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Abstract

What is the prescription of Ramsey capital taxation in the long run? Aiyagari (1995) addressed

the question in a heterogeneous-agent incomplete-markets (HAIM) economy, showing that a positive

capital tax should be imposed to implement the so-called modified golden rule (MGR). In deriving

the MGR result, Aiyagari (1995) implicitly assumed that the multiplier on the resource constraint of

the Ramsey problem converges to a finite positive value in the limit. We first show that this implicit

assumption has a strong implication for the shadow price of Ramsey taxation in the limit: it must go

to zero. We next show that if the shadow price of Ramsey taxation remains positive rather than goes

to zero in the limit, the results differ sharply, including (i) the multiplier on the resource constraint

of the Ramsey problem must explode in the limit if a Ramsey steady state exists, (ii) Ramsey steady

states may fail to exist, (iii) the MGR does not hold and the corresponding capital tax is non-positive

even if a Ramsey steady state exists. The key to our results is embedded in the hallmark of the HAIM

economy: the risk-free gross interest rate is lower than the inverse of the preference discount factor in

steady state. We briefly explore which feature, convergent or divergent multiplier, is more plausible.
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1 Introduction

The heterogeneous-agent incomplete-markets (HAIM hereafter) model considers an environment in which

households are subject to uninsurable idiosyncratic shocks and borrowing restrictions; in response, house-

holds buffer their consumption against adverse shocks via precautionary savings. During the past two

decades, the HAIM model has become a standard workhorse for policy evaluations in the current state-

of-the-art macroeconomics that jointly addresses aggregate and inequality issues.1

Given the importance and popularity of the HAIM model, it is natural to ask: what is the prescription

of Ramsey capital taxation in the long run for the HAIM economy? The first attempt to answer this

question is the work of Aiyagari (1995). He showed that the so-called “modified golden rule” (MGR

hereafter) has to hold at the Ramsey steady state.2 On the other hand, in steady state, the after-tax gross

return on capital, which is equated to the risk-free gross interest rate, R, is always less than the inverse

of the discount factor, 1/β, in the HAIM economy. Aiyagari (1995) thus reached the conclusion that a

positive capital tax should be imposed to implement the steady-state allocation that satisfies the MGR. The

finding by Aiyagari (1995) is important in the optimal taxation literature and, in particular, it represents a

distinct departure from the classical result of no permanent capital tax prescribed by Chamley (1986) and

Judd (1985).

In his analysis, Aiyagari (1995) made two important assumptions. First, he assumed the existence of

a Ramsey steady state explicitly in Assumption 2 (p. 1170), in which policy and all other variables are

assumed to converge to a steady state. Second, he assumed implicitly that the multiplier on the resource

constraint of the Ramsey problem converges to a finite positive value in the limit in footnote 15 (p. 1171).

While imposing Assumption 2 (the existence assumption), Aiyagari (1995, footnote 14) did express his

concern: “It seems quite difficult to guarantee that a solution to the optimal tax problem converges to a

steady state.”3 In a recent paper, Straub and Werning (2020) revisited the classical Chamley-Judd result,

showing that the common assumption that endogenous multipliers associated with the Ramsey problem

converge in the limit is not necessarily true at the optimum.

Following the leads provided by Aiyagari (1995) with regard to the possible non-existence of a Ram-

sey steady state and Straub and Werning (2020) with regard to the possible non-convergence of multipli-

ers with the Ramsey problem, this paper revisits the long-standing issue with respect to the existence of

1It is also known as the Bewley-Huggett-Aiyagari model. For surveys of the literature, see Heathcote, Storesletten, and

Violante (2009), Guvenen (2011), Ljungqvist and Sargent (2012, chapter 18), Quadrini and Rı́os-Rull (2015) and Krueger,

Mitman, and Perri (2016).
2The Ramsey steady state is defined as a situation where the optimal Ramsey allocation features the steady-state property

in the long run. See Definitions 3 and 4 for the details.
3Aiyagari (1995, footnote 14) noted that the existence assumption was also made by Chamley (1986) and Lucas (1990).
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Ramsey steady states and the implementation of the MGR in the HAIM economy.4

The conclusion reached by Aiyagari (1995) applies to general utility functions.5 Working with a

specific utility function, i.e., the commonly-used separable isoelastic utility function, this paper revisits

the issue. We first show that if the multiplier on the resource constraint of the Ramsey problem converges

to a finite positive value in the limit as assumed by Aiyagari (1995), then the shadow price of raising

government revenues through distorting taxes must go to zero in the limit. However, if the shadow price

remains positive rather than goes to zero in the limit, the results differ sharply, including (i) the multiplier

on the resource constraint of the Ramsey problem must explode in the limit if a Ramsey steady state

exists, (ii) there is no Ramsey steady state if the elasticity of intertemporal substitution (EIS hereafter) is

weakly less than 1, and (iii) a Ramsey steady state is possible if the EIS is larger than 1, but the MGR

fails to hold and the corresponding capital tax is non-positive. Our first main result shows that the implicit

assumption made by Aiyagari (1995) has a strong implication for the shadow price of Ramsey taxation in

the limit. As to our second main result, it overturns the assumptions imposed and the conclusion reached

by Aiyagari (1995).

The two main results basically remain robust if replacing the separable isoelastic utility function with

the GHH utility function à la Greenwood, Hercowitz, and Huffman (1988); see the Online Appendix.

Given that our derived two main results are mutually exclusive in some sense, we briefly explore which

one is more plausible after their derivation.

Aiyagari (1995) obtained his results mainly in the setting of endogenous rather than exogenous gov-

ernment spending. We demonstrate that our second main result remains robust, regardless of whether

government spending is endogenously determined or exogenously given.

It is well known that the steady-state outcome in a competitive equilibrium, R < 1/β, represents

the signature feature of the HAIM model.6 Unlike individual households in the face of earnings risk,

the Ramsey planner in the HAIM economy (without aggregate shocks) faces no uncertainty in allocating

aggregate resources. Given that the planner discounts the future by β, the strict inequality of R < 1/β

then dictates that the market discounts resources at a lower rate than the planner discounts utility, implying

the existence of the planner’s desire to improve welfare by front-loading aggregate consumption through

policy tools. As will be seen, the feature of R < 1/β in steady state plays a key role in driving our results.

4It should be noted that the HAIM economy addressed by Aiyagari (1995) and our paper differs qualitatively from the

economic environments studied by Straub and Werning (2020).
5For more details, see footnote 21 later.
6Ljungqvist and Sargent (2012, p. 9) explained that the outcome of R < 1/β in steady state can be thought of as follows:

it lowers the rate of return on savings enough to offset agents’ precautionary savings motive so as to make their asset holdings

converge rather than diverge in the limit.
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1.1 Methodology

In order to explicitly account for the social benefit or cost of having one extra unit of aggregate con-

sumption and labor supply, the primal approach to the Ramsey problem à la Lucas and Stokey (1983)

is adopted. Lucas and Stokey (1983) considered a representative-agent setting. Our method follows

the work of Werning (2007) and Park (2014) to extend the Lucas-Stokey formulation to the setting of

heterogeneous households.

Our methodology first formulates the household problem as a time-zero trading problem of the Arrow-

Debreu complete-market economy; however, we impose two additional constraints—one for incomplete

markets and the other for borrowing constraints—to take into consideration the key features of the HAIM

economy.7 Due to the fact that the Ramsey planner also encounters the same incomplete-markets fric-

tions faced by households, the typical implementability condition is not sufficient and hence additional

constraints are needed for the characterization of the Ramsey problem. This causes our HAIM Ramsey

problem to become a generalization of the RA (representative-agent) Ramsey problem.

The methodology adopted by this paper results in several contributions to the literature on the Ramsey

problem. First, our approach is capable of analytically deriving all FOCs of the primal Ramsey problem

in the typical HAIM economy, which to our knowledge is unprecedented. Accounting for all the neces-

sary optimal Ramsey conditions is critical to our analysis and findings. Second, our approach offers an

advantage in that the Ramsey problem of our HAIM economy would reduce to that of a RA economy if

markets were complete rather than incomplete. Given that the meaning and intuition of the Ramsey prob-

lem in the RA economy are well-understood, this advantage makes the model mechanism that drives our

main results transparent and intuitive. Finally, our methodology allows us to investigate the existence of a

Ramsey steady state instead of assuming its existence as in the extant literature as well as to characterize

the properties of a Ramsey steady state if it does exist.

1.2 Related Literature

The literature on optimal capital taxation is vast. Here we focus only on a very limited subset of the

studies framed in a heterogeneous-agent environment with incomplete markets or market frictions.

Our work is closely related to the recent study by Chien and Wen (2019), who utilized an analytically

tractable heterogeneous-agent model with idiosyncratic preference shocks to address the same issue.

