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ABSTRACT 
In this paper, a stochastic concept for highway capacity analysis is presented. Instead of 
constant-value capacities, the capacity of a highway facility is regarded as a random variable. 
Thus, the stochastic approach provides new measures of traffic flow performance based on 
aspects of traffic reliability. A methodology for the estimation of capacity distribution functions 
from empirical data based on statistical methods for lifetime data analysis is introduced. This 
method is derived for the analysis of freeway capacity. However, it is shown that the stochastic 
approach is also applicable to intersections. The analysis of data samples from freeway sections 
in Germany yields that freeway capacity is Weibull distributed with a considerable variance. 
Based on the stochastic description of capacity, a Monte-Carlo technique is proposed to quantify 
freeway traffic performance over a whole year. This technique also provides a quantitative 
assessment for oversaturated conditions. 
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INTRODUCTION 
In the HCM 2000 (1), capacity is defined as the maximum possible expected throughput of the 
highway element under consideration. For well-defined external conditions, capacity is treated as 
a constant value. This traditional understanding of highway capacity is used in most of the traffic 
engineering guidelines around the world (e.g. the German HBS (2)). Most users of such manuals 
in practice believe in the precision of these guidelines. However, it is obvious that capacities 
indicated in guidelines do not describe real road facilities performance with a precision up to the 
last digit. Instead, the given capacities only offer a rough estimation of realistic maximum flows. 
For a more detailed analysis of traffic flow, however, it is important to consider the extend to 
which the actual maximum traffic volumes can differ from the given expectations. 

For freeways, several authors (3, 4, 5, 6, 7, 8) have already demonstrated that the 
maximum traffic throughput varies – even under constant external conditions. To determine the 
variability of capacities, most of these authors observed breakdowns of traffic flow and identified 
the traffic volume during the time interval preceding the breakdown. This volume, which seemed 
to cause the breakdown, varied rather significantly. These observations verified that the 
maximum possible throughput could deviate from given capacities over a remarkably wide 
range. 

In contrast to freeways, high volume traffic flow at intersections is not characterized by 
random occurrence of traffic breakdowns. Nevertheless, randomness of intersection capacity due 
to variable driver’s behavior and interactions between vehicles is to be expected. 

In this paper, a stochastic concept for highway capacity analysis is introduced. Instead of 
constant-value capacities, highway capacity is regarded as a random variable. The paper presents 
the mathematical methodology for the estimation of capacity distribution functions from 
empirical data as well as the consequences for practical application. The whole concept is mainly 
intended for the analysis of freeway capacity. However, it is shown that the methodology is also 
applicable to intersections. The stochastic approach provides new measures of traffic flow 
performance based on aspects of traffic reliability. 
 
TRADITIONAL CONCEPT OF CAPACITY 

Although the traditional understanding of capacity is well known to experts, it should be shortly 
summarized in contrast to the stochastic concept. For freeways, the derivation of guidelines like 
the HCM (1) or the HBS (2) is based on flow-speed diagrams, which represent measured data. 
The observed data points are described by useful analytical functions. The volume at the apex of 
this curve is treated as the capacity, which represents the maximum throughput of the facility. As 
an example, Figure 1 shows the flow-speed diagram of the two-lane section of freeway A1 north 
of Cologne, Germany. The traffic flow model of van Aerde (9) delivers a capacity of 3570 veh/h. 
However, several data points beyond this capacity could be observed. These values cannot be 
explained by the conventional model in more detail. 

Even the conventional approach of traffic flow analysis based on the flow-speed 
relationship reveals that the capacity significantly depends on the duration of the analysis 
interval (10, 11). Temporary external conditions like weather or driver population also contribute 
to different capacities at different times for the same point of the network (11). 
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STOCHASTIC CONCEPT OF FREEWAY CAPACITY 
The HCM (1) defines the capacity as the maximum flow rate that can reasonably be expected to 
traverse a facility under prevailing roadway, traffic, and control conditions. This definition can 
be modified without changing too much of the original meaning: Capacity is the maximum flow 
rate up to which acceptable traffic performance of the facility is achieved and beyond which – in 
case of greater demand – unacceptable traffic conditions arise. The transition between acceptable 
and unacceptable flow conditions on uninterrupted flow facilities is called a breakdown. On a 
freeway, such a breakdown is characterized by a sudden reduction of the average travel speed 
from an acceptable level of about 70 km/h or more to a much lower value representing congested 
conditions. 

