
Implementing Spike-Timing-Dependent Plasticity on SpiNNaker

Neuromorphic Hardware

Xin Jin, Alexander Rast, Francesco Galluppi, Sergio Davies, and Steve Furber

Abstract— This paper presents an efficient approach for
implementing spike-timing-dependent plasticity (STDP) on the
SpiNNaker neuromorphic hardware. The event-address map-
ping and the distributed synaptic weight storage schemes used
in parallel neuromorphic hardware such as SpiNNaker make
the conventional pre-post-sensitive scheme of STDP implemen-
tation inefficient, since STDP is triggered when either a pre- or
post-synaptic neuron fires. An alternative pre-sensitive scheme
approach is presented to solve this problem, where STDP is
triggered only when a pre-synaptic neuron fires. An associated
deferred event-driven model is developed to enable the pre-
sensitive scheme by deferring the STDP process until there are
sufficient history spike timing records. The paper gives detailed
description of the implementation as well as performance
estimation of STDP on multi-chip SpiNNaker machine, along
with the discussion on some issues related to efficient STDP
implementation on a parallel neuromorphic hardware.

I. INTRODUCTION

Synaptic plasticity is one of the most important features of

a neural network, and many different plasticity mechanisms

have been developed since the last century to mimic the bio-

logical process of learning. Spike-timing-dependent plasticity

(STDP) based on Hebbian theory has received much attention

in recent years [4], [13].

In this paper the approach towards developing STDP

rule on SpiNNaker is demonstrated. The STDP rule mod-

ifies synaptic weights according to the difference between

pre- and post-synaptic spike timings. The ordering decides

whether the modification is potentiation or depression. Nor-

mally, STDP is triggered whenever a pre-synaptic spike

arrives, or a post-synaptic neuron fires, which in turn requires

keeping indices of synaptic information in both pre- and

post-synaptic orders for efficiency [4]. The difficulty in

implementing this scheme on SpiNNaker’s event-address

mapping (EAM) model is that when a post-synaptic neuron

fires, relevant synaptic weights are still located in the external

memory. Synaptic information will show up in the local

memory only when a pre-synaptic spike arrives.

This problem is solved by applying a novel pre-synaptic

sensitive scheme with an associated deferred event-driven

model. The pre-sensitive scheme only triggers the STDP

when a pre-synaptic spike arrives and requires keeping

only one index of synaptic weights (in pre-synaptic order),

hence it reduces the processing and the memory bandwidth

requirements. However, the pre-synaptic sensitive scheme

relies on “future” spike timing information to perform STDP.

The deferred event-driven model postpones the STDP for a

The authors are with the School of Computer Science, The University of
Manchester, Manchester, UK (email: {jinxa}@cs.man.ac.uk)

Fig. 1. The STDP modification function.

certain period of time, waiting for the emergence of future

spike timing, enabling then the pre-synaptic scheme.

The pre-sensitive scheme and deferred event-driven model

proposed are verified and evaluated by running a four-chip

SpiNNaker simulation and comparing the results with the

Matlab simulation using pre-post-sensitive scheme. When

enabling STDP on SpiNNaker, this scheme does involve cer-

tain approximation however, as compared to the conventional

STDP implementation. The impact of the approximation on

the system performance will be discussed at the end of this

paper.

The rest of the paper is organized as following: Section II

gives a brief introduction to the STDP rule. Section III deals

with the difficulties of implementing STDP on SpiNNaker,

presenting the pre-sensitive scheme and the deferred event-

driven model to tackle these difficulties; finally the algorithm

is converted into the actual implementation. Section IV

presents some simulations along with results. Related issues

are discussed in Section V followed by a conclusion in

Section VI.

II. STDP

The learning rule implemented on SpiNNaker is the well-

known spike-timing-dependent plasticity (STDP) [4], [13],

where the amount of weight modification is decided by the

function shown below:

F (∆t) =

{

A+e
∆t

τ+ ∆t < 0,

−A−e
−∆t

τ
− ∆t ≥ 0.

(1)

WCCI 2010 IEEE World Congress on Computational Intelligence

July, 18-23, 2010 - CCIB, Barcelona, Spain IJCNN

978-1-4244-8126-2/10/$26.00 c©2010 IEEE 2302

Fig. 2. The pre-post-sensitive scheme. STDP is triggered when either a
pre-synaptic neuron fires or a post-synaptic neurons fires.