7This approach of modeling incomplete markets is pioneered by Aiyagari, Marcet, Sargent, and Seppala (2002), who

named the additional constraints for incomplete markets as measurability conditions. The later work by Chien, Cole, and

Lustig (2011) extends this approach to heterogeneous-agent models in the context of asset pricing.
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They demonstrated that the Ramsey planner intends to increase the supply of government bonds until

full self-insurance is achieved or an exogenous debt limit binds. However, in order to have an analytical

solution, their model makes a few special assumptions and deviates from the standard HAIM model.

Hence, their study cannot directly investigate the issue regarding the existence of the Ramsey steady state

assumption made by Aiyagari (1995).

Conesa, Kitao, and Krueger (2009) considered optimal capital taxation in a HAIM-type economy

but in a life-cycle framework. The quantitative part of their study largely focuses on the steady-state

welfare. In an overlapping generations model with two-period-lived households, Krueger and Ludwig

(2018) characterized the optimal capital tax of the Ramsey problem. In their analysis, the planner lacks

government bonds as a policy tool. In contrast, government bonds play an essential role in our results.

Hence, their results do not contradict ours since a Ramsey steady state with a binding government debt

limit could exist.

Gottardi, Kajii, and Nakajima (2015) considered an environment deviating from the standard HAIM

economy, in that there is risky human capital in addition to physical capital. They derived qualitative

and quantitative properties for the solution to the Ramsey problem, showing that the interaction between

market incompleteness and risky human capital accumulation provides a justification for taxing physical

capital. In this paper, we stick to the standard HAIM economy with idiosyncratic earnings risk and show

that a Ramsey steady state can fail to exist.

Dávila, Hong, Krusell, and Rı́os-Rull (2012) characterized constrained efficiency for the HAIM econ-

omy. To decentralize the constrained efficient allocation, the planner is required to know each agent’s

realized shocks in order to impose individual-specific capital taxes. We consider flat tax rates applied

uniformly to all agents as in the typical Ramsey problem and, as such, the constrained efficient allocation

is infeasible to the Ramsey planner.

Recent papers, including Le Grand and Ragot (2017), Açıkgöz, Hagedorn, Holter, and Wang (2018)

and Dyrda and Pedroni (2018), numerically solve optimal Ramsey fiscal policy for both the transition

path and the steady state of the HAIM economy. While Açıkgöz, Hagedorn, Holter, and Wang (2018)

considered separable isoelastic preferences in their numerical analysis, both Le Grand and Ragot (2017)

and Dyrda and Pedroni (2018) adopted GHH preferences in their numerical analysis. The results of these

papers are basically consistent with the finding in Aiyagari (1995); in particular, they all find that the

MGR holds at the Ramsey steady state. Thus, the results of these numerical work are consistent with our

first main result rather than our second main result. For their robustness, it seems important in the light

of our results to check if the multiplier on the resource constraint of their Ramsey problem converges to a
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finite positive value in the limit. Indeed, this is a key assumption made by Aiyagari (1995) to uphold the

MGR at the Ramsey steady state.

The rest of the paper is organized as follows. Section 2 and Section 3 introduce our model economy

and characterize its competitive equilibrium, respectively. Section 4 formulates the Ramsey problem. Our

main findings are demonstrated in Section 5. Section 6 checks and shows the robustness of our results to

the endogenous government spending setting, and Section 7 offers a discussion of our findings.

2 Model Economy

The model economy mainly builds on Aiyagari (1994). There is a unit measure of infinitely-lived house-

holds who are subject to idiosyncratic labor productivity shocks. There are no aggregate shocks. Markets

are incomplete in that there are no state-contingent securities for idiosyncratic shocks. In addition, all

households are subject to exogenous borrowing constraints at all times.

Time is discrete and the horizon is infinity, indexed by t = 0, 1, 2, .... Time 0 is a planning period and

actions begin in time 1. All households are ex ante identical and endowed with the same asset holdings.

Ex post heterogeneity arises because households experience different histories of the idiosyncratic shock

realization. Let θt (which takes a positive value in a finite set Θ) denote the incidence of the idiosyncratic

labor productivity shock at time t, and let θt denote the history of events for the idiosyncratic shock

of a household up through and until time t. The shock θt is independently and identically distributed

across households, and the sequence {θt} follows a first-order Markov process over time. We let πt(θ
t)

denote the unconditional probability of θt and π(θt|θt−1) denote the conditional probability. We have

πt(θ
t) = π(θt|θt−1)πt−1(θ

t−1). Because of the independence of productivity shocks across households

at any time, a law of large numbers applies so that the probability πt(θ
t) also represents the fraction of

the population that experiences θt at time t. We let π1(θ
1 = θ1) = 1 for the initial value of θ1 (the

initial realization θ1 is given). We call a household that has the history θt simply “household θt.” We also

introduce additional notation: θt+1 ≻ θt means that the left-hand-side node is a successor node to the

right-hand-side node; and for s > t, θs � θt (θs ≻ θt) represents the set of successor shocks after θt up

to θs including (excluding) θt.

Households maximize their lifetime utility

U =
∞
∑

t=1

βt
∑

θt

[

u(ct(θ
t))− v

(

lt(θ
t)

θt

)]

πt(θ
t),
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where β ∈ (0, 1) is the discount factor; ct(θ
t) and lt(θ

t) denote the consumption and the labor supply

for household θt at time t; and lt(θ
t)/θt is the corresponding “raw” labor supply (hours worked). The

assumptions on the functions u(.) and v(.) are standard; in particular, we impose u′(0) = ∞, v′(0) = 0

and v′(∞) = ∞.

There is a standard neoclassical constant returns-to-scale production technology, denoted by F (K,L),

that is operated by a representative firm, where K and L are aggregate capital and labor, respectively. As

in Aiyagari (1995), F (K,L) satisfies standard properties such as Inada conditions plus F (K,L) = 0 if

either K = 0 or L = 0. The firm produces output by hiring labor and renting capital from households.

The firm’s optimal conditions for profit maximization at time t satisfy

wt = FL(Kt, Lt),

rt = FK(Kt, Lt),

where wt and rt are the wage rate and the capital rental rate, and FL and FK denote the marginal product

of labor and capital, respectively. All markets are competitive.

The government is required to finance an exogenous stream of government spending {Gt} and it can

issue one-period government bonds and levy flat-rate, time-varying labor and capital taxes at rates τl,t and

τk,t, respectively. The flow government budget constraint at time t is expressed as

τl,twtLt + τk,t(rt − δ)Kt +Bt+1 = Gt +RtBt, (1)

where Rt is the risk-free gross interest rate between time t− 1 and t, δ ∈ (0, 1) is the depreciation rate of

capital, and Bt is the amount of government bonds issued at time t−1. The government is assumed to fully

commit to a sequence of taxes imposed and debts issued, given the initial amount of government bonds

B1 at time 0. This setup for the government is standard for the Ramsey problem. Section 6 considers

an alternative setup where Gt becomes endogenously determined rather than exogenously given. This

alternative setup is adopted by Aiyagari (1995).

3 Characterization of Competitive Equilibrium

This section characterizes the competitive equilibrium of the model economy, paving the way for the

formulation of the Ramsey problem in the next section. We first describe the household problem.
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3.1 Household Problem

We express the household problem as a time-zero trading problem as in an Arrow-Debreu economy but

with the imposition of additional constraints to account for the key features of the HAIM economy. As

noted in the Introduction, this method facilitates the formulation of the primal Ramsey problem for the

HAIM economy.

Denote Pt as the time-zero price of one unit of consumption delivered at time t. We set P0 = 1 as a

normalization. Given that K and B are perfect substitutes in the mind of households, the after-tax return

on capital has to equal the risk-free rate:

Pt

Pt+1

= Rt+1 = 1 + (1− τk,t+1)(rt+1 − δ), (2)

which constitutes a no-arbitrage condition for trades in capital and government bonds.

Let pt(θ
t) = Ptπt(θ

t) be the state-contingent price of one unit of consumption delivered in the event

of θt at time t. The household’s time-zero budget constraint in an Arrow-Debreu economy is expressed

as

â1 =
∑

t≥1

∑

θt

pt(θ
t)
[
ct(θ

t)− ŵtlt(θ
t)
]
, (3)

where ŵt = (1 − τl,t)wt is the after-tax wage rate at time t and â1 = K1 + B1, where K1 and B1 are

the economy’s initial capital and government bonds, respectively. All households by assumption have the

same initial asset holdings â1 > 0.

3.1.1 Measurability Conditions and Borrowing Constraints

Two key features of the HAIM economy are (i) incomplete markets—no state-contingent claims on id-

iosyncratic shocks (in fact, households can only self-insure through a risk-free asset), and (ii) ad hoc

borrowing constraints—a lower bound on households’ asset holdings at all times. Both features impose

restrictions on the choice of asset holdings across idiosyncratic states over time. We show how to embed

these asset-holding restrictions into a time-zero trading problem for the household.

