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between the synchronous model and its implementation. We address this problem by showing how to map a synchronous model onto

a loosely time-triggered architecture that is fairly straightforward to implement as it does not require global synchronization or blocking

communication. We show how to maintain semantic equivalence between specification and implementation using an intermediate

model (similar to a Kahn process network but with finite queues) that helps in defining the transformation. Performance of the semantic

preserving implementation is studied for the general case and for a few special cases.
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1 INTRODUCTION

MANY are the advantages of using synchronous models
of computation to describe design functionality:

among others, predictability, strong theoretical backing
that allows formal verification of design properties, the
existence of paths to implementation where timing and
functional properties can be verified independently, and
limited concurrency that prevents the explosion of possible
behaviors of the design.

However, this cornucopia of positive aspects comes at a
price: it is hard to implement synchrony, especially on
distributed execution platforms. A solution for implement-
ing synchronous models on distributed platforms is to use
a clock synchronization protocol (e.g., see [1], [2]) to
synchronize the clocks of the different execution nodes of
the distributed architecture. This approach is followed by
the Time Triggered Architecture [3]. Techniques for
generating semantic-preserving implementations of syn-
chronous models on TTA have been studied in [4].
However, this approach carries cost and timing penalties

that may not be acceptable for some applications. In
particular, TTA is not easily implementable for long wires
(such as in systems where control intelligence is widely
distributed) or for wireless communications and may
require expensive resources (such as area and performance
for hardware implementations, memory for software ones)
utilization.

Hence, there has been growing interest in less con-
strained architectures, such as the Loosely Time-Triggered
Architecture (LTTA) [5]. LTTA is characterized by a
communication mechanism called Communication by Sam-
pling (CbS). In this paper, we extend the LTTA concept to
relax further the constraint of the architecture. In particular,
we assume

. writings and readings are performed independently
at all nodes connected to the medium using different
local clocks and

. the communication medium behaves like a shared
memory, i.e., values are sustained and are periodi-
cally refreshed, based on a local clock owned by the
medium.

This architecture is very flexible and efficient as it does
not require any clock synchronization and it is not blocking
both for writes and reads. Consequently, risk of failure
propagation throughout the distributed computing system
is reduced and latency is also reduced, albeit at the price of
increased jitter; see [6]. However, data can be lost due to
overwrites that may occur because readers may be slower
than writers and the memory is not enough to store all of
the data that have been written but not read yet. If, as in
safety critical applications that involve discrete control for
operating modes or handling protection, data loss is not
permitted, either the drift of the clocks of the nodes and of
the medium can be kept small, as in earlier analysis of this
architecture, and, consequently, fairly simple devices are
enough to guarantee correctness of the operation, or more
complex approaches are needed.
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In this paper, we address the more general situation
where no assumption is made about the relative speed of clocks.
The problem we address is how to map a simple
synchronous functional description (albeit an extension to
more general synchronous models is possible but not
addressed in this paper) to an implementation based on
LTTA so that semantics is not altered. In particular, we
consider a semantic property to maintain in the mapping
stream equivalence preservation. The problem is far from
being simple because of the semantics “distance” between
the two models. To solve it, we resort to the Platform-Based
Design (PBD) (see, e.g., [7]) paradigm, where appropriate
intermediate layers of abstraction are introduced to ease the
transition from one model to the other. To this end, we
introduce a layer of abstraction called FFP. FFP is
essentially a Kahn Process Network (KPN), but with
bounded FIFOs. We first show how to map the synchro-
nous specification onto the FFP platform so that semantics
is preserved and then how to map the FFP thus obtained
into an LTTA so that semantics is preserved.

Our layered architecture consisting of LTTA and FFP has
not been considered as such for distributed software real-
time systems, hence the novelty of our approach. The
authors are personally aware of cases in the aeronautics,
nuclear, automation, and rail industries where the LTTA
architecture with limited clock deviations has been used
with success. The LTT bus based on CbS was first proposed
in [5] and studied for a single writer-reader pair; Romberg
and Bauer [8] proposes a variation of LTTA where some
master-slave resynchronization of clocks is performed.

In [9], an FFP-like architecture is proposed and results on
buffer sizing are given. How to maintain correct time-based
semantics in CbS-based time-sensitive systems is studied in
[10]. Finally, Kossentini and Caspi [11] develop an alternative
approach, where up-sampling is used in combination with
“thick” events as a way to preserve semantics. Approaches
similar to our proposal have been studied in the area of
hardware, for example, the so-called latency insensitive
designs [12], [13] and the related elastic circuits [14].

We use Marked Directed Graphs (MDG) as tools to
establish semantic preservation, as well as to obtain
performance results on throughput and latency. Perfor-
mance studies of marked graph models were carried out by
a number of authors from whom we borrowed to build our
method: [15] is a pioneering reference and [16] is the basic
reference for the approach of performance evaluation using
the max-plus algebra. The reader is referred to [13] for a
number of references in the context of hardware design.

The paper is organized as follows: In Section 2, we
describe our target application, namely, synchronous
models. In Section 3, we introduce the target execution
platform, LTTA. In Section 4, we describe the middle layer,
FFP. In Section 5, we show how synchronous models can be
implemented on FFP so that their semantics is preserved. In
Section 6, we show how FFP can be implemented on top of
LTTA. In Section 7, we offer bounds on throughput for the
LTTA implementation and introduce a number of special
cases where the constructions we use in mapping synchro-
nous models to LTTA can be optimized. In Section 8, we
obtain similar bounds and optimizations for latency.
Section 9 concludes the paper and discusses future work.

2 SYNCHRONOUS MODELS

For the sake of simplicity, we consider in this paper a basic
single-clock synchronous model. Our results can be
extended to more general synchronous models, in parti-
cular, synchronous languages such as Esterel, Lustre, or
Signal [17].

A synchronous model consists of a set of communicating
Mealy machines (a machine may be infinite state). Structu-
rally, this can be represented as a directed graph, the nodes of
which correspond to machines and the edges to communica-
tion links: If there is a linkM !M 0, then an output ofM is an
input to M 0. Since the composition of Mealy machines may
not always be well-defined because of dependency cycles, we
assume that every loop in the graph is “broken” by a unit delay
(UD) element. A UD has an initial value which is also the
value of its output at the initial instant. At every subsequent
instant, the value of its output is equal to the value of its input
in the previous instant.

An example of a synchronous model is shown in Fig. 1.
There are three machines in this model, labeled M1, M2,
and M3. There is also a unit-delay element, depicted as a
square block labeled UD. Notice that both feedback loops in
this model are “broken” by the UD element.

We assume that the model has no self-loops, that is, there
is no link Mi !Mi (not even a unit-delay link). This is not a
restrictive assumption: Such links would need to be unit-
delay links (by our initial assumption); therefore, they
essentially correspond to part of the internal state of Mi.
This internal state does not have to be exposed at the
synchronous model level (it can be “hidden” inside Mi).

We define a partial order1 � on the set of machines in a
synchronous model as follows: Given two machines Mi and
Mj, if there is a link without UD from Mi to Mj, then
Mi �Mj. We then complete � with its reflexive and
transitive closure. From the assumption that every loop in
the synchronous model is broken by a UD, � is indeed a
partial order. Mi is a minimal element with respect to � if
there is no Mj 6¼Mi such that Mj �Mi.

For example, in the synchronous model shown in Fig. 1,
we have M1 �M3 �M2. In this case, the order is total and
M1 is its unique minimal element.

We give semantics to this model as follows: Every
communication link is seen as an infinite stream, that is,
an infinite sequence of values in some given domain. For
simplicity, we will assume that all streams in the model
take values in the same domain of values V . This is not a
fundamental assumption and can be lifted at the expense
of a more complicated presentation that we avoid. Under
this assumption, every stream is a total function
x : IN! V , where IN denotes the set of positive integers:
IN ¼ f1; 2; 3; . . .g.
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Fig. 1. A synchronous model with three machines.

1. That is, a reflexive, transitive, and antisymmetric binary relation.



In a synchronous model, each stream is the output of a
unique machine. For instance, in the example shown in
Fig. 1, x1 is the output of M1, x3 is the output of M3, and so
on. Notice that we have included a separate stream x5 as
the output of the UD element.

