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Abstract—Achieving ever-growing Quality of Service (QoS)
requirements for business customers is a major concern over the
current Internet. However, presently, its architecture and infras-
tructures are inflexible to meet the demand of increased QoS
requirements. OpenFlow, OF-Config (OpenFlow Configuration
and Management protocol), and OVSDB (Open vSwitch Database
Management protocol) protocols are well-known software defined
networking (SDN) technologies for the Future Internet, enabling
flexibility by decoupling the control plane from networking
devices. In this paper, we propose a QoS framework using the
SDN technologies and test the framework in failure-conditions
using single and multiple autonomous system scenarios of the
current Internet. We show that an effectively high QoS can be
achieved for business customers using our framework.

I. INTRODUCTION

Providing high Quality of Service (QoS) for business
customers has always been a major concern over the current
Internet. To provide high QoS, there is a Service Level
Agreement (SLA) between business customers and a service
provider. If SLAs are not met, these are compensated for the
loss of service. Therefore, in the current Internet, high-priority
traffic (traffic from a business customer) should always get
a higher precedence over best-effort traffic. For this purpose,
two QoS mechanisms – IntServ (Integrated Service) [1] and
DiffServ (Differentiated Service) [2] – are being implemented
over the Internet. IntServ has a scalability problem as it is
based on individual flows and DiffServ alleviates this problem
by providing QoS based on aggregated flows. In Diffserv,
customers or applications request a bandwidth broker (the
broker of a certain DiffServ autonomous system) to allocate a
pre-determined amount of bandwidth.

To allocate the requested bandwidth, the bandwidth broker
needs to perform three tasks: (1) determine the availability of
network resources (e.g. bandwidth), (2) configure respective
network resources if they are available, and (3) reconfigure net-
work resources to recover from failures (may be after or before
a failure). In the current Internet, all the aforementioned tasks
are challenging. The difficulty from the first task resides in the
fact that each networking device in the Internet runs its own
control software to make the forwarding decisions, lacking the
broader picture of available resources in its network. For the
second task, the problem is that there is no standard protocol
available for configuring networking devices. Currently, the
bandwidth brokers perform this task using vendor-specific pro-
tocols. For the third task, resilience differentiation frameworks
[3] are already proposed to provide QoS to high-priority traffic
on failure conditions. However, as configuration protocols are
not standardized, resilience differentiation frameworks needs
to depend on vendor-specific protocols for reconfiguration.

Therefore, the current QoS architectures are not truly success-
ful, and are not globally implemented over the Internet. With
Software Defined Networking (SDN) technologies [4], it is
practically possible to solve the above issues as it removes
software from all networking devices in a network, embeds it
into one or more external servers (e.g., controllers), and pro-
vides standardized vendor-agnostic interfaces between them.
The examples of vendor-agnostic interfaces are OpenFlow
[4], OpenFlow Configuration and Management protocol (OF-
Config) [5], and Open vswitch Database Management protocol
(OVSDB) [6].

In this paper, we implement a QoS framework using
vendor-agnostic interfaces of SDN technologies such as Open-
Flow and OVSDB protocols. In the framework, we assume that
a single autonomous system (AS) of the current Internet is
controlled by one SDN controller. We implement a QoS tech-
nique in each autonomous system and add a failure recovery
mechanism onto it, keeping in mind the QoS requirements of
high-priority traffic. Regarding the implementation, we do not
focus on fast-failure recovery [7], [8], [9] but instead, we focus
on scenarios in which high-priority traffic should always get a
higher precedence over best-effort traffic, even after a failure.

We test our implemented framework in a single AS (em-
ulated pan-European topology) and multiple AS scenarios
(designed in the CityFlow project [10]) on the OFELIA testbed
facility at iMinds [11], and evaluate three failure recovery
scenarios. In the first scenario, we assume enough bandwidth
so that neither high-priority nor best-effort traffic will be
affected after all the traffic being re-routed to a failure-free
path. In the second scenario, we restrict the available data
path bandwidth so that all priority traffic can be rerouted after
recovering all flows. However, some of the best-effort traffic
flows experiences packet loss in order to meet the requirements
of high-priority traffic. In the third scenario, the capacity is
squeezed further so high-priority traffic will also be starved for
bandwidth after all traffic is redirected to a failure-free path.
In this scenario, there is no best-effort traffic interference. A
live demonstration of the single AS scenarios has already been
shown in [12] using portable devices.