Given the history of shocks θt at time t, the asset holdings with complete markets can be written as

pt(θ
t)at(θ

t) =
∑

s≥t

∑

θs�θt

ps(θ
s) [cs(θ

s)− ŵsls(θ
s)] , (4)

where at(θ
t) is the amount of the state-contingent claim held by household θt at the beginning of time t.
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However, markets are incomplete rather than complete and households do not have access to state-

contingent markets in the HAIM economy. This implies that the asset holdings at time t+1 are measurable

only up to the events prior to the realization of shock θt+1. Formally, households face the following

measurability conditions: for ∀t ≥ 0 and θt,

at+1(θ
t, θt+1) = at+1(θ

t, θ̃t+1) for all θ̃t+1, θt+1 ∈ Θ,

which practically impose constraints on a household’s asset holdings.

For ease of exposition, we rewrite the measurability conditions as follows: for ∀t ≥ 0 and θt,

at+1(θ
t, θt+1)

Rt+1

=
at+1(θ

t, θ̃t+1)

Rt+1

≡ ât+1(θ
t) for all θ̃t+1, θt+1 ∈ Θ, (5)

where Rt+1 is the risk-free gross interest rate between time t and t + 1. That is, ât+1(θ
t) is defined so

that Rt+1ât+1(θ
t) = at+1(θ

t, θt+1) = at+1(θ
t, θ̃t+1) for all θ̃t+1, θt+1 ∈ Θ. This makes sense because

households can hold only a one-period risk-free asset; and their asset holdings at the beginning of time

t+1 deflated by their asset return, the risk-free gross interest rate, must be equal to the end of time t asset

holdings, which are denoted by ât+1(θ
t).

Households also face the following ad hoc borrowing restrictions for ∀t ≥ 0:

ât+1(θ
t) ≥ 0, for all θt,

which can be equivalently expressed as at+1(θ
t+1) ≥ 0 for all t and θt+1, according to (5).

3.1.2 Formulating and Solving the Household Problem

The asset-holding restrictions, such as the measurability conditions and borrowing constraints, are equiv-

alent to the restrictions imposed on the whole sequence of consumption and labor choices.

Using (4), we can restate the measurability conditions as

Pt−1ât(θ
t−1)πt(θ

t) =
∑

s≥t

∑

θs�θt

ps(θ
s) [cs(θ

s)− ŵsls(θ
s)] , ∀t ≥ 1, θt, (6)

where we have replaced at(θ
t) with Rtât(θ

t−1) as defined in (5) and used pt(θ
t) = Ptπt(θ

t) and the result

of Pt−1 = PtRt in (2). Note that, given P0 = 1 and π1(θ
1) = 1, the measurability conditions (6) reduce

to the household’s time-zero budget constraint (3) as t = 1. As to the borrowing constraints, they can be
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expressed as ∑

s≥t

∑

θs�θt

ps(θ
s) [cs(θ

s)− ŵsls(θ
s)] ≥ 0, ∀t ≥ 2, θt. (7)

Given that π1(θ
1) = 1 so that the initial realization θ1 = θ1 is given, it is implicitly assumed that the

borrowing constraints do not bite at t = 1.

If markets were complete, then households would only face a single constraint (3). The presence

of the additional constraints represented by (6) and (7) is due to the incomplete markets and borrowing

constraints, respectively.8

Given prices {ŵt, pt(θ
t)}, the household chooses a sequence of consumption {ct(θ

t)}, labor {lt(θ
t)},

and asset holdings {ât+1(θ
t)} to maximize the lifetime utility as of time zero, subject to the time-zero

budget constraint (3), the measurability conditions (6), and the borrowing constraints (7). Let χ be the

multiplier on the time-zero budget constraint, νt(θ
t) the multiplier on the measurability condition in the

event of θt at time t, and ϕt(θ
t) the multiplier on the borrowing constraint in the event of θt at time t.

Incorporating all the constraints through these multipliers gives the household’s Lagrangian:9

L̃ = min
{χ,ν,ϕ}

max
{c,l,â}

∞∑

t=1

βt
∑

θt

[
u(ct(θ

t))− v

(
lt(θ

t)

θt

)]
πt(θ

t)

+χ

{
â1 −

∞∑

t=1

∑

θt

pt(θ
t)
[
ct(θ

t)− ŵtlt(θ
t)
]
}

+
∞∑

t=2

∑

θt

νt(θ
t)




∑

s≥t

∑

θs�θt

ps(θ
s) [cs(θ

s)− ŵsls(θ
s)]− Pt−1ât(θ

t−1)πt(θ
t)





+
∞∑

t=2

∑

θt

ϕt(θ
t)




∑

s≥t

∑

θs�θt

ps(θ
s) [cs(θ

s)− ŵsls(θ
s)]



 .

Note that the constraints associated with the multipliers {νt(θ
t)} and {ϕt(θ

t)} start from t = 2 rather

than t = 1. This is due to the two features of our model. First, the measurability conditions (6) reduce to

the household’s time-zero budget constraint (3) as t = 1. Second, given that π1(θ
1) = 1, it is implicitly

assumed that the borrowing constraints are not binding at t = 1.

8We show in the Appendix that our formulation of the household constraints is equivalent to the more standard recursive

formulation.
9There is a technical issue regarding whether the Lagrangian L̃ can be written as an infinite sum so as to allow the applica-

tion of the standard Lagrange multiplier method. We justify it in the Online Appendix.

9



Using Abel’s summation formula, the Lagrangian L̃ can be rewritten as10

L̂ = min
{χ,ν,ϕ}

max
{c,l,â}

∞∑

t=1

βt
∑

θt

[
u(ct(θ

t))− v

(
lt(θ

t)

θt

)]
πt(θ

t)

−
∞∑

t=1

∑

θt

ζt(θ
t)pt(θ

t)
[
ct(θ

t)− ŵtlt(θ
t)
]
+ χâ1

−

∞∑

t=2

∑

θt

νt(θ
t)Pt−1ât(θ

t−1)πt(θ
t),

where ζt(θ
t) is called the “cumulative multiplier,” and its law of motion is given by

ζt+1(θ
t+1) = ζt(θ

t)− νt+1(θ
t+1)− ϕt+1(θ

t+1) with ζ1 = χ > 0. (8)

Obviously, ζt(θ
t) is a cumulative sum of all Lagrangian multipliers in the past history from the measur-

ability conditions and the borrowing constraints; it encodes the frequency and severity of both types of

constraints over time.11

From the Lagrangian L̂, the FOCs with respect to consumption ct(θ
t) and labor supply lt(θ

t) are given

by

βtu′(ct(θ
t)) = ζt(θ

t)Pt, (9)

βtv′
(
lt(θ

t)

θt

)
1

θt
= ζt(θ

t)ŵtPt, (10)

while the FOC with respect to asset holdings ât+1(θ
t) is given by

∑

θt+1≻θt

νt+1(θ
t+1)π(θt+1|θt) = 0. (11)

From the FOCs (9) and (10), we see that the value of ζt(θ
t) cannot be negative.

The last FOC requires that the mean of the multipliers on the measurability condition across idiosyn-

cratic states θt+1 be equal to zero, given θt. If markets were complete instead, households could have a

short position on consumption claims at time t contingent on shock θt+1 being high at time t + 1 (“save

less for a high state,” which is associated with νt+1(θ
t+1) > 0 in the Lagrangian L̃), and could have a

long position on consumption claims at time t contingent on shock θt+1 being low at time t + 1 (“save

10See Ljungqvist and Sargent (2012, p. 821) for the formula.
11This approach of defining recursive multipliers as in (8) was proposed and developed by Marcet and Marimon (1999,

2019) for solving dynamic problems with forward-looking constraints. Both Aiyagari, Marcet, Sargent, and Seppala (2002)

and Chien, Cole, and Lustig (2011) adopted this approach.
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more for a low state,” which is associated with νt+1(θ
t+1) < 0 in the Lagrangian L̃). However, markets

are incomplete and households cannot save at time t, depending on whether shock θt+1 at time t + 1 is

high or low. As such, the best choice for ât+1(θ
t) at time t is to satisfy an average—that is, the condition

(11). Putting together (9), (11) and (2), the motion (8) actually enforces the household’s Euler equation

u′(ct(θ
t)) ≥ βRt+1

∑

θt+1≻θt

u′(ct+1(θ
t+1))π(θt+1|θt), (12)

where the equality holds if ât+1(θ
t) > 0.