From this definition, it becomes comprehensible that capacity is by no means a constant 
value. In a critical traffic situation on a homogeneous freeway section, the breakdown can be 
caused by specific kinds of behaviors of individual drivers together with the local formation of 
the traffic flow pattern. Thus, not only the macroscopic traffic flow parameters like volume or 
density determine the breakdown. Also unpredictable events like speed reductions of individual 
drivers or lane changes may cause a deceleration of following vehicles and, in consequence, a 
local concentration that could initiate a breakdown. The occurrence of such events has all 
properties of randomness. Therefore, the traffic volume at which a breakdown is initiated can be 
treated as a random variable. 

To make this concept of randomness of capacity usable, it is necessary to know more 
about the distribution function of the capacity. The authors have implemented a methodology for 
the derivation of freeway capacity distribution functions (12, 13). This method is based on 
statistical methods commonly used for lifetime or failure data analysis. It delivers a numerical 
solution for the cumulative distribution function of the capacity c, which is considered as a 
lifetime variable: 

)qc(p)q(Fc ≤=  (1) 

where Fc(q) = capacity distribution function (-) 
 c = capacity (veh/h) 
 q = traffic volume (veh/h) 

Observations of traffic flow on freeways deliver pairs of values of traffic volumes and 
average speeds during predetermined observation intervals. For capacity analysis, the following 
types of intervals are distinguished: 

B: Traffic during interval i is fluid, but the observed flow causes a breakdown; i.e. the 
average speed drops down to a level of less than a specific threshold speed in the following time 
interval i + 1. The volume during interval i is regarded as a realization of the capacity c. 

F: Traffic is fluid during interval i and the following interval i + 1. Thus, the capacity 
during interval i is greater than the observed volume qi. This type of data is referred to as 
“censored data”. 
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C: Traffic is congested during interval i and the preceding interval i – 1, i.e. the average 
speed is below the threshold value. This interval i provides no information about the capacity. It 
is not further regarded. 

The differentiation of fluid and congested traffic is based on a specific threshold speed, 
which marks the gap between the upper and the lower branch of the flow-speed diagram. Values 
between 70 and 80 km/h were found to be fairly representative for German freeways. This 
threshold value may, however, be different for other types of roads. In some cases, more detailed 
approaches to identify traffic breakdowns might be required. 

The intervals of classification C are not considered for analysis because volumes 
observed under congested flow conditions do not contain any information about the capacity 
before a breakdown. Other authors (4, 14) defined the breakdown capacity as the traffic volume 
measured downstream of a queue at a bottleneck. In consequence, each interval during 
congestion was regarded as a B-interval. However, the maximum volume in fluid traffic usually 
differs from the maximum volume observed during congestion (11, 12, 15, 16, 17). Therefore, 
the consideration of congested intervals seems not to be reasonable. 

Statistical methods for lifetime data analysis can generally be applied to estimate 
distribution functions based on samples that include censored data. A non-parametric method to 
estimate the distribution function of lifetime variables is the so-called “Product Limit Method” 
(PLM) by Kaplan and Meier (18). Based on this approach, the capacity distribution function can 
be estimated by: 

{ }Bi;
k

dk1)q(F
qq:i i

ii
c

i

∈
−

−= ∏
≤
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where Fc(q) = capacity distribution function (-) 
q = traffic volume (veh/h) 
qi = traffic volume in interval i (veh/h) 
ki = number of intervals with a traffic volume of q ≥ qi (-) 
di = number of breakdowns at a volume of qi  (-) 
{B} = set of breakdown intervals (classification B, see above) 

The product within this equation is calculated over all observed time intervals i with a 
traffic volume qi < q that were followed by a traffic breakdown. Usually, each observed 
breakdown is used as one qi-value, so that di is always equal to 1. The distribution function will 
only reach a value of 1 if the maximum observed volume is a B-value (i.e. a breakdown was 
following). Otherwise, the distribution function terminates at a value of Fc(q) < 1. In this case, 
the method does not allow estimating the function Fc(q) completely. 