II. RELATED WORK

Since many years, QoS frameworks remain as a feature of
paramount importance for the current Internet. In the literature,
two QoS frameworks [1], [2] are described for the Internet:
IntServ and DiffServ. In IntServ, resources are reserved based
on each flow in all networking devices, and in Diffserv,
traffic is classified at the network boundary, and assigned
then to a behavior aggregate. DiffServ is a framework that
introduces a bandwidth broker as its logical resource, network



and policy management module. There is one bandwidth
broker per Diffserv autonomous system. The bandwidth broker
maintains policies and negotiates SLAs with customers and
with neighboring bandwidth broker domains.

The introduction of SDN allows us to rethink about QoS
frameworks in a standard way. From its first specifications (ver-
sion 1.0), the OpenFlow protocol, which stands as the de facto
standard for SDN, considers QoS as a part of its operations.
In its version 1.0, OpenFlow presents an enqueue mechanism
with which a certain flow (type of traffic) can be redirected to a
particular queue that maintains QoS. However, queues cannot
be created using OpenFlow. For queue creation, SDN provides
OF-Config and OVSDB protocols. The OF-Config protocol is
standardized by Open Networking Foundation and is based on
the Network Configuration Protocol (RFC 4721). The OVSDB
protocol is standardized by the Internet Engineering Task Force
and is based on JavaScript Object Notation-Remote Proce-
dural Calls (JSON-RPCs). The OVSDB protocol is already
implemented in one of the OpenFlow switch software (Open
vSwitch [13]). The latest versions of OpenFlow (version 1.3
and 1.4) provide per-flow meters that provide simple QoS
operations such as rate-limiting, controlling the rate of packets
per flow-entry directly, while queues are attached to ports to
which the flows are forwarded.

Recently, OpenQoS [14] and QoS methods [15] are pro-
posed for SDN. Using OpenQoS, media flows are dynamically
placed on QoS guaranteed routes to meet the QoS requirements
and using QoS methods, an approach to implement Quality of
Service that is managed and defined by a centralized network
is proposed. Our approach in this paper is different from
OpenQoS and the already proposed QoS methods. In our
approach, we reserve resources for each high-priority flow at
the ingress switch but OpenQoS does not use any resource
reservation scheme in its method. In addition, we propose a
complete framework for implementing QoS in SDN but QoS
methods in [15] describes how to implement QoS using a
centralized controller.

III. QOS FRAMEWORK FOR SDN

Our framework is based on the research performed in the
EuQoS project [16] for end to end quality of service over
heterogeneous networks. The essential principal of the research
is that bandwidth resources are managed in an on-path off-
line manner. By on-path we mean that resource management
follows the forwarding path of the IP packets, across multiple
AS, as determined by BGP (Border Gateway Protocol) or
OSPF (Open Shortest Path). By off-line we mean that the
resource management is implemented in software that is off-
line from the network elements which are responsible for
packet forwarding. Connection admission control is imple-
mented using packet shapers or policers. Along the path,
capacity management is implemented only at choke points
which are mostly the interconnection points and the edges.

Our proposed QoS framework is shown in Fig. 1. To
implement the presented framework, we assume that: (1) a
single AS is controlled by a single controller, (2) the controller
is able to run both the OpenFlow protocol and the OVSDB
protocol, and (3) a bandwidth broker and the controller are
able to communicate with each other through a northbound
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Fig. 1. Quality of Service Framework for the SDN enabled AS

API (Fig. 1). As the current controllers do not support the
OVSDB protocol, one of the controllers (known as Floodlight
[17]) is extended to support this feature in order to add queues
in SDN networks. For implementing the OVSDB protocol in
the controller, we implementing a RPC client and through
this RPC client, we Nevertheless, as a northbound API (e.g.,
REST API [17]) is already implemented in several OpenFlow
controller software such as Floodlight or OpenDaylight, we
used this API for the implementation of our framework. In our
implementation, for routing traffic within or between two ASs
in SDN networks, we use RouteFlow [18], and run OSPF and
BGP using the RouteFlow automatic configuration framework
given in [19]. As our framework runs BGP and OSPF routing
that is similar to the routing used in the current Internet
infrastructure, our framework using SDN infrastructure can
be integrated with the legacy network using BGP or OSPF
routing. All the steps of our framework are described below:

1) Configuration of three default queues: The con-
troller configures three queues on each port of an
OpenFlow router using the OVSDB protocol (Fig. 1).
The first queue (which is for control traffic) has the
highest priority, followed by the second queue (which
is for high-priority traffic), and then by the third
queue (which is for best-effort traffic). The traffic
is considered as high-priority traffic if its Type of
Service (TOS) field is enabled and is considered as
best-effort traffic if its TOS field is disabled. This
step is performed when the controller establishes an
OpenFlow session with an OpenFlow router.