Note that the household’s Euler equation given by (12) can also be expressed equivalently as

∑

θt+1≻θt

ζt+1(θ
t+1)π(θt+1|θt) ≤ ζt(θ

t), (13)

where the equality holds if the borrowing constraint of the state-contingent asset, at+1(θ
t+1) ≥ 0, does

not bind for all possible subsequent θt+1 states. To see this, using (11), the summation of the motion (8)

over θt+1 gives

∑

θt+1≻θt

ζt+1(θ
t+1)π(θt+1|θt) = ζt(θ

t)−
∑

θt+1≻θt

ϕt+1(θ
t+1)π(θt+1|θt), (14)

and we know that ϕt+1(θ
t+1) ≥ 0 for all θt+1. Thus, to uphold the equality part of (13), it is required

that ϕt+1(θ
t+1) = 0 for all θt+1 in (14). This feature is caused by the measurability condition (5), which

effectively ensures that ϕt+1(θ
t+1) = 0 for all θt+1, provided that ât+1(θ

t) > 0.

3.2 Competitive Equilibrium

A competitive equilibrium of the model economy is defined in the standard way.

Definition 1. Given the initial capital K1 and initial government bonds B1, a competitive equilibrium

is defined as sequences of tax rates, government spending and government bonds {τl,t, τk,t, Gt, Bt+1}
∞

t=1,

and sequences of prices {wt, rt, Pt}
∞

t=1, aggregate allocations {Ct, Lt, Kt+1}
∞

t=1 and individual allocation

plans {ct(θ
t), lt(θ

t), ât+1(θ
t)}∞t=1, such that

1. {ct(θ
t), lt(θ

t), ât+1(θ
t)} solve the household problem.

2. {Lt, Kt} solve the representative firm’s problem.

11



3. The no-arbitrage condition holds: Pt

Pt+1
= 1 + (1− τk,t+1)(rt+1 − δ).

4. The time-zero government budget constraint holds:12

B1 =
∞∑

t=1

Pt [τl,twtLt + τk,t (rt − δ)Kt −Gt] . (15)

5. All markets clear for all t:

Bt+1 +Kt+1 =
∑

θt

ât+1(θ
t)πt(θ

t),

Lt =
∑

θt

lt(θ
t)πt(θ

t),

Ct =
∑

θt

ct(θ
t)πt(θ

t),

F (Kt, Lt) = Ct +Gt +Kt+1 − (1− δ)Kt.

3.3 Characterizing the Competitive Equilibrium

This subsection characterizes the competitive equilibrium in terms of the aggregate allocations and the

cumulative multipliers of the household problem. This step is critical for the primal Ramsey approach in

the HAIM economy. To facilitate the characterization, we work with commonly-used separable isoelastic

preferences:13

Assumption 1.

u(c) =
c1−α

− 1

1− α
, α > 0; v

(
l

θ

)
=

1

γ

(
l

θ

)γ

, γ > 1.

It is known that 1/α represents the EIS. As will be seen, the value of the EIS plays an important role

in our results.

Proposition 1. Under Assumption 1, the consumption and labor sharing rules are given, respectively, by

ct(θ
t) =

ζt(θ
t)

−1

α

Ht

Ct, (16)

lt(θ
t) =

θ
γ

γ−1

t ζt(θ
t)

1

γ−1

Jt
Lt, (17)

12From the flow government budget constraint (1) to the time-zero one, the transversality condition, limt→∞ Pt−1Bt = 0,

is imposed.
13We consider GHH preferences in the Online Appendix.
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where Ht and Jt are defined as

Ht ≡
∑

θt

ζt(θ
t)

−1

α πt(θ
t),

Jt ≡
∑

θt

θ
γ

γ−1

t ζt(θ
t)

1

γ−1πt(θ
t).

Ht and Jt, are referred to, respectively, as the consumption and labor aggregate multipliers, which are

specific moments of the distribution of the individual cumulative multiplier ζt(θ
t).14 In addition, Pt and

ŵt can be expressed respectively as

Pt = βtC−α
t Hα

t (18)

and

ŵt =
L
γ−1

t J
1−γ
t

C−α
t Hα

t

. (19)

Finally, with (18), the risk-free rate is given by

1

Rt+1

=
Pt+1

Pt

= β

(
Ct+1

Ct

)
−α (

Ht+1

Ht

)α

. (20)

The proofs of our results, including Proposition 1, are all relegated to the Appendix. Equations (16)

through (19) show that one can express the individual allocations {ct(θ
t), lt(θ

t)} and the market prices

{Pt, ŵt} of the competitive equilibrium in terms of the aggregate allocations {Ct, Lt} and the individ-

ual cumulative multipliers {ζt(θ
t)}, and the aggregate multipliers {Ht, Jt}. The following proposition

demonstrates that the Ramsey planner can pick a competitive equilibrium by choosing aggregate alloca-

tions plus asset holdings and cumulative multipliers that satisfy a set of conditions.15

For ease of exposition, we define

κt

(
θt
)

≡ βt
[
C1−α

t Hα−1

t ζt(θ
t)

−1

α − L
γ
t J

−γ
t θ

γ

γ−1

t ζt(θ
t)

1

γ−1

]
(21)

= Pt

(
ct(θ

t)− ŵtlt(θ
t)
)
,

which represents the present value of the time-t net savings made by household θt. The second equality

holds by utilizing equations (16) through (19).

Proposition 2. Impose Assumption 1. Given the initial capital K1, government bonds B1, capital tax rate

14Similar expressions for consumption can be seen in Nakajima (2005), Werning (2007) and Park (2014).
15Results similar to Proposition 2 but in different contexts can be seen in Aiyagari, Marcet, Sargent, and Seppala (2002,

Proposition 1), Werning (2007, Proposition 1), and Park (2014, Proposition 1).
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τk,1, and a stream of government spending {Gt}, sequences of aggregate allocations {Ct, Lt, Kt+1}, asset

holdings {ât+1 (θ
t)}, and cumulative multipliers {ζt (θ

t)} (with the associated aggregate multipliers, Ht

and Jt) can be supported as a competitive equilibrium if and only if they satisfy the following conditions:16

1. Resource constraints: F (Kt, Lt) + (1− δ)Kt −Kt+1 ≥ Ct +Gt, ∀t ≥ 1.

2. The implementability condition:

∞∑

t=1

∑

θt

κt

(
θt
)
πt(θ

t) ≥ â1.

3. Measurability conditions:

∑

s≥t

∑

θs�θt

κs (θ
s) πs(θ

s) = βt−1C−α
t−1H

α
t−1ât(θ

t−1)πt(θ
t), ∀t ≥ 2, θt.

4. Borrowing constraints: ∑

s≥t

∑

θs�θt

κs (θ
s) πs(θ

s) ≥ 0, ∀t ≥ 2, θt.

5. The evolution of ζt(θ
t) satisfies

∑
θt+1≻θt ζt+1(θ

t+1)π(θt+1|θt) ≤ ζt(θ
t), ∀t ≥ 1, θt.

6. If the borrowing constraint does not bind for ât+1(θ
t), then

∑

θt+1≻θt

ζt+1(θ
t+1)π(θt+1|θt) = ζt(θ

t),

and this property holds for all θt and all t ≥ 1.

Condition 2 of Proposition 2 corresponds to the time-zero household budget constraint (by Walras’

law, equivalently, the government time-zero budget constraint), which is conventionally called the “im-

plementability condition” in the formulation of the primal Ramsey problem. When the market is complete

without frictions, our model reduces to the RA economy and imposing Conditions 3-6 becomes unnec-

essary. In particular, since ζt(θ
t) in (8) equals χ at all times, Conditions 5 and 6 become redundant since

they are automatically satisfied.

16The initial capital tax rate, τk,1, should be a choice variable for the Ramsey planner. However, given that the initial capital

is pre-installed and that households are homogeneous at time zero, taxing the initial capital is essentially the same as allowing

a lump-sum tax. As is standard in the literature, we restrict the planner’s ability to choose τk,1 in the Ramsey problem.
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4 Ramsey Problem

Different government policies result in different competitive equilibria. We define the Ramsey problem

formally:

Definition 2. The Ramsey problem is to choose a competitive equilibrium that attains the maximization

of the household’s lifetime utility U .

On the basis of Proposition 2, the Ramsey problem can be represented as maximizing

∑

t≥1

βt
∑

θt


 1

1− α



(
ζt(θ

t)
−1

α

Ht

Ct

)1−α

− 1


−

1

γ


θ

1

γ−1

t ζt(θ
t)

1

γ−1

Jt
Lt




γ
 πt(θ

t)

by choosing Ct, Lt, Kt+1, {ât+1(θ
t)}, and {ζt(θ

t)} subject to Conditions 1 to 6 stated in Proposition 2

and to Ht and Jt defined earlier, given K1, B1,τk,1 and {Gt}. The objective of the Ramsey problem is

derived by substituting the consumption sharing rule (16) and the labor sharing rule (17) into U .

