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Abstract

We outline the design and detail the implementation of a language extension for abstracting types and

for decol1pling subLyping and inheritance in C++. This extension gives the user more of the flexibility

of dynamic typing while retaining tltc efficiency and security of sLaiic typing. After a brief discussion of

syntax and semantics of this language extension and examples of its usc, we present and analyze the cost

of three different implementation techniques: a preprocessor to a C++ compiler, an implementation in

the front end of a. C++ compiler, and a low-level implementation with back end support. Finally, we
discuss the lessons we learned for fut.ure programming language design.

1 Introduction

In C++, as in several other object-oriented languages, the class construct is used to define a type, to

implement that type, and as the basis for inheritance, type abstraction, and subtype polymorphism. We argue

that overloading the class construct limits the expressiveness of type abstraction, subtype polymorphism and

inheritance. We remedy these problems by introducing a new C++ type definition construct: the signature.

Signatures provide C++ with a type system that allows for clean separation of interface from implementation

and achieves more of the flexibility of dynamic typing without sacrificing the efficiency and security of static

typing.

The remainder of the paper is structured as follows. First we present motivation for the addition of a

type abstraction facility other than classes to C++. We then briefly present syntax and semantics of the

core constructs of our language extension and follow with examples that illustrate how signatures solve the

problems presented in the motivation section. The core sections of the paper discuss and compare three

different implementation possibilities, and analyze the costs of each. We conclude with a discussion on the

lessons we learned from this experiment and their implications for future programming language design.

Since the primary intent of this paper is to detail these implementation techniques, the motivation and

language specification are of necessity brief. The reader interested in a more detailed motivation and complete

syntax and semantics is referred to [2].

2 Motivation

Using inheritance as a sub typing mechanism suffers from three specific problems:

·Submittcd to ACM Tron3adion3 On Progmmming Language3 and SY3tcm3.
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1. Using the same construct (class inheritance) for type abstraction and code sharing limits the power of

both and unnecessarily couples implementation and interface specifications.

2. In some cases, it is difficult (if not impossible) to retroactively introduce abstract base classes to a class

hierarchy for the purpose of type abstraction.

3. The hierarchy of abstract types and the class hierarchy of implementations may be difficult to reconcile

with each other.

We will show how signatures allow us to overcome these problems without a major overhaul of the C++

type system.

2.1 Separation of Type and Class Hierarchies

A problem with a single class hierarchy defining both abstract types and their implementations is that as

the type hierarchy becomes more complex, it might become necessary to duplicate code. We use an example

from computer algebra [3, 2] to demonstrate this problem.

Consider the abstract type GeneralHatrix with subtypes BegativeDefiniteHatrix and Orthogonal

Matrix. Both subtypes have functions that are not present in general matrices, e.g., the function inverse().

Assume we have several different implementations of these abstract types, namely DenseMatrix, which

implements matrices as two-dimensional arrays, SparseMatrix, which uses lists of triples, and Permutation

Matrix, which is implemented as a special case of sparse matrices that takes advantage of permutation

matrices only having one element in each row and column.

If we try to model these types and implementations with a single class hierarchy, we end up either

duplicating code or violating the type hierarchy. While DenseMatrix can be made a subclass of the ab

stract classes GeneralMatrix, HegativeDefiniteMa'trix, and OrthogonalHatrix by using multiple inher

itance, we cannot do the same for SparseMatrix. Doing so would make PermutationHatrix, which is

a subclass of SparseHatrix, an indirect subclass of NegativeDefiniteHatrix. Since permutation matri

ces are positive definite, this would violate the type hierarchy. The alternative of having a separate class

SparseNegativeDefiniteHatrix is not satisfying either since it causes code replications.

Similar arguments have been given in the literature to show that the collection class hierarchy of

S M A L L T A L K ~ 8 0 [13] is not appropriate as a basis for subtyping. While the problem does not arise with

dynamic typing, it becomes an issue when trying to make SMALLTALJ<-80 statically typed while retaining

most of its flexibility. The solution is to factor out the implementation aspect of classes into prototypical

objects [16] or to factor out the type aspect into interfaces [5, 8].

2.2 Retroactive Type Abstraction

Another practical example [14] illustrates the need to introduce type abstractions of existing class hierarchies.

Summarizing their presentation, suppose we have two libraries containing hierarchies of classes for X ~ W i n d o w

display objects. One hierarchy is rooted at OpenLookObj ect and the other at HotifObj ect. Further suppose

all the classes in each hierarchy implement virtual displayO and moveO member functions, and that both

libraries are supplied in "binary-only" form. Can a display list of objects be constructed that can contain

objects from both class libraries simultaneously? The answer is yes, but not without either explicit type

discrimination or substantial software engineering costs due to the introduction of additional classes.

Obviously, the straightforward solution would be to create a common abstract superclass for both hi

erarchies. However, if only header files and binaries but no source code are available for the two libraries,

retroactive code modification is not possible. If the member functions needed for the abstract type are non

virtual member functions, introducing an abstract superclass is not possible either, since it would modify

the behavior. The only choices remaining are to use a discriminated union for the display list elements, to

use multiple inheritance to implement a new set of leaf classes in each hierarchy, or to use a hierarchy of

forwarding classes.! The former solution is rather inelegant, the latter two clutter up the name space with

1 In C++, the task of creating these lear and rorwarding classes can be simplified using tl'mplates.
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a superlluolls set of new class names.

The problem is that c++ provides only one type abstraction mechanism, the class, and that implemen

tations must explicitly state their adherence to an abstract type by inheriting from the abstract class. The

nature of the restriction to binaries in this example prevents us from doing this. What we would like is a

type abstraction mechanism that does not rely on classes and, therefore, leaves classes free to be used for

implementation specification. Likewise, the adherence of a particular class to an abstract type would ideally

be inferred from the class specification and not need to be explicitly coded in the class. This leaves us free

to introduce new abstract types at a later time without altering any implementations.

A more realistic scenario for retroactive type abstraction would be that only one implementation is given

in compiled form and that we would like to abstract the type of some of the given classes and provide an

alternative implementation. If the original implementation was not designed with this form of reuse in mind,

or if the alternative implementation uses different data structures, we end up with the same problems as

above.

2.3 Implementation of Conflicting Type and Class Hierarchies

Often the abstract type hierarchy and the implementation class hierarchy cannot be made to agree. An

example similar to one in [20] illustrates this point. Consider two abstract types Queue and DEQueue (doubly

ended queue). The abstract type DEQueue provides the same operations as Queue as well as two additional

operations for enqueuing at the head and for dequeuing from the tail of the queue. Therefore, DEQueue is a

subtype of Queue.

TTowever, the easiest way to implement Queue and DEQueue is to structure the inheritance hierarchy

opposite to the type hierarchy. A doubly ended queue is implemented naturally as a doubly linked list. A

trivial implementation of queue would be to copy the doubly ended queue implementation through inheritance

and remove, or ignore, the additional operations.

In [9], it is argued that in order for a type system to be sound it should not be possible to use inheritance for

subtyping purposes and also allow the removal of operations. Most object-oriented languages choose instead

to restrict the use of inheritance for code sharing to situations where there is also a subtype relationship,

and to disallow inheriting only a portion of the superclass.

3 Syntax and Semantics of the Signature Language Extension

We term the key language constmct we add to C++ to support type abstraction a signature.. A signature

declaration defines an abstract type by specifying the member functions that any implement.ation of the

abstract type needs to have. The signature language constrUct is related t.o types in RUSSELL [10], ML's

signatures [17, 18J, HASKELL'S type classes [11], definition modules in M O D U L A ~ 2 [24], interface modules in

MODULA-3 [7], abstract types in EMERALD (4], type modules in TRELLIS/OWL [19], categories in AXIOM

[15] and its predecessor SCRATCHPAD II [22, 23], and types in POOL-I [1].