Fig. 3. The pre-sensitive scheme. STDP is triggered only when a pre-
synaptic neurons fires (a spike arrives).

Where ∆t is the time difference between the pre- and

post-synaptic spike timing (∆t = Tpre − Tpost , being

Tpre the pre-synaptic spike time stamp and Tpost the post-

synaptic spike time stamp), A+ and A− are the maximum

synaptic modifications, and τ+ and τ− are the time windows

determining the range of spike interval over which the STDP

occurs. If the pre-synaptic spike arrives before the post-

synaptic neuron fires (i.e. ∆t < 0), it causes long-term

potentiation (LTP) and the synaptic weight is strengthened

according to A+e
∆t

τ+ . If the pre-synaptic spike arrives after

the post-synaptic neuron fires (i.e. ∆t ≥ 0), it causes long-

term depression (LTD) and the synaptic weight is weakened

according to A−e
−∆t

τ
− . The corresponding function curve is

shown in Figure 1. The choice of STDP parameters can be

found elsewhere [13].

III. METHODOLOGY

A. The pre-post-sensitive scheme

In most desktop computer simulations, the implementa-

tion of STDP is quite straightforward. Because all synaptic

weights are locally accessible, the STDP can be triggered

whenever a spike is received or a neuron fires. In this

approach, calculating ∆t is simply a matter of comparing

the history records of spike timings. This corresponds to

examining the past spike history (at least within the STDP

sensitivity window), as shown in Figure 2 where pre-synaptic

spikes are shown in blue and post-synaptic spikes are shown

in red. We call the STDP triggered by the receiving spike

as a pre-synaptic STDP, since it is caused by a pre-synaptic

spike; and the STDP triggered by a neuron firing hence as

a post-synaptic STDP, since it is caused by a post-synaptic

spike. The pre-synaptic STDP causes LTD which depresses

the connection, whereas the post-synaptic STDP causes LTP

which potentiates the connection. The scheme used by most

desktop computer simulations is termed a pre-post-sensitive

scheme, since both pre-synaptic and post-synaptic STDPs are

involved.

Problems on SpiNNaker: SpiNNaker uses a distributed

memory system. Each chip is associated with one SDRAM

shared by 20 processors. Each processor has a fast internal

memory called DTCM. According to the Event Address

Mapping (EAM) scheme, synaptic weights are pre-synaptic

indexed and stored in the SDRAM of the post-synaptic

end. They will only be transmitted to the DTCM by a

DMA operation when a spike arrives. This memory system

guarantees a good balance between the memory space and

the accessing speed. Detailed description of SpiNNaker can

be found in [6], [8], [7], [12], [11].

Two problems arises however if STDP is implemented

using the conventional pre-post-sensitive scheme:

1) The required synaptic weights are NOT in the DTCM

when a local neuron fires which disables post-synaptic

STDP. It is inefficient to use a second DMA operation

to move synaptic weights from the SDRAM to the

DTCM when a neuron fires, as it will double the

memory bandwidth requirement.

2) Since the synapse block is a neuron-associative mem-

ory array, it can only be indexed either by the pre-

or post-synaptic neuron. If synapses are stored in pre-

synaptic order, the pre-synaptic STDP will be very effi-

cient while the post-synaptic STDP will be inefficient,

and vice versa - because one or the other lookup would

require a scattered traverse of discontiguous areas of

the synaptic block.

As a result, an alternative scheme is required for STDP

implementation on SpiNNaker.

B. The pre-sensitive scheme

We propose a new scheme for implementing STDP on

SpiNNaker, called the pre-sensitive scheme as shown in

Figure 3. The pre-sensitive scheme triggers both pre-synaptic

STDP (LTD, left headed arrow) and post-synaptic STDP

(LTP, right headed arrow), when a pre-synaptic spike arrives.

This ensures the synaptic weights are always in the internal

DTCM when STDP is triggered, and makes accessing in-

dividual synapses possible by efficient iteration through the

array elements when the synapse block is in pre-synaptic

order.

The difficulties: However the implementation of the pre-

sensitive scheme is not as easy as the pre-post-sensitive

scheme. There are two difficulties involved:

1) This scheme requires the examination of not only the

past spike history records, but also of future records.

Naturally, future spike timing information is not avail-

able at the time the pre-synaptic spike arrives since it

has not yet happened.

