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Statistical model selection criteria provide an informed choice of the model with
best external (i.e., out-of-sample) validity. Therefore they guard against overfitting
(“data snooping”). We implement several model selection criteria in order to
verify recent evidence of predictability in excess stock returns and to determine
which variables are valuable predictors. We confirm the presence of in-sample
predictability in an international stock market dataset, but discover that even the
best prediction models have no out-of-sample forecasting power. The failure to
detect out-of-sample predictability is not due to lack of power.

1. Introduction

Almost all validation of financial theory is based on historical datasets.
Take, for instance, the theory of efficient markets. Loosely speaking, it
asserts that securities returns must not be predictable from past information.
Numerous studies have attempted to verify this theory, and ample evidence
of predictability has been uncovered. This has led many to question the
validity of the theory.

Quite reasonably, some have recently questioned the conclusiveness of
such findings, pointing to the fact that they are based on repeated reeval-
uation of the same dataset, or, if not the same, at least datasets that cover
similar time periods. For instance, Lo and MacKinlay (1990) argue that
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the “size effect” in tests of the capital asset pricing model (CAPM) may
very well be the result of an unconscious, exhaustive search for a portfolio
formation criterion with the aim of rejecting the theory.

Repeated visits of the same dataset indeed lead to a problem that statis-
ticians refer to asmodel overfitting[Lo and MacKinlay (1990) called it
“data snooping”], that is, the tendency to discover spurious relationships
when applying tests that are inspired by evidence from prior visits to the
same dataset. There are several ways to address model overfitting. The
finance literature has emphasized two approaches. First, one can attempt
to collect new data, covering different time periods and/or markets [e.g.,
Solnik (1993)]. Second, standard test sizes can be adjusted for overfitting
tendencies. These adjustments are either based on theoretical approxima-
tions such as Bonferroni bounds [Foster, Smith, and Whaley (1997)],1 or
on bootstrapping stationary time series [Sullivan, Timmermann, and White
(1997)].

The two routes that the finance literature has taken to deal with model
overfitting, however, do present some limitations. New, independent data
are available only to a certain extent. And adjustment of standard test sizes
merely help in correctly rejecting the simple null hypothesis of no rela-
tionship. It will provide little information, however, when, in addition, the
empiricist is asked to discriminate between competing models under the
alternative of the existence of some relationship.

In contrast, the statistics literature has long promotedmodel selection
criteria to guard against overfitting. Of these, Akaike’s criterion [Akaike
(1974)] is probably the best known. There are many others, however, in-
spired by different criteria about what constitutes an optimal model (one
distinguishes Bayesian and information-theoretic criteria), and with varying
degrees of robustness to unit-root nonstationarities in the data.

The purpose of this article is to implement several selection criteria from
the statistics literature (including our own, meant to correct some well-
known small-sample biases in one of these criteria), based on popularity
and on robustness to unit roots in the independent variables. The aim is to
verify whether stock index returns in excess of the riskfree rate are indeed
predictable, as many have recently concluded [e.g., Fama (1991), Keim
and Stambaugh (1986), Campbell (1987), Breen, Glosten, and Jagannathan
(1990), Brock, Lakonishok, and LeBaron (1992), Sullivan, Timmermann,
and White (1997)].

Our insistence on model selection criteria that are robust to unit-root
nonstationarities is motivated by the time-series properties of some candi-
date predictors, such as price-earnings ratios, dividend yields, lagged index
levels, or even short-term interest rates. These variables are either mani-

1 Foster, Smith, and Whaley (1997) also present simulation-based adjustments.
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festly nonstationary, or, if not, their behavior is close enough to unit-root
nonstationary for small-sample statistics to be affected.

We study an international sample of excess stock returns and candidate
predictors which First Quadrant was kind enough to release to us. The time
period nests that of another international study, Solnik (1993). Therefore,
we also provide diagnostic tests that compare the two datasets (which are
based on different sources).

We discover ample evidence of predictability, confirming the conclusion
of studies that were not based on formal model selection criteria. Usually
only a few standard predictors are retained, however. Some of these are unit-
root nonstationary (e.g., dividend yield). Multiple lagged bond or stock
returns are at times included, effectively generating the moving-average
predictors that have become popular in professional circles lately [see also
Brock, Lakonishok, and LeBaron (1992) and Sullivan, Timmermann, and
White (1997)].

Formal model selection criteria guard against overfitting. The ultimate
purpose is to obtain the model with the best external validity. In the context
of prediction, this means that the retained model should provide good out-
of-sample predictability. We test this on our dataset of international stock
returns.

Overall, we find no out-of-sample predictability. More specifically, none
of the models that the selection criteria chose generates significant predic-
tive power in the 5-year period beyond the initial (“training”) sample. This
conclusion is based on an SUR test of the slope coefficients in out-of-sample
regressions of outcomes onto predictions across the different stock markets.
The failure to detect out-of-sample predictability cannot be attributed to lack
of power. Schwarz’s Bayesian criterion, for instance, discovers predictabil-
ity in 9 of 14 markets, with an averageR2 of the retained models of 6%.
Out of sample, however, none of the retained models generates significant
forecasting power. Even with only nine samples of 60 months each, chances
that this would occur if 6% were indeed the trueR2 are less than 1 in 333.

The poor external validity of the prediction models that formal model
selection criteria chose indicates model nonstationarity: the parameters of
the “best” prediction model change over time. It is an open question why
this is. One potential explanation is that the “correct” prediction model is
actually nonlinear, while our selection criteria chose exclusively among
linear models. Still, these criteria pick thebestlinear prediction model: it
is surprising that even this best forecaster does not work out of sample.

As an explanation for the findings, however, model nonstationarity lacks
economic content. It begs the question as to what generates this nonsta-
tionarity. Pesaran and Timmermann (1995) also noticed that prediction per-
formance improves if one switches models over time. They suggest that it
reflects learning in the marketplace. Bossaerts (1997) investigates this possi-
bility theoretically. He proves that evidence of predictability will disappear
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entirely out of sample if the market learns on the basis of Bayesian updating
rules. In other words, Bayesian learning could explain our findings.

The remainder of this article is organized as follows. The next section
introduces model selection criteria. Section 3 describes the dataset. Section 4
presents the results. Section 5 discusses the power of the out-of-sample
prediction tests. Section 6 concludes. There are three appendixes. They
discuss technical issues and list the data sources.

2. Model Selection Criteria

Formal model selection criteria have long been considered in the statistics
literature in order to select the “best” model among a set of candidate
models. Statisticians realized that there is a tendency to overfit, and hence
that the model that has the highest in-sample explanatory power usually
does not have the highest external validity (i.e., out-of-sample fit). Several
criteria were developed, starting from particular decision criteria, Bayesian
or information theoretic.

We decided to pick several model selection criteria in our study of the
predictability of excess stock returns. Each has its merit, and many are
robust to the presence of unit roots in the candidate predictors. It is not
appropriate to discuss here the advantages and shortcomings of the retained
selection criteria. Suffice it to mention that all selection criteria contributed
uniformly to the main conclusions of this article.

Formally, we use statistical criteria andT observations to select amongK
linear models that predict the market’s excess return,rt (t = 1, . . . , T). The
models differ in terms of the content and dimension of the prediction vector.
Let pk denote the dimension for modelk (k = 1, . . . , K ). The prediction
vector of this model for thet th returnrt , xk

t−1, is obtained by dropping all but
pk elements from the vector of all possible predictors,xt−1. xt−1 includes an
intercept as one of the predictors, as well as variables such as the short-term
Treasury bill yield, etc. (We will be explicit later on.) Lettingθk denote its
coefficient vector, modelk can be written as

rt = θk′xk
t−1+ εk

t , (1)

with E[εk
t ] = 0, E[εk

t xk
t−1] = 0.