To receive a complete distribution function, a parametric estimation based on the 
Maximum-Likelihood technique can be applied (19). In this case, the type of the distribution 
function has to be predetermined. A comparison between different mathematical types of 
functions revealed the best results for the Weibull distribution (12). The Weibull-type capacity 
distribution function is: 
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where Fc(q) = capacity distribution function (-) 
q = traffic volume (veh/h) 
α = shape parameter (-) 
β = scale parameter (veh/h) 

The expectation E(c) and variance σ²(c) of the capacity distribution are given by: 
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where  Γ(x) = Gamma function at point x 

The parameters α and β of the distribution function can be estimated by maximizing the 
Likelihood Function L (or its natural logarithm): 
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=

δ−δ −⋅=
n

1i

1
icic
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where fc(qi) = statistical density function of capacity c (-) 
Fc(qi) = cumulative distribution function of capacity c (-) 
n = number of intervals (-) 
δi = 1, if interval i contains an uncensored value (classification B) 
δi = 0, if interval i contains a censored value (classification F) 

For the stochastic analysis of freeway capacity, only rather short observation intervals are 
useful. Otherwise there is only little causality between the traffic volume and the breakdown. 
Therefore, e.g. 1-hour counts are not adequate. With respect to the availability of reliable loop 
detector data and in consideration of the use of the results within the Whole-Year-Analysis 
concept (cf. the following section), an interval duration of Δt = 5 minutes was found to be a good 
compromise. However, the methodology is also applicable to 15-minute data. 

For the estimation of a capacity distribution function based on data measured at a specific 
cross section, it should be ensured that all traffic breakdowns observed at this point were caused 
within the freeway section under observation. At clearly detectable bottlenecks as shown in 
Figure 2a, breakdowns observed directly upstream of the bottleneck should only be generated 
due to an oversaturation of the bottleneck itself. Spillback from downstream should not occur 
since a larger capacity is always available on the succeeding section. At freeway sections without 
a distinct bottleneck as shown in Figure 2b, traffic breakdowns due to a spillback from 
downstream should be excluded by analyzing a second cross section downstream of the section 
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under investigation (17). If the speed data of the downstream cross section indicates congested 
flow at the time when a traffic breakdown is observed at the measurement cross section, this 
breakdown event is not considered for capacity analysis. 

The stochastic methodology for capacity analysis was applied to several freeway sections 
in Germany (12, 17). For the case of freeway sections without a speed limit, it was found that the 
shape parameter of the Weibull-type distribution roughly amounts to α ≈ 13. A constant shape 
parameter α means that the standard deviation σ(c) of the capacity distribution function is 
proportional to the expectation E(c) (cf. Equations (4) and (5)). 

As an example, Figure 3 shows the estimated capacity distribution functions for two cross 
sections along the ring of freeways around the city of Cologne, Germany. Both sites are 
geometric bottlenecks according to Figure 2a with a road widening downstream of the 
observation point. Speed-flow data in 5-minute intervals for the whole year 2000 were analyzed, 
including 933 breakdowns on the A1 freeway and 834 breakdowns on the A3 freeway. As the 
highest observed volumes were not followed by a breakdown, the Product-Limit estimation 
already ends at a cumulative probability of less than 1 in both cases. Nevertheless, the Product-
Limit estimations fit very well into the Weibull distribution functions estimated with the 
Maximum-Likelihood technique. For the two-lane freeway A1, a distribution function with 
parameters α = 14.1 and β = 4532 veh/h was estimated. For the three-lane freeway A3, the 
Maximum-Likelihood estimation delivered a distribution function with parameters α = 12.1 and 
β = 7170 veh/h. Statistical parameters of the estimated capacity distribution functions are given 
in Table 1. 

As the capacity distribution function represents the probability of a traffic breakdown 
during a single 5-minute interval, even a relatively small function value means that a breakdown 
is likely to occur within a few intervals. Thus, only a small percentile of the distribution should 
be used as a design value comparable to capacities given in guidelines like the HCM (1). For the 
example of freeway A1, the comparison of the conventional capacity estimate as given in Figure 
1 and the capacity distribution function for the same section as shown in Figure 3a yields that the 
conventional capacity estimated based on 1-hour intervals is roughly equal to the 5th percentile 
of the capacity distribution. 