2) Running of a routing protocol: The controller runs
standard routing protocols (OSPF, BGP) for each
OpenFlow router using RouteFlow (Fig. 1). The
controller then sends the control traffic of the routing
protocol using the first queue configured at Step 1.

3) Establishment of Flow Entries: On discovering
a new routing entry for an OpenFlow router us-
ing RouteFlow, the controller establishes two Flow-
Entries in the router. The first Flow-Entry is for high-
priority traffic. Hence, the flow of this entry has the
same destination address as the destination of the
routing entry and has the enabled TOS field. This
Flow Entry redirects high-priority traffic to the second
queue (configured at Step 1) of the outgoing port,
given by the routing entry. The second Flow Entry is
for best-effort traffic. Hence, the flow of this entry has
the same destination address as the destination of the
routing entry and has the disabled TOS field. This



Flow Entry redirects best-effort traffic to the third
queue (configured at Step 1) of the outgoing port,
given by the routing entry.

4) Availability of network resources for high-priority
traffic: On request from a business customer to assign
a certain amount of bandwidth, the bandwidth bro-
ker checks for the availability of network resources
or SLA validation by contacting the controller and
the neighboring bandwidth broker (multiple AS sce-
nario). The SLA validation between the bandwidth
brokers in multiple domains (AS) is done through a
signalling protocol [16] that is same as Next Steps in
Signalling (NSIS) defined by IETF. If the requested
resources are available or SLAs are validated, the next
step is performed. Otherwise, an error message can
be sent to the customer.

5) Configuring a rate limiter queue for high-priority
traffic: The controller finds the edge router for high-
priority traffic and configures a rate limiter queue (Q)
on the edge router to forward high-priority traffic. The
rate of the queue has the rate negotiated between the
bandwidth broker and a business customer.

6) Establishing a Flow Entry for high-priority traffic:
After configuration of the rate-limiter queue (Step
5), the controller establishes a Flow Entry on the
edge router, which enables the TOS field of high-
priority traffic to classify the traffic from the business
customer as high-priority traffic and redirects this
traffic to the rate limiter queue.

7) Re-establishing Flow Entries and the rate limiter
queues: On detecting failures due to the routing
protocols timeouts (e.g., Router Dead Interval in
OSPF), the controller removes the Flow Entries cor-
responding to the faulty routing entries. When the
controller discovers new failure-free routing entries
for OpenFlow routers, it establishes the entries (two
Flow Entries per routing entry) in the corresponding
routers, and for the edge router, it reconfigures the
rate limiter queue (corresponding to a new path). This
step is performed to recover from a failure.

IV. EXPERIMENTATION

In this section, we describe the testbed, emulated topologies
and evaluation methodology.

A. Emulation Testbed and Emulated topologies
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We perform our experiments on the OFELIA testbed facil-
ity provided by iMinds [11]. The testbed consists of 100 nodes
interconnected by a non-blocking 1.5 Tb/s VLAN Ethernet
switch (Force 10). Each node provides the flexibility to change
the software handling network traffic and is a dual processor,
dual core server with 4GB RAM and 4x 80GB hard disk with
6x1 Gb/s or 4x1 Gb/s interfaces.

We emulate extensive QoS experiments using a single AS
topology (pan-European topology, Fig. 2A) and using multiple
AS topology (Fig. 2B). The single AS topology shows 16
OpenFlow routers connected with each other in a mesh fashion.
Each router is also connected with a server or client (shown
in Fig. 2A). In addition, each router has provided a dedicated
interface to a switched Ethernet LAN (not shown in Fig. 2A),
which establishes an out-of-band connection with a single
controller. Out-of-band means that there is a separate channel
for the control and data planes (i.e. the failure in the data
plane does not affect the communication between the switches
and the controller). The multiple AS topology, shown in Fig.
2B, is designed in the CityFlow project to emulate future
Internet experiments for a city of 1m inhabitants [10]. This
topology contains 3 clients in access networks, containing
traffic from end users. In addition, it contains 3 AS in the
aggregation network (each containing 13 routers), 1 AS in the
core network (containing 2 routers), and 1 AS in the content
delivery network (CDN) (containing 2 routers). Furthermore,
Fig. 2B shows that each AS is controlled by a single controller
through a switched Ethernet LAN and a bandwidth broker
is directly connected with the aggregation and core network
controller. In the OFELIA testbed, we generate the presented
topologies. The bandwidth capacity of CDN networks links is
100 Mb/s and all other links are limited to 50 Mb/s. For the
single AS experiments, all links are of 50 Mb/s capacity.

