorization in a serial environment [1], and we have pre-
viously demonstrated that their implementation on a GPU can outperform a serial implementation by a wide margin [2].
Other papers have investigated implementing full QR factorization on GPUs, for example by using blocked Householder
transformations [3] or a tile-based approach across multicore CPUs and multiple GPUs [4,5]. Another study achieved
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speed-ups of 13x over the CULA library [6,7] for tall-and-skinny matrices by applying communication-avoiding QR [8].
Updating and downdating algorithms [9] have been implemented in shared- and distributed-memory parallel environments,
including parallel out-of-core updating for adding rows[10], block-based downdating [11] and MPI-based parallel downdat-
ing [12]. To the best of our knowledge there is no prior work on implementing all four updating algorithms on GPUs.

QR factorization decomposes the m� n matrix A into the m�m orthogonal matrix Q and the m� n upper trapezoidal
matrix R. Matrix updates entail the addition or removal of contiguous blocks of p columns or p rows.When a block of columns
or rows is added during an update, this block is denoted U. The location of an update within A is given as an offset, k, in col-
umns or rows from the top left corner. The updated matrix is denoted ~A and has the corresponding updated factorization ~Q~R.

Section 2 details the implementation of Givens and Householder transformations on the GPU. Section 3 summarizes the
updating algorithms and describes how we implemented them, before Section 4 presents performance results. We show
the speed-ups achieved by our implementation over the full QR factorization routine used by CULA. We also investigate
the accuracy and stability of the updating algorithms. Section 5 concludes and discusses future work.

2. Householder and Givens transformations on the GPU

Householder and Givens transformations are standard tools for computing the QR factorization [13,14] and they are also
key components of the factorization updating algorithms. Householder transformations can be readily implemented on GPUs
using CUBLAS [15]. To better exploit the instruction bandwidth of GPUs we use a blocked Householder approach [3,14] built
on BLAS level 3 operations that combines nb Householder transformations into a single matrix:

P ¼ P1P2 . . . Pnb ¼ I þWYT

where W and Y are matrices with the number of rows equal to the length of the longest Householder vector and number of
columns equal to the number of transformations.

Efficient GPU parallelization of Givens rotations is more challenging. A Givens rotation alters entries in two rows of the
matrix and therefore multiple rotations can only be conducted in parallel if they affect distinct rows. This leads to the
following scheme, illustrated in Fig. 1, which has been applied on both distributed and shared memory systems [16]:

1. Each processor p1; . . . ; pk is assigned a strip of rows (Stage 1).
2. Starting at the lower left corner of the matrix, p1 zeroes the entries in the first column of its strip using Givens rotations

(Stage 2).
3. When p1 reaches the top of the first column of its strip, p2 takes over zeroing entries in the first column. In parallel

p1 begins zeroing entries in the second column (Stage 3).
4. The algorithm continues in this way until the matrix is upper trapezoidal.

GPUs prefer finer-grained parallelism compared with CPUs (less work per thread, more threads) so we adapt this approach
by assigning two rows to each thread. Each stage of the algorithm requires the invocation of separate CUDA kernels to cal-
culate and then apply the Givens rotations. Note that this approach requires the matrix to be accessed by row, but as other
algorithms in this paper require access by column we have implemented an efficient CUDA transpose kernel [17].

3. Implementing the QR updating algorithms

We now summarize the QR updating algorithms originally presented in [1] and describe how we implemented them for
GPUs.

Stage 2Stage 1 Stage 8Stage 3

Fig. 1. Applying Givens rotations in parallel.
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3.1. Adding columns

Adding a block of p columns, denoted U, to A before column k gives:

~A ¼ Að1 : n; 1 : k� 1Þ U Að1 : n; k : mÞ½ �:

Multiplying through by QT yields:

Q T ~A ¼ Rð1 : m; 1 : k� 1Þ Q TU Rð1 : m; k : nÞ
� �

:

Since ~Rð1 : m; 1 : k� 1Þ ¼ Rð1 : m; 1 : k� 1Þ we need only perform a QR factorization of QTURð1 : m; k : nÞ
h i

to form the

remainder of ~R. To do this efficiently we use Householder transformations to make QTUðnþ 1 : m; 1 : pÞ upper trapezoidal,

and then selectively apply Givens rotations to make ~R upper trapezoidal. We cannot use Householder transformations for the

second stage as they would make ~R full.
Note that the use of Q TU to update R means that ~Q must also be formed if further updates are required. This can by

accomplished by post-multiplying Q with the same Householder and Givens transformations used to form ~R.
Fig. 2 illustrates the algorithm for an example where m ¼ 10; n ¼ 5; p ¼ 3 and k ¼ 3. Taking Q ;R, an m� p block of col-

umns U and an index k; 0 6 k 6 nþ 1 as input, the implementation proceeds as follows:

1. QR factorize the lower ðm� nÞ � p block of QTU using Householder transformations. This is the area shaded in red in Stage
1 of Fig. 2.

2. If k ¼ nþ 1 then the update is complete.
3. If not, transpose the section shown in red in Stage 2 of Fig. 2.
4. Apply Givens rotations to make the transposed section upper triangular and also to update Q and d. These three updates

are independent so separate CUDA streams can be used simultaneously for each.
5. Transpose back the (now reduced) red section in Stage 2 of Fig. 2.

3.2. Removing columns

When a block of p columns is deleted from A starting at column k, the modified data matrix becomes:

~A ¼ Að1 : m; 1 : k� 1Þ Að1 : m; kþ p : nÞ½ �:

Multiplying through by QT :

Q T ~A ¼ Rð1 : m; 1 : k� 1Þ Rð1 : m; kþ p : nÞ½ �:

Again ~Rð1 : m; 1 : k� 1Þ ¼ Rð1 : m; 1 : k� 1Þ and we can form n� ðk� 1Þ � p Householder transformations to reduce just
the right-hand portion of R:

Hn�p . . .HkRð1 : m; kþ p : nÞ ¼ ~Rð1 : m; kþ p : nÞ:

This QR factorization of a submatrix of R can be performed efficiently using blocked Householder transformations.

Fig. 2. Adding columns update of R. The symbol ‘�’ denotes a nonzero which must be made zero, ‘+’ denotes a zero which must be made nonzero and ‘*’
denotes a general nonzero element. The shaded blue area is the added columns, while the shaded red area is the area affected by each stage of the algorithm.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3 shows the stages in the reduction process for an example wherem ¼ 10; n ¼ 8; p ¼ 3 and k ¼ 3. Unlike adding col-
umns, Q is not required for the update but R, an index k; 0 6 k 6 n� pþ 1, and a block width nb are. The implementation
proceeds as follows:

1. If the right-most p columns of A were deleted, the update is complete.
2. Blocked Householder QR factorization is applied to the ðpþ nb þ 1Þ � nb submatrix to the right of the removed columns

(Stage 1). This is repeated across submatrices to the right until R is upper trapezoidal (Stage 2).

3.3. Adding rows

When a block of p rows, U, are added to A, the updated data matrix is:

~A ¼

Að1 : ðk� 1Þ;1 : nÞ

U

Aðk : m;1 : nÞ

2

6

4

3

7

5
:

We can permute U to the bottom of ~A:

P~A ¼
A

U

� �

and thus:

Q T 0

0 Ip

" #

P~A ¼
R

U

� �

:

With n Householder transformations we can eliminate U and form ~R:

Hn . . .H2H1
R

U

� �

¼ ~R

and because A ¼ QR:

~A ¼ PT Q 0

0 Ip

� �

H1 . . .Hn

� �

Hn . . .H1
R

U

� �

¼ ~Q~R:

As with the removing columns update we are performing a QR factorization on R to give an upper trapezoidal ~R. This can
be done efficiently with blocked Householder transformations, and we can further reduce the operation count by exploiting
the fact that R already has many zero entries. Instead of applying the fullW and Ymatrices to all of U and R, we instead apply
the transformations separately to U and the non-zero part of R using a matrix V ¼ ½v1v2 . . .vnb � with Householder vectors as
its columns [1] and an upper triangular matrix T. The product of nb Householder matrices can be defined as:

Fig. 3. Reducing one block within the removing columns update of R for block size nb ¼ 2. The shaded blue line shows where the removed columns used to
be, while the shaded red area shows the active section for that stage in the algorithm. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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H1H2 . . .Hnb ¼ I � VTVT
;

with:

V ¼

Inb
0

vmþ1:mþp

2

6

4

3

7

5

and:

T1 ¼ s1; T i ¼
T i�1 �siT i�1Vð1 : p;1 : i� 1ÞTv i

0 si

" #

; i ¼ 2 : nb;

where si is the Householder coefficient corresponding to the Householder vector contained in the ith column of V. As the
assignment of individual si elements along the diagonal of T is independent of the calculation of the other elements of T,
the entire diagonal can be assigned in parallel within a single kernel before repeated calls of CUBLAS gemv are used to form
the rest of T.

V and T are applied to the trailing submatrix of
R
U

� �

by:

I � VTTVT
h iT R

U

� �

¼ Imþp�kb
�

Inb
0

V

2

6

4

3

7

5
TT

Inb 0 VT
h i

2

6

4

3

7

5

Rðkb : kb þ nb � 1; kb þ nb : nÞ

Rðkb þ nb : m; kb þ nb : nÞ

Uð1 : p; kb þ nb : nÞ

2

6

4

3

7

5

¼

ðInb � TTÞRðkb : kb þ nb � 1; kb þ nb : nÞ � TTVTUð1 : p; kb þ nb : nÞ

Rðkb þ nb : m; kb þ nb : nÞ

�VTTRðkb : kb þ nb � 1; kb þ nb : nÞ þ ðI � VTTVTÞUð1 : p; kb þ nb : nÞ

2

6

4

3

7

5

and also used to update the right-hand side of the original problem:

d

e

� �

¼

dð1 : kb � 1Þ

ðInb � TTÞdðkb : kb þ nb � 1Þ � TTVTe

dðkb þ nb : mÞ

�VTTdðkb : kb þ nb � 1Þ þ ðI � VTTVTÞe

2

6

6

6

4

3

7

7

7

5

;

where kb is the column index in the blocked update where the recently reduced block began, and e contains values added to b

corresponding to the rows added to A [1].
We calculate this update using R, an index k; 0 6 k 6 mþ 1, and a p� n block of rows U. Note that the value of k does not

affect the algorithm as the added rows can be permuted to the bottom of A. Fig. 4 shows an example where
m ¼ 8; n ¼ 6; p ¼ 4. We proceed as follows for each p� nb block in U:

Fig. 4. Reducing one block within the adding rows update of R for block size nb ¼ 2. The shaded blue area shows the added rows, while the elements shaded
in red in Stage 1 are the elements involved in reduction of a block via Householder transformations. The elements in the red area in Stage 2 are multiplied by
the matrices produced in the previous stage. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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1. Stage 1 in Fig. 4: use Householder transformations to reduce the block’s entries to zeros and to modify R’s corresponding
nonzero entries.

2. Construct T as described above.
3. Stage 2 in Fig. 4: update R and b by multiplying with T and V.

This updating algorithm is implemented using the CUBLAS routines gemm, gemv, ger, axpy, and copy.

3.4. Removing rows

Removing a block of p rows from A from row k onwards gives:

~A ¼
Að1 : ðk� 1Þ;1 : nÞ

Aððkþ pÞ : m;1 : nÞ

� �

:

We first permute the deleted rows to the top of A:

PA ¼
Aðk : kþ p� 1;1 : nÞ

~A

" #

¼ PQR

and then construct a series of Givens matrices, G, to introduce zeros to the right of the diagonal in the first p rows of PQ, thus
removing the rows of Q that correspond to the rows deleted from A. These transformations are also applied to R, which
yields:

PA ¼
Aðk : kþ p� 1;1 : nÞ

~A

" #

¼ PðQGÞðGTRÞ ¼
I 0

0 ~Q

� �

S
~R

� �

giving ~A ¼ ~Q~R. Note that Householder transformations cannot be used because Hwould be full and constructed so as to elim-
inate elements of PQ, which would cause ~R to be full.