To associate an implementation with a signature type, we introduce the notion of a signature pointer

into the language. For an assignment of an object pointer to a signature pointer, the compiler verifies

that the class implements all the member functions declared in the signature, Le., it insures that the class

structurally conforms to the signature. When calling a signature member function through a signature

pointer, the appropriate class member function will be invoked.

The type system of C++ with signatures comes closest to those of AXIOM and POOL-I. RUSSELL, ML,

HASKELL, and MODULA-2 do not have class types, MODULA-3 only has interfaces for modules but not

for classes. EMERALD has first-class types instead of classes, and TRELLIS/OWL has a type hierarchy in

which type information but no implementation is inherited. Domains in AXIOM differ from classes by having

method dispatch on all argument types and on the return type. Compared to C++, POOL-I does not have

private and protected member functions and overloading. While both categories and domains in AXIOM and

types in POOL-I are first class, signatures and classes in our C++ extension are not, which makes the type
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system slightly less expressive but allows for a more efficient implementation and for complete type checking

at compile time.

In this section, we describe only those parls of our language extension that are relevant to contrasting the

different implementation techniques discussed later in the paper. Specifically, this sedion details the syntax

and semantics of signatures, signature pointers, and signature references. We also explain the semantics and

utility of default implementations and constants in signatures.2

3.1 Signature Declarations

A signature type is declared in a way similar to a class except the keyword signature is used instead of

class, or struct, to introduce a signature declaration.

A signature declaration, like a class declaration, defines a new C++ type. The key difference is that a

signature declaration contains only interface descriptions. For example, the signature declaration

signature T {

int * :f ();

int g (int *);

T t h (int *);

};

defines an abstract type T with operations (member fundions) I, g, and h.

The specific difference from a class declaration is that only type declarations, constant declarations,

member function declarations, operator declarations, and conversion operator declarations are allowed within

a signature declaration. Specifically:

• A signature cannot have constructors, destructors, friends, or data member declarations.

• The visibility specifiers private, protected, and pUblic are not allowed either in the signature body

or in the base type list. They are unnecessary since signatures define interfaces and, therefore, all

members arc implicitly public.

• Signature base types have to be signatures themselves (a signature cannot inherit from a class). Simi

larly, a signature cannot be the base type of a class.

• The type specifiers const and volatile are not allowed for signature member fundions, since they

are storage location specifiers and are meaningless for members of an interface specification.

• The storage class specifiers (auto, register, static, extern), the function specifiers inline and

virtUal, and the pure specifier =0 are not allowed. The latter two are needed in class declarations

only to specify abstract classes and are, therefore, superRuous in signature declarations.

In the absence of a more complex type hierarchy, the type T in the above example could have been

defined as an abstract class, i.e., a class containing only pure virtual memberfunction declarations [12]. The

behavior of both implementations would be similar except that classes implementing the abstrad class's

interface need to explicitly code that fad by inheriting from the abstract class. When using signatures to

specify abstract types, this relationship is, instead, inferred by the compiler.

As a type hierarchy becomes more complex it becomes more and more difficult to model it precisely

with a class hierarchy as shown in the computer algebra example. Signatures allow to build a type hierarchy

strudured independently from the class hierarchy. This enables more complex type hierarchies and facilitates

the decoupling of subtyping and inheritance. Also, signatures can be used to define type abstractions of

existing class hierarchies. With abstract classes, it would be necessary to retrofit abstract classes on top of

the existing class hierarchy. This cannot be done without recompiling all existing source files. Signatures,

therefore, improve C++'s capabilities for reusing existing code.

2The additionnl r e a ~ u r e s of signature inheritance, lhe eigof cOU!llrucl (ILS in [14]), views, and opaque types lIl"e len oUl since

they only affecl the lype checking ph85e of the compiler. For infonnalion on those COIlBlntcLs, as well 85 for more details On

the serrumlics of signatures, sec [2/.
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3.2 Signature Pointers and References

Since a signature declaration only describes an abstract type, it does not give enough information to create

an implementation for that type. For this reason, it is nonsensical (and not valid) to declare objects of a

signature type, as in

signature 5 { 1* ... *1 };
S objill illegal! '5' is an interface type

Instead, in order to associate a signature type with an implementation, we declare a signature pointer or a

signature reference and assign to it the address of an existing class object. Signature pointers and signature

references, therefore, can be seen as interfaces between abstract (signature) types and concrete (class) types.

Consider the following declarations,

signature 5 { 1* ... *1 };

class C { 1* .'. */};
C obj i

S * P = tobji II legal if 'C' conforms to '5'

For the initialization of the signature pointer p, or for an assignment to p, to be type correct, the class type

C has to conform to the signature type 5. I.e., the implementation of C has to satisfy the interface 5, or the

signature of C has to be a subtype of 5.

A signature pointer or reference can also be assigned to another signature pointer or reference. In this

case, the right hand side signature must conform to the left hand side signature, or in other words, the right

hand side signature must be a subtype of the left hand side signature.

A signature pointer can also be assigned to, or implicitly converted to, a pointer of type void*. To assign

a signature pointer to a class pointer, it is necessary to use an explicit type cast:

5 * P = new C;

void * q = Pi

C * r = Pi

II ok

II error: explicit cast necessary

In general, we do not know the class of the object pointed to by a signature pointer. Assigning a signature

pointer to a class pointer is therefore, like casting down the class hierarchy, an unsafe operation. The same

is true for signature references.

3.3 The Conformance Check

The conformance. check is the type check performed when initializing or assigning to a signature pointer

or a signature reference. Except for the very rare case described below, the design and implementation of

signatures implies no run-time cost for the conformance check. The conformance check is done at compile

time.

To test whether a class C conforms to a signature 5, the structures of C and 5 must be recursively

compared. The specific conformance rules are:

1. For every member function, operator, and conversion operator declared in 5, there must be a public

declaration of the same member function or operator in C. Furthermore, this declaration must have

the same name and conforming return and argument types. Also, every signature contains an implicit

destructor declaration. This destructor is matched with the class's destructor if defined or with the

default destructor otherwise. Specifically, a class member function C::! conforms to a signature

member function 5: : f if and only if the following conditions hold:

• The type of every argument of 5: : f conforms to the type of the corresponding argument of C: : f .

• The return type of C: : f conforms to the return type of 5: : f.
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• If 5: :f has an exception specifier, C: :f must have an exception specifier as well, which only lists

(a subset of) the exceptions specified by 5: :f.

Any default values of corresponding arguments of 5::f and C::f are ignored for purposes of the

conformance check. C::f can have more arguments than S::f only if all the additional arguments

have default values.

2. For every constant declaration in 5, there is a constant declaration of the same name and conforming

type in c.

As the base case of this recursive definition, every type conforms to itself.

The conformance check for testing the conformance of one signature to another is exactly the same,

substituting a signature T for class C.

In order to conform to C++'s rules for lexical scoping, type definitions in S, such as local classes, unions,

or enumerations, are ignored in the conformance check. One use of local types is to aid in providing defav.lt

implementations of signature member functions, which are discussed below. A local type t can also be

referred to outside the signature using the syntax S: :t. For example, if a local type is used as argument

type or return type in signature member function declarations, classes need to refer to the type as S: : t in

their member function declarations in order to conform to the signature. A typedef only defines an alias

for a type. It is, therefore, not necessary for the class to refer to it by name, the type it alia.'3es can be used

instead.

Field declarations as well as private or protected member functions and constructors in C are ignored

during conformance checking. Also, C can have more public member functions or types than those specified

in S.