In contrast to constant-value capacities, the stochastic concept of capacity allows for a 
more detailed assessment of specific impacts on freeway traffic flow. The methodology was e.g. 
used to investigate differences in performance between dry and wet road surface (12, 17). It was 
found that on wet road surface the capacity was reduced by around 12 % compared to dry 
conditions. Also, the effects of darkness were investigated. Contrary to Ponzlet’s results (11), it 
could be shown that darkness did not shift the capacity distributions. 

The stochastic approach also provides a theoretical explanation for the dependance of 
freeway capacity on the interval duration. The fact that the shape parameter α is roughly constant 
allows for a transformation of the capacity distribution function between different interval 
durations (13). Based on Weibull-distributed 5-minute capacities (parameters α5 = 13 and β5), 
the 60-minute capacities are also Weibull-distributed with an unchanged shape parameter 
α60 = 13 and a scale parameter β60 = r · β5, where r = 12-1/α ≈ 0.83 ≈ 1/1.2. Thus, for 5-minute 
observations, the expected capacity should be in a range of 1.2 times the 1-hour capacity. A 
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similar empirical ratio between 5-minute and 1-hour capacities was already found by Keller and 
Sachse (10) or Ponzlet (11) based on conventional capacity estimations. 
 
WHOLE-YEAR-ANALYSIS 
The design of road facilities is traditionally based on the analysis of one specific peak hour. The 
traffic demand during this single peak hour is compared with the capacity to assess the quality of 
traffic flow. The HCM (1) e.g. proposes to select an analysis hour between the 30th- and 100th-
highest hour of a year. However, the analysis of one peak hour cannot reflect the whole life cycle 
of a road facility. In particular, this concept does not allow for a detailed assessment of overload 
impacts, as the highest demand values arising during one year are not considered. 

In order to overcome the limitations of the traditional design methodology, Brilon (20) 
proposed to assess traffic flow quality over a whole year instead of the analysis of one single 
peak hour. A basic concept for the Whole-Year-Analysis of freeway traffic flow was 
implemented by Zurlinden (12). The method is based on a comparison of annual patterns of 
traffic demand and freeway capacity. The sum of delays over a whole year or the total duration 
of congested flow conditions during a year are used as measures of traffic flow performance. The 
sum of delays can be transferred into economic costs and may be applied in cost/benefit-
analyses. The estimation of demand and capacity patterns considers both systematic and 
stochastic components. Hence, the stochastic concept of capacity plays a key role in this 
approach. 

The main features of the Whole-Year-Analysis concept are: 
• The comparison of demand and capacity patterns is based on 5-minute intervals. 
• Systematic fluctuations of traffic demand are modeled by multiplying daily traffic 

volumes with typical demand patterns for different weekdays. Typical demand patterns describe 
the share of hourly demand values in total daily traffic. The required daily traffic volumes can be 
obtained either from loop detector data for an existing freeway or – if no traffic data are available 
– by using typical demand patterns over a week and a year, which are available for the German 
freeway network (21). The short-term stochastic variability of traffic demand, thus the white 
noise process of the demand time series, is considered by applying a normal-distributed factor 
with an expected value of 1 and a variance of 0.1. 

• The estimation of annual patterns of freeway capacity is based on capacity 
distribution functions estimated by applying the stochastic concept presented in the previous 
section. For the shape parameter representing the variance of the capacity distribution, the value 
of α = 13, which was found to be representative for freeways with unlimited speeds, is applied. 
All relevant systematic influences on freeway capacity, like road geometry (number of lanes, 
gradient), weather conditions, and incidents, are considered by varying the scale parameter β of 
the capacity distribution function. The capacity drop, thus the difference of freeway capacity 
before and after a breakdown, is also accounted for. 

• Incidents (accidents and car breakdowns) are randomly generated based on typical 
accident and car breakdown rates, respectively. The capacity reduction in case of accidents is 
estimated by using the corresponding percentage values of the HCM (1). 
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• Rainfall events are randomly generated based on monthly values for the probability of 
rainfall. Extreme weather conditions like heavy snowfall and ice are not considered as these rare 
events should not be an aspect of highway dimensioning in most parts of the world. 

• The assessment of traffic flow quality is based on a simple queuing model. The queue 
length at the beginning and the end of each 5-minute-interval can be determined by comparing 
the estimated traffic demand and capacity patterns. The delays (“time losses”) in case of 
congestion are calculated by multiplying the average queue length with the interval duration. 
Delays due to the speed-flow relationship under flowing traffic conditions can be considered 
with a combined traffic flow model based on standardized speed-flow curves, which are varied 
in accordance with the random capacity variation (22). 