In the first model, withk = 1, we included only the intercept. (Hence,
p1 = 1.) This way, selection criteria are allowed to decide in favor of
no predictability, beyond a constant. The latter is usually interpreted as a
(fixed) risk premium. This option is important. Indeed, the original goal of
this study was to verify whether the evidence of return predictability would
still emerge if examined with formal selection criteria.

Each selection criterion chooses among theK possible model specifi-
cations. We will use the notationk∗ to denote the preferred model. Seven
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model selection criteria were employed: the adjustedR2, Akaike’s infor-
mation criterion [AIC; Akaike (1974)], Schwarz’s criterion [a Bayesian
information criterion, BIC; Schwarz (1978)], the Fisher information crite-
rion [FIC; Wei (1992)], the posterior information criterion [PIC; Phillips
and Ploberger (1996)], Rissanen’s predictive least squares criterion [PLS;
Rissanen (1986a)],2 and our adjustment to correct well-known biases of the
latter, PLS-MDC.

Appendix A provides formal definitions of each of these criteria. The
adjustedR2, AIC, and BIC were chosen on the basis of their popularity;
FIC, PIC, PLS, and PLS-MDC were chosen because of their robustness in
the face of unit-root nonstationarities.

PLS-MDC is new and hence needs to be motivated further. It is based
on a technique to estimate the dimension of the state vector in Markov
models, referred to as Markov dimension criterion (MDC). MDC chooses
the dimension of the state vector by investigating the out-of-sample mean
square prediction error of rolling regressions that are run on the basis of
various subsets of past information.

In conjunction with PLS, MDC provides a correction for small-sample
biases. PLS chooses models on the basis of the out-of-sample mean square
prediction error ofone rolling regression that usesall past observations.
Rissanen (1986a) suggested this selection criterion, but observed that it is
biased in small samples in favor of picking the model with the least possible
variables [see also the evidence in Wei (1992)]. The underfitting is due to
the noise introduced by the error in the predictions of early observations
in the sample. These predictions are unreliable because they are based on
very few prior observations (remember that model estimates in PLS are
computed only from prior observations). The fewer parameters to be esti-
mated, however, the lower the prediction noise of those early observations.
Because of the lower noise level, PLS tends to prefer models with fewer
parameters, that is, with less explanatory variables.

In PLS-MDC, we consider the performance of the same models where
parameter estimates are not only based on all previous observations, but on
different subsamples as well, where we drop observations that reach a certain
age. In other words, while PLS is based on expanding-window estimation,
PLS-MDC also considers estimates based on windows of fixed size. PLS-
MDC effectively penalizes models where excluded variables are still heavily
correlated with future prediction errors, indicating that the prediction vector
was chosen to be too small. Since a formal discussion of PLS-MDC distracts
from the main points of this article, it is delegated to an appendix. The
interested reader can consult Appendix B.

2 PLS is based on Rissanen’s earlier idea of minimum descriptive length [Rissanen (1986b)]; see also
Kavalieris (1989).
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As mentioned before, the purpose of statistical model selection criteria is
to avoid overfitting. The model specification that fits the data best (minimum
in-sample forecast error) is not necessarily chosen. In contrast, the retained
model will have maximum external validity. In our context of return pre-
diction, this means that the preferred model will have best out-of-sample
forecasting performance.

We decided to verify the external validity of formal model selection
wheneverk∗ > 1. All models with index (k) larger than one contain at least
one nontrivial forecasting variable. When one of them is chosen, the model
selection criterion clearly supports predictability. To assess the external
validity of such a conclusion, we ran a test on a sample that postdated
the sample on which we based the model choice. To avoid confusion we
will refer to the original sample on which model choice was based as the
training sample. The sample that was used to check for external validity
will be called thetesting sample. The latter has sizen, and its elements are
indexedt = T + 1, . . . , T + n.

External validation is investigated by projecting the market’s excess re-
turn,rt , onto our forecast,zt−1. zt−1 is obtained from modelk∗, as follows:

zt−1 = θ̂k∗′
t−1xk∗

t−1, (2)

whereθ̂k∗
t−1 is the OLS estimate ofθk∗ , based on the pairs(rτ , xk∗

τ−1), observed
overτ = 1, . . . , t − 1. We estimate the slope coefficient in

rt = α + βzt−1+ νt (3)

from the observations indexedt = T + 1, . . . , T + n. We use the OLS
estimate ofβ to compute a standardt-ratio, and refer to the standard normal
distribution to determinep-levels. External validity is confirmed ifp-levels
are low, say, below 0.05.

Notice that we did not adjust thet-ratio for error in the estimation of the
parameters of the prediction model. Asymptotically, such an adjustment is
not necessary, because we force the precision of the parameter estimates to
increase as we advance through the testing sample. See also West (1996).
Unfortunately, small-sample corrections are not available and would be
complicated by the unit-root nature of some of the predictors.

3. The Data

We investigated the predictability of the 1-month local-currency excess
stock return for 14 countries.3 Our forecasts of the market’s excess return
is based on (a subset of) the following predictors: a January dummy; the

3 Results can be expected to be different if excess stock returns are converted to a common currency, in
which case returns from speculation in the foreign exchange market determine the outcome as well. See,
for example, Ferson and Harvey (1993).
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monthly excess stock return, lagged once and twice; a monthly bond excess
return, lagged once and twice;4 the yield-to-maturity on a representative
Treasury bond; the stock market’s price level; the yield-to-maturity on a 3-
month Treasury bill (also used to compute excess stock and bond returns);
the stock market’s dividend yield; and the stock market’s price-earnings
ratio. None of these predictors use information that would not have been
available at the moment that future excess stock returns were predicted.
Appendix C provides a list of the data sources.

Table 1 displays descriptive statistics of the monthly excess stock returns
and the predictors. The lengths of the samples (T+n) run from a minimum
of 122 observations (Norway) to a maximum of 471 observations (United
States). Returns are expressed in percent per month; yields in percent per
year. Table 1 also lists the beginning of the estimation sample for each
country (t = 1). Our choice was based on data availability, and hence was
purely incidental.

To get an idea of the amount of predictability that obtains in this dataset
using in-sample statistical analysis, Table 2 lists the results from a regression
of monthly excess stock returns (nownot expressed in percentage terms)
onto (i) an intercept, (ii) a January dummy, (iii) the stock dividend yield,
(iv) the short-term interest rate, and (v) the long-term bond yield. Solnik
(1993) also reports these estimates, for a similar dataset, but a shorter time
period. The results of regressions like the ones reported in Table 2 match
those of Solnik when run over his subperiod only (1/71-8/90). There is one
exception though: our bond yield has more predictive power than his.

A closer look at Table 2 reveals the patterns that Solnik discussed at
length: predictability is not uniform across stock markets [R2s are between
2% (Germany) and 9.8% (U.K.)]; predictors vary. The well-known nega-
tive correlation between excess stock returns and contemporaneous interest
rates is significant (at the 1% level) only for Belgium, France, and the United
States.

An unfortunate choice of subperiod, however, may give one the wrong
impression of the amount of predictability. We tried one possible subsample
and generated impressive evidence of predictability. Table 2 reports the
results from estimation of the same regression over the subperiod 1/71–
8/80 (10 years shorter than Solnik’s sampling period). They are listed under
Period II. TheR2s run from a low of 4.4% (Canada) to a high of 36.4%
(Belgium) or higher!5 Overall, the significance of the coefficients in the
regression is overwhelming.

4 This bond return is actually computed from the yield on a representative Treasury bond and an estimate
of the duration. Hence it cannot strictly be considered to be a bond (excess) return. Nevertheless, its
computation does not require future information. Therefore it is a proper predictor.