2) SpiNNaker supports a range of synaptic delays from

0 ms to 15 ms for each connection [5] to compensate

for the time differences between electronic and neural

timings. The spike arrives at the electronic time rather

than the neural time, while the effect of the input is

deferred until its neural timing due to the delay. The

STDP should be started at the neural time.

2303

Fig. 4. The pre-synaptic time stamp.

Fig. 5. The time stamp representation.

C. The deferred event-driven model

Both of the above difficulties can be overcome by deferring

the STDP operation by introducing another model termed

deferred event-driven (DED) model. In the DED model, no

STDP is triggered immediately on receiving a pre-synaptic

spike. Instead, the spike timing is recorded as a time stamp

and STDP is triggered after waiting a certain amount of

time (the current time plus the maximum delay and the time

window). The DED model ensures that information on future

spike timings is obtained.

1) Timing records: STDP requires information on both

pre-synaptic and post-synaptic spike timings. A pre-synaptic

time stamp at 2ms resolution is kept in the SDRAM along

Fig. 6. The post-synaptic time stamp.

Fig. 7. Updating the pre-synaptic time stamp.

with each synapse block as shown in Figure 4 (the global ID

of the pre-synaptic neuron is added in front of the time stamp

for debugging purposes), and is updated when pre-synaptic

spikes arrive. The time stamp comprises two parts, a coarse

and a fine time. The coarse time is a 32-bit digital value

representing the last time the neuron fired. The fine time is

a bit-mapped field of 24 bits (bit [31:8]) representing spike

history in the last 48 ms. The coarse time always points to

the least significant bit of the fine time (bit 8). As a result,

the least significant bit (bit 8) of the fine time is always set.

Figure 5 shows how time history is represented by the time

stamps. Assuming the coarse time is a ms, bit 8 in the fine

time represents the last spike arriving at a ms. Each higher bit

represents a spike arrival time which is 2 ms earlier. In Figure

5 for instance, it is able to calculate that the pre-synaptic

spikes arrive at a, (a − 4) and (a − 44) ms respectively.

Post-synaptic time stamps reside in local DTCM (Figure 6)

and have a similar format to pre-synaptic time stamps except

that they are 64 bits long (bit [63:0], representing 128ms),

allowing longer history records.

2) Updating timing records: A pre-synaptic time stamp

is updated when a packet is received. During the update,

firstly, the coarse time is subtracted from the new time to

produce a time difference tdif , as shown in Figure 7. The

time difference is divided by the time resolution, to get the

number of bits to be shifted (2ms in this case, so the shift is

by tdif/2 bits). Then the fine bit is shifted left by tdif/2 bits.

If any “1” is shifted out of the most significant bit, STDP

will be triggered. Bit 32 represents the pre-synaptic spike

time which triggers STDP.

The updating of the post-synaptic time stamp is similar to

that for the pre-synaptic, except:

1) The post-synaptic time stamp is updated when a neuron

fires.

2) The update of the post-synaptic time stamp will NOT

trigger STDP.

D. The STDP process

If STDP is triggered by a “1” going to bit 32 in the

pre-synaptic fine time, its post-synaptic connections in the

Synaptic Block are firstly traversed word by word. For each

Synaptic Word (one connection), the pre-synaptic spike time

(the time of bit 32) is added to the synaptic delay to convert

the electronic timing to the neural timing T ; the processor

then calculates the LTD [T −τ−, T] and the LTP [T, T +τ+]
windows. If any bit in the post-synaptic time stamp is set

within the LTD or LTP window, the synaptic weight is either

weakened or strengthened according to the STDP rule.

The post-synaptic time stamp can be retrieved from the

DTCM as determined by the neuron ID in the Synaptic

Word. The processor then scans the post-synaptic time stamp

looking for any “1” located within the learning window, and

updates the weight accordingly.

E. Implementation

The flow chart of the STDP implementation is shown

in Figure 8 which comprises three nested loops in the

2304

w�

0()t T T� � �

Fig. 8. STDP implementation flow chart.

Fig. 9. Calculate the time window and time word.

programme to handle a new spike and to do STDP. Each

of the three loops may run through several iterations:

• Loop1: Update the pre-synaptic time stamp. This loops

tdif/2 times. If there are n “1”s shifted to bit 32, the

STDP will be triggered n times.

• Loop2: Traverse the post-synaptic connections. This

loops m = Blksize times, the number of words in

a Synaptic Block, i.e. the number of post-synaptic

connections in this fascicle from the pre-synaptic neuron

that fired.