For example, suppose we are testing the conformance of class C to signature S. Given signatures T and U

and classes D and E, let signature U conform to signature T, let class D conform to signature T, and let class

E be a subclass of class D. The signature member function

T*5::f CD*, E*);

can be matched with any of the following class member functions:

T * C: :f (0 *. E *); II since t', types are the same

T * C: :f (0 *, D *); II since '0' is a base type of '0'

T * C::f (T *, E *); II since '0' conforms to 'T'

T * C::f (T *, T *); II since both '0' and 'E' conform to 'T'

o * C: :f (0 *, E *); II since '0' conforms to 'T'

E * C: :f (0 *, E *); II since 'E' conforms to 'T'

U * C: :f (0 *. E *); II since 'u' is a SUbtype of 'T'

T * C: :f (0 *. E * = NULL) ; II since tho default value is ignored

T * C::f (0 *, E *, int=O); II since the 3rd argWllent has a default value

T * C::f (0 *, E *) thro..... eX); II since 5::f allo'liS any exception

Note that conformance is defined using contravariance [6J of the argument types of member functions

and covariance of the result types. This makes subtyping based on signatures more flexible than the subtype

relationship defined by class inheritance. Unlike elsewhere in C++, exception specifications are considered

part of the type of member functions. This allows catching the violation of an exception specifications at

compile time instead of aborting the running program.

If several member functions of C conform to one member function of 5, we find the one that conforms

best using a variant of C++'s algorithm for finding the function declaration that best matches the call of

an overloaded function [12]. To apply C++'s overload resolution algorithm, the signature member function

is treated as a class member function in a function call. In addition, the overload resolution algorithm has

to be extended to consider the cost of converting an object pointer to a signature pointer to be higher than

the cost of converting an object pointer to an object pointer of a base class.
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If a member function of C conforms to several member functions of S, an error must be reported by

the compiler. Otherwise, the subtype relationship induced by the conformance check would be semantically

ill-defined.

These rules for handling overloading of signature member functions could be relaxed by considering

different matches ofc's member functions with 5's member functions and by picking the best match according

to some metric on signature types. I.e., instead of finding the best matching class member function for a

single signature member function, the overload resolution algorithm could be extended to work with multiple

signature member functions in parallel. However, we feel that any such algorithm would be sufficiently

complex to confuse users.

3.4 Default Implementations

Since signature declarations declare interface types, they usually only contain member function and operator

declarations. However, a signature declaration can also contain member function definitions (Le., declarations

together with implementations). Such definitions are called default implementations. Consider, for example,

the signature

signature 5 {

int f (int);

int fO () { return f (0) j };

};

For a class C to conform to 5, it is not. necessary for C to contain the member function Oint fO ().' However,

if c: : fO is defined and of the right type, it will be used. If C: :10 is not defined the default implementation

5: : fO is used instead.

Default implementations are useful for rapid prototyping during interface design since they allow quick

implementations of functions and classes which can later be replaced by more efficient or sophisticated

implementations. For example, a design could define an integer signature with addition and multiplication

member functions, and implement it with a class which only supports addition. Multiplication could be

implemented in the signature by a default member function which does repeated additions. In the later

stages of the design, a class with a member function that does multiplication directly can be added without

changing any other code.

One consequence of allowing default implementations is that they introduce a case that cannot be type

checked fully at compile time. The problem arises when assigning a signature pointer of signature type T to a

signature pointer of signature type 5, where T contains a default implementation for a member function f but.

5 only contains a declaration off. Since it is not known at compile time whether the default implementation

of T: : f is actually used, a run-time test for it must be generated. Consider

signature 5 {

int f ()j

};

signature T {

int f () { return OJ };

};

int faa (T * p)

{

S * q = p;

/* ... */
}
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In the function foo above it cannot be known whether p will use T's default implementation or not. If the

default implementation is used, there will be a run-time type error in the assignment to q. Since using T's

default implementation when calling q->fO would violate the static scoping rules of the language, this is

not an option.

Note that this is the only case where a run-time type check is necessary, in all other cases conformance

can be fully checked at compile time. The compiler should warn of the possibility of a run-time type error

by printing a warning message when generating the run-time test. In addition, it might be desirable for the

compiler to provide a command-line flag for turning the run-time test into a compile-time error.

3.5 Constants

As mentioned in the definition of the conformance check, a signature can contain constant declarations.

Unlike constant declarations elsewhere, constants in signatures need not be initialized. Instead, they are

treated like nullary functions. For example, a class conforming to

signature S {

const int n;

};

has to have a public declaration of constant n. The value of the class's constant can then be accessed through

a signature pointer as in the following example.

class C {

pUblic:

const int n = 17j

};

S * p = ne'll C;

int i = p->n;

The variable i above gets the value 17. The behavior is the same as if the constant n had been replaced by

a nullary function returning the constant value, except that it can be implemented more efficiently.

It is possible to implement initialized constants in signatures, and treat them like constant nullary

functions with a default implementation, i.e., the value of the class's constant overrides the value of the

signature's constant. However, since we also want to use constants for defining data structures, we require

that the value ofa constant in both the class and the signature is the same. Otherwise, it would be impossible

to write code such as

signature S {

const int n = 17;

typedef int[n] arraYj

int f (array);

};

since the value of n would not be known at compile time.

4 Example Uses of Signatures

4.1 Signatures to Separate Type and Class Hierarchies

The solution to model the type and implementation hierarchies in the computer algebra example is to use

signatures instead of abstract virtual classes for the type hierarchy:
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signature GeneralHatrix { /.

signature NegativeDefiniteHatrix { /*

signature DrthogonalHatrix { /*

-/ };

*/ };
*/ };

Since NegativeDefiniteHatrix and DrthogonalHatrix conform to GeneralHatrix they are also subtypes

of GeneralHatrix. By using inheritance of signatures, as defined in [2J, we can simplify the definition of the

latter two signatures.

For modeling the implementation hierarchy we use classes and class inheritance:

class DenseHatrix {/* */ };

class SparseHatrix {/* */};
class PermutationHatrix ; private SparseHatrix { /* ... */ }j

Signature conformance ensures that we can use these classes as implementations of the above signature types.

Note that we use private inheritance for defining PermutationMatrix. This allows us to hide any member

functions defined in NegativeDefiniteHatrix but not in the other two signatures.

4.2 Signatures for Retroactive Type Abstraction

The solution to the X-Window object example using signatures is actually quite simple. All that is needed

is to introduce a signature to define the abstract type XWindo'll'Object,

signature XWindo'll'Dbject {

void display ();

void move ();

};

and to implement the display list as a list of pointers to XWindo'll'Dbjects,

XWindo'll'Dbject - displayList[NELEHENTSJ;

Given a pair of implementation hierarchies such as:

class OpenLookObject {

public:

virtual void display ();

virtual void move ();

II ...
};

and

claSB HotifDbject {

pUblic:

virtual void display ()j

virtual void move () ;

II ...
};

It is simple to use the display list. For example,

int main ()

{

displayList[oJ = neg DpenLookCircle;

displayList[lJ =neg HotifSquare;

II ...

9



}

displayList [0] ->display ();

displayList [1] ->display 0;

return 0;

II invokes OpenLookCircle: :display

II invokes HdtifSquare::display

where OpenLookCircle is a subclass of OpenLookObject and MotifSquare is a subclass of MotifObj ec't.

If we have only one implementation provided in compiled form and we would like to abstract the type of

some of its classes and add an alternative implementation, the solution is similar as above. The types ofclasses

are abstracted by defining signatures, an alternative implementation then consists of classes conforming to

those signatures.

4.3 Signatures to Implement Conflicting Type and Class Hierarchies

The solution to the Queue/DEQueue problem presented earlier is also quite easy using signatures. Simply

define an implementation class, and two signatures to define the abstract types Queue and DEQueue.

'template <clasB T> class DoublyLinkedList {

public:

void enqueueHead (T)i

T dequeueHead ()i

void enqueueTail (T);

T dequeueTail ();

II ...
};

'template <class T> signature DEQueue {

void enqueueHead (T);

T dequeueHead ();

void enqueueTail (T);

T dequeueTail ();

};

'template <class T> signature Queue {

void enqueueTail (T);

T dequeueHead ();

};

Queue<int> *
DEQueue<char *> •

ql = neg DoublyLinkedList<int>;

q2 = ne~ DoublyLinkedList<char *>;

It should be noted that this same effed can be achieved in C++ without signatures by using multiple

inheritance. E.g., by implementing Queue and DEQueue as abstract classes and having DoublyLinkedList

inherit from both. To see where this type of solution breaks down, consider adding another type, S'tack,

with member functions push and pop. With signatures it is simple to define a Stack signature and whenever

assigning a DoublyLinkedList use a view [2] to rename enqueueBead to push and dequeueHead to pop.