5 Some highR2s may be the result of lack of observations. The highestR2, 40% (Spain), is based on a
sampling period that runs from 1/78 to 8/80 only. Belgium’s highR2, however, is based on a full sample.

411



The Review of Financial Studies / v 12 n 21999

Table 1
Monthly averages, entire sample period (ending 5/95)

Country t = 1 T + n rt rb,t−1 Yb,t−1 r f,t−1 Ys,t−1 pet−1

Australia 9/69 309 0.13 0.02 10.71 9.71 4.28 13.95
(6.82) (2.37) (2.80) (3.87) (1.14) (4.69)

Belgium 4/69 313 0.47 0.04 9.23 8.81 8.29 13.13
(4.76) (1.44) (1.94) (2.03) (3.24) (4.07)

Canada 12/69 305 0.12 0.08 9.81 8.84 3.63 19.36
(5.02) (2.51) (2.18) (3.43) (0.75) (16.08)

France 9/71 284 0.33 0.05 10.01 9.63 4.73 17.99
(6.22) (2.04) (2.49) (2.81) (1.71) (21.45)

Germany 3/69 314 0.18 0.09 7.76 6.50 4.00 15.09
(5.23) (1.97) (1.26) (2.85) (1.02) (9.89)

Italy 1/70 304 −0.20 −0.04 12.45 12.55 2.74 42.90
(7.04) (1.86) (3.63) (4.33) (0.79) (73.44)

Japan 2/78 207 0.27 0.22 6.31 5.64 1.14 37.96
(5.50) (3.03) (1.69) (2.18) (0.56) (20.78)

Netherlands 4/69 313 0.38 0.11 8.14 6.50 5.44 9.25
(4.90) (2.58) (1.41) (2.47) (1.38) (3.84)

Norway 3/85 122 0.20 0.18 10.74 11.14 2.27 27.31
(8.16) (1.86) (2.45) (3.20) (0.76) (46.23)

Spain 1/78 208 0.16 −0.08 13.09 14.31 7.53 14.80
(6.25) (3.32) (2.37) (5.02) (3.77) (22.13)

Sweden 2/70 303 0.59 0.00 10.46 9.47 3.57 12.55
(6.22) (2.48) (2.30) (3.44) (1.46) (6.67)

Switzerland 5/69 312 0.40 0.17 5.15 3.06 3.33 12.49
(4.91) (1.02) (1.06) (3.03) (1.03) (3.09)

UK 2/69 315 0.33 0.05 10.77 9.88 4.96 11.86
(6.34) (3.11) (2.00) (2.94) (1.17) (4.06)

US 2/56 471 0.37 −0.03 7.23 5.72 3.67 14.96
(4.16) (2.90) (2.80) (2.87) (0.80) (4.36)

(t = 1) indicates the initial month of the sample;T + n denotes the sample size, covering both the
estimation and testing sample;rt is the excess return on the stock index over montht (in percentage
points);rb,t−1 is the excess bond return over montht − 1 (in percentage points);Yb,t−1 is the bond yield
as observed at the end of montht − 1 (annualized and in percentage points);r f,t−1 is the short-term yield
as observed at the end of montht − 1 (annualized and in percentage points);Ys,t−1 denotes the stock
dividend yield as of the end of montht−1 (annualized and in percentage points);pet−1 denotes the stock
price-earnings ratio at the end of montht − 1. Standard deviation in parentheses.

Of course, one may wonder whether this evidence in favor of predictabil-
ity is caused by our picking particular predictors, mainly inspired by previ-
ous work (Solnik’s), and hence potentially affected by data snooping biases.
Formal selection criteria are meant to address this issue, and we will discuss
results from their application, reported in Table 3.

The discrepancy between the regression results of Period I (entire sample)
and Period II (1/71–8/80) indicates the presence of model nonstationarity.
The sign of the regression coefficients is almost always the same across
the two periods, but the magnitude often differs dramatically (with Period
II generating the highest values). Pesaran and Timmermann (1995) also
document an increase in predictability of U.S. stock returns in the 1970s.

4. Empirical Results

We first discuss the nature of the prediction models that each of the for-
mal selection criteria picked; in particular, whether they implied return
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Table 2
OLS regressions of monthly excess stock returns on a subset of predictors, various sample periods

Country Predictors R2

Intercept January Dividend Short-term Bond
dummy yield yield Yield

I II I II I I I II I II I II

Australia −0.044 −0.080 0.021 0.047 0.0093 0.0139 −0.0030 −0.0177 0.0031 0.0165 .033 .125
(0.022) (0.037) (0.016) (0.022) (0.0042) (0.0065) (0.0025) (0.0069) (0.0034) (0.0081)

Belgium −0.001 0.038 0.033 0.053 0.0023 0.0098−0.0211 −0.0531 0.0184 0.0365 .086 .364
(0.014) (0.022) (0.011) (0.011) (0.0016) (0.0023) (0.0057) (0.0101) (0.0058) (0.0100)

Canada −0.009 −0.063 0.015 0.035 0.0072 0.0055 −0.0032 −0.0046 0.0012 0.0089 .038 .044
(0.023) (0.060) (0.012) (0.018) (0.0048) (0.0079) (0.0020) (0.0049) (0.0031) (0.0104)

France 0.002 −0.031 0.022 0.041 0.0028 0.0165 −0.0072 −0.0068 0.0056 −0.0004 .039 .137
(0.019) (0.044) (0.015) (0.021) (0.0031) (0.0065) (0.0029) (0.0039) (0.0036) (0.0081)

Germany 0.002 −0.027 0.0057 0.043 0.0059 0.0074 −0.0021 −0.0025 −0.0015 0.0008 .020 .123
(0.021) (0.030) (0.012) (0.013) (0.0037) (0.0047) (0.0014) (0.0014) (0.0032) (0.0031)

Italy −0.032 −0.007 0.046 0.039 0.0042 −0.0064 −0.0008 −0.0057 0.0021 0.0075 .042 .082
(0.025) (0.030) (0.016) (0.021) (0.0064) (0.0097) (0.0022) (0.0025) (0.0024) (0.0036)

Japan 0.034 0.245 0.015 −0.006 0.0063 −0.1417 −0.0006 −0.0086 −0.0046 0.0142 .023 .315
(0.019) (0.132) (0.014) (0.015) (0.0118) (0.0629) (0.0030) (0.0028) (0.0057) (0.0054)

Netherlands 0.006 −0.012 0.031 0.054 0.0125 0.0150 −0.0016 −0.0031 −0.0081 −0.0080 .090 .212
(0.019) (0.034) (0.011) (0.014) (0.0033) (0.0043) (0.0016) (0.0019) (0.0037) (0.0046)

Norway 0.131 NO 0.029 NO 0.0146 NO 0.0034 NO −0.0165 NO .030 NO
(0.141) (0.040) (0.0169) (0.0129) (0.0179)

Spain −0.002 −0.005 0.024 −0.001 −0.0070 −0.0345 −0.0019 −0.0020 0.0029 0.0319 .047 .400
(0.038) (0.076) (0.018) (0.032) (0.0021) (0.0110) (0.0010) (0.0008) (0.0035) (0.0103)

Sweden −0.054 0.016 0.031 0.043 0.0029 0.0293−0.0014 −0.0054 0.0058 −0.0138 .051 .180
(0.023) (0.026) (0.013) (0.013) (0.0027) (0.0098) (0.0018) (0.0023) (0.0029) (0.0055)

Switzerland −40.002 −0.014 0.021 0.063 0.0090 0.0144 0.0017−0.0006 −0.0065 −0.0094 .029 .159
(0.018) (0.024) (0.011) (0.015) (0.0050) (0.0084) (0.0015) (0.0034) (0.0039) (0.0054)