• Loop3: Scan the post-synaptic time stamp. This loops

x = (T1 − T0)/2 times (T0 and T1 will be explained

later), and each time 1 bit will be detected. If there are y
bits found within the time window, the weight updating

will be executed y times.

The computational complexity of the bit-detection in Loop3

is o(nmx) and the computational complexity of weight

updating in Loop3 is O(nmy). As a result the shifting and

the weight updating in Loop3 needs to be as efficient as

possible.

Here follow a detailed description of the main processes

used in the algorithm:

1) Process 1 - the time window: Process 1 in flow chart

8 is responsible for calculating the time window, in this

implementation a dynamic window, from T0 to T1, which

differs from the window defined in the STDP rule by τ−
and τ+. Three restrictions are applied when calculating the

time window (shown in Figure 9):

1) The time window must be in the range of [τ−, τ+].

2) There are history records in the post-synaptic time

stamp in the time window. In Figure 9, the time

window becomes [T0, T + T+].

3) The left window and the right window are the same

length. In Figure 9, the time window becomes [T0,

T1], as T − T0 = T1 − T = a.

2) Process 2 - the time word: The post-synaptic fine time

stamp field is 64 bits and a 64-bit shifting operation in ARM

takes 8-9 CPU cycles, while a 32-bit one takes only 1. The

meaningful bits of the fine time stamp are those within the

time window [T0, T1], which is smaller than 32 bits if τ− =
τ+ ≤ 32ms. These bits are referred to as the “time word”,

which represents the bits of the post-synaptic fine time stamp

within the time window [T0, T1], after bit-time conversion.

If any of the bits is set in the “time word”, the weight needs

to be updated accordingly.

2305

(a) Spike raster plot.

(b) Weight curves of connections from pre-synaptic neuron 6. The
synaptic weight going rapidly to 0 is a self-connection.

Fig. 10. STDP results.

3) Bit detection: There are two bit detection operations in

the STDP implementation. The “LSLS” instruction provided

by the ARM instruction set is efficient in detecting if there

is any “1” moved into the carry bits (bit 32), and allows

the processor to do a conditional branch. To use the “LSLS”

instruction, bits [31:8] (instead of bit [23:0]) of a word is

used for the pre-synaptic fine time stamp.

4) Lookup table: Since the parameters of the STDP are

determined before the simulation starts, the ∆w can be pre-

computed based on different values of ∆t and loaded into

a lookup table. When the ∆t is obtained, ∆w can easily be

fetched from the lookup table. Compared to the real-time

computation of ∆w, using a lookup table is obviously more

efficient.

5) Performance: The processor time usage for each step

of processing is shown in Figure 8 where process 1 and

2 in Loop 2 are the most time consuming operations. The

calculation of ∆w in Loop 3 takes only 140 ns, with the help

of a lookup table.

(a) Synapse of neuron 6 to 6 (weaken) within 400 – 900 ms.

0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

8

10
Weight curve, from neuron 6 to 26, time window: [-32ms, 32ms]

Time (ms)

w
e

ig
h

ts
 (

m
v
)

PRE-

POST-

weight

(b) Connection from neuron 6 to 26 (strengthen) within 0 – 4000 ms.

Fig. 11. Weight modification caused by the correlation of the pre and post
spike times.

IV. SIMULATION RESULTS

A. 10s 60-neuron test

A 60-neuron network is simulated on the four-chip SpiN-

Naker SOC Designer model. The network is largely based

on the code published in [4] (but in a smaller scale), which

was also used to test the consistency of our results. There

are 48 Regular Spiking excitatory neurons a = 0.02, b =
0.2, c = −65, d = 8 and 12 Fast Spiking inhibitory neurons

a = 0.1, b = 0.2, c = −65, d = 2. Each neuron connects

randomly to 40 neurons (self-connections are possible) with

random 1-15 ms delays; inhibitory neurons only connect to

excitatory neurons. Initial weights are 8 and -4 for excitatory

and inhibitory connections respectively. Parameters τ+ =
τ− = 32ms, A+ = A− = 0.1 are used for STDP.

Inhibitory connections are not plastic [1]. Following learning

the weights of excitatory neurons are clipped to [0, 20]. There

are 6 excitatory and 1 inhibitory input neurons, receiving

constant input current I = 20 to maintain a high firing rate.