With the multiple inheritance based solution, it would be necessary either to introduce a new multiply

inherited abstract class that implements push and pop by delegating to enqueueHead and dequeueHead, or

to alter DoublyLinkedList to implement push and pop directly. The former unnecessarily constrains the

implementation of other classes that might implement an abstract stack type, while the latter needlessly

clutters the implementation of DoublyLinkedList.
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5 Implementation Techniques

We detail three options for implementing signatures. The first method could be used in a compiler pre

processor (e.g., a cfrontfront) that translates C++ with signatures into C++ without signatures. The

second is a compiler based implementation that produces a C-level intermediate code version of signatures

and needs direct access to the type checking phases of a C++ compiler, but is independent. of the compiler

back-end and machine architecture. This method has been implemented in the GNU C++ compiler [21] as

a modification of GCe's C++ front end, cclplus. The same techniques are equally applicable to AT&T's

efront, or other C++ compilers. Finally, we outline an implementation technique that requires support

from the compiler back-end and code generation phases to generate assembly-level code to further optimize

signature member function calls.

5.1 Preprocessor-Based Implementation

The central idea of this implementation technique is to generate interface objects that encapsulate the class

objects. These interface objects forward the signature member functions to the appropriate class member

functions. Signature pointers are then implemented as regular C++ pointers that point to these interface

objects.

Consider the declarations

signature 5 {

int f ();

int g (int, int) i

};

C obj j

5 * P = &obj j

and assume C conforms to 5. The signature declaration itself is simply a type declaration; no code needs to

be generated. The code for the interface object is generated when compiling the assignment to the signature

pointer p.

In the particular case above, the interface object must redirect. the signature member functions 5: : f and

5;;g to the corresponding class member functions C::f and C: :g.

To create such interface objects for any class C that conforms to a signature 5, we first generate an

abstract virtual class 5_Interface. For each class C, we then need a subclass of S_Interface that redirects

the signature member functions to the class member functions of the given class.

For the signature S given above, we generate the following abstract virtual class:

class S_Interface {

public:

virtual -S_Interface () = OJ

virtual operator void. () =OJ

virtual int f () = OJ

virtual int g (int, int) = 0;

};

The virtual destructor is used to allow deletion of a class object through a signature pointer. The conversion

operator is used for implicitly converting a signature pointer to a pointer of type void•. For creating the

classes of interface objects, we generate a template class S_C_In'terface as public subclass of 5_Interface.

template <class C> class S_C_Interface : pUblic S_Interface {

C • optr;

pUblic:
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p: obj:

optr

vptr

S_C_Interface_vtable: C_vtable:
vptr

0:

1: 1:

S_C_Interface:: C::ffi

2: 0 -S_C_Interface 2: 0

prn S_C_Interface:: C::g

3: 0 - operator void* 3: 0

prn s C_Interface::f C::h-

4: 0 -prn S_C_Interface::g

Figure 1: Preprocessor-based implementation.

S_C_Interface (C * qJ { optr = q; };

-S_C_Interface () { delete optr; };

operator void * 0 { return (void *) optr; }:
int f 0 { return optr->f 0; };

int g (int x, int y) { return optr->g (x, y) ; }:
}:

This template class is then instantiated with some class C to build the class of objects interfacing 5 and c.

Signature pointers can now be implemented as pointers to objects of type S_C_Interface<C> for a given

class c. That is, the declaration

S * p = .!l:obj;

is translated to

S_Interface * p = ne~ S_C_Interface<C> (tobj);

The resulting data structure is displayed in Figure 1 (unused data members in the virtual function tables

are shaded).

If there is another signature pointer q of type s* on the RHS of the assignment, the preprocessor simply

generates an assignment of the resulting pointers of type S_Interface*. If q is a signature pointer of type

T*. we pass q as argument to the constructor ofS_C_Intertace<T_Interface>. This has the effect that the

data member optr of the LHS interface object will point to the RHS interface object.

Since a signature pointer is a standard C++ pointer in this scheme, we do not need to do anything special

to compile a signature member function call. The call p->f() simply invokes S_C_Interface<C>: :1, which

in turn calls C: :1. Similarly, the statement 'delete p' results in a call of the destructor, which, in turn,
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deletes the class object. To convert a signature pointer into a pointer of type void*, the (implicit) cast

expression (void *)p needs to be translated into (void *)*p, which results in the conversion operator call

'(*p) . operator void*O.'

To compile signature constants without initialization, the constant must be translated into a variable

in the interface class. Assume signature S contains the constant declaration 'const; int c i.' We translate

this declaration into the public member declaration 'int c;' in class S_Interface, and initialize c in thc

constructor of the template class S_C_Interface:

S_C_Interface (C .. q, int i) { optr = q; c = i; }

For initializing a signature pointer, or for assigning to one, the valuc of the class constant has to be provided

as the second argument of the constructor:

S_Interface * p = ne~ S_C_Interface<C> (&obj, C: :c);

To implement default implementations, we have to add a flag to the interface object that indicates whcther

a given mcmber function is provided by the class or not. Assume that the signature member function f comeS

with a default implementation. We add the flag 'unsigned int f_flag: 1;' as a public data member to

class S_Interface and generate the following code for the member function f in class S_C_Interface:

int f 0
{

if (f_flag)

return optr->f ()i

II code for default implementation

}

Similarly as with signature constants, the nag has to be initialized in S_C_Interface's constructor.

When assigning a signature pointer to another signature pointer of a differcnt type, we have to generate

run-time lests lo make sure that no default implementation of the RHS signature could be used through

the LHS signature pointer in violation of the static scoping rules. For examplc, assume that signature T is

identical to signature S, except lhat T: :f has a default implementation while 5: :f does not. The declarations

T*q=ne'A"C;

5 .. r = qi

are translated into

T_Interface * q = nev T_C_Interface<C> ( n e ~ C);

S_Interface * r;

if (q->f_flag) {

cerr « '''r' cannot be initialized liith signature pointer" « endl

« "using default; implementation 'T: :f'" « endl;

abort ();

} else

r = neli S_C_Interface<T_Interface> (q);

In this example, the optimizer can remove the lesl and the error message by constant folding. In case C: :f

exlsts, the default implementation T::f would not be used, and the nag q->f_flag would, therefore, be

zero. In general, the compiler does not know lhe class of the object the RHS signature pointer points to

and, hencc, has to generale this run-time test.

Translating a signature pointer into a pointer to an interface object has the advantage that it is straight

forward to implement in a preprocessor for a C++ compiler. It requires, however, to allocate interface objects
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on ~ h e heap. A n o ~ h e r d i s a d v a n ~ a g e is ~ha~ assignmen~s wi~h a signa~ure poin~er on ~ h e RHS can r e s u l ~ in

~ h e LHS signature pointer accessing the class object through a chain of interface objects.

To avoid heap a l l o c a ~ i o n , we can use the interface object itself as a signature pointer. In this case, the

declaration of p is translated to

This solution requires some more intelligence in the preprocessor to make p behave as if it were a pointer of

type S_Interface*. For example, the signature member function call p->fO now needs to be translated

into p. f O. Signature references are implemented exactly the same way as signa~ure pointers.

For signatures ~ h a t do not have default implementations or constants, the storage needed for an interface

object is two words, the pointer to the class object, optr, and the pointer to S_C....Interface<C>'s virtual

function table. Each default implementation requires one additional bit, and constants can be arbitrarily

large. Therefore, performing the above optimization for reducing heap allocation should be conditional on

the size of the interface object. With signature pointers being the interface objects themselves, assigning

one signature pointer to another requires copying the entire S_C_Interface<C> structure. If the signature

pointer takes only two words of storage, copying is not a problem. With a constant array of several kilobytes

in a signature, copying is certainly a bad choice.