Each machine Mi generally has an internal state, si,
belonging in some set of states Si. Si may be infinite. Si may
also be a singleton (a set with a unique element), modeling
a “memoryless” or “combinational” machine. The initial
state of Mi is s0

i . Then, Mi can be seen as a function
Mi : V n � Si ! V m � Si, where n and m is the number of
inputs and outputs of Mi, respectively. The function takes
as input the values of the machine’s input streams and state
at time k and produces as output the values of the
machine’s output streams at time k, as well as the value
of the machine’s state at time kþ 1 (“next” state). For
instance, for machine M1 in Fig. 1, we have, for k ¼ 1; 2; . . . :

x1ðkÞ; x2ðkÞ; s1ðkþ 1Þð Þ ¼M1 x5ðkÞ; s1ðkÞð Þ:

The unit-delay element can also be modeled as a function
similar to the one shown above. But, in this case, the
internal state of the UD is always equal to its output at the
same time k. Therefore, the function for a UD can be
simplified to yðkþ 1Þ ¼ xðkÞ, where x and y are, respec-
tively, the input and output streams of the UD element. The
output y is initialized to the initial value of the UD, say, v:
yð1Þ ¼ v. For instance, for the UD shown in Fig. 1, we have

x5ð1Þ ¼ v;
x5ðkþ 1Þ ¼ x4ðkÞ; for k ¼ 1; 2; . . . :

As given above, the semantics of an entire synchronous
model can be defined as a set of equations on streams.
Under the assumption that every loop is broken by a UD
element, this set of equations has a unique solution where
every stream is defined at every time k. Assuming the
functions Mi of each machine are computable, this solution
can be computed up to any k by repeatedly “firing” the
machines in a statically specified order. This order is any
total order that respects the partial order � .

3 LOOSELY TIME TRIGGERED ARCHITECTURES

An LTTA consists of a set of processing nodes (e.g.,
computers) communicating via a network. Each node runs
a single program (or process): The program is executed
quasi-periodically, triggered by the clock of the node. The
network is assumed to implement the CbS communication
paradigm, described in detail below.

An example is shown in Fig. 2. In this example, there are
three nodes labeled as N1, N2, and N3 and four CbS links.
For simplicity, we only consider point-to-point links in this
paper. Multicast links (delivering the same data to multiple
consumers) do not add expressive power to the model.
However, a multicast link can often be implemented in a
more efficient way than multiple point-to-point links (e.g.,
by sharing some buffers).

3.1 The LTTA Communication API

The CbS links in an LTTA platform implement a set of
communication services to its processes. The services can
be described in terms of an application programming
interface (API). The API is a set of functions that

applications (i.e., processes) can call. Each of these func-
tions has a set of preconditions describing the assumptions
that must hold whenever the function is called and
postconditions that describe the guarantees that the function
provides when it returns. The CbS API contains the
following functions:

. write(z). It “writes” message z to the CbS buffer,
overwriting any previous content, and returns
nothing.

. read(). It returns the message currently stored in
the CbS buffer.

CbS links are unidirectional: Only the source node can
call the write() function and only the destination node
can call the read() function. Messages are delivered after
an unknown but bounded time in the order in which they
are sent (we assume lossless in-order communication). The
CbS API guarantees atomicity of function calls so that no
data is corrupted when write() and read() are executed
concurrently. Note, however, that no guarantees are
provided regarding the “freshness” of data returned by
read(). In particular, it may be the case that write(z) is
called at time t and read() at time t0 > t; however,
read() does not return message z but an older message.
This is due to the time it may take to complete write()

and to transmit the message.

3.2 “Extended” CbS

To simplify our arguments and proofs, we extend the
“pure” CbS model by adding a service on the reader side,
isNew(), that returns the Boolean true if there is a new
(unread) message in the buffer and false otherwise. Calls
to isNew() do not change a message from “new” to “old,”
only a call to read() can do that. isNew() is not a
“primitive” function. In the rest of the paper, we will refer
to extended CbS simply as CbS. In fact, we can implement
isNew() on top of pure CbS as follows: The writer process
of every CbS channel will include to every message a
sequence number, i.e., the value of a counter that is
incremented after every write(). In principle, sequence
numbers increase forever and no two messages have the
same sequence number (we relax this assumption below so
that only bounded counters are needed).

The reader process maintains a variable lsn that stores
the sequence number of the last message received. This
variable is updated at every read(). Let sn be the
sequence number of the message that is currently in the
CbS channel. Then, isNew() returns false if sn ¼ lsn

and true otherwise. That is, the message that is currently
in the CbS channel is new if and only if its sequence
number differs from the sequence number of the last
message received.
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Fig. 2. An example LTTA.



Infinite counters do not exist in practice, so the sequence
numbers attached to the messages by the writer need to be
finite. This can be achieved as follows: Suppose the writer
uses a counter modulo N , that is, sequence numbers vary
from 0 to N � 1. The above implementation of isNew() is
still correct provided that there are at most N � 1 consecutive
writes between any two consecutive reads. Indeed, this forbids
the case where the sequence numbers “wrap around.”

It is beyond the scope of this paper to show how CbS
primitives can be implemented. For a general discussion,
see [18], [19] and references therein.

3.3 Structure of LTTA Processes

Every LTTA process has a standard form:

initialize;

while (true) {

await trigger;

body;

}

The initialize section initializes the state of the process
(if any) and possibly also some CbS buffers. The body

section is executed at each trigger and is a nonblocking and
terminating function that may update the state and call any
of the CbS API functions in any order. Furthermore, we will
assume that the execution of body will always terminate
before the arrival of the next trigger (see the discussion on
performance in Section 7). The trigger is an event defined
externally (not inside the process). It can be periodic (or,
more realistically, quasi-periodic), e.g., defined by a clock.
It can also be an event associated to some interrupt.

4 FINITE FIFO PLATFORMS (FFPS)

This intermediate layer is needed to simplify the mapping
of synchronous models on LTTA platforms. Our goal is to
build the layer so that it has architectural similarities with
LTTA and semantics that is fairly close to the one of
synchronous models.

An FFP consists of a set of sequential processes
communicating via directed, point-to-point, lossless, and
FIFO queues of finite length. As such, an FFP is similar to a
KPN [20], with the difference that, in a KPN, the queues are
unbounded. Another difference is that, in an FFP, unlike in
a KPN, processes do not block. Both reads and writes are
nonblocking in an FFP and, as we shall see, the processes
have the responsibility for checking that the queue is
nonempty before doing a read and that the queue is nonfull
before doing a write.

An FFP is shown in Fig. 3. In this case, there are three
processes, P1, P2, and P3, and four FIFO queues. The
drawing of queues in the figure is only illustrative and does

not imply anything about queue size. In an FFP, queues
may have different sizes. Also note that some processes
may have no input queues or no output queues.

4.1 The FFP Communication API

Each queue in an FFP provides the following communica-
tion API:

. isEmpty(): returns true if the queue is empty and
false otherwise.

. isFull(): returns true if the queue is full and
false otherwise.

. put(z): appends message z at the end of the
queue, provided that the queue is not full; if the
queue is full, then the behavior is undefined.

. get(): if the queue is nonempty, removes the first
message (i.e., the message at the head of the queue)
and returns it to the caller; otherwise, behavior is
undefined.

Notice that the put() and get() functions impose
constraints on the environment (i.e., the caller), stated as
preconditions above: Before calling put(), the environ-
ment must make sure the queue is not full and, before
calling get(), it must make sure the queue is not empty.
We will see below that the structure of the processes we
consider guarantees these preconditions by construction.

As with LTTA, the communication links in an FFP are
unidirectional: Only the source process can call the
isFull() and put() functions and only the destination
process can call the isEmpty() and get() functions.
They also guarantee atomicity.

4.2 Structure of FFP Processes

An FFP process has the same form as an LTTA process
(Section 3.3). Clearly, the initialize and body sections
call functions of the FFP API instead of the CbS API. As
with LTTA processes, we assume that the body section
always terminates before the arrival of the next trigger.

5 MAPPING SYNCHRONOUS MODELS ON FFP

Given a synchronous model, we build an FFP that is proven
to preserve streams. Our results on the preservation of
semantics borrow ideas from a number of previous works.
The link between synchronous models and Kahn networks
was studied in detail, for instance, in [21], for more general
synchronous models. In [22], the use of skipping to
synchronize distributed implementations with FIFO com-
munication is studied. They focus on strongly connected
networks of Moore machines. Therefore, each process
belongs to a cycle and each link has a UD (and FIFO sizes
are not discussed). Here, the semantic preservation result
can be seen as a small generalization of the existing
equivalence proof, but it is derived in a way that makes
the proof of the main result of the paper easier to
understand.

The main result of this section is the following:

Theorem 1. Every synchronous model can be implemented in a
semantics-preserving way on an FFP where queues have size
at most 2.

We provide a constructive proof of this theorem in
Sections 5.1 and 5.2. To do so, we introduce a directed
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marked graph abstraction that is also useful to obtain the
performance results later on. In this respect, the link with
token-based actor models was discussed, e.g., in [23], [17].
The interest of the hardware community in asynchronous
architectures has also led to a number of results in the same
direction, e.g., see [24],d [25].