Weights are updated in real-time (every 1 ms).

The simulation is run for 10 sec (biological time) and

Figure 10(a) shows the spike raster, and Figure 10(b) shows

the evolution of synaptic weights of connections from pre-

synaptic neuron ID 6 (an input neuron). At the beginning of

2306

the simulation input neurons fire synchronously, exciting the

network which exhibits high-amplitude synchronized rhyth-

mic activity around 5 to 6 Hz. As synaptic connections evolve

according to STDP, uncorrelated synapses are depressed

while correlated synapses are potentiated. Since the network

is small and the firing rate is low, most synapses will be

depressed, leading to a lower firing rate. The synaptic weight

going rapidly to zero is the self-connection of neuron ID 6:

since each pre-synaptic spike arrives shortly after the post-

synaptic spike the synapse is quickly depressed.

Detailed modifications of the self-connection weight (the

blue curve) is shown in Figure 11(a) along with pre- (red

vertical lines) and post-synaptic timing (blue vertical lines),

from 400 ms to 900 ms. Modification is triggered by pre-

synaptic spikes. The weight curve between two pre-synaptic

spikes is firstly depressed because of the LTD window and

then potentiated because of the LTP window. The detailed

modification of the strengthened synapse (from neuron 6 to

26) from 0 ms to 4000 ms is shown in Figure 11(b).

B. 30s 76-neuron test

The system is also tested by a 30-second simulation of a

76-neuron network (60 excitatory and 16 inhibitory neurons)

with each excitatory neuron randomly connects to 10 other

neurons and each inhibitory neurons randomly connects to 10

excitatory neurons. A random 10 neurons receive a constant

biased input of 20 mV. A comparison between a simulation

without STDP (Figure 12(a)) and with STDP (Figure 12(b))

after the first 1,000 ms, is shown. The simulation with STDP

shows a more synchronized firing pattern than the simulation

without.

The result from the 30th second is shown in Figure 12(c),

and the corresponding Matlab (fixed-point, using pre-post

sensitive scheme) results1 is shown in Figure 13. The firing

pattern during the 30th second shows a more obviously

synchronized behavior. Figure 14(a) shows the activity of

neuron ID 1 during the 1st second. Figure 14(b) shows the

activity of neuron ID 1 during the 30th second.

The weight distribution at the end of the simulation can

be observed in Figure 15: most of the excitatory weights

are slightly de/potentiated around their initial value of 10.

Some connections are potentiated up to their maximum (20)

because they are systematically reinforced, due to converging

delays. For example we found a group of 7 neurons strongly

interconnected at the end of the simulation. Examining their

connections and delays (as shown in Figure 16 two circuits

with converging delays could be found: the first one starts

from neuron 57 and propagates through neuron 8, 47 and

43, ending at neuron 19; the second one starts from neuron

55 exciting neuron 57, propagates through neurons 47 and

19 and ends at neuron 42. All the weights are strongly

potentiated, near or up to their maximum at the end.

1The Matlab simulation is based on the code provided in [4]. The STDP
parameter setting is slight different: τ+ = τ

−
= 15ms, A+ = 0.1, and

A
−

= 0.12; weights are updated every 1 second instead of 1 millisecond.

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

Raster Plot from SpiNNaker

N
e

u
ro

n
 I

D

Time (ms)

(a) Simulation with STDP disabled during the 1st second.

0 100 200 300 400 500 600 700 800 900
0

10

20

30

40

50

60

70

Raster Plot from SpiNNaker with STDP

N
e

u
ro

n
 I

D

Time (ms)

(b) Simulation with STDP enabled during the 1st second.

2.9 2.91 2.92 2.93 2.94 2.95 2.96 2.97 2.98 2.99

x 10
4

0

10

20

30

40

50

60

70

Raster Plot from SpiNNaker with STDP

N
e

u
ro

n
 I

D

Time (ms)

(c) Simulation with STDP enabled during the 30th second.

Fig. 12. Comparison between the simulation with and without STDP on
SpiNNaker during 1st second and 30th second.

2307

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

Raster Plot in Matlab with STDP 30 second
N

e
u

ro
n

 I
D

Time (ms)

Fig. 13. The STDP result from the Matlab simulation (fixed-point) with
parameters: τ+ = τ

−
= 15ms, A+ = 0.1, and A

−
= 0.12.