5.2 Compiler Front-End Implementation

As the preprocessor-based implementation, the compiler front-end implementation is based on the basic

idea of encapsulating class objects with interface objects. However, by translating signatures to the level

of abstraction of C code instead of C++ code, we are able to produce more efficient code. Although the

description of the compiler front-end implementation relies on details of how the GNU G++ compiler [21]

compiles C++ classes, the same ideas can be used in other compilers as well.

In the preprocessor-based implementation, there are two main sources of inefficiency. One is that when

calling a signature member function, two member functions calls have to be performed in the generated code,

the call to the interface object's member function and the call to the actual class member function. The

o ~ h e r problem is that using signature constants can cause interface objects to become very large.

Instead, to optimize signature member function calls, signature pointers and signature references are

directly used as interface objects. However, rather than relying on the virtual function call mechanism and

specializing the interface object with a template to the class of the object, we introduce a special table, called

the signature table, that allows us to perform the signature member function call independent of the class of

~ h e object. In essence, we inline the call of the member functions of class S_C_Interface<C> by storing all

the class specific information contained in those member functions in the signature table. A signature table

is similar in structure to a virtual function table but contains additional information. A signature table only

depends on a signature and conforming class pair and, therefore, can be shared between multiple signature

pointers.

The key to optimizing the space requirements of interface objects is to observe ~ h a t signature constants,

as well as the default implementation flags, do not depend on the actual object but only on the class of the

object. The values of both signature constants and default implementation flags can be determined in the

conformance check. Since the values are class specific, the obvious place to store them is in the signature

table.

This optimization of signature member function calls is only possible in this implementation if the class

of the object is strictly conforming to the signature. Strict conformance means ~ h a t a signature member

function and the corresponding class member function need to have the same number of arguments, exactly

the same argument types, and exactly the same return type. In the general case, we might need to convert

argument types or the return type in a signature member function call, but we do not have place in a

signature table to store the conversion code. If conversion of arguments or the return value is necessary, we

need to generate a function to do it. This means that, as in the preprocessor-based i m p l e m e n ~ a t i o n , we need

two member function calls to perform one signature member function call.
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Outline of the hnpleDlentation

In order to outline the structure of the compiler front end implementation, we initially ignore default imple

mentations, signature constants, classes with virtual member functions, and multiple and virtual inheritance

of classes. Also, we restrict conformance to strict conformance.

For the signature declaration

signature 5 {

int f ();

int g (int. int);

int) ;

.) ;

., int,

_.dtor;

(* _f) (void

(* _g) (voidcanst int

};

the compiler generates an internal representation of the following structure of function pointers:

struct S_Table {

canst void *
canst int

aptrj

sptr;

};

where the data member _ .dtor represents the destructor tl1at is implicitly declared in every signature. The

first argument of type voiM of the function pointers is used to pass the object pointer this to a member

function. The type S_Table will be the type of signature tables for signature S.

In the preprocessor implementation, an interface object contains a pointer to the class object and a

pointer to a virtual function table. In this scheme, we have a pointer to the signature table instead of the

virtual function table pointer. Since we store the interface object directly in the signature pointer, this leads

to the following type declaration for signature pointers:

struct S_Pointer {

void.

canst S_Table *
};

Signature references use the same representation. Conceptually, the type of optr should be pointer to any

object instead of pointer to nothing. Since neither C nor C++ allow us to express this, the compiler must

generate appropriate casts when using optr.

Code generated for the declaration'S. P = neg C;' looks as follows:

static canst S_Table S_C_Table = {&C::-C, &:C::f, &"C::g};

S_Pointer p = { neg C. &"S_C_Table };

To initialize the signature table S_C_Table, the compiler needs to cast the destructor and member functions

of class C to the appropriate function pointer types. If C does not have a destructor, the default destructor

is used. Since C++ does not allow taking the address of a destructor, this must done in the compiler front

end.

While we can usc a default constructor for initializing a signature pointer as shown above, we need to

translate an assignment to a signature pointer into a compound expression. For the assignment expression

'p = ne'll C,' or for passing an object to a signature pointer parameter in a function call, the compiler

generates the compound expression

( p.aptr = neg C,

p.sptr = &S_C_Table,

p

as well as the declaration and initialization of the signature table:
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static const S_Table S_C_Table = {tC::-C, tC::f, tC::g};

If the assignment is in an inner scope, the signature table declaration needs to be moved out of this scope

into file scope.

Since signature tables are static and constant, only one signature table declaration per signature-class

pair needs to be generated in each file.

To compile a function call such as

i n ~ i = p->g (7, 11);

we need to dereference p's sptr and call the function whose address is stored in the data member _g, which

1s C::g in our example. We need to pass the value ofp's optr as first argument, so that C::g gets a pointer

to the right object passed for its implicit first parameter called this.

int i = p.sptr->_g (p.optr, 7, 11);

If the compiler knows the current value of p->sptr, this can be optimized to a direct call to C: :g.

Signature Tables

If classes with virtual memher functions or classes that are defined using multiple and/or virtual inheritance

arc used as implementations of signature types, we need additional information in the signature table to

perform a signature member function call correctly. Also, default implementations and signature constants

need to be represented in the signature table.

When a signature member function is implemented by a virtual class member function, since we do not

know the actual type of the object pointed to by the signature pointer, we do not know the address of the

function to call until run time. Instead, we must look up the address of the function in the appropriate

virtual function table. To facilitate casting objects up and down the class hierarchy, implementations of

G++ typically do not usc a single virtual function table per class but one virtual function table for each base

class that contains virtual functions. To allow finding the appropriate virtual function table in a member

function call, an object contains possibly multiple pointers to virtual function tables. For a given virtual

function, we therefore need to store in the signature table the index into the virtual function table and the

offset in the object at which to find the pointer to the proper virtual function table.

In GGG, member functions are implemented as regular functions that take a pointer to the object, called

this, as first argument. If a member function was inherited from a base class and multiple inheritance was

used, the this pointer might need to be adjusted to point to the beginning of the sub-object of the correct

type. In order to adjust the this pointer correctly for a given class member function, we need to store the

offset that has to be added to this in the signature table.

To make matters worse, in the case of virtual inheritance we might not even know the layout of an object

at compile time. Virtual inheritance is used to prevent duplication of members that are accessible through

multiple paths in the inheritance hierarchy. If a member function was inherited through virtual inheritance,

we need to follow an additional indirection for adjusting the this pointer and to find the appropriate virtual

function table pointer. To allow this indirection, we must store in the signature table the offset into the

object at which we find the pointer to a virtual base object.

Last but not least, we need three flags in a signature table entry to determine whether a non-virtual

member function, a virtual member function, or default implementation has to be called and whether or not

virtual inheritance was used.

To summarize, a signature table entry has the following structure:

struct sigtable_cntry_type {

short tag; II non-virtual, virtual, or default implementation?

short vb_off; II offset to virtual base pointer

short delta; II 'this' adjustment

short index; II vtable index
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union {

void *
short

};

II pointer to 1unction

II o11set to vtable pointer

};

The data member tag contains two flags to distinguish between non-virtual and virtual member functions

and default implementations. If a member function was inherited from a virtual base class, the data member

vb_off contains the offset at which the virtual base pointer is found. If no virtual inheritance was used,

vb_off is negative, Le., the third flag mentioned above is the sign bit of vb_off.

The data member delta contains the value to be added to this, pfn contains a function pointer in case

of a non-virtual member function or a default implementation, and, in case of a virtual member function,

vt_ott and index contain the offset of the virtual function table pointer in the object and the index for the

virtual function table, respectively. The data member vt_off occupies the same memory location as pfn.

For type checking purposes, the compiler needs to cast pfn to the appropriate function pointer type.

Conceptually, a signature table entry is a member function pointer. The only difference is that while

a regular member function pointer can only point to a class member function, a signature table entry can

point to a default implementation as well. We expect, therefore, some similarity in the data structures.