UK 0.006 −0.012 0.040 0.051 0.0233 0.0196 −0.0022 −0.0058 −0.0090 −0.0033 .098 .123
(0.026) (0.052) (0.015) (0.025) (0.0059) (0.0082) (0.0018) (0.0033) (0.0043) (0.0081)

US −0.028 −0.037 0.008 0.019 0.0125 0.0205 −0.0068 −0.0093 0.0033 0.0016 .074 .172
(0.010) (0.025) (0.007) (0.014) (0.0034) (0.0078) (0.0015) (0.0028) (0.0016) (0.0066)

The results under “I” refer to the complete sample. Those under “II” refer to the sample starting in 1/71 or later (in the absence of observations) and running
until 8/80. OLS estimates of the coefficients are displayed. Standard errors in parentheses. The predictors “Dividend yield,” “Short-term yield” and “Bond
yield” are annualized and expressed in percentage terms. Unlike in Table 1, the dependent variable, the monthly excess stock return is not expressed in
percentage points. NO= no observations in period II.

predictability. Subsequently, we report tests of the external validity of the
selected models (whenever they did imply return predictability in-sample).
The estimation sample runs until 5/90. The testing sample covers the re-
maining period: 6/90–5/95 (hence,n = 60).

4.1 Retained Forecasting Models
The seven model selection criteria were allowed to pick a suitable prediction
model based on the 10 predictors listed in Table 1, as well as a constant (the
intercept in the linear prediction model). As mentioned before, predictability
is decided against whenever only the constant is retained. The parameters
in the prediction models were estimated with OLS.

Table 3 displays the composition of the linear prediction model preferred
by each of the selection criteria. A zero indicates that the corresponding
variable was discarded, a one indicates that the variable was kept. The
following facts stand out when looking at this table.

• The adjustedR2 almost invariably selects a model with more predic-
tors than other criteria. This overfitting occurs despite the (admittedly
ad hoc) adjustment for the loss of degrees of freedom when regressors
are added. In the case of the United States, for instance, the adjustedR2
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Table 3
Model choice over the estimation sample (to 5/90), various selection criteria

Country SSC dJ rt−1 rt−2 rb,t−1 rb,t−2 Pt−1 Yb,t−1 r f,t−1 Ys,t−1 pet−1

Australia R
2

1 0 0 0 0 0 0 0 1 0
AIC 0 0 0 0 0 0 0 0 1 0
BIC 0 0 0 0 0 0 0 0 0 0
FIC 0 0 0 1 1 0 0 0 0 0
PIC 0 0 1 1 1 0 0 0 0 0
PLS 1 0 0 0 0 0 0 0 0 0
PLS-MDC 0 0 0 0 0 0 0 0 0 1

Belgium R
2

1 1 0 0 0 1 1 1 1 1
AIC 1 1 0 0 0 0 1 1 1 1
BIC 1 1 0 0 0 0 1 1 0 0
FIC 1 1 1 1 1 0 0 0 0 0
PIC 1 1 1 1 1 0 1 1 0 0
PLS 1 1 0 0 0 0 0 0 0 1
PLS-MDC 1 1 0 0 0 0 1 1 0 0

Canada R
2

1 1 1 0 0 1 0 0 1 1
AIC 0 0 1 0 1 0 0 1 0 0
BIC 0 0 0 0 0 0 0 0 0 0
FIC 0 0 1 1 1 0 0 0 0 0
PIC 0 1 1 1 1 0 0 0 0 0
PLS 1 0 0 0 0 0 0 0 0 0
PLS-MDC 0 1 0 0 0 0 0 0 1 0

France R
2

1 0 0 1 1 1 0 1 1 0
AIC 1 0 0 1 0 1 0 1 1 0
BIC 0 0 0 1 0 0 0 0 0 0
FIC 0 0 0 1 1 0 0 0 0 0
PIC 0 1 1 1 1 0 0 0 0 0
PLS 0 0 0 1 0 0 0 0 0 0
PLS-MDC 0 1 0 0 0 0 0 0 0 0

Germany R
2

0 0 0 1 0 1 0 1 0 1
AIC 0 0 0 0 0 0 0 1 0 1
BIC 0 0 0 0 0 0 0 0 0 0
FIC 0 0 0 1 1 0 0 0 0 0
PIC 0 1 1 1 1 0 0 0 0 0
PLS 0 0 0 1 0 0 0 0 0 0
PLS-MDC 0 1 0 0 0 0 0 0 0 0

Italy R
2

1 1 0 0 0 0 1 0 1 0
AIC 1 1 0 0 0 0 0 0 0 0
BIC 1 1 0 0 0 0 0 0 0 0
FIC 1 1 1 1 1 0 0 0 0 0
PIC 1 1 1 1 1 0 0 0 0 0
PLS 1 1 0 0 0 0 0 0 0 0
PLS-MDC 1 1 0 0 1 0 0 0 0 0

Japan R
2

0 0 1 0 0 1 1 0 1 1
AIC 0 0 1 0 0 1 1 0 1 1
BIC 0 0 0 0 0 1 0 0 1 0
FIC 0 1 1 1 1 0 0 0 0 0
PIC 0 1 1 1 1 0 0 0 0 0
PLS 0 0 0 1 1 0 0 0 0 0
PLS-MDC 0 1 0 0 0 0 0 0 0 0

Netherlands R
2

1 1 0 1 0 1 0 1 1 0
AIC 1 0 0 1 0 1 0 1 1 0
BIC 1 0 0 0 0 1 1 0 1 0
FIC 1 1 0 1 1 0 0 0 0 0
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Table 3
(continued)

Country SSC dJ rt−1 rt−2 rb,t−1 rb,t−2 Pt−1 Yb,t−1 r f,t−1 Ys,t−1 pet−1

Netherlands PIC 1 1 1 1 1 0 0 0 0 0
cont’d. PLS 1 0 0 0 0 0 1 0 1 0

PLS-MDC 1 0 0 0 0 0 1 0 1 0

Norway R
2

0 1 0 0 1 1 1 1 0 0
AIC 0 1 0 0 0 0 0 0 0 0
BIC 0 0 0 0 0 0 0 0 0 0
FIC 0 1 1 1 1 0 0 0 0 0
PIC 0 1 1 1 1 0 0 0 0 0
PLS 0 0 0 0 1 0 0 0 0 0
PLS-MDC 1 1 0 0 1 1 1 0 0 0

Spain R
2

1 1 0 0 0 1 0 1 1 1
AIC 1 1 0 0 0 1 0 1 1 1
BIC 0 0 0 0 0 0 0 0 0 0
FIC 0 1 1 1 1 0 0 0 0 0
PIC 0 1 1 1 1 0 0 0 0 0
PLS 0 0 0 0 0 0 0 1 0 0
PLS-MDC 0 0 0 0 0 0 0 1 0 0

Sweden R
2

1 1 0 0 1 0 1 0 0 1
AIC 1 1 0 0 0 0 1 0 0 0
BIC 1 0 0 0 0 0 0 0 0 0
FIC 1 1 0 1 1 0 0 0 0 0
PIC 1 1 1 1 1 0 0 0 0 0
PLS 1 1 0 0 1 0 0 0 0 0
PLS-MDC 1 0 0 0 0 0 0 0 0 1

Switzerland R
2

1 0 1 1 1 1 1 0 1 1
AIC 1 0 1 0 0 0 0 0 1 1
BIC 0 0 0 0 0 0 0 0 1 1
FIC 0 0 1 1 1 0 0 0 0 0
PIC 1 1 1 1 1 0 0 0 1 1
PLS 0 0 0 0 0 0 0 1 1 1
PLS-MDC 0 0 0 0 0 0 0 1 1 1