In Section 5.3, we show that increasing the size of the
queues does not impact correctness. In Section 5.4, we look
at special cases of synchronous models which allow us to
avoid the isFull() function and to simplify the construc-
tion, yielding a more efficient LTTA implementation.

5.1 From a Synchronous Model to an FFP

From each machine Mi of the synchronous model, we will
construct a process Pi for the FFP. There will be a queue
from Pi to Pj if and only if there is a link from Mi to Mj in
the synchronous model:

. If this link has a no unit-delay element, then the
queue will have size 1.

. If the link has a unit-delay element, then the queue
will have size 2; queues that correspond to links
with unit delays are called UD queues.

For instance, for the synchronous model shown in Fig. 1,
the corresponding FFP is shown in Fig. 3. Note that the
figure does not attempt to depict the size of the queues:
According to the rule above, the queues from P1 to P2, from
P1 to P3, and from P3 to P2 have size 1, whereas the queue
from P2 to P1 has size 2. Notice that UD elements do not
result in processes in the FFP.

Let M be a machine in the synchronous model with
initial state s0 and with ni inputs and no outputs. Let P be
the corresponding process in the FFP, with its input queues
Q1; . . . ; Qni and its output queues R1; . . . ; Rno . Without loss
of generality, assume that the first j outputs of M are
connected to unit-delay elements with initial values
v1; . . . ; vj, whereas the rest of the no � j outputs are
connected directly to other machines. Note that 0 � j � no
and ni; no � 0.

Then, the code forP is given as follows: Theinitialize
part initializes the state of P to s0 and its UD queues:

R_1.put(v_1); . . . ; R_j.put(v_j);

At each trigger, process P is ready to execute its body:

body {

if (all input queues are nonempty and

all output queues are nonfull) {

read inputs from input queues;

compute new state and outputs;

write outputs to output queues;

} /* else do nothing: skip this round */

}

However, this is only done if it can be guaranteed that the
process can safely read its inputs and write its outputs, that
is, if all of its input queues are nonempty and all of its
output queues are nonfull. The if condition checks exactly
this. The test can be implemented simply as follows:

not( Q_1.isEmpty() or . . . or Q_ni.isEmpty() )

and

not( R_{1}.isFull() or . . . or R_{n}o.isFull() )

If the test fails, then the process does not execute any more
statements in its body: We say that the process skips and
goes back to the beginning of the while loop to wait for the
next trigger. If the test succeeds, the process proceeds to
execute the statements of its body: We say that the process
fires. The read inputs section can be implemented (if
there are inputs) simply as

in_1: = Q_{1}.get(); . . . ; in_ni: = Q_ni.get();

where in_i are variables local to the process.
Then, the process computes its outputs and updates its

state. The computation part depends on function M itself,
which we assumed to be computable. Suppose that, after
this procedure, the outputs are stored in local variables
out_i. Then, writing the outputs can be implemented
simply as

R_1.put( out_1 ); . . . ; R_no.put( out_no );

An FFP process constructed as described in this section is
called an SFFP process. The corresponding platform is
called an SFFP.

5.2 Semantical Preservation

Preservation can be proven in two main steps. Due to space
limitations, we present only a sketch of these steps below.

Step 1: An SFFP never deadlocks. That is, it is always
possible for some process to fire (instead of skipping
indefinitely). Indeed, an SFFP can be viewed as an MDG
[26]. MDGs are a subclass of Petri nets [27] where each
place has a unique input transition and a unique output
transition. Fig. 4 illustrates how to translate an SFFP to an
equivalent MDG. The figure shows the MDG obtained by
the SFFP shown in Fig. 3.

The general translation procedure is given as follows:
Every SFFP process Pi is mapped into an MDG transition
ti. Every SFFP queue from Pi to Pj is mapped into two
MDG places: a forward place pi;j with input transition ti
and output transition tj and a backward place p0i;j with input
transition tj and output transition ti. Suppose the queue has
size k. If it is not a UD queue, then k tokens are initially
placed in p0i;j and no token in pi;j. If it is a UD queue, then an
initial token is placed in pi;j and k� 1 tokens are placed in
p0i;j. Notice that, by construction, every backward place
initially has at least one token. Backward places model the
fact that a process does not write to a full queue. The queue
from Pi to Pj is full if and only if p0i;j is empty, in which case
transition ti cannot fire. On the other hand, every time
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process Pj reads (i.e., transition tj fires), a token is placed in
p0i;j which marks that the queue is nonfull again.

This MDG is an abstract model that is equivalent to the
SFFP as far as firing of processes is concerned. This means
that every sequence of firings of processes in the SFFP can
be mapped into a sequence of firings of the corresponding
transitions in the MDG, and vice versa. Note that the MDG
only represents the “atomic” firings of processes in the
SFFP, where a process completes its body without
interruption (i.e., interleavings) from other processes. SFFP
will also have nonatomic executions. However, these can be
mapped into equivalent atomic executions by reordering
the statements that execute so that, as soon as a process is
enabled, it fires atomically. This can always be done
because firings of different processes are independent.
Similar techniques of reducing redundant interleavings are
used in the verification of concurrent systems [28] and will
not be further detailed here. Also note that the MDG only
represents the firings of processes and not their “skips.”
The latter do not affect the state of the queues thus do not
influence functional semantics.2

It is a classic result of that in [26] that an MDG in which
each directed circuit has a positive token count is live,
meaning that every transition in this MDG can be fired
infinitely often. This is indeed the case of an MDG obtained as
described above. MDG circuits formed by pi;j and p0i;j places
contain at least one token since every backward place
contains at least one token initially. For the same reason,
MDG circuits formed exclusively by backward places
contain at least one token. Finally, MDG circuits formed
exclusively by forward places correspond to loops in the
SFFP: These loops contain at least one unit delay, so the
corresponding circuit has at least one token in the forward
place modeling the UD queue.

Step 2: Any execution of the MDG, and essentially also of the
corresponding SFFP, is one possible execution of the correspond-
ing KPN [20]. The latter is the same as the SFFP, except that
its queues are unbounded. A classic result of that in [20] is
that such a network is determinate, that is, it has a unique
semantics which is independent of the order in which
processes are fired. Since the MDG is live, the semantics is
infinite, that is, every queue can be written infinitely often
and thus can be seen as an infinite stream of values. Now,
one possible firing order is the one where processes are
fired repeatedly respecting the partial order � . This firing
order obviously generates the same streams as in the
synchronous model. Since the semantics is independent of
the firing order, every other order must also generate the
same streams; thus, the semantics is preserved.

5.3 Increasing the Size of Queues

Theorem 1 gives an upper bound on the amount of buffer
space required to faithfully implement synchronous mod-
els on FFP. Sometimes, however, it is desirable to use
longer FIFOs in order to increase the throughput of the
system, that is, the rate at which processes execute without
skipping, thus producing useful outputs. Indeed, this is a
classical case of memory versus throughput trade-off, as is
also typically found in pipelines.

Increasing the size of the FIFOs does not affect the
preservation of the synchronous semantics discussed in
Section 5.2. In particular, the MDG is still live since the
number of tokens at each place may only increase. Thus, we
can state the following generalization of Theorem 1.

Theorem 2. Let F be an SFFP obtained from a synchronous
model using the method of Section 5.1, except that the size of a
non-UD queue may be � 1 and the size of a UD queue may be
� 2. Then, F preserves the semantics of the synchronous
model.

5.4 Avoiding to Check Queue Fullness

An MDG is k-bounded if the number of tokens in any place
cannot increase beyond k. Another classic result of that in
[26] states that if every transition of an MDG belongs to a
circuit with at most k initial tokens, then the MDG is
k-bounded. Notice that the total number of tokens in a
circuit is invariant.3

This means that the queues in a loop of an SFFP will
never contain more tokens than the number of UD in that
loop. Therefore, if the size of a queue is larger than that
number, we do not need to check for fullness before writing
into it. That is, processes can omit calls to function
isFull(), resulting in more efficient implementations on
top of LTTA (indeed, as we shall see in Section 6, the
implementation of isFull() on top of LTTA requires
additional communication). More formally,

Theorem 3. Let F be an SFFP. Consider the FFP F0 obtained
from F by changing the size ki of one or more queues Qi

belonging to loops in F and by omitting calls to isFull()
for these queues. If, for all such queues in F0, we have
ki � UðQiÞ, where UðQiÞ ¼ minL2FjQi2LUðLÞ and UðLÞ is
the number of UD queues on loop L, then F0 preserves the
semantics of the synchronous model.