Indeed, the data members delta, index, pfn, and vt_off are the same as used in the data structure of

member function pointers and virtual function table entries. An alternate declaration for signature table

entries would, therefore, be:

struct sigtable_entry_type public vtable_entry_type {

short tag;

short vb_off;

};

In vtable_entry_type, the name delta2 is used instead of vt_off. In a member function pointer, the sign

bit of index is used to distinguish between a virtual and a non-virtual member function. To store the bit

to distinguish between a class member function or a default implementation, we need the data member tag.

The lack of the data member vb_off in member function pointers can cause member functions from virtual

base classes to be called incorrectly.

If a member function was inherited through two or more occurrences of virtual inheritance, even the

one data member vb_off in a signature table entry is insufficient. In the general case, we might have to

follow multiple virtual base pointers to find the right base object. This would require multiple vb_off data

members. Since the number of vb_ott data members would depend on the class hierarchy, we could not

statically determine the size of a signature table entry. A better solution would be to change the object

format by introducing additional virtual base pointers 50 that any virtual base could be found with only one

indirection.

When calling a member function through a member function pointer, the G++ compiler determines the

layout of the object based on the class name used in the member function pointer declaration. In most cases,

this strategy works correctly. However, if an object of a subclass is used, G++ has no way of knowing the

actual layout of the object. In this case, the member function call might produce unpredictable results. Since

the class of the object pointed to by a signature pointer/reference is not known at compile time, we cannot

use this approach of assuming an object layout that 1V0uid work in most cases. We always need the data

member vb_off in a signature table entry. To correctly call a member function through a member function

pointer in all cases, it also would be necessary to add a vb_off data member to vtable_entry_type and to

include additional virtual base pointers in the object.

The signature table is now a structure that contains a data member of type sigtable_entry_type for

every member function declared in the signature and one for the implicitly declared destructor. For signature

S declared earlier, the signature table looks as follows:

struct S_Table {
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p: newC:

optr

sptr
16

1: 0

C::fO

2: 0

C::g

3: 0

C::h
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0:

S_C_Table:

- .dtor: 0

0

C::-C

f· 0- .
0

C::f

...g: 1

0
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Figure 2: Compiler front-end implementation.

sigtable_entry_typa

sigtable_entry_type

sigtable_entry_type

_.dtor;

f'- .
};

We will see later why the data members of S_Table cannot be constant. In addition, for each uninitializcd

constant in the signature, we insert a data member declaration into the signature table type. All the

information for initializing the data members of a signature table entry and for initializing constants can

be obtained at compile time from the class of the object on the RHS of a signature pointer assignment or

initialization.

Given a signature S with member functions f and g and a conforming class C, the assignment of an object

of class C to a siganture pointer p results in the data structure displayed in Figure 2.

Signature Member Function Call

To call a signature member function, we need to generate a conditional expression that tests the data member

tag of the signature table entry and, depending on its value, call a non-virtual member function, a virtual

member function, or a default implementation. We also have to make sure that the right offset gets added

to the this pointer. The signature member function call

int i = p->g (7, 11);

from our example above is now translated into

int i = (5 =p.sptr->_g.
base = (s.vb_off < 0) ? p.optr

this = base + s.delta,

(s.tag == 0)

*(p.optr + s.vb_off),
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? II non-virtual member function call

a.pfn (this, 7. 11)

I I virtual member function call

((**(base + a. vt_off»[a. index] ).pfn (this. 7, 11)

) ;

where s, this, and base are compiler generated temporary variables. The structure s contains the signature

table entry. If virtual inheritance is used, base points to the part of the object corresponding to the vidual

base class. Otherwise, base points to the beginning of the object. The pointer thia is offset from base

to point to the part of the object corresponding to the base class from which the member function g was

inherited. These temporary variables can be kept in registers.

The above code assumes that a virtual function table entry contains a data member pfn that contains

the pointer to the function. The delta stored in the vidual function table entry is not needed since it is the

same as the delta stored in the signature table entry. If the virtual function table contains pointers to pieces

of code that adjust the this pointer and then branch to the function, which is an alternative implementation

of virtual function tables, the virtual member function call in our example becomes

((**(base + s.vt_off»[s.index]) (p.optr. 7. 11)

In this case, we do not add a .delta to the implicit first argument, as it will be added in the code piece

pointed to from the virtual function table.

In case the signature member function g has a default implementation, we need to add a third branch to

the conditional expression. The signature member function call now becomes

int i = (s = p.sptr->_g.

base = (s.vb_off < 0) ? p.optr : *(p.optr + s.vb_off).

this =base + a.delta.

(s.tag == 0)

? II non-virtual member function call

s.pfn (this. 7, 11)

(s.tag >= 0)

? II virtual member function call

((**(base + s.vt_off»[a.index]).pfn (this, 7, 11)

II default implementation call

a.pfn (P. 7, 11)

) ;

Since in practice a non-virtual function call is expected to be the most common case, it should be reached

with only one test.

If instead of the signature pointer variable p in our example, we have an expression that evaluates to a

signature pointer, the result needs to be stored in a temporary signature pointer variable first to prevent the

expression from being evaluated multiple times.

If a signature member function is called while constructing or dcstructing the object the signature

pointer/reference points to, the behavior is underlOed. In particular, calling a virtual member function

through a signature pointer before the virtual function table pointer in the object is initialized is likely to

result in a crash. However, this 1s nothing new. If a class pointer is used instead of a signature pointer,

the behavior is the same. The only way for the compiler to detect such aliasing is through global data flow

analysis.

Full Conformance

So far we have only considered strict conformance. If we lift this restriction, it might be necessary to convert

arguments and/or the return value when calling a signature member function. In the following we discuss

how conversion functions look like and how they are installed in a signature table.
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Assume T is a signature and D a class conforming to T. Consider the declarations

signature S {

int f (D *);

T * g (int) ;

};

class C {

pUblic:

int f (T *) j

D * g (int, int = 0) ;

};

The member function C: : f conforms to 5: : f since the type of C: : f 's argument, T*, is a base type of S: :f's

argument type D*. Similarly, C::g conforms to S::g since its return type D* is a subtype of (i.e., conforms

to) S: :g's return type T* and since its second argument has a default value. Therefore, C conforms to S.

Since this is not strict conformance, conversion functions are needed for both member functions.

The conversion functions are generated together with the signature table 5_C_Table, i.e., when testing

conformance of Sand C for compiling an assignment statement or declaration of the form

S*p=nevC;

Like the signature table, the conversion functions have static linkage. They have the same type as the

signature member functions S: :f and 5 ~: g, for which they are generated. Since the conversion functions

are not in signature scope but in file scope, we need to explicitly provide them with the first argument this

of type 5*. For our example, the compiler would need to generate the conversion functions

static int 5_C_f (5 * this, D * argl)

{

return «C *) this)->f «T *) argl)i

}

static T * S_C_g (5 * this, int argl)

{

return (T *) «C *) this)->g (argl);

}

Since they have the same types as the original signature member functions, we can treat them like default

implementations, flag them as such, and install pointers to these conversion functions in the signature table

entries S_C_Table. _f and S_C_Table. _g, respectively.

The signature member function call p->f 0 now results in the conversion function 5_C_f being executed.

Since the entry _f in the signature table is flagged as a default implementation, the conversion function gets

the signature pointer p passed for it's first argument this. In the body of the conversion function, this

can safely be converted to a pointer of type C* since this conversion function can only ever be called by

dispatching through the S_C_Table, and this table is only used when p.optr points to an object of type C.

Since, like signature tables, conversion functions are declared static, they may be duplicated in other

translation units.

Signature-Signature Tables

When compiling a signature pointer assignment/initialization with another signature pointer on the RHS,

we do not always have enough information to compute the contents of the LHS signature table. Since it is

not known at compile time which signature table the RIIS signature pointer points to, we might have to

initialize the LHS signature table at run time. An alternative would be to store the information to call a
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RHS signature member function in a LHS signature table entry. However, this would result in an additional

table lookup when calling a LHS signature member function. The number of table lookups needed to call

a signature member fundion would depend on the number of assignment statements executed and could,

therefore, be arbitrarily high.