For practical application, the Whole-Year-Analysis concept was implemented in a 
computer program (KAPASIM) using a Monte-Carlo simulation technique. The program is able 
to model the annual patterns of traffic demand and capacity and to calculate time losses and the 
total duration of congested flow conditions during one year. Several subsequent sections of a 
freeway, each representing a distinct or virtual bottleneck (cf. Figure 2), can be analyzed. As an 
example, Figure 4 shows the comparison of estimated traffic demand and capacity patterns over 
one week for a three-lane freeway section. 

The Whole-Year-Analysis can be used for a variety of practical applications like the 
economic analysis of road construction projects, the estimation of the share of different 
congestion causes (high demand, accidents, road works, bad weather conditions) to improve road 
management strategies or the evaluation of improved incident management. In particular, the 
impact of specific geometric, traffic and control conditions on traffic flow can be evaluated. The 
computer tool KAPASIM was e.g. prepared for application for the optimization of freeway 
construction zone planning strategies in two German Federal States (Hesse and Saar). 

Overall, the Whole-Year-Analysis is an improved method for the economical assessment 
of freeway planning schemes, since in comparison between two alternative solutions (one of 
which could be the existing situation), a rather precise estimation of travel time consumption is 
achieved. Moreover, the method provides an estimation of several other parameters to describe 
the reliability of freeway operation like the risk of being significantly delayed by congestion or 
the number of traffic breakdowns. Each of these parameters is given as the expectation over one 
year. These measures allow for an assessment of traffic performance for all possible degrees of 
saturation of the system. In particular, the stochastic concept provides an analytical access to a 
quantitative assessment of different degrees of congestion within LOS F. 
 
APPLICATION TO INTERSECTIONS 
Although traffic flow at intersections is mainly determined by the deterministic impact of traffic 
control, intersection capacity is also influenced by the randomness of driver’s behavior and 
interactions between vehicles. At a roundabout entry, for instance, the number of vehicles 
entering from one approach (with a constant queue in the entry) at a specific traffic volume on 
the circle varies from one time interval to the next, as observations show. Since usually the 
traffic volume departing from a continuous queue on the entry is assumed to be an observation of 
the capacity, this experience is a clear indication of random variability of the entry capacity. 
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For the description of this phenomenon, the same concept as described in the previous 
paragraphs of this paper can be used. Equations (2) and (6) can be applied also on volumes q and 
capacities c for a movement at an intersection. For the classification of a breakdown, however, a 
different definition is required. Here, an interval that has an uninterrupted queue on the entry 
lane(s) is classified as a B-type interval according to Equation (2). Then all the evaluations and 
estimation techniques can be applied as described above. 

As an example, one data set from a larger single-lane roundabout in Sindorf, Germany, is 
analyzed. For two entries with nearly identical geometric conditions, video observations of 
several hours were analyzed based on 1-minute intervals. For each interval i, the number of 
circulating vehicles qc,i (veh/min), the number of entering vehicles qe,i (veh/min), plus the 
information 

di = 1  continuous queue in the entry (i.e. all headways between entering vehicles < 4 s) 
di = 0  elsewhere 

were evaluated. 
The conventional method to estimate the capacity would be to perform a regression of 

qe = function(qc) with values obtained during fully saturated intervals (i.e. with di = 1). The data 
points for the example together with a linear and an exponential regression are illustrated in 
Figure 5. Some points represent more than one observation. The diagram illustrates that for one 
qc-value, rather different values for the saturated entry flow qe were observed. 

For each qc-value, the corresponding distribution of the capacity c = qe,max was evaluated 
using the Product Limit technique given in Equation (2). The data contain 870 1-minute 
intervals, including 191 saturated intervals as represented in Figure 5. The results of the Product-
Limit estimation are shown in Figure 6. From the fact that all the estimated functions do not 
continue up to F(qe) = 1, it reveals that in all cases the highest observed entry flows did not occur 
during a saturated interval. For larger qc, the distribution function has a tendency towards 
lower qe-values. The curves are not sufficiently smooth due to the limited number of 
oversaturated intervals for each qc-value. 