Proof. Clearly, L 2 F , L 2 F0 because we do not remove
queues or processes. Given a queueQi belonging to some
cycle, consider a loop �L with Qi 2 �L and for which
Uð �LÞ ¼ UðQiÞ. By the above arguments [26], the queue Qi

cannot accumulate more than Uð �LÞ tokens. Since the
queue has size ki � Uð �LÞ, the source process Pi can omit
the call to isFull() for Qi because it would return
true only if an input queue is empty. tu
The above condition is purely “structural” and does not

depend on triggering patterns neither on real-time delays
such as execution or communication delays. Another way to
guarantee that calls to isFull() are not necessary is by
devising sufficient conditions on triggers and delays. Notice
that conditions on triggers alone are not enough since what is
important is not only when a process is triggered but also the
times at which it performs its reads and writes, as well as the
times at which messages arrive at the destination. Condi-
tions of this type are studied in [5], [29].

6 IMPLEMENTATION OF FFP ON TOP OF LTTA

Each FFP queue of size k can be implemented on top of the
LTTA platform with k CbS channels (using an array
notation: dataCbS½0 . . . k� 1�) used as a circular buffer from
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2. On the other hand, the number of skips does in principle affect
performance, in particular throughput and latency. These performance
metrics are studied in Sections 7 and 8.

3. Although [26] speaks about 1-bounded nets (safe), the result holds for
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the source to the destination process and one CbS channel
(backCbS) from the destination back to the source. The FFP
API can be implemented on top of the CbS API as follows:

The source process maintains a state variable wc to count
the number of written values. This counter is initialized to
zero and is updated by put(), which is implemented as
follows:

put(msg) {

dataCbS[(wc mod k)].write(msg);

wc :¼ wcþ 1;

}

At every put(), the source process writes to the next
CbS buffer.4

Similarly, the destination process maintains a state
variable rc to count the fresh reads (this counter is also
initialized to zero). Moreover, there is a state variable
oldmsg to store the value of the latest returned message.

get() returns (msg) {

ismsgNew: = dataCbS[(rc mod k)].isNew();

if (ismsgNew) {

msg: = dataCbS[(rc mod k)].read();

rc :¼ rcþ 1;

backCbS.write(rc);

oldmsg: = msg;

} else

msg: = oldmsg;

return (msg);

}

When a new message is returned by the get() operation,
we update the counter rc and we send it back to the source
process, overwriting the previous value of its local reads
counter. Repeated get() calls will keep returning the
previous value until a fresh value is stored in position rc

mod k by the remote put().
isFull is implemented as follows:

isFull() {

lrc: = backCbS.read();
return (wc-lrc> = k);

}

lrc denotes the local reads counter used by the source
process. When the number of writes exceeds the acknowl-
edged number of reads by at least k, the FIFO is deemed
full. Notice that the source relies on the destination to
provide a fresh value of the reads counter. Since we do not
make any assumption on the network delay, the value sent
by the destination process may take time to reach the
source. Therefore, the source may have an out-of-date value
of lrc with respect to the current rc. However, it is always
the case that lrc � rc. As a result, the estimated number of
messages in the queue, wc-lrc, is no smaller than the true
number of messages, wc-rc. That is, it is a conservative
approximation which ensures that the source process will
never attempt to write at a queue that is full.

Counters wc, rc, and lrc can be bounded: They can be
modulo 2k. The test in isFull() then becomes

returnððwc� lrcÞmod2 � k >¼ kÞ;
and increments become xc ¼ ðxcþ 1Þmod 2 � k.

isEmpty is implemented as follows:

isEmpty() {

return not (dataCbS[(rc mod K].isNew());

}

If the message at the current read position is not new, then
we can conclude that the FIFO is empty. Conversely, if the
FIFO is empty, rc is equal to wc and the next new value
will be written in position rc mod k.

Notice that each of the FFP API operations is imple-
mented by a finite number of LTTA operations and each
LTTA operation is nonblocking.

7 THROUGHPUT

In this and the following section, we will study the
performance of our SFFP implementations, in terms of
throughput and latency. These two metrics obviously
depend on clock triggers and also on various types of
execution and communication delays in the SFFP. In this
section, as well as in the section that follows, we will
assume that such delays are negligible. Notice that this
assumption is not required for semantical preservation and,
indeed, the method presented in Section 5 is correct for any
delays. We discuss nonnegligible delays in Section 7.3.

Given this assumption, if all clocks run at exactly the
same rate � and their relative phases can be controlled so as
to satisfy the partial order � , we can fire all processes at
each trigger, thus achieving throughput �. This corre-
sponds to the best behavior. However, the LTTA platform
cannot guarantee exact synchronization and phases may
eventually drift to a point where triggers violate the
� order, thus introducing some amount of skipping.
Clearly, processes cannot fire more often than their trigger.

In this section, we study worst-case throughput and show
how it can be computed for any SFFP. We also show how it
can be derived analytically for some special topologies.

7.1 Computing Worst Case Throughput

7.1.1 Real-Time Throughput

Let us first define a notion of “real-time” throughput in an
SFFP. We capture triggering events of a process (e.g., the
ticks of its clock) as a sequence of real-time stamps. One
possible triggering sequence for a process Pi can be
represented as an increasing function ci : IN! IR, where
ciðnÞ is the time that Pi is triggered for the nth time. We
assume that the series ciðnÞ is unbounded. The clock (i.e.,
trigger generator) of a process is generally “nondetermi-
nistic,” that is, it may have more than one behavior: This
means that there will be more than one ci function
associated to Pi. Let Ci be the set of such functions. Let
C ¼ �iCi be the Cartesian product of Ci. An element c 2 C
is a vector of ci.

Given t 2 IR, we write ĉiðtÞ to denote the value of ci at
time t, interpreting the clock as a counter. That is,
ĉiðtÞ ¼ maxfnjciðnÞ � tg. If the maximum is taken over an
empty set, then it is zero, that is, ĉiðtÞ ¼ 0 if the clock has
not ticked at all until time t.

An element c 2 C determines an order of execution of all
processes in an SFFP F . Assuming that the worst-case
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execution time of the body of every process is smaller than
the minimum interarrival time of successive ticks of its
clock, the process is always ready to execute when its clock
ticks. Then, the process may fire or it may skip.5 For t 2 IR,
let firenoF ;c;PiðtÞ denote the number of times process Pi
fires until (and including) time t and let skipnoF ;c;PiðtÞ
denote the number of times it skips. Obviously, for any F ,
c 2 C, Pi, and t, we have

firenoF ;c;PiðtÞ þ skipnoF ;c;PiðtÞ ¼ ĉiðtÞ: ð1Þ

Definition 1. The real-time throughput of process Pi in an
SFFP F with respect to a clock vector c is defined as:

�rtðF ; Pi; cÞ ¼ lim
t!1

firenoF ;c;PiðtÞ
t

:

Theorem 4. Let F be an SFFP and F0 be an SFFP derived from
F by increasing the size of one queue in F by 1. Then,

8Pi; c; t; firenoF ;c;PiðtÞ � firenoF0;c;PiðtÞ:

Proof. For brevity, we use the notation niðtÞ and n0iðtÞ
instead of firenoF ;c;PiðtÞ and firenoF0;c;PiðtÞ, respectively.
The clock c is implicit in this notation. Also, for t 2 IR, we
write t� for a t0 < t such that no clock is triggered between
t0 and t (in c). Such a t0 always exists. The proof is by
induction on the total number of triggers up to time t. The
result trivially holds when no triggers occur until t.
Suppose the result holds when the number of triggers is
n. We prove it also holds for nþ 1. We assume, without
loss of generality, that the ðnþ 1Þth trigger happens at
time t and Pi is the process that is triggered.

We reason by contradiction. Suppose the result does
not hold. This means that 1) niðt�Þ ¼ n0iðt�Þ (by the
induction hypothesis) and 2) Pi fires at t in F but skips at
t in F0. There are two cases:

Case 1. Pi skips because some of its input queues, say,
one written by process Pj, is empty inF0 at time t. That is,
n0iðt�Þ ¼ n0jðt�Þ þ u, whereu is the number of initial tokens
in this queue. From (1), we get niðt�Þ ¼ n0jðt�Þ þ u. From
the induction hypothesis, we have njðt�Þ � n0jðt�Þ; thus
we get niðt�Þ � njðt�Þ þ u. This means that the queue
would also be empty at time t in F , which contradicts
the assumption that Pi fires at t in F .

Case 2. Pi skips because some of its output queues,
say, one read by process Pj, are full in F0 at time t. That
is, n0iðt�Þ þ u ¼ n0jðt�Þ þ k0, where k0 is the size of this
output queue in F0. Again, from (1) and the induction
hypothesis, we get niðt�Þ þ u � njðt�Þ þ k0. Since k0 � k,
where k is the size of this queue in F , we get
niðt�Þ þ u � njðt�Þ þ k. This means that the queue
would also be full at time t in F , which contradicts the
assumption that Pi fires at t in F . tu

Corollary 1. Increasing the size of queues in an SFFP does not
decrease throughput.