UK R
2

1 1 1 1 1 1 0 1 1 1
AIC 1 1 0 0 0 0 1 0 1 0
BIC 1 0 0 0 0 0 1 0 1 0
FIC 1 0 1 1 1 0 0 0 1 0
PIC 1 1 1 1 1 0 1 0 1 0
PLS 1 0 0 0 0 0 0 0 0 0
PLS-MDC 0 1 0 0 0 0 0 0 0 0

US R
2

1 0 0 1 0 1 0 1 1 1
AIC 0 0 0 1 0 1 0 1 1 0
BIC 0 0 0 0 0 1 0 1 1 0
FIC 0 0 0 1 1 0 0 1 1 0
PIC 0 1 1 1 1 0 0 1 1 0
PLS 0 0 0 0 0 0 0 1 1 0
PLS-MDC 0 0 0 0 0 0 0 1 1 0

dJ denotes the January dummy;Pt−1 is the stock price level at the end of montht − 1. “SSC” is short for
statistical selection criterion. Results for the following SSC are displayed:R2 (adjustedR2), AIC (Akaike
information criterion), BIC (Schwarz’s information criterion), FIC (Fisher information criterion), PIC
(posterior criterion), PLS (predictive least squares criterion), and PLS-MDC (predictive least squares
criterion adjusted with Markov dimension criterion). See text for additional information. The entry “0”
indicates that the corresponding predictor was dropped by the selection criterion. The entry “1” indicates
that the predictor was retained.
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retains six predictors, whereas PLS and PLS-MDC limit the forecasting
model to two variables.
• Some popular predictors are only occasionally selected. For instance,

in 9 of 14 cases, BIC and FIC drop the January dummy.6

• The model selection criteria often retain predictors that are suspected
to be unit-root nonstationary, such as the dividend yield, the price-
earnings ratio, or even the initial stock price level. Model selection
criteria such as FIC, PIC, PLS, and PLS-MDC are robust to unit-root
nonstationarities, so this finding should not bother us.
• For a given country, the model selection criteria agree to a certain ex-

tent on the variables to be retained as predictors. The contemporaneous
yield on short-term Treasury bills, for instance, is dropped byall se-
lection criteria in 4 of 14 cases. It is retained by all selection criteria
only for the United States.
• FIC and PIC almost universally select lagged bond and stock excess

returns. These are often chosen in pairs, so that FIC and PIC effectively
construct the moving average predictors that have been popular in
professional circles lately.
• BIC decides against predictability in five cases (Australia, Canada, Ger-

many, Norway, and Spain). This means that all predictors are dropped
(only the intercept is retained in the prediction model).
• PLS almost invariably picks a small model when compared to other

criteria, except BIC. PLS-MDC adjusts the choice by changing and/or
adding predictors.

Overall, however, the predictability that remains after the application of
formal selection criteria confirms the evidence of predictability in earlier
studies. In other words,the predictability that was uncovered in previous
work is clearly not caused by overfitting.

Notice that this verdict is uniform across selection criteria. Since each
selection criterion starts from a different decision-theoretic framework, it is
comforting to observe such an agreement. In other words, our conclusion
is not based on the application of a specific, haphazardly chosen criterion.

4.2 External Validation
Formal model selection criteria try to determine the model with the best
external validity. To verify whether they indeed pick models with external
validity in the context of stock market returns, we tested for out-of-sample
forecasting power by projecting the excess returns in our testing sample
(6/90–5/95) onto the forecasts from each “optimal” model.

6 It is well known that the January effect is less pronounced for large stock. As the excess stock return
used in this article refers to a subset of large and liquid companies, it should not be too surprising that the
January effect often fails to emerge.
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Table 4 displays the results. Exploiting the information in the cross sec-
tion of stock returns, we used SUR regression to improve the estimate of the
t-ratios. For comparison, other popular out-of-sample statistics [the adjusted
R2 and root mean square prediction error of the out-of-sample regressions,
that is, of Equation (3)] are provided as well. In order to put the root mean
square prediction error of the out-of-sample regressions [see Equation (3)]
into perspective, we also report the root mean square excess stock return
over the estimation and testing samples (in brackets).

Table 4 generates the following initial reactions about out-of-sample
predictability.

• For models based on the adjustedR2, an enormous disparity emerges
between in-sample and out-of-sample adjustedR2. For the U.S. stock
market, for instance, the in-sample adjustedR2 is 8.3%. It drops to
0.5% out of sample.7

• The in-sample adjustedR2s of models selected on the basis of BIC,
FIC, PIC, PLS, and PLS-MDC are a somewhat more reliable indicator
of the out-of-sample goodness-of-fit. For FIC and PIC, for instance, the
out-of-sample adjustedR2 is at least as high as the in-sample adjusted
R2 in 6 of 14 cases.8

• A comparison of the out-of-sample root mean square prediction error
and the root mean square excess return reveals an across-the-board
dismal performance of the models selected by the formal criteria. As
a matter of fact, the decision by BIC not to include predictors at all in
many cases is corroborated by this finding.
• Our model selection criterion, PLS-MDC, overfits as much as FIC or

PIC.

All this indicates poor out-of-sample predictability. A formal test of
external validity of the retained models, however, can be obtained from
the t-ratios in Table 4. Except for Japan, we find that none of thet-ratios
of the slope coefficient in the SUR regression of out-of-sample outcomes
onto predictions are significant!9 Consequently,we fail to find that models
chosen on the basis of formal selection criteria have any external validity.

Table 5 summarizes the tests by reportingF-tests of thejoint significance
of the slope coefficients in an SUR regression of out-of-sample excess stock

7 The poor out-of-sample record in terms ofR2 is actually a bit exaggerated, because the out-of-sample use
of this measure supposes that the forecaster knew beforehand in what direction the selected model would
be biased.

8 When BIC decides not to include any predictors at all, the in-sample and out-of-sample adjustedR2s are
set equal to zero.

9 When running simple OLS (as opposed to SUR), thet-statistics are significant (at the 5% level) only
for four stock markets: France (BIC, FIC, PIC, and PLS), Japan (BIC), The Netherlands (BIC, PLS, and
PLS-MDC), and the United Kingdom (AIC and PIC).
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Table 4
Testing-sample (6/90–5/95) performance of prediction models selected by several formal statistical
criteria

Country SSC R
2

t RMS
In Out Out In Out

Australia (7.29) (4.40)

R
2

.019 .001 −0.08 7.18 4.50
AIC .017 .000 0.39 7.20 4.45
BIC — — — 7.29 4.40
FIC −.005 .017 −1.36 7.27 4.43
PIC −.005 .018 −1.91 7.25 4.44
PLS .003 .001 −0.66 7.40 4.41
PLS-MDC .003 .016 1.44 7.40 4.39

Belgium (4.87) (4.28)

R
2

.107 .005 0.35 4.53 4.51
AIC .106 .006 0.27 4.54 4.49
BIC .089 .000 0.53 4.60 4.70
FIC .046 .023 0.67 4.70 4.29
PIC .085 .000 0.48 4.58 4.70
PLS .070 .011 0.04 4.82 4.30
PLS-MDC .089 .000 0.11 4.85 4.70

Canada (5.36) (3.27)

R
2

.042 .004 −0.20 5.19 3.29
AIC .041 .002 0.02 5.21 3.33
BIC — — — 5.36 3.27
FIC .033 .034 0.08 5.23 3.37
PIC .029 .034 0.11 5.23 3.37
PLS .002 .000 −0.79 5.47 3.27
PLS-MDC −.001 .032 −0.88 5.51 3.30

France (6.42) (5.41)