B. Emulation Methodology

In our emulation, we use Open vSwitch [13] for OpenFlow
router implementation and use Floodlight (version 0.90) and
RouteFlow implementing our QoS framework for controller
implementation. Inside an AS, we run the OSPF routing
protocol using RouteFlow: the OSPF hello interval is 1 second
and the router dead interval is 4 seconds. Exterior to AS,
we use BGP. For data traffic (best-effort and high-priority)
generation, we used an open source packet generation tool
known as DITG (Distributed Internet Traffic Generator) [20].

The emulation methodology of all our experiments includ-
ing single and multiple AS experiments is same. The difference
lies in the amount of high-priority and best-effort traffic sent
by each server. Therefore, we describe the methodology in
detail only for the single AS experiments Fig. 2A. In the
experiments, each server (Fig. 2A) sends traffic – high-priority
traffic and best-effort traffic – to all other servers/clients in
the topology. The arrival rate of high-priority and best effort
traffic are Poisson distributed on an average interval. For the
experiments, this interval is varied to increase the total traffic
from each server. For high-priority traffic, a server requests
the bandwidth broker to assign a certain bandwidth. In the
experiment, we fail and repair a link, and show the impact of
these operations on high-priority and best-effort traffic.

We now describe the link down and up in our emulation by
breaking and repairing the link Zagreb-Vienna in the single AS
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topology (Fig. 2A). Fig. 3 shows our methodology using the
traffic that was captured on the controller using the tcpdump
utility. At the start of the experiment, during the warm-up
time (from −98 to −72 seconds), large spikes are observed.
These spikes are due to the Address Resolution Protocol
(ARP), OSPF, queue configuration and Flow-Mod configura-
tion messages. ARP messages are sent from each server to all
other clients to learn the corresponding Media Access Control
(MAC) addresses. Moreover, OSPF messages are sent by the
controller to retrieve the connectivity between existing links.
Queue configuration messages are sent to configure queues
at the edge router to forward high-priority traffic, and finally,
Flow-Mod messages are sent to add Flow-Entries at the edge
routers to redirect high-priority traffic to a rate limiter queue.
Note that traffic to establish other proactive Flow Entries for
best-effort and high priority traffic are not shown in Fig. 3.

Periodical spikes in the controller traffic can also be seen
in Fig. 3. These are ECHO, OSPF and ARP messages that
were sent to check aliveness of the links of the topology. At
second 0, we fail link Zagreb-Vienna by disabling the Ethernet
interface at Zagreb and we see a large spike near the 4 seconds
of runtime. This is because the controller detects the failure in
every 4 seconds, and it sends a new Link State Advertisement
(LSA) and reconfigures faulty paths by sending Flow-Mod
and queue configuration messages. At about second 71, we
make link Zagreb-Vienna up, and see a large spike again at
second 75. This large spike is due to LSAs and reconfiguration
messages.

V. EMULATION RESULTS

We now show the results of the experiments performed on
the OFELIA testbed.