We calculate this update using Q ;R, an index k; 0 6 k 6 m� pþ 1, and a block height p. Fig. 5 shows an example of the
reduction process where m ¼ 12; n ¼ 5; p ¼ 4 and k ¼ 5. A strip of rows Z is identified within Q corresponding to the
removed rows from A; Z :¼ Qðk : kþ p� 1; 1 : nÞ.

Fig. 5. Removing rows in Q and R. The shaded blue area shows the rows in Q corresponding to the rows removed in A. The elements shaded in red are the
elements that form ~Q and ~R. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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The implementation proceeds as follows:

1. Assign the variable Z to the strip to be reduced by Givens transformations.
2. Apply Givens transformations to reduce Q to the form shown in the centre of the top of Fig. 5, with zeros in the first p

columns and in Z, and with the identity matrix embedded in the first p columns of Z.
3. Apply the same Givens transformations to R as well.
4. Form ~Q and ~R from the elements shaded red in Fig. 5.

4. Results

We evaluate the performance of our updating algorithms on an Nvidia Tesla M2050 (Fermi) GPU attached to a 12-core
Intel Xeon E5649 2.53 GHz host. All experiments are conducted in IEEE single precision arithmetic with ECC enabled. We

Table 1

Run-times in seconds for applying 1000 Householder transformations.

nb Adding rows n ¼ 4000;

m ¼ 1000, k ¼ 250; p ¼ 200
Adding columns n ¼ 4000;

m ¼ 1000, k ¼ 250; p ¼ 1000
Removing columns n ¼ 4000;

m ¼ 1200, k ¼ 0; p ¼ 200

10 0.194 0.389 0.201
50 0.175 0.285 0.183

100 0.175 0.280 0.182
200 0.185 0.288 0.190
500 0.214 0.336 0.235
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Fig. 6. Speed-up of adding columns update over full QR factorization for n ¼ 3000.
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Fig. 7. Speed-up of adding columns update over full QR factorization for n ¼ 6000.
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start measuring the run-time of our implementations, tupdate, from when they initiate transfer of Q (for those updating algo-
rithms that require it), R and d from host memory to the GPU. We then execute our updating algorithm and use ~R and ~d to
solve the least squares problem via the CUBLAS back-substitution routine cublasStrsm. Timing stops when this CUBLAS
routine returns. Q and R have been computed by a previous full QR factorization and we do not include the time to do this.

We compare our implementation against the run-time, tfull, of QR-based least squares solve from the CULA library (version
R14). Note that CULA is closed-source and we do not know the details of its implementation. We time the execution of the
culaDeviceSgels routine, including the time taken to transfer ~A and ~b from host to GPU. The speed-up is

tfull
tupdate

.

The entries of ~A are uniformly-distributed random numbers in the interval ð�1;1Þ and all matrices fit in GPU memory. All
run-times are measured in seconds and all values presented are averages over 5 executions.

4.1. Choosing the block size parameter

The optimum value of nb in the blocked Householder algorithm is problem-dependent. It was not possible to determine
this value for each problem size, and we instead choose nb based on the performance of a test case. Table 1 shows run-times
for each of the three algorithms that feature blocked Householder transformations when applying 1000 Householder vectors
to 1000 columns. We observe that the optimum block size lies between 50 and 100 columns per block and so in all further
tests we pick an nb that gives ten blocks per factorization.

Table 2

Run-times of the individual stages of adding p ¼ 200 columns update for m ¼ 16;000; n ¼ 6000.

Algorithm stage k ¼ 500 k ¼ 5500

Memory transfer (HOST!GPU) 0.4913 0.5102

QTU 0.1922 0.1922

Householder transformations 1.3950 1.3936
Transpose procedures 0.0291 0.0006
Givens rotations 11.0144 0.7949

 0
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Fig. 8. Speed-up of adding columns update over full QR factorization for k ¼ 2980; n ¼ 3000 for increasing numbers of additional columns p.
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Fig. 9. Speed-up of removing columns update over full QR factorization.
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4.2. Adding columns

The speed-ups of the adding columns update relative to CULA full factorization for varying k and two different n values
are shown in Figs. 6 and 7. As k gets smaller the cost of updating approaches that of computing a whole new factorization,
and consequently only the highest values of k show any speed-up.