From (6), the strict inequality of the borrowing constraints (7) can be equivalently expressed as

Pt−1ât(θ
t−1)πt(θ

t) > 0, ∀t ≥ 2, θt. Using (18), Condition 6 of Proposition 2 can be captured by the

complementary slackness condition:

βt−1C−α
t−1H

α
t−1ât(θ

t−1)πt(θ
t)

[
∑

θt≻θt−1

ζt(θ
t)π(θt|θt−1)− ζt−1(θ

t−1)

]
= 0, ∀t ≥ 2, θt. (22)

That is, if ât(θ
t−1) > 0, then the square brackets shown above must equal zero. Thus the Ramsey problem

is given by

max
{Ct,Lt,Kt+1,

{ât+1(θt)},{ζt(θt)}}

∑

t≥1

βt
∑

θt


 1

1− α



(
ζt(θ

t)
−1

α

Ht

Ct

)1−α

− 1


−

1

γ


θ

1

γ−1

t ζt(θ
t)

1

γ−1

Jt
Lt




γ
 πt(θ

t),

subject to

{βtµt} : F (Kt, Lt) + (1− δ)Kt ≥ Ct +Gt +Kt+1, ∀t ≥ 1,

χP :
∑

t≥1

∑

θt

κt

(
θt
)
πt(θ

t) ≥ â1,

{νP
t (θ

t)} :
∑

s≥t

∑

θs�θt

κs (θ
s) πs(θ

s) = βt−1C−α
t−1H

α
t−1ât(θ

t−1)πt(θ
t), ∀t ≥ 2, θt,
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{ϕP
t (θ

t)} :
∑

s≥t

∑

θs�θt

κs (θ
s) πs(θ

s) ≥ 0, ∀t ≥ 2, θt,

{ξt(θ
t)} :

∑

θt+1≻θt

ζt+1(θ
t+1)π(θt+1|θt) ≤ ζt(θ

t), ∀t ≥ 1, θt,

{φt(θ
t)} : βt−1C−α

t−1H
α
t−1ât(θ

t−1)πt(θ
t)

[
∑

θt≻θt−1

ζt(θ
t)π(θt|θt−1)− ζt−1(θ

t−1)

]
= 0, ∀t ≥ 2, θt,

where {βtµt}, χ
P , {νP

t (θ
t)}, {ϕP

t (θ
t)}, {ξt(θ

t)}, and {φt(θ
t)} are the corresponding multipliers.

Using Abel’s summation formula and πt(θ
t) = π(θt|θt−1)πt−1(θ

t−1), the Lagrangian for the Ramsey

problem gives

L = max
{Ct,Lt,Kt+1,{ât+1(θt)},{ζt(θt)}}

∑

t≥1

βtW (t) +
∑

t≥1

βtµt [F (Kt, Lt) + (1− δ)Kt −Kt+1 − Ct −Gt]

+
∑

t≥1

∑

θt

ξt(θ
t)

[
ζt(θ

t)−
∑

θt+1≻θt

ζt+1(θ
t+1)π(θt+1|θt)

]
− χP â1

−
∑

t≥2

βt−1C−α
t−1H

α
t−1

∑

θt−1

ât(θ
t−1)

(
∑

θt≻θt−1

νP
t (θ

t)π(θt|θt−1)

)
πt−1(θ

t−1)

−
∑

t≥2

βt−1C−α
t−1H

α
t−1

∑

θt−1

ât(θ
t−1)




∑
θt≻θt−1 φt(θ

t)π(θt|θt−1)×[∑
θt≻θt−1 ζt(θ

t)π(θt|θt−1)− ζt−1(θ
t−1)

]


 πt−1(θ

t−1),

with

W (t) ≡
∑

θt

πt(θ
t)




1

1− α



(
ζt(θ

t)
−1

α

Ht

Ct

)1−α

− 1


−

1

γ


θ

1

γ−1

t ζt(θ
t)

1

γ−1

Jt
Lt




γ

︸ ︷︷ ︸
Part 1

+β−tηt(θ
t)κt

(
θt
)

︸ ︷︷ ︸
Part 2




, (23)

where

ηt+1(θ
t+1) = ηt(θ

t) + νP
t+1(θ

t+1) + ϕP
t+1(θ

t+1), η1 = χP > 0, (24)

which is the motion of the Ramsey planner’s cumulative multiplier. The Ramsey planner cannot com-

plete the market as typically assumed and is thereby subject to the same market structure of the HAIM

economy—that is, the same measurability conditions and borrowing constraints as those facing the house-

hold. These market frictions are summarized by the multipliers νt+1(θ
t+1) and ϕt+1(θ

t+1) in the house-

hold problem and by νP
t+1(θ

t+1) and ϕP
t+1(θ

t+1) in the planner problem. However, note that while we have
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the term χâ1 in the household Lagrangian L̂, we have the term −χP â1 in the planner Lagrangian L. The

opposite sign is due to the fact that the implementability condition in the Ramsey problem represents the

government budget constraint rather than the household budget constraint. As such, while increasing â1

relaxes the household budget constraint, it tightens the government budget constraint.

4.1 Comparison with the Representative-Agent Model

When the market is complete without frictions as in the RA model, ζt(θ
t) in (8) equals χ for all t and θt.

As such, Ht equals χ−1/α, Pt reduces to βtC−α
t χ−1 and Jt becomes χ

1

γ−1

∑
θt θ

γ

γ−1

t πt(θ
t). In addition,

from (24), we know that ηt(θ
t) reduces to χP all the time. Hence, W (t) defined in (23) reduces to

WRA(t) =
C1−α

t − 1

1− α
−

L
γ
t

γ︸ ︷︷ ︸
Part 1

+ χPχ−1
(
C−α

t Ct − L
γ−1

t Lt

)
︸ ︷︷ ︸,

Part 2

which is the corresponding pseudo-utility function in the RA model under Assumption 1.17 Part 1 of

WRA(t) represents the current-period utility. Its Part 2, in terms of βtWRA(t), is given by

χPχ−1βt
(
C−α

t Ct − L
γ−1

t Lt

)
= χPPRA

t (Ct − ŵRA
t Lt), (25)

where PRA
t = βtC−α

t χ−1 is the time-zero price of one unit of consumption at time t, and ŵRA
t = L

γ−1

t Cα
t

is the after-tax wage rate at time t. Thus, the term PRA
t (Ct − ŵRA

t Lt) shown in (25) represents the time-t

net savings evaluated at the time-zero price in the RA model. The time-t net savings of households also

represents the amount of net revenues collected by the government in period t because of Walras’ law;

hence, the implementability condition multiplier, χP , “measures the utility costs of raising government

revenues through distorting taxes”(Ljungqvist and Sargent (2012, p. 629)) in the RA framework.

Part 1 of W (t) in our HAIM model also represents the current-period utility. Its Part 2, in terms of

βtW (t), is given by

ηt(θ
t)κt(θ

t) = ηt(θ
t)Pt

(
ct(θ

t)− ŵtlt(θ
t)
)
, (26)

where the equality holds according to (21). Thus, the term Pt (ct(θ
t)− ŵtlt(θ

t)) represents the time-t net

savings of household θt evaluated at time zero in the HAIM economy. The taxes imposed by the Ramsey

planner alter household θt’s consumption and labor supply and, consequently, distort his/her net savings.

The shadow price of this distortion on household θt’s net savings is given by the multiplier ηt(θ
t). Note

17Under the complete-market assumption, our Ramsey planner problem is identical to the one in the RA model, which can

be seen in subsection 16.6.1 in Ljungqvist and Sargent (2012, p. 626).
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that ηt(θ
t) is no longer a time-invariant constant χP , as in the RA model. From the evolution of ηt(θ

t)

governed by (24), we see that ηt(θ
t) starts from χP (η1 = χP ), but in a sequence it varies not only across

households but also over time, meaning that the utility cost of collecting government revenues is not only

household specific but also time varying.

Now consider the steady-state version of equation (20):

1 = βR

(
Ht+1

Ht

)α

. (27)

Given that Ht = χ−1/α all the time in the RA economy, we see that Ht+1/Ht = 1 and βR = 1 are the two

sides of the same coin in steady state under the RA economy. In contrast, given that βR < 1 in steady

state in the HAIM economy, we see that Ht+1/Ht > 1 and βR < 1 are the two sides of the same coin

in steady state under the HAIM economy. Equation (27) tells us that Ht is increasing over time and must

diverge to infinity in the limit in the HAIM economy, since βR < 1 holds in steady state. Put simply, the

feature of an increasing and divergent Ht exactly underlies the hallmark of the competitive equilibrium

in the HAIM model—the risk-free gross interest rate is lower than the inverse of the discount factor in

steady state.

The divergent tendency of Ht, all else equal, makes Part 2 of W (t) converge more slowly than Part 1.

As will be seen, this asymmetric convergence between Part 1 and Part 2 of W (t) is the key to our result

of showing the non-existence of a Ramsey steady state.