7.1.2 Logical-Time Throughput

We would also like to define a notion of “logical-time”
throughput. This allows us to make some general claims

about the throughput of an SFFP without making assump-
tions about the real-time rates of the clocks, that is, without
having c as a parameter. Moreover, we will see that this
logical-time throughput essentially characterizes real-time
throughput modulo a scaling factor (Theorem 9).

Consider a clock �, also represented by an increasing
function � : IN! IR.

Definition 2. The logical-time throughput of process Pi in an
SFFP F with respect to a clock vector c and a clock � is

�ltðF ; Pi; c; �Þ ¼ lim
n!1

firenoF ;c;Pi �ðnÞð Þ
n

:

We want to compute the worst-case logical-time
throughput, but we cannot define “worst-case” by taking
the minimum of �ltðF ; Pi; c; �Þ over all possible c: This is
trivially 0 since we can always have a clock ci, which is
increasingly “slow” with respect to �. To avoid this
problem, we introduce the notion of a slow clock �. We
say that � is slower than c if, between any two consecutive
ticks of �, there is at least one tick of any clock ci.

6 Formally,

8i; 8n 2 IN; 9k 2 IN; ciðkÞ 2 ½�ðnÞ; �ðnþ 1ÞÞ: ð2Þ

We denote by Cð�Þ the set of all c such that � is slower
than c. We can now define the worst-case logical
throughput.

Definition 3. The worst-case logical-time throughput of
process Pi in an SFFP F with respect to a clock � is

�wcltðF ; Pi; �Þ ¼ inf
c2Cð�Þ

�ltðF ; Pi; c; �Þ:

We now state a result that is fundamental for what will
follow. Let Cwcð�Þ be a subset of Cð�Þ such that, for all
c 2 Cwcð�Þ and for any n 2 IN, each clock ci ticks exactly
once in the interval ½�ðnÞ; �ðnþ 1ÞÞ and the order of clock
ticks in c satisfies the following property: If process Pi is
enabled at time �ðnÞ and process Pj is disabled at that time,
then the clock of Pi ticks after the clock of Pj in the above
interval. We call this the “slow” triggering policy.

Lemma 1. For c 2 Cwcð�Þ, if Pi is not enabled at time �ðnÞ, then
it will not fire in the interval ½�ðnÞ; �ðnþ 1ÞÞ.

Proof. If not, then, from the fact that it fires at time ti, some
other process must have fired some time in the interval
½s; tiÞ, enabling Pi. Let Pj be the first process to fire in
½s; tiÞ, then, since no other process fired before, Pj was
enabled at time s in c0. But, this means an enabled
process Pj is triggered before a disabled process Pi,
which contradicts the definition of Cwcð�Þ. tu

Theorem 5. For any SFFP F and any process Pi of F :

8c 2 Cð�Þ; 8c0 2 Cwcð�Þ; 8n 2 IN;

firenoF ;c;Pi �ðnÞð Þ � firenoF ;c0;Pi �ðnÞð Þ:

Proof. For brevity, we use niðtÞ and n0iðtÞ instead of
firenoF ;c;PiðtÞ and firenoF ;c0;PiðtÞ, respectively. Suppose
the result does not hold. Let k be the first n for which the
inequality is violated. Let Pi be the process for which it is
violated. Let t ¼ �ðkÞ and s ¼ �ðk� 1Þ (if k ¼ 1, then let
s ¼ 0). By definition of Cwcð�Þ, Pi is triggered exactly
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once in the interval ½s; tÞ in c0, say, at time ti. We have
niðtÞ < n0iðtÞ, but niðsÞ � n0iðsÞ. This implies that n0iðsÞ ¼
niðsÞ and Pi fires at time ti in c0. This implies that n0iðsÞ ¼
niðsÞ and Pi fires at time ti � t in c0. By Lemma 1, this in
turn implies that Pi is enabled at time s in c0.

We claim that Pi is also enabled at time s in c. Indeed,
from the fact n0iðsÞ ¼ niðsÞ, Pi has fired the same number
of times in c0 as in c. Also, since t is the first time the
result is violated, for any process Pj that either “feeds”
data into an input queue or consumes data from an
output queue of Pi, we have njðsÞ � n0jðsÞ. These two
facts imply that, for any queue Q of Pi, if Q is a
nonempty input queue (respectively, nonfull output
queue) at time at time s in c0, then it is also nonempty
(respectively, nonfull) at time s in c. This implies Pi is
enabled at time s in c.

From the assumption c 2 Cð�Þ, Pi is triggered at least
once in the interval ½s; tÞ in c. A process that is enabled
can only be disabled by firing itself; therefore, Pi fires at
least once in the interval ½s; tÞ in c. This means
niðtÞ � n0iðtÞ, which contradicts our hypothesis. tu

7.1.3 Computing Worst-Case Logical-Time Throughput

Theorem 5 effectively says that the worst-case logical-time
throughput is achieved by the sequence of firings captured
by Cwcð�Þ: At every period between two successive ticks of
�, we first trigger the processes that are disabled in the
beginning of this period and then the processes that are
enabled. We can use this result to compute the worst-case
throughput of an SFFP by analyzing its MDG.

Given an MDG, a marking m is a vector of integers giving
the number of tokens stored at each place. Starting from a
marking m, if a transition ti fires, then the MDG reaches a
new marking m0 where exactly one token is removed from
each of the input places of ti and exactly one token is added
to each of its output places.

Let RðMDGÞ ¼ ðM; EÞ denote the reachability graph of
MDG, where each vertex m 2M is a marking and each
edge e ¼ ðm;m0Þ 2 E 	M�M is annotated with a set T e
of transitions. RðMDGÞ is the minimal graph such that we
have the following:

. M contains the initial marking m0.

. If m 2M and there exists a set T of transitions
enabled at m and let m0 be the marking reached by
firing all transitions in T , then m0 2 M and edge
e ¼ ðm;m0Þ 2 E, with annotation T e ¼ T .

The initial marking m0 corresponds to the initial set of
tokens, as described in Section 5.2. Note that, since MDGs
are conflict-free, transitions in T e can be fired in any order.
Since the MDG is k-bounded, for some k, RðMDGÞ is finite.

Given an SFFP F and its associated MDG, we define for
each process Pi 2 F a weighting function wi : E ! f0; 1g
that associates to each edge e 2 E ofRðMDGÞ the weight wie
such that wie ¼ 1 if the transition ti associated to Pi belongs
to T e; otherwise, wie ¼ 0.

An edge e ¼ ðm;m0Þ 2 E is called maximal if T e contains
all of the transitions that are enabled at m.

Definition 4. Given an SFFP F and its associated MDG, the
maximally concurrent reachability graph of F , denoted as
RSðFÞ, is the subgraph obtained from RðFÞ by removing all
nonmaximal edges.

By Lemma 1, RSðFÞ implements the “slow” triggering
policy. RSðFÞ is deterministic in the sense that, from each
marking m 2M, there is exactly one outgoing edge in
RSðFÞ. This and the fact that RSðFÞ is finite implies that
every infinite path in RSðFÞ is a lasso, i.e., a finite path
ending with a cycle. Also, since RSðFÞ is deadlock-free,
every finite path can be extended to an infinite path, i.e., to
a lasso. In general, starting from different markings may
lead to lassos with different cycles.

Let m be the initial marking corresponding to the initial
conditions of F . Consider the lasso of RSðFÞ starting at m.
Let ‘F be the cycle of this lasso. Let j‘F j denote the length of
‘F and let wið‘F Þ ¼

P
e2‘F w

i
e be the sum of weights of all

edges in ‘F . Define

��ðF ; PiÞ ¼
wið‘F Þ
j‘F j

:

Note that �� 2 ½0; 1�. The following theorem states that
the worst-case logical-time throughput is independent of �
and can be computed as ��.

Theorem 6. For any SFFP F and any process Pi of F :

8�; �wcltðF ; Pi; �Þ ¼ ��ðF ; PiÞ:

Proof. By the definitions of RSðFÞ and Cwcð�Þ, for any
c 2 Cwcð�Þ, the markings at times �ðnÞ visit in RSðFÞ the
lasso starting from m and ending in ‘ðFÞ. Then, by
Theorem 5 and Definition 3, 8�; �wcltðF ; Pi; �Þ �
��ðF ; PiÞ and, since Cwcð�Þ 
 Cð�Þ, equality holds. tu
We next show that, in a connected SFFP F , all processes

have the same worst-case throughput, denoted as ��ðFÞ.
Theorem 7. Given a connected SFFP network F and any cycle ‘

of RSðFÞ:

8Pi; Pj 2 F ; wið‘Þ ¼ wjð‘Þ:

Proof. First, consider the case where Pi and Pj are adjacent
in F and Pi � Pj. By contradiction, assume that
wið‘Þ 6¼ wjð‘Þ, then, at each repetition of cycle ‘,
process Pi would be fired either more or fewer times
than process Pj. Then, the number of tokens in the
adjacent place would either increase or (respectively)
decrease. This contradicts the definition of a cycle in
RSðFÞ because the marking at the beginning and end of
the cycle must be the same. By the connectedness of F ,
there exists an undirected path between processes Pi and
Pj. By the previous argument, any two adjacent
processes P and P 0 on this path must fire the same
number of times along ‘. tu
The following is a corollary of the above result.