The updating algorithm performs better relative to CULA for large k and n (adding columns to the end of a matrix that has
a large number of columns) because this reduces the size of the submatrix to which Givens rotations must be applied (the
red area in Stage 2 of Fig. 2). As shown in Table 2, when k is much smaller than n (corresponding to adding columns near the
beginning of the matrix), the run-time of the updating algorithm is dominated by the time required to execute the Oðn� kÞ

Givens rotations kernels.
Fig. 8 shows that the updating algorithm only runs faster than full factorization for smaller values of p (adding fewer col-

umns). This is because the number of Givens rotations in Stage 2 increases with p and must also be applied to Q as well as R
in order to enable subsequent updates.
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Fig. 10. Speed-up of removing columns update over full QR factorization in CULA with varying k and p.
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Fig. 11. Speed-up of adding rows update over full QR factorization with varying m.
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4.3. Removing columns

The cost of the removing columns updating algorithm is independent of m because we only apply Householder transfor-
mations to a ðpþ nb þ 1Þ � ðn� ðk� 1Þ � pÞ submatrix of R. This is not the case for full factorization, and as shown in Fig. 9
the speed-up of updating over CULA accordingly increases as m increases.

Removing more columns (larger values of p) decreases the number of Householder transformations required to update
the factorization as well as decreasing the amount of work required for a full QR factorization. As reducing the number of
Householder transformations reduces the number of kernel invocations on the GPU, our updating implementation performs
better as p increases. We consequently observe speed-ups over CULA shown in Fig. 10 that reach over 13x for large p and k.

4.4. Adding rows

We set k ¼ 0 for all tests in this section because the block of added rows can be permuted to the bottom of the matrix
without altering the algorithm.The cost of the updating algorithm does not depend on m because the Householder transfor-
mations are not applied to the zero elements of R. The run-time of the updating algorithm therefore remains essentially con-
stant with increasing m while the run-time of the full QR factorization increases, giving rise to the speed-ups shown in
Fig. 11.

As shown in Fig. 12, however, the speed-up decreases as n and p increase. We might expect that the updating algorithm
would never run slower than full QR factorization because it essentially performs a full QR reduction that skips over the zeros
in R. To do this, however, requires twice as many CUBLAS calls as an efficient full QR factorization and so is only worthwhile
for low values of n and p. Given the processing power of GPUs, it might be beneficial to do the unnecessary arithmetic and
avoid the expense of additional function calls.
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Fig. 13. Speed-up of removing rows update over full QR factorization for varying n and p.
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Fig. 14. Speed-up of removing rows update over full QR factorization for varying m and p.
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4.5. Removing rows

This is the most computationally demanding update because it applies multiple Givens rotation kernels to both Q and R.
Figs. 13 and 14 illustrate the speed-up of removing rows updating over full QR factorization with varying m;n and p. Updat-
ing becomes progressively slower than full QR factorization asm;n and p increase because of the Oðmþ pÞ kernel invocations
required to implement the Givens rotations. Updating is only faster than full factorization when p is small and m approaches
n (see Fig. 13).

4.6. Accuracy and stability

We compute the normwise relative error jjx�x̂jj2
jjxjj2

of the least squares solution from an updated factorization, x̂, against that
of a solution from a full factorization calculated by CULA, x. We compare both GPU-based updating and a serial implemen-
tation of the updating algorithms. Table 3 shows that the errors are comparable between the GPU and CPU updated
factorizations.

For the two updating algorithms that form ~Q (removing rows and adding columns) we assess the orthogonality of ~Q by

computing jj~QT ~Q � Ijj2. Table 4 shows that the errors from the GPU computations are again of the same order as those from

the serial implementation. We also compute the normwise relative backward error jj~Q~R�~Ajj2
jjAjj2

for these two algorithms, and the

results are given in Table 5. The errors are again comparable between serial and GPU implementations.