R
2

.047 .013 −1.35 6.17 5.55
AIC .047 .011 −1.54 6.19 5.53
BIC .024 .058 −0.52 6.32 5.27
FIC .022 .058 −0.18 6.31 5.26
PIC .016 .072 0.44 6.38 5.22
PLS .024 .058 −0.46 6.49 5.27
PLS-MDC .004 .005 −0.82 6.51 5.39

Germany (5.13) (5.65)

R
2

.015 .000 −1.06 5.04 5.76
AIC .012 .001 −1.14 5.07 5.73
BIC — — — 5.13 5.65
FIC .005 .006 −0.38 5.09 5.60
PIC .000 .001 −0.98 5.08 5.64
PLS .006 .022 0.02 5.21 5.58
PLS-MDC .001 .003 −1.55 5.26 5.66

Italy (6.96) (7.40)

R
2

.051 .017 0.91 6.72 7.32
AIC .049 .022 0.82 6.75 7.27
BIC .049 .022 0.65 6.75 7.27
FIC .045 .032 1.31 6.72 7.23
PIC .045 .032 1.25 6.72 7.23
PLS .049 .022 0.83 7.03 7.27
PLS-MDC .048 .026 0.70 7.09 7.27

Japan (4.59) (7.20)

R
2

.124 .018 −0.01 4.19 7.26
AIC .123 .020 0.28 4.21 7.24
BIC .083 .062 1.41 4.35 7.19
FIC .036 .020 −2.40∗∗ 4.43 7.51
PIC .036 .020 −2.37∗∗ 4.43 7.51
PLS .040 .002 −0.81 4.60 7.30
PLS-MDC .002 .068 −3.08∗∗ 4.67 7.42
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Table 4
(continued)

Country SSC R
2

t RMS
In Out Out In Out

Netherlands (5.12) (3.84)

R
2

.097 .022 0.45 4.80 3.84
AIC .095 .021 0.32 4.82 3.84
BIC .076 .055 0.65 4.89 3.88
FIC .052 .032 1.30 4.94 3.76
PIC .048 .031 1.28 4.94 3.76
PLS .076 .055 0.66 5.11 3.88
PLS-MDC .076 .055 1.36 5.11 3.88

Norway (8.21) (8.08)

R
2

.065 .001 0.30 7.55 8.51
AIC .026 .012 0.01 7.97 8.31
BIC — — — 8.21 8.08
FIC .000 .021 0.37 7.88 8.53
PIC .000 .021 0.33 7.88 8.53
PLS .001 .015 0.09 8.65 8.27
PLS-MDC .054 .002 −0.37 9.68 8.55

Spain (6.11) (6.60)

R
2

.103 .001 −0.09 5.65 8.66
AIC .103 .001 −0.07 5.65 8.66
BIC — — — 6.11 6.60
FIC .007 .008 0.26 5.99 6.60
PIC .007 .008 0.14 5.99 6.60
PLS .023 .004 −0.45 6.21 6.67
PLS-MDC .023 .004 −0.95 6.21 6.67

Sweden (5.72) (7.94)

R
2

.048 .001 −0.26 5.51 8.11
AIC .046 .013 0.23 5.55 7.88
BIC .020 .025 1.03 5.64 7.80
FIC .026 .017 0.05 5.59 7.87
PIC .022 .016 −0.08 5.59 7.88
PLS .033 .036 0.61 5.64 7.75
PLS-MDC .019 .004 0.45 5.68 7.90

Switzerland (4.96) (4.80)

R
2

.063 .001 0.17 4.71 5.02
AIC .057 .002 −0.49 4.77 4.96
BIC .037 .000 −0.27 4.83 4.94
FIC .010 .001 −0.12 4.89 4.79
PIC .055 .000 −0.05 4.74 4.99
PLS .034 .007 −0.77 4.91 4.95
PLS-MDC .034 .007 −0.61 4.91 4.95

UK (6.72) (4.43)

R
2

.100 .037 0.16 6.25 4.78
AIC .095 .048 0.00 6.33 4.51
BIC .082 .029 −0.72 6.39 4.52
FIC .073 .022 0.74 6.40 4.45
PIC .091 .056 0.80 6.31 4.46
PLS .027 .000 −1.32 6.84 4.54
PLS-MDC .004 .011 0.35 6.87 4.36
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Table 4
(continued)

Country SSC R
2

t RMS
In Out Out In Out

US (4.27) (3.34)

R
2

.083 .005 −0.13 4.06 3.46
AIC .082 .007 −0.24 4.07 3.41
BIC .077 .003 −0.45 4.08 3.45
FIC .065 .004 0.53 4.11 3.25
PIC .063 .024 −0.07 4.10 3.28
PLS .057 .041 1.14 4.25 3.28
PLS-MDC .057 .041 0.90 4.25 3.28

“In” refers to the estimation sample (running until 5/90); “Out” refers to the testing sample (6/90–5/95).
R2 denotes the adjustedR2. t denotes thet-ratio of the slope coefficient in an SUR regression of excess
stock returns onto our predictions; RMS denotes root mean square error (×100) [in parentheses: root
mean square of monthly excess returns (×100)]. The out-of-sample results are based on rolling (i.e.,
expanding-window) regressions.“SSC” is short for statistical selection criterion. Results for the following
SSC are displayed:R2 (adjustedR2), AIC (Akaike information criterion), BIC (Schwarz’s information
criterion), FIC (Fisher information criterion), PIC (posterior criterion), PLS (Predictive Least Squares
Criterion), and PLS-MDC (predictive least squares criterion adjusted with Markov dimension criterion).
See text for additional information. One and two asterisks denote significance at the 5% and 1% level,
respectively (two-tailed).

Table 5
Testing-sample (6/90–5/95) performance of prediction models selected by several formal statistical
criteria: summary

Criterion F p-value

R
2

0.36 .99
AIC 0.42 .97
BIC 0.60 .80
FIC 0.94 .52
PIC 1.09 .37
PLS 0.69 .31
PLS-MDC 1.65 .06

F-tests measure the joint significance of the slope coefficients in regressions of excess stock returns onto
our predictions for all countries. They are based on SUR estimation of the slope coefficients. See Table 4
(column 5) fort-tests on indivual countries.

returns onto our predictions. The results corroborate the findings based on
the individualt-ratios.

In conclusion, Tables 4 and 5 provide broad evidence against any out-of-
sample forecasting power of models chosen on the basis of selection criteria
that are nevertheless supposed to have corrected for overfitting. Again, the
evidence is uniform across selection criteria: the conclusions are not caused
by an accidental choice of a selection criterion that happens to imply the
opposite.

5. Power

We failed to find out-of-sample forecasting power even if the models are
chosen by established selection criteria that are constructed to provide ex-
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ternal validity rather than maximum in-sample fit. To gauge the significance
of these findings, a discussion of the power of the tests is in order.

For BIC, for instance, the out-of-sample tests reported in Tables 4 and 5
are based on nine samples of 60 observations (months) each. Thet-tests
of the slope coefficients of outcomes onto out-of-sample predictions fail
to reject the null of no predictability in all nine samples. The jointF-test
further corroborates this lack of predictability. One may wonder whether
these outcomes are expected in view of the relatively low in-sampleR2

generated by the retained models. What are the chances of finding nine
insignificant slope coefficients in samples of 60 observations when the true
R2 is 6%? This is the averageR2 that BIC-based models generated across the
nine markets. See Table 4. (We ignore the difference between theadjusted
R2, which is reported in Table 4, and the standardR2.)