0 200 400 600 800 1000

-80

-60

-40

-20

0

20

40
States of Neuorn ID 1

Time (ms)

m
V

electrical current
membrane potential

(a) The activity of neuron 1 during the 1st second.

2.9 2.92 2.94 2.96 2.98 3

x 10
4

-80

-60

-40

-20

0

20

40
States of Neuorn ID 1

Time (ms)

m
V

electrical current
membrane potential

(b) The activity of neuron 1 during the 30th second.

Fig. 14. The behavior of an individual neuron (ID 1) during the 1st second
and the 30th second.

Fig. 15. Weight distribution at the end of the simulation. Weights for
excitatory neurons are clipped to [0, 20]

Fig. 16. Group of neurons with converging delays. It is possible to track
down two circuits with converging delay (neurons 55, 57, 47, 19 ending at
neuron 42 and neuron 57, 47, 43 and 8 ending at neuron 19.

Fig. 17. Relationship between the firing rate and the length of timing
records.

V. DISCUSSION

A. Firing rates and the length of timing records

The length of the time stamp affects both the performance

and precision of the STDP rule. Longer history records

yield better precision at the cost of significantly increased

computation time. The optimal history length is therefore

dependent upon the required precision and performance. A

24-bit pre-synaptic time stamp with 2 ms resolution and a

maximum of 15 ms delay guarantees a 24 ∗ 2− 15 > 32ms
right (LTP) window for any delay.

The pre-sensitive scheme and the deferred event-driven

model require the new input to push the old input record

into the carry bit to trigger STDP. What happens, however,

if the new input does not come or it comes at a very low rate?

The post-synaptic time stamp is pushed forward when new

post-synaptic spikes are generated, and the history records

will be lost. If the pre-synaptic firing rate is too low, there

will be no post-synaptic time records within the time window

at the time STDP is triggered. As a result, there are certain

restriction in terms of the firing rate of pre-synaptic neurons

to ensure that STDP will be triggered in time. As shown in

Figure 17, at the time a new pre-synaptic spike (4) arrives,

the time difference between pre-synaptic spike 2 and post-

synaptic spike 1 is 32 ms – the same size of left window

(LTD) as the size of right window. Let the average interval of

two pre-synaptic spikes to be Tpre, and the average interval

of two post-synaptic spikes to be Tpost.

1) When Tpost ≤ Tpre + 32 (post-synaptic neurons fire

more frequently), to guarantee a 32 ms left window,

the interval between two pre-synaptic spikes must be

2308

no more than 128− 32 = 96ms; this, in turn, requires

a firing rate of more than 1000/96 = 10.4Hz.

2) When Tpost > Tpre + 32 (post-synaptic neurons fire

less frequently), a 32 ms left window can be guaranteed

with any pre-synaptic firing rate.

B. Approximation and optimization

Since the Matlab and SpiNNaker simulations employ

different implementation schemes, exactly the same results

are not achievable. At present the role of different synaptic

types is imperfectly understood and remains an area of

intense research interest [2]. Equally significantly, the level

of biophysical realism necessary to achieve useful behavior

or model actual brain dynamics is unclear. For instance, in

the case of the well-known STDP plasticity rule, while many

models exist describing the behavior [3], the actual biological

data regarding STDP is noisy and of low accuracy. Observed

STDP synaptic modifications exhibit a broad distribution for

which the nominal functional form of STDP models usually

constitute an envelope or upper bound to the maximum

modification [1], [9]. This suggests that high repeatability

or precision in STDP models is not particularly important.

While SpiNNaker is capable of modelling synapses with

biophysical realism down to the molecular level if necessary,

such high biological fidelity is computationally expensive.

For understanding the computational properties of synapses,

such exact replication appears to be unnecessary in view of

the observed synaptic variability. Equally, however, fidelity to

a precise functional form need not be particularly high. This

gives considerable latitude for experimenting with different

synaptic models in order to investigate various tradeoffs

between computational cost and functional accuracy.

The SpiNNaker STDP implementation can be further

simplified by using “nearest spike approximation” [10] which

limits LTD/LTP to the first/last presynaptic spike before/after

the postsynaptic one. The implementation of the STDP rule

involves a series of processing steps. Most of the processing

steps are in nested loops and will be executed for a number

of iterations during the STDP process. Thus the performance

will decrease significantly with STDP enabled, a common

problem of using STDP. The use of the “nearest spike

approximation” potentially reduces the number of iterations,

and will therefore significantly reduce the overhead.