If the heap is garbage-collected, the most efficient solution is to allocate dynamically initialized signature

tables on the heap. Signature tables that result from an object pointer on the RHS are still initialized

statically. When assigning a signature pointer to another signature pointer of the same type, we simply copy

the two data members optr and sptr. If the types are not the same but the signature table entries needed

in the LHS signature table are found in the corred order as a contiguous block of data in the RIlS signature

table, we can share the RHS signature table and let the LHS sptr point into the RIlS table. If the RIIS

table cannot be shared, the LHS signature table is allocated on the heap and initialized from the appropriate

RHS signature table entries.

If no garbage collector is available, we have to resort to allocating signature tables on the stack. To do

so the compiler reserves a signature table variable for every signature pointer (or signature reference). A

signature table can now only be shared if both LIlS and RHS signature pointers are in the same scope or jf

the RHS signature pointer is in an outer scope. If the LHS signature pointer is in an outer scope, the RHS

signature table has to be copied into the table associated with the LHS signature pointer. Similarly, if a

local signature pointer is returned as a function value, the signature table has to be copied into the signature

table variable associated with the function return value. These copy rules assure that a signature pointer

always points to a table in static memory, in the same adivation record, or in an activation record higher

up on the stack. If a signature table variable associated with a signature pointer was never assigned to, it

can be removed during optimization.

Using data flow analysis, it is often possible to determine that the RHS signature table has been statically

initialized or that it is in an outer scope. In either case, copying the signature table is unnecessary for

assigning to a LHS signature pointer in an outer scope. Another solution to avoid copying would be to

test at. run time whethcr a signature table is in static memory or in an outer stack frame. An efficient but

architecture-specific implementation of this test would be a comparison of the address of the table with the

current stack pointer. A portable solution for testing if a signature table is in static memory would be to

include an additional bit in the data member tag of a signature table's destructor entry.

If the RHS signature is derived from the LITS signature using single inheritance, thc RRS signature

table type is a subtype of the LRS signature table type. In this case, the RHS sptr can simply be copied

into the LRS signat.ure pointer. To allow sharing of the RIIS signature table in case of multiple signature

inheritancc, it is necessary to duplicate the destructor entries in the signature table. For each base signature,

the signature table contains one entry that points to the class's destructor. Now for any RRS signature that

is a descendent of the LRS signature in the signature inheritance hierarchy, we can avoid copying of table

entries.

We argue that in most cases, copying ofsignature tables entries, or allocating signature tables on the heap,

can be avoided by carefully designing the signature hierarchy. Even if the RHS signature is not a descendent.

of the LHS signature, if the LHS signature member functions are in the same order at the beginning of the

RHS signature, copying is avoided.

To alert the programmer of an inefficient signature pointer assignment, the compiler should print a

warning message whenevcr signature table entries have to be copied. Independent of whether copying table

entries is necessary, if the RHS signature contains a defaull implementation where the LHS signature only has

a member function declaration, the compiler must generate a run-time test and should print a corresponding

warning message.

5.3 Implementation with Back-End Support

In the compiler front-end solution, there is room for optimization in the calling sequence for a signature

mcmber function call. In this section, we demonstrate how to address these inefficiencies using support from

the compiler back-end. While this solution is not directly portable since it depends on knowledge of the
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native calling sequence, it can nevertheless be implemented on any architecture. It is especially efficient on

modern RISe processors.

For calling a signature member function in the previous solution, the generated code tests the information

stored in a signature table entry to decide on how to call the signature member function. The key idea in

this solution is to customize the calling sequence for calling a particular class member function and to store

(a pointer to) the code of this calling sequence in the signature table entry. The signature table now contains

only pointers to these pieces of code, called thunks, instead of flags and offsets. A signature member function

call is now translated into branching to the thunk, which then adjusts the this pointer and branches to the

class member function or performs a virtual function call. Such an implementation was proposed in [14].
The same idea is used in some compilers for implementing a virtual member function call.

Each thunk only contains the code necessary to call one specific class member function. It is not necessary

to test any flags, we can just branch to the thunk directly. The thunk does the right thing for whichever

member function is being called. Signature table entries are now reduced to single function pointers.

For example, given the signature 5 with member functions f and g as above, the signature table is of

type

struct 5_Table {

void * _.dtor;

void * _f;

void * _g;
};

Given a class C conforming to 5, assume that C::f is a non-virtual member function and that C::g is a

virtual member function. Neither function requires any offset to be added to this. The thunk needed for

calling C: :f is the following short piece of code:

this = this.optr;

goto C: :fj

}

Before branching to the thunk, the compiler will have set up the activation record correctly for calling C: :1.

In particular, all the arguments were either pushed onto the stack or are in registers. The value passed for

the first argument, this, is the signature pointer. Before branching to C: :f, we need to extract the data

member op'tr so that this points to the object.

For calling the virtual member function C: :g we need the thunk

this = this.optr;

goto (**(this + VT_OFF»[INDEX].pfnj

}

The values VT_OFF and INDEX are constants that can he determined at compile time and are hard-coded into

the thunk. If virtual function tables are implemented using thunks as well, we do not need to select the data

member pfn. The resulting data structure using a thunk-based implementation of the virtual function table

is displayed in Figure 3.

If C: :g were inherited from a virtual base class and would require a non-zero offset to be added to this,

the thunk would be

base = *(this.optr + VB_OFF);
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sptr

vpl;

S_C_.dlor_Thunk: {this = Ibis.opu; goto C::-C; }

S_C_CThunk: {this = lhis,optr; goto C::f; }

S_C-&....Thunk: { this = this.oprr; goto C··(this + 16»[2J; }
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C_vtable:
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=i=c::m

C::g
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}

Figure 3: Thunk-based implementations of signature table and virtual function table.

this = base + DELTA;

gato (**(base + VT_OFF»[INDEX].pfn;

Also DELTA and VB_OFF would be constants hard-coded into the thunk.

For calling a default implementation, no work has to be done, since a default implementation expects

this to be a signature pointer. Therefore, no thunk is needed and the entry in the signature Lable can point

to the code of the default implementation directly.

When compiling an assignment of an object of class C to a signature pointer, the compiler generates the

above thunks and a declaration of the signature table,

static

const S_Table S_C_Table = { &S_C_.dtor_Thunk, &S_C_f_Thunk, &S_C_g_Thunk };

and initializes it to point to the thunks. If a default implementation is used, the corresponding signature

table entry contains a pointer to the code of the default implementation.

Instead of resulting in a large condi.tional expression, the signature member function call

int i = p->g (7, 11);

now reduces to

int i = p.sptr->_g (p, 7, 11);

AnotiIer advantage of using thunks is that code for converting argument types could be included in the

thunk. It is not necessary to usc a separate conversion function as we did in the front-end solution. The

code for converting arguments would simply go before the goto. Since a signature table is unique for each

signature-class pair, the compiler can generate the conversion code for each thunk when generating the

signature table. For converting the return type we could call, instead of branching to, the class member

function from the thunk using a light-weight function call sequence. A thunk for the non-virtual member

function call would look then as follows:
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this = this.aptr + OFFSET;
II convert argument types

temp = ret_addr;

ret_addr = Lj

gato C::f;

L: II convert return type

ret_addr = temp;

return;
}

There is no run-time penalty compared to the front-end implementation if a signature member function

does not require conversions. On the contrary, by not having to test the data member tag of a signature

table entry, by not having to add a zero delta, and by not having to test vb_off, a few instructions will be

saved. The only disadvantage of using thunks is that it requires generation of low-level, machine dependent

code, which complicates or even prohibits its use in a compiler that generates e code, such as AT&T's

cfront compiler.