Figure 1 provides the answer. The left panel displays the power function
of 5% t-tests on the slope coefficient in OLS projections among normally
distributed variables. The solid line is based on an analytical approximation
of the actual power function, and the circles represent estimates based on
500 replications of samples of size 60.10 For anR2 of 6%, the power is 0.48,
indicating that there is only a one in two chance of rejecting the (false) null
of no predictability.

The right panel of Figure 1 translates the power function into the prob-
ability of finding no rejections in a cross section of nine (independent)
samples, as a function of theR2. In other words, it provides an idea of the
probability of obtaining the results that were reported in Tables 4 and 5 if
there were actually predictability. The chance of obtaining no rejections of
lack of predictability if in fact the trueR2 is 6% is only 0.003, that is, 1 in
333. Hence we cannot attribute our findings to lack of power.

The results for the other criteria are analogous. They sometimes generate
lower R2s, but support predictability in more than nine markets. PIC, for
instance, generates an averageR2 of only 3.5%, yet supports predictability
in each market. The probability of observing no rejections in the 14 samples
of size 60 is 0.007, that is, about 1 in 140.

6. Conclusion

We applied formal statistical model selection criteria to determine the best
model to predict excess stock returns in an international dataset. The choice
set consisted of linear models with varying numbers of predictors. This
included one with only an intercept. Selection of the latter would clearly

10 The analytical approximation is based on suggestions advocated in Anderson (1984) for sample sizes
larger than 25. See page 123 of his book. The Monte Carlo analysis is based on bivariate normal random
draws with variance one. The actual value of the variances does not matter because thet-test is scale-free:
it depends on neither the variance of the regressor nor that of the regressand, but instead on theR2 only.
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Figure 1
Left panel: Power of the 5%t-test of the slope coefficient of OLS projections among two normally
distributed random variables, as a function ofR2. Sample size: 60. The solid line depicts an analytical
approximation based on the suggestions in Anderson (1984, p. 123). The circles are based on a Monte Carlo
study with 500 replications each.Right Panel: Probability of observing no rejections in nine independent
trials when the probability of rejection is as indicated by the power function in the left panel.

indicate strong evidence against predictability, even if all other models will
always have a better in-sample fit.

We only occasionally observed cases where a selection criterion decides
against predictability. Overall we find ample evidence of predictability, con-
firming the recent wave of evidence that stock excess returns can succesfully
be predicted. In other words, such evidence does not appear to have been
caused by model overfitting.

At the same time, however, we find that the out-of-sample forecasting
power of retained prediction models is nil. Not a single model could be
validated externally, upending the very goal of the model selection criteria
we used. This clearly demonstrates model nonstationarity in excess stock
returns. It is not clear why model nonstationarity would be present, however.
While restrictions in the choice set (only linear forecasting models could be
selected) may in part be blamed (indeed, the “true” return generating model
may be nonlinear), it is surprising that no linear model generates any out-
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of-sample forecasting power. Indeed, the models were chosen with criteria
that pick only the “best!” As mentioned in the introduction, however, recent
theoretical asset pricing results do suggest that our evidence may be related
to learning in the marketplace.

Similar evidence appears in a preliminary report on a study of the per-
formance of trading rules on U.S. stock and futures data [Sullivan, Tim-
mermann, and White (1997)]. They searched for the trading rule that did
best in-sample (in terms of average returns or Sharpe ratio). Using a sta-
tionary bootstrapping procedure, they confirmed that outperformance of the
selected trading rule was not caused by model overfitting. Out-of-sample,
however, the best trading rule did not outperform. Notice, however, that
the trading rule with the best in-sample performance does not necessarily
have the best external validity. In contrast, our study was designed to pick
the forecasting model that would have maximum external validity. There-
fore, it is all the more powerful and striking that we find that models fail
out-of-sample even if they are chosen exclusively for their external promise.

Appendix A. Formal Model Selection Criteria

Several model selection criteria are used to choose amongK linear models. Equation (1)
displays a typical model. The choice is based on a sample ofT observations, the esti-
mation sample:t = 1, . . . , T .

The adjustedR2 criterion is well known. To define the other criteria, let

Xk′
t,l = [xk

max(0,t−l ), . . . , xk
t−1],

and

Y′t,l = [rmax(1,t−l+1), . . . , rt ].

Also,

Ak
t,l = Xk′

t,l X
k
t,l .

The least squares regression coefficient equals

θ̂k
t,l = (Ak

t,l )
−1Xk′

t,l Yt,l (4)

(this expression is only well-defined fort ≥ m and l ≥ m, wherem is such that
Ak

m,m is invertible). Now define the sum of squared errors of modelk in the subsample
from observationt − l + 1 to t , computed from the least squares estimate of the slope
coefficients in the same subsample:

SSEk
t,l = (Yt,l − Xk

t,l θ̂
k
t,l )
′(Yt,l − Xk

t,l θ̂
k
t,l ).

This sum of squared regression errors is the workhorse of traditional information criteria.
The following information criteria can be defined in terms ofSSEk

t,l . First, Akaike’s
information criterion:

AIC(k) = T log
SSEk

T,T

T
+ 2pk. (5)
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Second, Schwarz’s criterion:

BIC(k) = T log
SSEk

T,T

T
+ pk logT. (6)

For FIC and PIC, define modelK to be the largest model (i.e., the one with the largest
number of regressors). This model will be used as the benchmark.

F IC(k) = SSEk
T,T

T

T − pk
+ SSEK

T,T

T − pK
log

 |Ak
T,T |

SSEk
T,T

T−pk

 ; (7)

P IC(k) = SSEK
T,T (

SSEk
T,T

SSEK
T,T

− 1)+ SSEK
T,T

T − pK
log

 |Ak
T,T |

SSEK
T,T

T−pK

 . (8)

In each case, the model is chosen that minimizes the criterion function.
To define the PLS and our extension, PLS-MDC, specify the average sum of squares

differently:

µl
T (k) =

1

T − b

T∑
t=b

(rt − θ̂ k′
t−1,l x

k
t−1)

2,

whereb is the first integer such thatθ̂k
b−1,b−1 is uniquely defined [see Equation (4)]. PLS

then picks the model (k) that minimizesµT
T (k). Let

K = {k : T = arg min{µl
T (k)}}

[µl
T (k) is minimized overl ∈ {b,b+ 1, . . . , l̄ , T}, with l̄ < ∞]. PLS-MDC picks the

model that minimizesµT
T (k) for k restricted to lie inK.11 For a formal analysis, see

Appendix B.

Appendix B. PLS-MDC

Rolling regressions can be used to determine the dimension of the state vector in a
Markov model. We will first demonstrate why, then we will explain how this generates
a decision rule that can improve on the ability of PLS to pick the right prediction model.

To be as general as possible, we allow the state vector to include several lags of the
variable to be predicted, as well as lags of a limited set of other conditioning variables.
Also, the regression equation can be general. Specifically, it can be nonlinear, in contrast
to the model in the main part of the article.

Consider a time series{rt ; t = 1,2, . . .} taking values inR. Posit that it is Markov
relative to a state vectorxt . This state vector may includert−1, . . . , rt−q (q < ∞) and
various lags of other conditioning variables. Letf denote the regression function:

rt = f (xt−1)+ εt , (9)

11 The optimal model according to PLS-MDC can be determined by the following algorithm. (i) Determine
k∗ which minimizesµT

T (k). (ii) Check whetherµl
T (k
∗) ≥ µT

T (k
∗), all l . If so, stop. (iii) Otherwise, check

whetherµl
T (k
′) ≥ µT

T (k
′), wherek′ is the best alternative tok∗. (iv) Continue untilµl

T (k) ≥ µT
T (k), all l .
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whereεt satisfies:E[εt |xt−1] = 0. The Markov property implies that

E[εt |xt−1, xt−2, . . .] = E[εt |xt−1] = 0.