Theorem 8. Given a connected SFFP F ,

8Pi; Pj 2 F ; ��ðF ; PiÞ ¼ ��ðF ; PjÞ:

Proof. The proof is obtained by applying the following
lemma to cycle ‘F . tu
We have implemented the algorithms to compute the

worst case logical-time throughput and latency (see
Section 8) in a prototype tool. The tool is written in Haskell
(www.haskell.org) and can also generate Petri net reach-
ability graphs and output these graphs in the Dot format
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(www.graphviz.org). The Dot tool can then be used to do
automatic layout and produce pictures such as the one
shown in Fig. 5 (right). This picture was generated for an
SFFP with a “fork-join” topology and four processes in total
(Fig. 5 (left)). For this example, the tool computes �� ¼ 3

4 by
counting the number of times that a process fires in the
cycle of the RS reachability graph shown in the figure.

7.1.4 Linking Real-Time and Logical-Time Throughput

The following theorem states that if every process has a
clock that ticks at a “rate” no smaller than 1

� , then the real-
time throughput is no less than the logical-time throughput
scaled by 1

� .

Theorem 9. Let F be an SFFP. Let � be any positive real
number. Let c be a vector of clocks such that
8i; 8n; ciðnþ 1Þ � ciðnÞ � �. Then, for any process Pi of F :

�rtðF ; Pi; cÞ �
��ðF ; PiÞ

�
:

Proof. Let � be the perfectly periodic clock with period
�, i.e., �ðnÞ ¼ n�. By Theorem 5, for c0 2 Cwcð�Þ,
we have firenoF ;c;Piðn�Þ � firenoF ;c0;Piðn�Þ; thus,
�rtðF ; Pi; cÞ � 1

� � �ltðF ; Pi; c0; �Þ. The result follows by
Theorem 6. tu

7.2 Logical-Time Throughput for Special
Topologies

7.2.1 Chains

Consider an SFFP C consisting of a chain of N distinct
processes P1 ! P2 ! . . .! PN , with a single-place queue
between Pi and Piþ1, for i ¼ 1; . . . ; N � 1. The MDG
associated to chain C has 2ðN � 1Þ places. Let the marking
be ordered so that the number of tokens in the forward
place pi;iþ1 is in position 2i� 1 and that of the backward
place p0i;iþ1 is in position 2i. Then, the initial marking is
m0 ¼ ð0; 1; 0; 1; . . . ; 0; 1Þ.

For ease of presentation, we will use the submarking �m
obtained from m by projecting away the odd elements, i.e.,
keeping only the token count in forward places and
omitting the backward places. This can be done since each
pair of complementary places has exactly 1 token in total.
Correspondingly, �m0 ¼ ð0; . . . ; 0Þ. Then, the number of
possible markings is 2N�1. We will show that they are all
reachable. Fig. 6 depicts the graphs RðCÞ and RSðCÞ for a
chain C with N ¼ 4 processes. Notice that, for a chain C, two
adjacent processes cannot be enabled at the same marking
because the shared queue is either empty or full, thus
disabling either the reader or (respectively) the writer.

Theorem 10. Given an SFFP chain C with 1-place queues, the
graphRSðCÞ has a unique cycle consisting of two markings mo

and me, with submarkings �mo ¼ ð0; 1; 0; 1; . . . ;modðN; 2ÞÞ
and �me ¼ ð1; 0; 1; 0; . . . ;modðN þ 1; 2ÞÞ. All odd-numbered

processes are enabled in mo and disabled in me. All even-
numbered processes are enabled in me and disabled in mo.

Proof. We claim that, after N � 2 steps starting from m0, we
reach in RSðCÞ marking mo if N is even and me if N is
odd. At step j, marking mj has components:

�mj
i ¼

0; if i > j;
modðiþ jþ 1; 2Þ; if i � j;

�
ð3Þ

and the only (maximal) outgoing edge is annotated with
the set of enabled transitions

T j ¼ ti : modðiþ jþ 1; 2Þ ¼ 0; i � jþ 1f g: ð4Þ

The above is true for j ¼ 0, i.e., for the initial marking.
Assuming it is true for some j, we want to prove it will
be true for jþ 1.

By firing all the transitions in T j, we reach m̂j, where
all of the output places of the fired transitions have one
token and all of their input places have zero. Moreover,
all other places have the same amount of tokens as in mj.
For simplicity, let us consider j to be even, then, by (3),
only the even-numbered elements of �mj (the queues) up
to element �mj

j will have a token. By (4), only the odd-
numbered transitions up to jþ 1 are enabled. Hence, �̂mj

will be the same as �mjþ1. The complementary argument
holds for j odd.

For brevity, the proof of uniqueness is omitted. tu
Corollary 2. For any chain SFFP C, ��ðCÞ ¼ 1

2 .

When the size of queues in a chain is at least 2, the chain
achieves maximal logical-time throughput, 1.

Theorem 11. For any SFFP chain C with queues of sizes ki � 2,
��ðCÞ ¼ 1.

Proof. Starting from m0, after j steps, we reach marking mj

with components �mj
i ¼ 1 for i � j and �mj

i ¼ 0 for i � j.
Consider the marking m1 ¼ mN�1 reached after N � 1
steps, with submarking �m1 ¼ ð1; 1; . . . ; 1Þ. Notice that, at
m1, each queue is both nonempty and nonfull; hence, all
processes in C are enabled and firing all of them results
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Fig. 5. The lasso of a “fork-join” SFFP with four processes. Only maximal edges are shown.

Fig. 6. Graphs R and RS for a four-process chain with one-place

queues. Nodes are labeled by their submarking. Thick arrows denote

maximal edges.



in the same marking, i.e., in RSðCÞ marking �m1 has an
edge to itself. tu

7.2.2 Loops

Consider an SFFP L consisting of a loop of N distinct
processes P1 ! P2 ! . . .! PN�1 ! PN ! P1, with N total
queues. Consider the MDG corresponding to L. The state of
the queues of L is characterized by the submarking �m,
where �mi corresponds to the output queue of Pi. �mi is
called safe if �mi � 1 for all i. Let M be the total number of
initial tokens in the loop, then the invariant

P
i �mi ¼M

holds for every reachable marking of the MDG. Since L
comes from a synchronous model where every loop is
broken by a unit delay, M � 1.

We first study the case where queues have sizes ki � 2.
Then, we characterize throughput for the case where
queues have size M ; hence, by Theorem 3, processes never
skip due to full queues. Finally, we consider the case where
some queues have size 1.

Fig. 7 depicts the graphsRðLÞ and RSðLÞ for a loop with
N ¼ 3, M ¼ 2, and two-place queues.

Lemma 2. Given an SFFP loop L, with M initial conditions and

with queues of sizes ki � 2, each cycle ofRSðLÞ is composed of

safe submarkings.

Proof. Since ki � 2, at a safe submarking �m, all queues are
nonfull. The first observation is that, from a safe
submarking �m, we never go to an unsafe submarking
along a maximal edge. In fact, since transitions are fired
at most once per edge, to reach a submarking �m0 with
�m0i ¼ 2, necessarily �mi ¼ 1 and we must not fire its
consumer process Piþ1 (using modulo arithmetic,
i ¼ N ) iþ 1 ¼ 1). Since queues are nonfull, Piþ1 is
enabled at �m but is not fired, which contradicts edge
maximality.

Second, since M � N , any unsafe submarking has at
least one empty queue.

Then, an unsafe submarking is followed by a submark-
ing in RSðLÞ, where unsafe queues stay constant only if
preceded by a nonempty queue and reduce their token
count otherwise. Given a “train” of adjacent empty
queues, the first queue becomes nonempty (but safe),
and the last queue reduces the token count on the
following queue. If the latter is safe, the train shifts
forward; otherwise, the train shortens. Clearly, after at
most N edges, we reach a safe submarking. tu

Lemma 3. Given an SFFP loop L, with M initial conditions and

queues of sizes ki � 2, each simple cycle ‘ inRSðLÞ has length

j‘j with hj‘j ¼ N for some h 2 IN and consists of all of the

distinct rotations of a safe submarking.