As in the front-end implementation, assigning a signature pointer to another signature pointer might

require copying entries of the RHS signature table to the LITS signature table. In most cases, it is possible

to copy the pointer to the thunk. If a member function of the LHS signature does not have the exact same

argument and return types as the member function of the RHS signature, however, the compiler needs to

generate a new thunk that performs the conversions needed and then branches to the thunk from the RHS

signature table, which might do further conversions.

In the thunk implementation described in [11]. copying of signature table entries is avoided by having

the optr of the LHS signature pointer point to the RHS signature pointer instead of pointing to the object.

This makes assignment more efficient but requires multiple indirections in a signature member function call.

Furthermore, to allow assigning a local signature pointer to a non-local signature pointer, the solution in [14]

has to be corrected and signature pointers have to be heap allocated.

There is one final detail in assigning a signature pointer to another signature pointer. If the RHS

signature table contains a default implementation that is not allowed to be copied to the LHS signature

table, an error has to be reported at run time. To allow this run-time test, we have to reintroduce a flag that

indicates whether a default implementation is used or not. This Rag can be stored in the low-order bit of the

functionjthunk pointer in the signature table. We just have to make sure that class member functions and

thunks are aligned on half-word or word boundarics, which is required on most RiSe-based architectures

anyway. When calling a signature member function that might use a default implementation, this bit

must be masked out. If the architecture allows, the mask instruction could be omitted by starting default

implementations at odd addresses. The only time this nag needs to be tested is in the code for an assignment

when performing the run-time error check. If it can be guaranteed that the code of a default implementation

is not duplicated across compilation units (either through linker support or by using pragmas), we do not

need this extra flag but can compare the function pointer in the signature table with the address of the

default implementation instead.

As a possible optimization of signature member function calls, the signature table can contain the code

for thunks directly instead of a pointer to a thunk. If a thunk contains conversion code and does not fit into

the allocated space, the signature table would contain a branch instruction to jump to the thunk. This makes

signature member function calls more efficient for the most common cases. What would become inefficient,

however, is copying signature table entries when assigning one signature pointer to another. To avoid that,

this optimization could be controlled by the user, or restricted to the case where the compiler determines

that no copying of signature table entries is necessary in the entire source file.

With the right layout of the activation record in registers or on the stack, no work needs to be done for

adjusting this. For example, on a RISe processor, one register could be reserved for the data member sptr

of this when calling a signature member function. This register would not be used for passing arguments
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Figure 4: Fully optimized thunk-based implementation.

to class member functions. In this case, we can get rid of the thunk altogether and store a direct pointer to

C: :1 in the signature table entry. The data member optr of the signature pointer would already be in the

correct register to be passed as this to the class member function. The register that was reserved for sptr

can he used for computation in the class member function.

Observe that the information in the thunks is strictly class specific. To avoid the duplication of thunks

across multiple compilation units, it would, therefore, be possible to generate the thunks together with the

class instead of with signature tables. When compiling a class, the compiler would generate signature thunks

for all public member function that are virtual and/or inherited. If no this adjustment is necessary and a

register is reserved for the sptr, it is not necessary to generate a thunk, the address of the member function

can be put into the signature table directly (Figure 4).

6 Cost Comparison

In this section, we compare the costs of the three proposed implementation techniques. Since detailed cost

analysis in terms of instruction counts and timings would be highly architecture and compiler-specific, we

choose instead to analyze space requirements in terms of words of memory and time requirements in terms

of logical operation counts.

Ignoring default implementations and constants, the memory required for interface objects in the pre

processor implementation is two words, one for the data member optr and one for the virtual function table

pointer. This is the same size as the size of signature pointers in the other two implementations, where

we have the data member sptr instead of the virtual function table pointer. In interface objects, we need

additional space for constants and default implementation flags. In the compiler-based implementations, the

extra space is placed into the signature tables, which are usually in static memory.

The space needed for the signature table in the compiler front-end implementation is fifty percent more

than the space needed for the virtual function table in the preprocessor implementation, three words for each

signature member function and an additional three words for the implicitly declared destructor. This is not

surprising, since a signature table conceptually is structure containing poinlers to member functions and,
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as we discussed in the implementation section, a correct implementation of a pointer to a member function

would require three words. In the thunk implementation, the signature table takes only one third the space

since we only need one pointer per table entry. But in addition we need static storage for the thunks. For the

front-end and thunk implementations, signature constants require additional space in the signature table.

When assigning a class object to a signature pointer in the preprocessor implementation, we need to call

the constructor of the template class S_C_Interface, allocate the interface object on the heap, and then

assign two pointers. In addition, if the signature contains uninitialized constants or default implementations,

the corresponding data members and flags in the interface object have to be assigned as well. In the compiler

based solutions, it requires only two pointer assignments.

Assigning a signature pointer of a different type than the LITS signature pointer can become expensive

in the compiler based implementations if signature table entries have to be copied. Since in the preprocessor

implementation the LHS interface object just points to the RlTS interface object, the cost is the same as

assigning a class object.

In the preprocessor implementation, a signature member function call takes as much time as two class

member function calls, a virtual member function call for calling the interface object member function,

followed by the class member function caU, which mayor may not be virtual depending on the class.

In the front-end implementation, dispatching through the signature table to call a non-virtual member

function takes roughly the same time as a regular virtual member function call. Calling a virtual member

function through a signature pointer requires two table lookups, one to get the signature table entry and

another to get the virtual function table entry. In both cases there is the additional constant overhead of

dereferencing the optr and of testing the data members vb_off and tag of a signature table entry. If the

data member optr of the signature pointer is in the wrong register, we also need a register-to--register move.

If the signature contains a default implementation, there is an additional test to distinguish between a virtual

member function and a default implementation. The cost of calling a default implementation is three tests

added to the cost of a virtual member function call.

In the thunks implementation, we do not need to perform any tests when calling a signature member

function. Assuming the register layout is such that the data member optr of the signature pointer is in the

right register to be passed on to the class member function, we can make a signature member function call

exactly as efficient as a standard virtual member function caJi in the case of calling a non-virtual member

function or a default implementation. When calling a virtual member function through a signature pointer,

we have to perform an additional virtual function table lookup.

7 Conclusion

We have discussed the limitations of inheritance for achieving subtype polymorphism and for code reuse. We

have proposed language constructs for specifying and working with abstract types that allow us to decouple

subtyping from inheritance, have given the syntax and semantics of such an extension, and have proposed

three possible implementation strategies for this language extension.

Wllile we have presented the ideas of such a language extension as an extension to C++, they would

equally lVell apply to any statically typed object-oriented programming language.

A signature is a language construct that allows the separation of the concepts of abstract and concrete

types. Using structural conformance, we also have separated subtyping from inheritance. Not only are these

concepts semantically separated, their implementations are decoupled as well. With the thunk implementa

tion, the mechanism of dynamically dispatching through signature tables is decoupled from any mechanism

for implementing concrete types and code reuse (i.e., inheritance in C++). For example, the subtype re

lationship defined by multiple inheritance is subsumed by structural conformance. In cases where multiple

inheritance was used only for subtyping purposes, we no longer need to pay the cost of adjusting the this

pointer and of following pointers to virtual bases.

With subtype polymorphism defined by signature conformance and implemented through signature point

ers and references, it is no longer necessary for inheritance to define a subtype relationship at all. Therefore,
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virtual function tables are no longer needed as a dispatch mechanism to achieve polymorphism. Without

the need for virtual functions, class inheritance becomes a pure code reuse mechanism. IIaving decoupled

subtyping from inheritance, it is also possible to change the semantics of inheritance and make it conceptu

ally simpler and more versatile for code reUse by allowing to inherit only parts of a base class or by allowing

renaming of inherited data members and member functions. While for pragmatic reasons, such changes to

C++ are undesirable as they would affect the behavior of existing programs, future programming languages

should take advantage of this separation.

8 Availability

Parts of the language extension have been implemented in GeC as a compiler extension. The implementation

is included as part of the GCC distribution starting with GCC version 2.6.0.
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