4.2 Optimal Conditions of the Ramsey Problem

From the Lagrangian L, the necessary FOCs with respect to ât+1(θ
t), Ct, Lt, and Kt+1 for t ≥ 1 yield,

respectively,

∑

θt+1≻θt

[
νP
t+1(θ

t+1) + φt+1(θ
t+1)

(
∑

θt+1≻θt

ζt+1(θ
t+1)π(θt+1|θt)− ζt(θ

t)

)]
π(θt+1|θt) = 0, (28)

WC(t) = µt, (29)

−WL(t) = µtFL(Kt, Lt), (30)

µt = βµt+1 [FK (Kt+1, Lt+1)− δ + 1] , (31)
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where the derivation of (29) has made use of (28), and WC(t) and WL(t) denote the derivatives of W (t)

with respect to Ct and Lt, respectively.18

The explicit expressions of WC(t) and WL(t) in the FOCs of the Ramsey problem are crucial to our

analysis later. One can derive them from the pseudo-utility W (t) defined in (23). However, to facilitate

the proof and discussion hereafter, it is convenient to express WC and WL in the following way. First,

using the consumption sharing rule (16), WC(t) in (29) is expressed as

WC(t) = C−α

t



∑

θt

(
ct(θ

t)

Ct

)(
ct(θ

t)

Ct

)
−α

πt(θ
t)

︸ ︷︷ ︸
Part 1

+ (1− α)Hα

t
Mt︸ ︷︷ ︸

Part 2


 , (32)

and using (16)-(19), WL(t) in (30) is expressed as

−WL(t) = ŵtC
−α

t



∑

θt

(
lt(θ

t)

Lt

)(
ct(θ

t)

Ct

)
−α

πt(θ
t)

︸ ︷︷ ︸
Part 1

+ γHα

t
Nt︸ ︷︷ ︸

Part 2


 , (33)

where Mt ≡

∑
θt

(
ct(θt)
Ct

)
ηt(θ

t)πt(θ
t) and Nt ≡

∑
θt

(
lt(θt)
Lt

)
ηt(θ

t)πt(θ
t).

Part 1 of WC(t) and Part 1 of WL(t) denote the sum of households’ “normalized” marginal utility

of consumption,
(

ct(θt)
Ct

)
−α

, weighted by their consumption shares and labor shares, respectively. They

represent the planner’s social evaluation of increasing Ct and Lt, respectively. We next explain the mean-

ing of the weighted sum of ηt(θ
t) shown in Part 2 of WC(t) and of WL(t). Summing up (26) across all

households at time t gives

Pt (MtCt −NtŵtLt) .

Contrasting the above with the corresponding one in the RA model, namely, PRA
t

χP (Ct − ŵRA
t

Lt), we

see that the role of χP (i.e., the utility costs of raising government revenues through distorting taxes) has

been replaced either by Mt or by Nt, depending on whether distorting the time-t aggregate net savings

is through the margin of changing Ct or changing Lt. Since the issue is about collecting government

revenues across all households and different households contribute differently to aggregate consumption

and labor supply, it is intuitive that these utility costs or shadow prices are weighted (by the consumption

or labor share depending on the changed margin) rather than unweighted as given by
∑

θt
ηt(θ

t)πt(θ
t).

18The FOC with respect to ζt(θ
t) will not be needed for the derivation of our main results.
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5 Ramsey Steady State

Before presenting our main results, we define the steady state of the HAIM economy.19

Definition 3. The steady state of the HAIM economy meets two conditions:

1. Each aggregate variable stays at a finite positive value.

2. The cross-sectional distributions of the consumption share ct(θ
t)/Ct and of the labor share lt(θ

t)/Lt

are time invariant.

As to the Ramsey steady state, it is defined as follows:

Definition 4. The long-run optimal solution to the Ramsey problem is defined as a Ramsey steady state

if it features the steady state of the HAIM economy.

Given the normalization of P0 = 1, we obtain from (2) that Pt =
∏

t

s=1

1

Rs

. Using (32)-(33) and

Pt = βtC−σ

t Hσ

t
according to (18), one can then rewrite the FOCs (29) and (30) as

(
βt

t∏

s=1

Rs

)
C−α

t

∑

θt

(
ct(θ

t)

Ct

)1−α

πt(θ
t)

︸ ︷︷ ︸
Part 1

+ (1− α)Mt︸ ︷︷ ︸
Part 2

=

(
βt

t∏

s=1

Rs

)
µt

︸ ︷︷ ︸
Part 3

,

(34)

ŵt




(
βt

t∏

s=1

Rs

)
C−α

t

∑

θt

(
lt(θ

t)

Lt

)(
ct(θ

t)

Ct

)
−α

πt(θ
t)

︸ ︷︷ ︸
Part 1

+ γNt︸︷︷︸
Part 2




=

(
βt

t∏

s=1

Rs

)
µtFL(Kt, Lt)

︸ ︷︷ ︸
Part 3

.

(35)

With (34) and (35) at hand, we now proceed to derive our two main results, which differ sharply depending

on whether µt converges or limt→∞ Nt > 0 holds. As will be seen, these two results are mutually

exclusive, in that a convergent µt implies limt→∞ Nt = 0, whereas limt→∞ Nt > 0 implies a divergent

19As shown by many quantitative studies, the existence of a steady state is not a problem for the HAIM economy. For the

existence of steady states in the HAIM economy, see Açıkgöz (2018) and Zhu (2020).
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µt.
20 Recall that µt denotes the shadow price of resources in the Ramsey problem and that Nt denotes

the shadow price of raising government revenues by distorting the time-t aggregate net savings via the

margin of changing Lt. After the derivation of the two main results, we briefly explore which result is

more plausible.

5.1 µt Converges

Aiyagari (1995, footnote 15) implicitly assumed that the multiplier on the resource constraint, µt, con-

verges to a finite positive value in the limit. When this is true so that µt = µt+1 > 0 in the limit, we see

from the planner’s Euler equation (equation (20) in Aiyagari (1995) or the FOC (31) of our paper) that

the MGR, β [FK (K,L)− δ + 1] = 1, holds in steady state. Given that R < 1/β in steady state in the

HAIM economy, the planner will then levy a positive capital tax in the long run.

The conclusion reached by Aiyagari (1995) above applies to general utility functions.21 Working

with a specific, but commonly-used, utility function, i.e., the separable isoelastic utility function under

Assumption 1, we show below that the implicit assumption made by Aiyagari (1995, footnote 15) has a

strong implication for the shadow price of Ramsey taxation in the limit.

Suppose there is a Ramsey steady state with βR < 1. When µt converges to a finite positive value in

the limit as implicitly assumed by Aiyagari (1995, footnote 15), both Part 1 and Part 3 of (35) vanish in

the Ramsey steady state. This then implies limt→∞ Nt = 0. Analogously, with a convergent µt, both Part

1 and Part 3 of (34) vanish in the Ramsey steady state. This then implies limt→∞ Mt = 0. We are ready

to state our first main result.

Proposition 3. Impose Assumption 1. Suppose that there is a Ramsey steady state with βR < 1 and that

the shadow price of resources, µt, converges to a finite positive value in the limit. Then limt→∞ Mt =

limt→∞ Nt = 0 at the Ramsey steady state.

Note that Mt and Nt represent the shadow prices of raising government revenues by distorting the

time-t aggregate net savings via the margin of changing Ct and changing Lt, respectively, and that both

Mt and Nt are a generalization of the multiplier χP on the implementability condition; see the paragraph

after (32)-(33) for the details. Thus, Proposition 3 states that if the multiplier on the resource constraint of

the Ramsey problem converges to a finite positive value in the limit as assumed by Aiyagari (1995), then

20If limt→∞ Nt = 0, we see from (35) that it does not necessarily imply a convergent µt.
21 Aiyagari (1995) worked with GHH preferences; see his footnote 6 for the details. However, with the two assumptions

imposed (namely, the existence of a Ramsey steady state and the convergence of µt in the limit), it is clear from the planner’s

Euler equation (equation (20) in Aiyagari (1995)) that his conclusion is applicable to general utility functions.
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the shadow price of Ramsey taxation must go to zero in the limit. This limiting property holds, regardless

of whether the tax distortion is through the margin of changing Ct or changing Lt. We show in the Online

Appendix that replacing Assumption 1 with the assumption of GHH preferences still reaches the same

conclusion; see Proposition 5 in the Online Appendix. We discuss the plausibility of this limiting property

later.

We next study the situation where limt→∞ Nt > 0 at the Ramsey optimum.

5.2 limt→∞Nt > 0

Suppose there is a Ramsey steady state with βR < 1. The term C−α
t

∑

θt

(

lt(θt)
Lt

)(

ct(θt)
Ct

)

−α

πt(θ
t) in

Part 1 of (35) converges in steady state. Given that βR < 1 in steady state, Part 1 of (35) then vanishes in

the limit. Since limt→∞ Nt > 0 by assumption, we then see from (35) that limt→∞

(

βt
∏t

s=1 Rs

)

µt > 0

must hold, implying that µt must explode in the limit if a Ramsey steady state with βR < 1 exists.