We want to construct a criterion by which to determine whether the latter is correct.
In other words, we wish to develop a criterion to test whether additional lags of elements
in xt should be included in the state vector. We will focus on mean square prediction
errors. This essentially means that we posit a quadratic loss function. It also justifies our
focusing on the regression function only.

Construct sequences of estimates off , { f l
t ; t = m, . . . T} from subsets of past

information (T denotes the total sample size). The integerl indexes the subsets. The
observationsrt , . . . , rmax(1,t−l+1) andxt−1, . . . , xmax(0,t−l ) constitute subsetl at t . Thels
are chosen from a set{m,m+ 1, . . . , l̄ , T} (m is the minimal sample size for which
the regression estimates are uniquely defined), withl̄ < ∞. In fact, the sequences
{ f l

t ; t = m, . . . , T} form rolling regressions. Generate, subsequently, one-step-ahead
forecasts. Then calculate mean square prediction errors for each sequence.

Letµl
T denote the mean square prediction error from the rolling regression in which

all but the most recentl observations are thrown away. This means

µl
T =

1

T −m

T∑
t=m+1

(rt − f l
t−1(xt−1))

2.

This mean square prediction error is an estimate of the out-of-sample forecasting per-
formance of the model. Each error is computed on the basis of estimates that use only
past information.

Assume the following.

Assumption 1.

1

T −m

T∑
t=m+1

(rt − f (xt−1))
2→ C

in probability (C<∞).

Assumption 2. f T
T converges to f in mean square.

Assumption 1 is almost superfluous: convergence of the estimator of the regression
function (Assumption 2) could hardly be obtained without convergence of the mean
square regression error (Assumption 1). Notice that these assumptions put minimal
restrictions on the stochastic properties of the state vector. In particular, the state vector
could be unit-root nonstationary. If the regression functionf is linear, we essentially
requirert andxt−1 to be cointegrated. Assumption 1 would immediately follow from
finiteness of the second moment of the regression error. Assumption 2 would hold for the
ordinary least squares estimator off . Our criterion shares this generality (applicability
to unit-root nonstationary processes) with the FIC and PIC criterion [see Wei (1992)
and Phillips and Ploberger (1996)].

It is also important to emphasize that Assumptions 1 and 2 survive in many situations
where the regression error is heteroskedastic. In this respect, our criterion contrasts
with the FIC and PIC criterion, which were developed under particular regression error
models.
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In order to understand our model selection criterion, we first prove the following
theorem. It states thatµl

T is minimized, asymptotically, forl = T .

Theorem 1. Let l ∈ {m,m+ 1, . . . , l̄ }, wherel̄ <∞. Then, under Assumptions 1 and
2, for all l:

lim
T→∞

P{µl
T − µT

T > 0} = 1.

(P is the probability measure that defines the probability space in which the processes
xt and rt live.)

Proof.

µl
T =

1

T −m

T∑
t=m+1

(rt − f l
t−1(xt−1))

2

= 1

T −m

T∑
t=m+1

(rt − f (xt−1))
2 + 1

T −m

T∑
t=m+1

( f l
t−1(xt−1)− f (xt−1))

2

− 2
1

T −m

T∑
t=m+1

(rt − f (xt−1))( f l
t−1(xt−1)− f (xt−1)).

Hence,

µl
T − µT

T =
1

T −m

T∑
t=m+1

( f l
t−1(xt−1)− f (xt−1))

2

− 1

T −m

T∑
t=m+1

( f T
t−1(xt−1)− f (xt−1))

2

− 2
1

T −m

T∑
t=m+1

(rt − f (xt−1))( f l
t−1(xt−1)− f (xt−1))

+ 2
1

T −m

T∑
t=m+1

(rt − f (xt−1))( f T
t−1(xt−1)− f (xt−1)). (10)

Because of the Markov nature of the time series and Assumption 1, the third term will
converge to zero in probability. Assumption 2 and Ces`aro summability implies that the
second and fourth terms converge to zero in probability as well. Finally, the probability
that the first term is strictly positive is nonzero ifl ≤ l̄ <∞.

The crucial part of the proof of Theorem 1 occurs in the third term of Equation (10):

− 2
1

T −m

T∑
t=m+1

(rt − f (xt−1))( f l
t−1(xt−1)− f (xt−1)). (11)

This expression is the average cross-product between the regression error (εt ) and the
error in estimating the regression function. Sincef (xt−1)depends onxt−1, and f l

t−1(xt−1)

depends onrt−1, . . . , rmax(1,t−l ) and xt−2, . . . , xmax(0,t−l−1), the error in estimating the
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regression function,f l
t−1(xt−1)− f (xt−1), is a functiononlyof past information. Because

of the Markov assumption, the regression error is orthogonal to past information. Hence
Equation (11), which is an estimate of the cross-moment between the regression error
and a particular function of past information, converges to zero.

This discussion should reveal an important fact: the correctness of Theorem 1 de-
pends crucially on the Markov assumption. In other words, it hinges on our including the
correct number of lags ofrt and the right additional conditioning variables in the state
vector. If our process is Markov only after includingadditional lags of elements in the
state vector and/or ofrt , the regression errorεt will not be orthogonal to past informa-
tion. Since the estimation error [f l

t−1(xt−1)− f (xt−1)] is a function ofrt−1, . . . , rmax(1,t−l )

andxt−2, . . . , xmax(1,t−l−1), its cross-moment with the regression error will be nonzero.
Becausel <∞, the estimation error willnotdisappear asymptotically. Since the expres-
sion in Equation (11) is the sample version of this cross-moment, it will be nonzero for
largeT , and, provided the cross-moment is large enough,µl

T − µT
T ≤ 0. Consequently

the falseness of the Markov assumption may be revealed in large samples by inspection
of the mean square prediction error of rolling regressions based on subsamples of past
observations.

We immediately obtain a selection criterion. We shall call it the Markov dimension
criterion (MDC), because it is designed to determine the appropriate dimension of the
state vector.

MDC. Accept the hypothesis that{rt ; t = 1,2, . . .} is Markov relative to the state vector
{xt−1; t = 1, . . .} if T = arg min{µl

T }, otherwise reject.

From the derivation of the MDC, it should be clear that it may not always reveal the
falseness ofxt−1 as the state vector, whereas it will always uncover the correctness of
such a model (though only asymptotically). When the correlation between the regression
error and information beyond lag 1 is too weak, the sample cross-moment between the
regression error and estimation error [Equation (11)] may not be able to offset the size
of the estimation error [the first term in Equation (10)]. If so, the mean square prediction
error remains minimized atl = T , and the MDC would fail to reject.

How does MDC help PLS in determining the right prediction model? As mentioned in
the text, PLS tends to pick prediction vectors (xt−1) that are too small. In each application,
MDC can check whether this is indeed so, starting from the optimal prediction vector
according to PLS, and adding predictors if required by the MDC decision rule. The
resulting model selection criterion is referred to as PLS-MDC.

Further discussion of PLS-MDC can be found in Bossaerts and Hillion (1993).

Appendix C. Data Sources

Stock index: S&P500 (USA; Reuters); MSCI (others; Morgan Stanley).
Bond index: Lehman Brothers long T-bond (USA); Reuters (Australia, Belgium,

Canada, France, Germany, Netherlands, Norway); MSCI (Denmark, Italy, Japan,
Spain, Switzerland, UK).

Three-month cash yield: T-bill (USA;Wall Street Journal); Reuters (Australia, Bel-
gium, Canada, Denmark, France, Germany, Japan, Netherlands, Norway, Swit-
zerland);The Economist(Italy, Spain, UK).

Stock dividend yield: MSCI (all).
Price-earnings ratio: MSCI (all).
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