Proof. For M ¼ 1, the proof is trivial and h ¼ 1. We now
discuss the case 1 < M � N . By Lemma 2, all sub-
markings in a cycle ‘ are safe. A safe submarking �m is
followed in RSðLÞ by a safe submarking, which is its
forward rotation, so, after N edges, we must return to
the same submarking �m. Necessarily, the path of
length N from �m describes a cycle in RSðLÞ. It may
not be a simple cycle, in which case, we have repeated a
simple cycle ‘ an integer number of times h. tu

Theorem 12. Given an SFFP loop L, with M initial conditions,

and queues of sizes ki � 2, each simple cycle ‘ in RSðLÞ has

weight wð‘Þ ¼ M
N j‘j. Hence, ��ðLÞ ¼ M

N .

Proof. By Lemma 3, starting from a safe submarking �m, after

N consecutive edges in RSðLÞ, we describe a simple

cycle ‘ exactly N
j‘j times. Moreover, since all of the tokens

shifted back to their initial positions, each process fired

exactly M times. Hence, N
j‘jwð‘Þ ¼M and the result

follows. tu

Notice that the result of Theorem 12 also holds when
queues have size M and greater and we can omit checking
for queue fullness. For M ¼ 1, the result is simple: Only one
process is enabled at each step and ��ðLÞ ¼ 1

N (note that
N � 2). For M � 2, increasing the size of the queues cannot
decrease throughput and ��ðLÞ ¼ M

N is the maximum
achievable with M initial conditions.

Let us now consider the case where the SFFP loop L has
single-place queues, except at positions with initial condi-
tions, as described in Section 5.1. An example is shown in
Fig. 8.

Theorem 13. Given an SFFP loop L, with M initial conditions

and queue sizes as in Section 5.1. Then, ��ðLÞ � minfMN ; 1
2g.

Proof. Reducing the size of queues cannot increase
throughput; hence, by Theorem 12, ��ðLÞ � M

N .
Consider a process P writing into a single-place

queue. It will not be able to write into the queue in two
consecutive edges of RSðLÞ because, after the first write,
the place is full and the process is disabled. Hence,
��ðL; P Þ � 1

2 and, by Theorem 8, the result follows. tu

7.3 Throughput of Synchronous Models
Implemented on LTTA

We have provided definitions and a set of results on
throughput at the SFFP level, assuming negligible delays.
This is clearly not a realistic assumption in LTTA; therefore,
in order to study throughput of implementation of
synchronous models on LTTA, we need to extend our
method. We believe this can be done along the lines of what
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Fig. 7. Graphs R and RS for a three-process loop L with two initial

conditions and 2-place queues.

Fig. 8. The example in Fig. 7 where the third queue has size 1 instead

of 2.



we presented above. Some ideas are provided here. They
will be more thoroughly investigated in future work.

The basic idea is to adapt the construction of the MDG,
modeling an SFFP process P using two, instead of one,
transitions, tT and tB: tT models the test of the firing
condition of P and tB models the execution of its body. The
two transitions are connected in a tight loop with two
complementary (forward and backward) places with one
initial token in the backward place: tB fires exactly once per
each firing of tT . We can use the algorithms presented
earlier in this section to compute �� on the adapted MDG of
an SFFP F : Let this be denoted as �þðF ; PiÞ, for a process Pi
of F . We expect the following:

Conjecture 1. For any SFFP F :

1

2
� �þ F ; tTi

� �
� �

�ðF ; PiÞ
2

:

The first inequality is obvious due to the tight loop between
tTi and tBi .

In an SFFP with nonnegligible delays, firenoðÞ and �rt

must be defined with respect to an additional parameter �,
representing all of the delays encountered along an
execution. Thus, �rtðF ; Pi; c; �Þ represents the real-time
throughput of Pi given triggering pattern c and delays �.
Let �max

F > 0 be the sum of the worst-case network
transmission delay and the worst-case execution time, for
all possible �. We expect the following:

Conjecture 2. Let F be an SFFP. Let c be a vector of clocks such
that8i; 8n; ciðnþ 1Þ � ciðnÞ � �max

F . Then, for any process Pi
of F , we have

�rtðF ; Pi; c; �Þ �
�þ F ; tTi
� �
�max
F

:

Indeed, for every c, the two transitions tTi and tBi fire at
most �max

F time units apart, thus modeling the worst-case
delays. Then, Theorem 9 would justify the result.

8 LATENCY

8.1 Computing Worst-Case Latency

8.1.1 Real-Time Latency

We define a notion of “real-time” latency in an SFFP F with
respect to a path in F . A path is a sequence of successive
queues. The path must be acyclic. An example of a path is
shown in Fig. 9. It consists of two successive queues.

Consider a path � from Pi to Pj: Pi is the process writing
to the first queue in � and Pj is the process reading from the
last queue in �. Let c be a clock vector: As stated above, c
completely determines the behaviors of F . Then, every

message z generated by Pi takes a certain amount of time to
“travel” along � until it is consumed by Pj. Let tz be the
time z is generated and t0z be the time it is consumed.
Denote the difference of t0z � tz by travelF ;c;�ðzÞ. Different
messages z may spend different amounts of time traveling
along �. We define latency as the worst-case travel time.

Definition 5. The real-time latency along path � in an SFFP F
with respect to a clock vector c is defined as

�rtðF ; �; cÞ ¼ sup
z
travelF ;c;�ðzÞ:

8.1.2 Logical-Time Latency

We use the same idea as in Section 7.1.2: we define logical-
time latency with respect to a reference clock �. Let
travel�F ;c;�ðzÞ denote the number of ticks of � in the interval
of time that z spends traveling along path �. Formally,
travel�F ;c;�ðzÞ ¼ �̂ðt0zÞ � �̂ðtzÞ.
Definition 6. The logical-time latency of path � in an SFFP F

with respect to a clock vector c and a clock � is

�ltðF ; �; c; �Þ ¼ sup
z
travel�F ;c;�ðzÞ:

The worst-case logical-time latency is defined as

�wcltðF ; �; �Þ ¼ sup
c2Cð�Þ

�ltðF ; �; c; �Þ:

Theorem 5 characterizes the worst-case clock triggering
pattern for throughput. We are now going to prove a
similar result characterizing the worst-case clock-triggering
pattern for latency. First, we need a definition. Let � be a
clock and c 2 Cð�Þ. Let z be a message produced in the
execution according to c. We define Cc;z

wc ð�Þ to be the set of
all c0 such that 1) c0 is identical to c for t � tz, i.e., up to the
point when z is “born”; 2) for t > tz, c

0 implements the
“slow” triggering policy.

Theorem 14. For any SFFP F and any path � of F :

8c 2 Cð�Þ; 8z; 8c0 2 Cc;z
wc ð�Þ;

travel�F ;c;�ðzÞ � travel
�
F ;c0;�ðzÞ:

Proof. Let m be the queue marking at time tz. If � has
n queues labeled Q1; . . . ; Qn from source to destination,
let mi be the number of tokens in Qi at m (thus including
z). Then, in order for z to be consumed by the destination
of �, say, process Pj, Pj has to fire

P
i mi times. The

longest amount of time that it takes Pj to do this
corresponds to the situation where Pj fires at the slowest
possible rate. By Theorem 5, this slowest rate is achieved
by the “slow” triggering policy, which is what c0 2
Cc;z
wc ð�Þ implements from m after time tz. tu

8.1.3 Computing Worst-Case Logical-Time Latency

The worst-case logical-time latency can be computed using
RSðFÞ and the result of Theorem 14. As in the proof of the
latter, consider the queue marking m at time tz. Being
reachable, m belongs to RSðFÞ. Since executions using the
“slow” triggering policy correspond to paths in RSðFÞ, we
can simply “walk” along the lasso starting at m, counting
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how many edges �mðF ; �Þ it takes to fire Pj exactly
P

i mi

times. Then, by construction, the following holds:

Lemma 4. 8F ; 8�; 8�; 8c 2 Cð�Þ, 8z; 8c0 2 Cc;z
wc ð�Þ:

travel�F ;c0;�ðzÞ ¼ �mðF ; �Þ:

Notice that �mðF ; �Þ depends on the marking m but not on
the value of the message z nor on �. Define

��ðF ; �Þ ¼ max
m2RSðFÞ;s:t:m1>0

�mðF ; �Þ;

where we only explore markings for which some message z
was born in the first queue along �, i.e., such that m1 > 0.