Although µt itself explodes, it is possible for the ratio
µt+1

µt

to converge so as to support a Ramsey

steady state. Let us consider α > 1, α = 1, and α < 1, separately.

(i) α > 1. The term C−α
t

∑

θt

(

ct(θt)
Ct

)1−α

πt(θ
t) in Part 1 of (34) converges in steady state. Given

that βR < 1 in steady state, Part 1 of (34) then vanishes in the limit. Since limt→∞

(

βt
∏t

s=1 Rs

)

µt > 0

must hold at a Ramsey steady state, no matter whether limt→∞ Mt > 0 or limt→∞ Mt = 0, there is no

possibility to satisfy the FOC (34) in steady state with α > 1. In other words, there is no Ramsey steady

state in this case. It is worth noting that, as observed by Açıkgöz, Hagedorn, Holter, and Wang (2018),

α = 2 is the one most commonly used in quantitative studies under Assumption 1. Straub and Werning

(2020) deemed that α > 1 is widely considered more plausible empirically.

(ii) α = 1. The FOC (34) reduces to

C−1
t = µt.

The divergence of µt drives Ct to zero in the limit. However, Ct → 0 is incompatible with the steady state

defined by Definition 3, which requires that Ct converge to a positive value in steady state. We conclude

that there is no Ramsey steady state in this case.

(iii) α < 1. There are two subcases, depending on whether limt→∞ Mt = 0 or limt→∞ Mt > 0 (recall

that Mt represents the shadow price of raising government revenues by distorting the time-t aggregate

net savings via the margin of changing Ct). If limt→∞ Mt = 0, due to (a) Part 1 of (34) vanishes in the

limit and (b) limt→∞

(

βt
∏t

s=1 Rs

)

µt > 0 must hold at a Ramsey steady state, there is no possibility for

this subcase to satisfy the FOC (34) in steady state. On the other hand, if limt→∞ Mt > 0, it is possible
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for this subcase to satisfy the FOC (34) in steady state. However, we show in the Appendix that even if

a Ramsey steady state exists, the MGR does not hold at the Ramsey steady state and the corresponding

capital tax is non-positive.

To sum up, we state the second main result of the paper.

Proposition 4. Impose Assumption 1 and suppose limt→∞ Nt > 0.

1. The shadow price of resources, µt, must explode in the limit if a Ramsey steady state with βR < 1

exists.

2. If α ≥ 1, there is no Ramsey steady state with βR < 1.

3. If α < 1, (i) there is no Ramsey steady state with βR < 1 if limt→∞ Mt = 0; (ii) a Ramsey steady

state with βR < 1 is possible if limt→∞ Mt > 0, but the MGR fails to hold at the Ramsey steady

state and the corresponding capital tax is non-positive.

We show in the Online Appendix that replacing Assumption 1 with the assumption of GHH prefer-

ences reaches similar results; see Proposition 6 in the Online Appendix.

From (27), we see that the result that R < 1/β and the result that Ht+1/Ht > 1 are two sides of the

same coin: Ht+1/Ht > 1 holds in steady state if and only if R < 1/β holds in steady state. As shown in

the proof of Proposition 4, the increasing and divergent behavior of the Ht term (equivalently, the feature

of R < 1/β in steady state) is the exact force that undermines the existence of Ramsey steady states when

α ≥ 1.

Aiyagari (1995) adopted the dual approach to formulate the Ramsey problem, letting the planner

choose {ŵt, Rt, Kt+1}. Perhaps because of complications, Aiyagari (1995) did not report the derivation

of the FOCs with respect to ŵt and Rt. The Euler equation for the planner, equation (20) in Aiyagari

(1995) (which corresponds to equation (31) in our setting), is the only FOC derived for the Ramsey

problem in Aiyagari (1995). It is important to recognize that if we were to confine the analysis only to

the FOC (31) and assume the convergence of µt at the Ramsey steady state as Aiyagari (1995) did, we

would have the exact conclusion reached by Aiyagari (1995); namely, the MGR holds at the optimum and

capital income should be taxed in the long run. Put differently, we would not be able to derive Proposition

4. This recognition highlights the importance of taking into account the necessary Ramsey FOCs other

than (31). To our knowledge, the analytical form of the expression for the term WC(t) or WL(t) that

appears in the Ramsey FOCs (29)-(30) has never been derived before.

The intuition underlying our second main result can be understood as follows. Unlike households in

the face of idiosyncratic income shocks, the Ramsey planner faces no uncertainty in allocating aggregate
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resources. The strict inequality R < 1/β at the steady state of the HAIM economy then dictates an asym-

metric discounting; that is, the market discounting rate is always lower than the preference discounting

rate. This feature of asymmetric discounting impels a desire for the planner to front-load aggregate con-

sumption. Such a desire persists permanently since the strict inequality R < 1/β holds at the steady state

of the HAIM economy.

Proposition 4 indicates that the existence of a Ramsey steady state depends on the value of α, which

controls the EIS. The following intends to provide additional explanations and intuition for such a de-

pendence. As discussed in Subsection 4.1, the utility costs of implementing a policy hinge on its effects

over the net savings of households (equivalently, by Walras’ law, the amount of net tax revenues collected

by the government). Let us consider the impact of changing aggregate consumption on the net savings

(government revenues) through consumption spending. There is only a term involving Ct in Part 2 of

W (t) given by (23). Expressed in βtW (t) and by omitting ηt(θ
t), this term equals

βtC1−α

t
Hα−1

t
ζt(θ

t)
−1

α = PtCt

ζt(θ
t)

−1

α

Ht

,

which represents household θt’s consumption spending at time t according to the consumption sharing

rule (16). From (18), we have PtCt = βtC1−α

t Hα

t
and so ∂(PtCt)/∂Ct = (1 − α)βtC−α

t Hα

t
. Thus a

drop in aggregate consumption Ct, all else equal, will raise, lower, or not change individual consumption

spending via altering PtCt if α is larger than, less than, or equal to 1, respectively. This implies that a

reduction in aggregate consumption over time (front-loading consumption) will render the government

constraint associated with ηt(θ
t) in (23) looser, tighter, or unchanged, depending on whether α is larger

than, less than, or equal to 1, respectively. Since front-loading aggregate consumption relaxes the govern-

ment constraint by increasing its revenues if α > 1, it actually enforces the planner’s desire to front-load

aggregate consumption in the presence of R < 1/β in steady state. In contrast, since front-loading aggre-

gate consumption tightens the government constraint by reducing its revenues if α < 1, it counterbalances

the planner’s desire to front-load aggregate consumption in the presence of R < 1/β in steady state.

When α = 1, neither enforcement (associated with α > 1) nor counterbalance (associated with

α < 1) occurs. We then see a clean case of front-loading aggregate consumption in the presence of

R < 1/β in steady state. From the proof of Proposition 4, we know that µt is increasing and divergent

because Ht is increasing and divergent. If α = 1, we have WC(t) = C−1

t from (32). Thus, given that µt

increases over time, it is apparent that the optimal Ct determined by the FOC (29), namely, C−1

t = µt,

will decrease over time.
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5.3 Convergent or Divergent µt?

Propositions 3 and 4 are mutually exclusive, in that a convergent µt implies limt→∞ Mt = limt→∞ Nt = 0,

whereas limt→∞ Nt > 0 implies a divergent µt. Which one is more plausible? We briefly explore the

issue.22 Our exploration focuses on the implausibility of limt→∞ Mt = limt→∞ Nt = 0.

Proposition 2 characterizes the competitive equilibrium of our HAIM economy by its stated Condi-

tions 1-6. Let us imagine a different economy in which its competitive equilibrium can be characterized

simply by Conditions 5-6 plus Condition 1 of Proposition 2. Then the Ramsey problem for this different

economy is given by

max
{Ct,Lt,Kt+1,

{ât+1(θt)},{ζt(θt)}}

∑

t≥1

βt
∑

θt


 1

1− α



(
ζt(θ

t)
−1

α

Ht

Ct

)1−α

− 1


−

1

γ


θ

1

γ−1

t ζt(θ
t)

1

γ−1

Jt
Lt




γ
 πt(θ

t),

subject to

{βtµ̂t} : F (Kt, Lt) + (1− δ)Kt ≥ Ct +Gt +Kt+1, ∀t ≥ 1,

{ξ̂t(θ
t)} :

∑

θt+1≻θt

ζt+1(θ
t+1)π(θt+1|θt) ≤ ζt(θ

t), ∀t ≥ 1, θt,

{φ̂t(θ
t)} : βt−1C−α

t−1H
α
t−1ât(θ

t−1)πt(θ
t)

[ ∑

θt≻θt−1

ζt(θ
t)π(θt|θt−1)− ζt−1(θ

t−1)

]
= 0, ∀t ≥ 2, θt,

where {βtµ̂t}, {ξ̂t(θ
t)}, and {φ̂t(θ

t)} are the corresponding multipliers. This Ramsey problem differs

from our Ramsey problem by leaving out the implementability condition, measurability conditions, and

borrowing constraints as stated in Proposition 2.