As an approach to describe the capacity distribution over the whole range of qc-values by 
one equation, it was assumed that for each qc-value the capacity of the entry is Weibull-
distributed, since Weibull is the characteristic function type to describe lifetime distributions. 
The scale parameter β, which represents the expected capacity, should be related to the 
circulating flow comparable to the findings given in Figure 6. Here, like in many applications for 
roundabout empirical regression, an exponential relation is used: 

cqBeA ⋅−⋅=β   (7) 

where β = scale parameter of the Weibull-distribution (veh/min) 
qc = circulating traffic volume (veh/min) 
A, B = parameters of the model, to be calibrated 

With this, the distribution function for the roundabout entry capacity is 
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The shape parameter α of the Weibull-distribution is also a matter of calibration. With 
these assumptions, Equation 6 was used for estimating the distribution parameters. The result for 
the sample under investigation was: α = 3, A = 21, B = 0.04 . The Weibull density and 
distribution functions are illustrated by 3-dimensional plots in Figure 7. The variance of the 
capacity distribution significantly decreases with increasing qc. This effect is, however, 
determined by the assumed formulation of the Weibull-distribution. Possibly the shape parameter 
α could also be a function of qc. This might be studied by further empirical work with larger 
samples. 

This example should illustrate: The stochastic concept of capacity, which was initially 
derived for freeway facility analysis, can also be used to estimate the capacity of intersections. 
This concept provides better plausibility than the assumption of constant-value capacities. For 
intersections, the same mathematical estimation technique based on the statistics of lifetime data 
analysis can be applied. If the concept of randomness is accepted, this has also implications for 
delay estimation, since constant capacities are usually the basis for the derivation of delay 
formulas (23, 24). Thus, the implications of random capacities on delay distributions should be 
investigated by further research. 
 
CONCLUSIONS 
The stochastic concept of highway capacity presented in this paper seems to be more realistic 
and more useful than the traditional use of constant-value capacities. The probabilistic approach 
provides an improved understanding for the variability of maximum highway traffic flows. 

A methodology for the estimation of distribution functions of freeway capacity based on 
the statistics of lifetime data analysis was introduced. It was found that the capacity of a freeway 
section can be treated as a Weibull-distributed random variable. For German freeways with 
unlimited speed conditions, the shape parameter of the Weibull distribution seems to be in a 
range of 13, whereas the scale parameter depends on the specific characteristics of the analyzed 
freeway section. 

The concept of random capacities was included into a Monte-Carlo simulation for a 
Whole-Year-Analysis of freeway traffic flow. This method delivers parameters like the sum of 
time losses or hours with congestion. The approach can e.g. be used for the economic appraisal 
of alternative freeway planning schemes or for the assessment of traffic management strategies. 

The stochastic concept of capacity can also be applied to intersections. A distribution 
function of the entry capacity of a roundabout depending on the circulating flow volume was 
estimated by applying the new methodology. 

Overall, it is expected that the random interpretation of highway capacity offers the 
potential for improved traffic engineering methodologies. As the capacity distribution function 
represents the probability of a traffic breakdown at a given flow rate (for the case of freeways), 
the stochastic method provides measures that describe traffic reliability. 
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TABLE 1  Statistical parameters of the estimated capacity distribution functions 
Freeway Expected value Standard deviation Median 5th percentile 
A1 North Cologne 4367 veh/h 379 veh/h 4416 veh/h 3671 veh/h 
A3 East Cologne 6874 veh/h 690 veh/h 6956 veh/h 5609 veh/h 
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FIGURE 1  Flow-speed diagram of freeway A1 north of Cologne (1-hour intervals). 
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FIGURE 2  Types of bottlenecks. 
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FIGURE 3  Estimated capacity distribution functions for two freeway bottleneck sections 
(5-minute intervals). 
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FIGURE 4  Estimated traffic demand and capacity patterns and resulting queue length for 
a 3-lane freeway. 
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FIGURE 5  Example of an empirical regression solution for the capacity of a single-lane 
entry into a single-lane roundabout. 
 



Brilon, Geistefeldt, Zurlinden 21 
 
 
 
 

 
FIGURE 6  Distributions of entry capacity c = qe,max for different circulating volumes qc 
(volumes in veh/min). 
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FIGURE 7  Estimated Weibull-type density and distribution function of the roundabout 
entry capacity depending on the circulating volume qc (volumes in veh/min). 
 