Theorem 15. For any SFFP F and any path � of F :

8�; �wcltðF ; �; �Þ ¼ ��ðF ; �Þ:

Proof. From Definition 4, Lemma 4, and Theorem 14, it
follows that �wcltðF ; �; �Þ � ��ðF ; �Þ. Equality follows
from the fact that Cc;z

wc ð�Þ 	 Cð�Þ. tu
Contrary to throughput, worst-case latency does not

behave in a “monotonic” fashion with respect to queue
sizes. In particular, increasing the size of queues may either
increase or decrease worst-case latency. It obviously may
increase it since a token may find a greater number of
tokens in front of it in a queue. But, increasing queue size
may also increase throughput, thus resulting in a higher
rate of token consumption and lower latency. We can only
state the following (a corollary of Theorems 14 and 8).

Theorem 16. Let F be a connected SFFP and F0 be an SFFP
derived from F by increasing the size of one queue in F
by 1. Suppose ��ðF 0Þ ¼ ��ðFÞ. Then, for any path �,
��ðF ; �Þ � ��ðF 0; �Þ.

8.1.4 Linking Real-Time and Logical-Time Latency

Theorem 17. Let F be an SFFP. Let � be any positive
real number. Let c be a vector of clocks such that
8i; 8n; ciðnþ 1Þ � ciðnÞ � �. Then, for any path � of F ,

�rtðF ; �; cÞ < � � ��ðF ; �Þ þ 1ð Þ:

Proof. Define � to be the perfectly periodic clock with
period �. We then obviously have

travelF ;c;�ðzÞ < � � travel�F ;c;�ðzÞ þ 1
� �

and the result follows from Theorem 15. tu

8.2 Special Cases/Topologies

8.2.1 Chains

Lemma 5. Given an SFFP chain C with queues of sizes ki � 1,
the maximum number of consecutive markings in RSðCÞ such
that process Pi in the chain C can have its input queue empty
is i� 1.

Proof. Consider a marking m such that �mj ¼ 0 for j < i, i.e.,
all predecessor queues are empty. Let mh be the marking
reached from m inRSðCÞ after h steps (so m ¼ m0). Then,
for all markings mh with h ¼ 0; . . . ; i� 1, the input queue
of process Pi is empty and, in mi, the queue is nonempty.
This proves that there exists a marking from which it takes
exactly i� 1 edges to fill the input queue of Pi.

Now, we prove that it cannot take longer. We can prove
this result by induction on the position i in the chain. For
i ¼ 1, the result holds vacuously because there are no
input queues to P1. Assuming the result holds for Pi, we
want to prove that it holds for Piþ1. Consider the path in
RSðCÞ starting from some marking m. Clearly, the output
queue ofPi is the input queue ofPiþ1 and we need to prove
that it is nonempty for at least one marking mh with
h � iþ 1. By assumption, process Pi will have its input
queue nonempty in at least one marking mh0 with h0 � i.
Hence, Pi was triggered at least once with a nonempty
input queue. Two cases are in order, either its output
queue was already full at mh0 or it was nonfull. In the
former case, the result is true (queue was nonempty). In
the latter case, Pi fired and in its output queue became
nonempty at the next marking mh0þ1. Since h0 þ 1 � iþ 1,
we proved the result for Piþ1. tu

Lemma 6. Given an SFFP chain C with queues of sizes ki � 1,

the maximum number of consecutive markings in RSðCÞ such

that process Pi in the chain C can have its output queue full is

N � i. The proof is analogous to that of the previous lemma.

In particular, the maximum is attained from a marking where

all successor queues are full.

Lemma 7. Given an SFFP chain C with queues of sizes ki � 1,

the maximum number of consecutive edges inRSðCÞ such that

process Pi does not fire is equal to

maxfi� 1; N � ig:

The proof of Lemma 7 is based on the observation that

process Pi can skip only if its input queue is empty or if its

output queue is full (or both). The result then follows from

Lemmas 5 and 6.

Theorem 18. The worst-case logical-time latency in a chain C
with one-place queues is ��ðC; �Þ ¼ 2N � 3 for the path �

from P1 to PN .

Proof. Consider the marking where all queues are full,

except for the first queue (e.g., submarking (0, 1, 1) in

Fig. 6). By firing P1, we generate a new token z and we

reach the marking with all queues full (e.g., (1, 1, 1)). By

Lemma 6, for P1 in N � 1 edges in RSðCÞ, the process P2

moves the token z from the first queue to the second and

we reach marking mo. Then, we need to wait N � 2 ticks

for z to “shift” in the chain and be consumed by PN . tu
Theorem 19. The worst-case logical-time latency in a chain Cwith

queues of size k � 2 is ��ðC; �Þ ¼ kðN � 1Þ for the path � from

P1 to PN .

Proof. Consider the marking where all queues are full

except for the first queue (e.g., submarking (0, 1, 1) in

Fig. 6). By firing P1, we generate a new token z and we

reach the marking with all full queues (e.g., (1, 1, 1)). By

Lemma 6, for P1 in N � 1 edges in RSðCÞ, the process P2

moves a token from the first queue to the second. Now,

there are k� 1 tokens in each queue and z is the last one.

This is a marking where each queue is nonempty and

nonfull, hence a self-cycle in RSðCÞ. At each edge,

process PN will consume one token and, after ðk�
1ÞðN � 1Þ edges, the token z is consumed. tu
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8.2.2 Loops

Theorem 20. The worst-case latency in an SFFP loop L with
M initial conditions and M-place queues corresponds to
path � from Pi to itself and is ��ðL; �Þ ¼ N þM � 1.

Proof. Let us focus, without loss of generality, on process P1.
The worst-case latency corresponds to the following
scenario, cf., Fig. 6. Process P1 fires from the marking
where there is one token in its input queue and the other
M � 1 tokens are in its output queue; let the token just
produced be the token z. The corresponding marking
has all M tokens in the first queue. By following the lasso
in RSðLÞ, after the M � 1 edges, we reach the safe
marking with one token in each of the first M queues
and z is still in the first queue. We are now on the cycle
in the lasso. After N edges, z is consumed by P1. tu

9 CONCLUSIONS

9.1 Summary

In this paper, we proposed a way of implementing
synchronous models on a distributed real-time system
platform, the Loosely-Time-Triggered (LTT) Architecture,
consisting of a network of nodes triggered by local
nonsynchronized clocks and communicating via CbS links.

To perform the implementation so that stream equiva-
lence is preserved, we introduced an intermediate FFP. To
avoid buffer overflow, a control mechanism was proposed
which causes processPi to skip communicating at each tick of
its local clock when buffer overflow at one if its output links
could result. This control mechanism is like backpressure
used in latency insensitive protocols in hardware design.

We provided performance results for this implementa-
tion. In particular, we bounded from below its throughput
and from above its latency in terms of topological
characteristics of the FFP. These bounds were first obtained
relative to a given reference clock � and then refined to
real-time bounds when the local clocks of the nodes are
quasi-periodic.

9.2 Discussion

One may argue that stream semantics preservation is a
questionable feature for real-time control systems. We
believe that more work is needed to have a complete
answer to this question. Some thoughts are briefly provided
here. Our approach assumes that emissions can be
postponed, i.e., data can be delayed. In practice, it is often
the case that input data to the network of processes, such as
those produced by sensors, are independent of network
pace (e.g., a sensor sending samples periodically on a CAN
bus). In such a case, the sensor cannot “skip.” However, it is
still possible to include the sensor in our framework, in two
ways: The sensor writes to an (extended) CbS channel at its
own rate, overwriting its previous value. Data can be lost if
the sensor runs faster than the reader process, but the
reader always has access to the “freshest” data. If the reader
is faster, we can choose to use the same data multiple times
or “skip.” Actuators can also be included, connecting them
to the network either through SFFP FIFOs (in which case,
they may cause processes to “skip”) or through (extended)
CbS channels (in which case, data may be lost). Notice that,
although clocks of the system (sensors, computers, and
actuators) are subject to both relative jitter and drift, the

SFFP effective firings are only subject to jitter and suffer from no
drift. The overall latency of the system is also bounded. The
bottom line is that LTTA offers interesting features for
distributed real-time computer controlled systems.

9.3 Future Work

We noted that our algorithms to compute worst-case
throughput and latency are based on a form of reachability
analysis of marked graphs and are, to our knowledge,
original. However, we believe that similar results can be
obtained using the linear-algebra-based method of Sifakis
[15] or the max-plus approach of Baccelli et al. [16].
Investigating this alternative and comparing it with our
current approach in terms of accuracy and efficiency is one
direction for future research. Another direction is to extend
the throughput and latency analysis provided in Sections 7.1
and 8 to the case where execution time and communication
delays are not negligible. It would be also useful to provide
analysis not only for the worst case but also for the average
case, with respect to assumptions on the random variables of
the system. Adding jitter to the performance metrics, apart
from throughput and latency, is another promising direction
for research. Extending the synchronous model (for instance,
by adding multirate features) is also needed. Finally, we
would like to study how to add fault-tolerant features to our
layered platform approach.
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