A. Single AS experiments

Fig. 4 shows the traffic for the client connected to Zegreb
(Fig. 2A), when the failure recovery paths have the enough
bandwidth to accommodate both best-effort and high-priority
traffic. The traffic is captured for the case when link Zegreb-
Vienna is failed at second 0 and repaired at second 71. In this
experiment, each server sends about 0.560 Mb/s best-effort
traffic and 0.240 Mb/s high-priority traffic to each client/server
in the topology (Fig. 2A). Fig. 4 shows that the total of 8.40
Mb/s best-effort traffic and the total of 3.60 Mb/s high-priority
traffic are received by the client (connected to Zagreb) from all
other servers. It also shows that between 0 to 4 second, there is
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a drop in the received best-effort and high-priority traffic and
after second 4, there is no drop in best-effort and high-priority
traffic. The dropped traffic is due to the failure that was given
on link Zagreb-Vienna. After the failure, the controller has
redirected both best-effort and high-priority traffic to failure-
free paths. As the failure-free paths has enough bandwidth to
accommodate both high-priority and best-effort traffic, we do
not see any drop in high-priority and best-effort traffic after
failure recovery (second 4) in Fig. 4
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Fig. 5 shows traffic for the Zegreb client when failure
recovery paths have enough bandwidth to accommodate only
high-priority traffic and have not enough bandwidth to accom-
modate all the best-effort traffic. In this experiment, each server
sends about 2.28 Mb/s best-effort traffic and 0.760 Mb/s high
priority traffic to each client of the topology (Fig. 2). Fig.
5 shows that about 12 Mb/s high-priority traffic is sent to
the client connected to Zagreb and all the high-priority traffic
is received by the client. It also shows that the total of 34
Mb/s best-effort traffic is sent to the client connecting Zagreb,
but until second 0, it receives only about 16 Mb/s. This is
because some of links in the working paths (shortest paths
from each server) to Zagreb do not have enough bandwidth to
forward all best-effort traffic to Zagreb. Therefore, these links
first forward all the high-priority traffic and then if bandwidth
left, these forward best-effort traffic. During second 0 to 4
(Fig. 5), there is a drop in the received best-effort and high
priority traffic. The dropped traffic is due to the failure that
was given on link Zagreb-Vienna. At about second 4, the



controller has redirected all best-effort and high-priority traffic
to failure-free paths. Therefore, after this failure recovery, we
see that all the sent high-priority traffic is received by the
client. However, after failure recovery, the received best-effort
traffic is again decreased to about 12 Mb/s. This traffic is
decreased to accommodate all high-priority traffic in failure-
free paths. At second 71, we restore the link Zagreb-Vienna
and see that after second 75, best-effort and high-priority traffic
become equal to the traffic before the failure.
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Fig. 6 shows best-effort and high-priority traffic for client
Zagreb, when each server sends about 4.8 Mb/s best-effort
traffic and 1.8 Mb/s high-priority traffic to each client in the
topology. Fig. 6 shows that the total of 72 Mb/s best-effort
traffic is sent to the client connecting Zagreb, but until second
0, it receives only about 21 Mb/s. This received best-effort is
greater than the received best-effort in the previous figure. This
is because as we increase traffic, average bandwidth utilization
for links increases, which leads to an increase in the received
best-effort traffic.

There is about 27 Mb/s high-priority traffic sent to client
Zagreb, and all the high-priority traffic is received by the
client until second 0 (Fig. 6). At second 0 in Fig. 6, we see
a drop in the high-priority traffic and best-effort traffic. At
about second 4, the controller has redirected all the traffic to
failure-free paths. After this failure recovery, both high-priority
traffic and best-effort traffic are affected. Fig. 6 shows that the
received high-priority traffic is decreased to about 19 Mb/s
(from second 4 to 75) and the received best-effort traffic is
decreased to about 9 Mb/s (from second 4 to 75). This is
because some of the links in the paths (calculated by OSPF)
to Zagreb have not enough bandwidth to accommodate all the
high-priority traffic. This has happened because all the 50 Mb/s
of bandwidth in these links is already taken by high-priority
traffic and additional high-priority traffic needs to be dropped.
As high-priority traffic is given precedence over best-effort
traffic, there should not be any best-effort traffic on these links.
One of such links in our experiment is link Milan-Munich. The
traffic on this link is shown in Fig. 7.

Fig. 7 shows that the total high-priority traffic on link
Milan-Munich is about 42 Mb/s (from second −75 to 0). After
the link goes down (second 4 to 75), the total high-priority
traffic becomes equal to about 50 Mb/s and after the link goes
up (second 75 to 125), it again becomes equal to about 42
Mb/s. In the case of the best-effort traffic, the total best-effort
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Fig. 7. Traffic on link Milan-Munich in the case of the scenario shown in
Fig. 6. For better visualization, the inset shows forwarded best-effort traffic
after failure recovery (second 5 to 20)

traffic is about 8 Mb/s before the link down (second −75 to
0). After the link down, it is about 0 Mb/s (≈ 0.08 Mb/s),
and after the link up best-effort traffic again becomes equal to
8 Mb/s. Note that the total best-effort traffic on link Milan-
Munich is not completely 0 (shown by the inset in Fig. 7)
after failure recovery (second 4 to second 75). This is because
of the traffic pattern sent on the link which follows a Poisson
distribution.