5. Conclusion

We have implemented four GPU updating algorithms using CUDA and have shown that they outperform full GPU QR fac-
torization for certain values ofm;n; p and k. We observed the best performance when removing large numbers of columns for

Table 3

Table of normwise relative forward errors for m ¼ 4000; n ¼ 2000; k ¼ 0.

p Adding rows Removing columns Removing rows Adding columns

GPU Serial GPU Serial GPU Serial GPU Serial

100 2� 10�6 3� 10�6 3� 10�6 3� 10�6 5� 10�6 4� 10�6 3� 10�6 3� 10�6

300 2� 10�6 2� 10�6 3� 10�6 3� 10�6 4� 10�6 4� 10�6 5� 10�6 5� 10�6

500 2� 10�6 3� 10�6 2� 10�6 2� 10�6 5� 10�6 4� 10�6 6� 10�6 6� 10�6

700 1� 10�6 3� 10�6 2� 10�6 2� 10�6 6� 10�6 5� 10�6 6� 10�6 6� 10�6

900 3� 10�6 3� 10�6 2� 10�6 2� 10�6 6� 10�6 5� 10�6 7� 10�6 8� 10�6

Table 4

Table of ~Q orthogonality values for m ¼ 4000; n ¼ 2000; k ¼ 0.

p Removing rows Adding columns

GPU Serial GPU Serial

100 2:34� 10�4 1:62� 10�4 2:42� 10�4 1:68� 10�4

300 3:39� 10�4 1:76� 10�4 3:67� 10�4 4:67� 10�4

500 3:64� 10�4 1:85� 10�4 5:00� 10�4 6:00� 10�4

700 3:89� 10�4 1:90� 10�4 4:79� 10�4 2:29� 10�4

900 4:70� 10�4 1:93� 10�4 5:64� 10�4 2:46� 10�4

Table 5

Table of normwise relative backward error values for m ¼ 4000; n ¼ 2000; k ¼ 0.

p Removing rows Adding columns

GPU Serial GPU Serial

100 1:39� 10�4 7:40� 10�5 9:50� 10�5 5:00� 10�5

300 3:74� 10�4 1:87� 10�4 1:56� 10�4 6:10� 10�5

500 5:81� 10�4 3:04� 10�4 2:02� 10�4 6:90� 10�5

700 7:33� 10�4 4:12� 10�4 2:34� 10�4 7:70� 10�5

900 9:02� 10�4 5:00� 10�4 2:51� 10�4 8:30� 10�5
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large values of k (corresponding to removing columns from the right-hand portion of A), with speed-ups of up to 13.5� over
full factorization. Adding smaller numbers of columns for large values of k, with speed-ups of up to 3.5x, and adding rows to
a tall-and-skinny A, which gave speed-ups approaching 2x, also performed well. Removing rows, which required the appli-
cation of Givens rotations to both Q and R, performed worse than CULA for all cases except for removing a small number of
rows from an almost-square A.

Many of the encountered performance issues were linked to high frequencies of kernel invocations. We could reduce the
number of kernels needed to apply Givens rotations by increasing the number of rows in a strip and applying multiple
dependent rotations per thread block by looping and synchronization statements within the kernel. Alternatively, we could
reduce kernel invocation overheads by using the Nvidia Kepler architecture’s dynamic parallelism [18] to spawn kernels di-
rectly on the GPU.

Another approach would be to use Householder transformations instead of Givens rotations where possible. For example,
in the adding columns update Householder transformations could be used even though they generate intermediate fill-in
because the resulting extra floating point operations are likely to be cheaper on the GPU than invoking multiple kernels.

We have identified some situations in which updating is faster than full factorization, and others where it is not. Ideally,
we would like to be able to identify in advance whether or not updating will save time by considering the size of the prob-
lem, the type of update and the number of rows/columns to be added/removed. The original presentation of the algorithms
includes operation counts in terms ofm; n; p and k that we could use as the basis for closed-form expressions to approximate
the run-times of our GPU implementations.

Finally, it would be instructive to compare our implementations with the QR routines from other GPU linear algebra
libraries such as MAGMA [19].
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