The length and resolution of the time stamp are reconfig-

urable to meet different requirements; if a larger time window

is required, the length of the pre-synaptic time stamp can be

increased or the resolution can be reduced to 4 ms per bit.

The dynamic adjustment of the time stamp length is also a

possible optimization, by which users will be able to modify

the length of the time stamp or the time resolution at run-

time, to meet the accuracy-performance requirement during

different simulation periods.

VI. CONCLUSION

In this paper we have presented a way to implement an

efficient STDP algorithm on the SpiNNaker, a multi-chip

neuromorphic parallel hardware with a distributed memory

system, where synaptic data is stored on the post-synaptic

end and is retrieved only upon the arrival of pre-synaptic

spikes. The problem is solved by introducing a pre-synaptic

scheme and an associated deferred event-driven model, which

permits to update the weights only when a pre-synaptic

spike arrives, hence reducing memory requests and indexing

process operations. The methods shown in this paper validate

the practicality of learning on multi-chip neuromorphic par-

allel hardware and illustrates ways to translate theoretical

learning rules into actual implementation, leading to the

further development of universal learning support for spiking

neural networks on neuromorphic hardware.

ACKNOWLEDGMENT

We would like to thank the Engineering and Physical

Sciences Research Council (EPSRC), Silistix, and ARM for

support of this research.

REFERENCES

[1] Guoqiang Bi and Muming Poo. Synaptic modifications in cultured hip-
pocampal neurons: dependence on spike timing, synaptic strength, and
postsynaptic cell type. The Journal of Neuroscience, 18(24):10464–
10472, 1998.

[2] D. Durstewitz. Implications of synaptic biophysics for recurrent
network dynamics and active memory. 22(8):1189–1200, October
2009.

[3] M. Hartley, N. Taylor, and J. Taylor. Understanding spike-time-
dependent plasticity: A biologically motivated computational model.
Neurocomputing, 69(16):2005–2016, July 2006.

[4] Eugene M. Izhikevich. Polychronization: Computation with spikes.
Neural Computation, 18(2):245–282, February 2006.

[5] X. Jin, S. Furber, and J. Woods. Efficient modelling of spiking
neural networks on a scalable chip multiprocessor. In Proc. 2008

International Joint Conference on Neural Networks, Hong Kong, 2008.
inproceedings.

[6] X. Jin, F. Galluppi, C. Patterson, A.D. Rast, S. Davies, S. Temple,
and S.B. Furber. Algorithm and software for simulation of spiking
neural networks on the multi-chip spinnaker system. In Proc. 2010

International Joint Conference on Neural Networks, 2010.
[7] X. Jin, M. Lujan, M.M. Khan, L.A. Plana, A.D. Rast, S.R.Welbourne,

and S.B. Furber. Algorithm for mapping multilayer bp networks
onto the spinnaker neuromorphic hardware. In Proc. International

Symposium on Parallel and Distributed Computing (ISPDC’2010),
2010.

[8] Xin Jin. Parallel Simulation of Neural Networks on SpiNNaker

Universal Neuromorphic Hardware. PhD thesis, Computer Science,
The University of Manchester, 2010.

[9] H. Markram and M. Tsodyks. Redistribution of synaptic efficacy
between neocortical pyramidal neurons. Nature, (382):807–810, 1996.

[10] Timothe Masquelier, Rudy Guyonneau, and Simon J. Thorpe. Spike
timing dependent plasticity finds the start of repeating patterns in
continuous spike trains. PLoS ONE, 3(1):e1377, 01 2008.

[11] A. D. Rast, F. Galluppi, X. Jin, and S.B. Furber. The leaky integrate-
and-fire neuron: A platform for synaptic model exploration on the
spinnaker chip. In Proc. 2010 International Joint Conference on

Neural Networks, 2010.
[12] A.D. Rast, X. Jin, F. Galluppi, L.A. Plana, C. Patterson, and S.B.

Furber. Scalable event-driven native parallel processing: The spinnaker
neuromimetic system. In ACM International Conference on Computing

Frontiers 2010, 2010.
[13] Sen Song, Kenneth D. Miller, and L. F. Abbott. Competitive hebbian

learning through spike-timing-dependent synaptic plasticity. Nature

Neuroscience, 3:919 – 926, 2000.

2309