There is no high-priority traffic sent to Zagreb on link
Milan-Munich (Fig. 7) before the failure on Zagreb-Vienna.
However, after failure recovery (after second 4), about 6 Mb/s
of high-priority traffic is sent to Zagreb on the link Milan-
Munich. However, this link is only able to forward about
4 Mb/s of this high-priority traffic and the remaining traffic
(about 2 Mb/s) is dropped. This is dropped because this link
has not enough bandwidth to forward additional high-priority
traffic. All 50 Mb/s of bandwidth is already taken by all the
high-priority traffic.
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Fig. 8. Total traffic received by all clients (Single AS experiment)

Fig. 8 shows the results of all the experiments performed
on the single AS. In these experiments, we increase the data
rate of each server to each client in the topology. Each server
sends – 30 % of traffic as high-priority traffic and 70 % of
traffic as best-effort traffic – to all other servers/clients, and the
percentage of total best-effort and high-priority traffic received
by all clients are calculated. The percentage of the traffic is
calculated before the link down, after the link down, and after
the link up event. The traffic before the link down is calculated



from second −72 to 0 (depicted time scale in Fig. 3), the traffic
after the link down is calculated from second 4 to 74 (i.e. after
failure recovery), and the traffic after the link up is calculated
from second 75 to 120.

Three scenarios can be seen in Fig. 8 at: (1) low data rate
(data rate < 2.4 Mb/s), (2) medium data rate (2.4 Mb/s ≤data
rate < 7 Mb/s), and (3) high data rate (data rate > 7 Mb/s).
In case of low data rate scenarios, all the best-effort and high-
priority traffic are received before the link down, after the
link down, and after the link up. In case of medium data rate
scenarios, all the high-priority traffic is received but some of
best-effort traffic is dropped to accommodate the high-priority
traffic. In case of the high data rate scenarios, after the link
down, some of high-priority traffic is also dropped. This is
because on high data rate some of links in the paths to clients
do not have enough bandwidth to guarantee the delivery of all
the high-priority traffic.

B. Multiple AS experiments

We now present the results of multiple AS experiments
performed on the emulated topology shown in Fig. 2B. In this
experiment, the server in the CDN network sends high-priority
and best-effort traffic to each client in the access network, the
link between two autonomous systems is failed and repaired,
and the percentage of traffic delivered at access networks is
calculated.
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Fig. 9. Total traffic received by the clients located at the access network

Fig. 9 shows the results when a link between the core
and access network is failed and repaired as explained in the
previous section. As discussed in the single AS experiment,
this experiment also shows three different scenarios of high-
priority traffic. In the first scenario, when the data rate is low
(< 15Mb/s), all the traffic (high-priority and best-effort) is
received by the clients. However, in the medium data rate
scenario (20 Mb/s ≤data rate < 55 Mb/s), some best-effort
traffic is dropped to meet the packet delivery requirement of
high-priority traffic. Furthermore, in the case of high-data rate
scenario (data rate > 55 Mb/s), almost all the best-effort traffic
is dropped to meet the requirement of high-priority traffic. In
this case, as there is only one link remained connected between
CDN and the core network after the link down and all the
capacity is already utilized by high-priority traffic, some of
high-priority traffic needs to be dropped. Therefore, we see
decrease in the delivered high-priority traffic in Fig. 9. Further-
more, we do not see the competition between high-priority and

best-effort traffic as different queues are maintained to serve
different traffic.

VI. CONCLUSIONS

In this paper, we have implemented a resilient differen-
tiation framework for OpenFlow networks and have tested
the framework for single AS and multiple AS scenarios. The
single AS scenarios are tested using an emulated pan-European
topology, and the multiple AS scenarios are tested using the
multiple AS topology developed in the CityFlow project. The
results show that high-priority traffic can get precedence over
best-effort traffic even on failure conditions. The obtained
results revealed that the proposed framework is suitable for the
Future Internet, using SDN compliant operations. Our assess-
ment further proved that our framework is in fact resilient to
failures and is able to maintain the desired QoS performance,
adapting to the available links and providing the necessary
configurations in real-time.
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