The necessary FOCs of this Ramsey problem with respect to ât+1(θ
t), Ct, Lt, and Kt+1 for t ≥ 1

yield, respectively,23

∑

θt+1≻θt

φ̂t+1(θ
t+1)

( ∑

θt+1≻θt

ζt+1(θ
t+1)π(θt+1|θt)− ζt(θ

t)

)
π(θt+1|θt) = 0, (36)

ŴC(t) = µ̂t, (37)

−ŴL(t) = µ̂tFL(Kt, Lt), (38)

µ̂t = βµ̂t+1 [FK (Kt+1, Lt+1)− δ + 1] , (39)

22From (35), we see that limt→∞ Nt < 0 cannot be true.
23The derivation of (37) has made use of (36).
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where

ŴC(t) = C−α

t

∑

θt

(
ct(θ

t)

Ct

)(
ct(θ

t)

Ct

)
−α

πt(θ
t), (40)

−ŴL(t) = ŵtC
−α

t

∑

θt

(
lt(θ

t)

Lt

)(
ct(θ

t)

Ct

)
−α

πt(θ
t). (41)

The above FOCs with respect to the aggregate allocation {Ct, Lt, Kt+1} are not different from the FOCs

of our Ramsey problem in essence, except that WC(t) and WL(t) of (32)-(33) are replaced with ŴC(t)

and ŴL(t) of (40)-(41). Note that if we let Mt = Nt = 0, then WC(t) and WL(t) will reduce to ŴC(t)

and ŴL(t), respectively.

We have shown that, as far as the aggregate allocation {Ct, Lt, Kt+1} is concerned, letting Mt = Nt =

0 is equivalent to leaving out the implementability condition, measurability conditions, and borrowing

constraints altogether as stated in Proposition 2 in the formulation of the Ramsey problem. This indicates

the implausibility of Mt = Nt = 0.

The above is about Mt = Nt = 0. Nevertheless, replacing Mt = Nt = 0 with limt→∞ Mt =

limt→∞ Nt = 0, the result equally applies to the limiting case.

As we have explained earlier, the shadow price χP in the RA economy has been replaced either by

Mt or by Nt in our HAIM economy, depending on whether distorting the time-t aggregate net savings is

through the margin of changing Ct or changing Lt. The feature of limt→∞ Mt = limt→∞ Nt = 0 implies

that, in the long run, there will be no distorting cost either through the margin of changing Ct or through

the margin of changing Lt. Ljungqvist and Sargent (2012, p. 659) noted that the shadow price of raising

government revenues “remains strictly positive so long as the government must resort to distortionary

taxation either in the current period or for some realization of the state in a future period.” It would seem

no particular reason why the government here can free from the imposition of distortionary taxes in the

long run.

6 Endogenous Government Spending

This section checks the robustness of our Proposition 4 findings by altering the model setup from ex-

ogenous to endogenous government spending, which is the main setting considered by Aiyagari (1995).

We show here that even with endogenous government spending, our results concerning the existence of a

Ramsey steady state are robust and remain unchanged.
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Following Aiyagari (1995), the household lifetime utility U is modified to

UG =
∞
∑

t=1

βt
∑

θt

[

u(ct(θ
t))− v

(

lt(θ
t)

θt

)

+ V (Gt)

]

πt(θ
t),

where V (.) is the utility function of public consumption Gt, which is assumed to be common for all

households. The usual assumptions are applied to V (.). This modification of the setup does not change

the household problem, since the determination of Gt is exogenous to households. However, the Ramsey

problem is only changed slightly because Gt is now a choice variable to the Ramsey planner. As long

as Gt is non-negative (which could be ensured by assuming V ′(0) = ∞), Gt can be chosen to satisfy

the time-t resource constraint so that Proposition 2 still applies. The Lagrangian for the Ramsey problem

is identical to the previous Lagrangian L, except for the replacement of W (t) by W (t) + V (Gt). As a

result, the FOCs with respect to aggregate consumption, labor, and capital remain the same as before.

The additional FOC with respect to Gt is given by

V ′(Gt) = µt, (42)

which together with FOC (31) does imply the MGR if a Ramsey steady state is assumed. This is essen-

tially the procedure for obtaining the MGR in Aiyagari (1995); see equation (20) of his Proposition 1 on

page 1170.

However, the introduction of endogenous Gt does not alter the fundamental force that drives the re-

sults of Proposition 4. The marginal social benefit of having one extra unit of aggregate consumption,

namely, WC(t), could still diverge in the long-run given that the Ramsey outcome of Rβ = 1 is infeasible

in steady state. With the additional government tool—endogenous government spending—the extra out-

put can be expended either on government spending or on private consumption, and hence the marginal

benefits to the social welfare by exercising these two options have to be equalized at the optimum. Indeed,

putting (29) and (42) together gives rise to V ′(Gt) = WC(t) and hence the optimal choice of Gt has to

respect and be consistent with the divergent behavior of µt. This equality casts doubt on the convergence

assumption of Gt to a finite positive value made by Aiyagari (1995). In brief, it is the erroneously as-

sumed convergence of µt, not the endogenous government spending assumption, which is the root of the

problem.
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7 Discussion

We show that a Ramsey steady state may fail to exist in the HAIM economy, but we fall short of explaining

in terms of policy tools why it fails to exist. This section provides a brief discussion.

In the proof of Proposition 2, an implicit but standard assumption is that, given the sequence of capital

stocks {Kt+1}
∞

t=1 and households’ asset holdings {ât+1(θ
t)}∞

t=1, it is always feasible to pick a sequence

of government bonds, {Bt+1}
∞

t=1, so as to clear the asset market in each time period. Aiyagari (1995)

made the same assumption in his analysis; see equation (19) of his paper and the discussion about it.

Albeit standard in the literature, this feasibility assumption is not innocuous here since the planner may

implement front-loading aggregate consumption induced by R < 1/β via issuing an ever increasing

amount of government bonds. In the same context as our paper, Chien and Wen (2019) utilized an

analytically tractable HAIM model to demonstrate that the Ramsey planner intends to increase the supply

of government bonds until full self-insurance is achieved or an exogenous debt limit binds. Their work

suggests that the feasibility assumption with no quantity restriction on the planner’s issuing government

bonds could be the culprit for the non-existence of a Ramsey steady state in our economy. If this is indeed

true, then imposing an upper bound on the issuance of government bonds should provide a mechanism to

restore the existence of Ramsey steady states. Following Aiyagari, Marcet, Sargent, and Seppala (2002),

let us impose an exogenous upper bound B̄ < ∞ on the issuance of government bonds:

Bt+1 ≤ B̄, ∀t ≥ 1.

It can be shown that incorporating the above additional constraints into the Ramsey problem does provide

an offset to the increasing and divergent force of the Ht term and offers an opportunity for the existence

of Ramsey steady states.

The constraints above are known as the ad hoc debt limit. By analogy with the household savings

problem in Aiyagari (1994), Aiyagari, Marcet, Sargent, and Seppala (2002) also considered the so-called

natural debt limit, which is defined as “the maximum debt that could be repaid almost surely under an

optimal tax policy” (p. 1225). What will happen if the government’s natural debt limit is incorporated into

the Ramsey problem? This is an interesting question. However, answering the question is a formidable

task, in that the government’s natural debt limit in the Ramsey problem is endogenously determined and

evolves dynamically according to the policy choice in a non-trivial way.24 At any rate, explaining this

and other related issues in detail is beyond the scope of the present study and we leave it to future works.

24In the absence of capital, Aiyagari, Marcet, Sargent, and Seppala (2002) were able to derive the natural debt limit explic-

itly; see p. 1232 of their paper. However, in the presence of capital, the derivation becomes much more difficult.
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A Appendix

A.1 Deriving the Household Flow Budget Constraints

The measurability conditions (6) at time t and t+ 1 equal, respectively

Pt−1ât(θ
t−1)πt(θ

t) =
∑

s≥t

∑

θs�θt

ps(θ
s) [cs(θ

s)− ŵsls(θ
s)] , (43)

Ptât+1(θ
t)πt+1

(
θt+1

)
= Ptât+1(θ

t)π(θt+1|θt)πt(θ
t) =

∑

s≥t+1

∑

θs�θt+1

ps(θ
s) [cs(θ

s)− ŵsls(θ
s)] . (44)

Summing over θt+1 on both sides of (44) gives

Ptât+1(θ
t)πt(θ

t) =
∑

s≥t+1

(∑
θt+1

∑
θs�(θt,θt+1)

ps(θ
s) [cs(θ

s)− ŵsls(θ
s)]

)

=
∑

s≥t+1

∑
θs�θt ps(θ

s) [cs(θ
s)− ŵsls(θ

s)] .
(45)

Subtracting (45) from (43) leads to

Pt−1ât(θ
t−1)πt(θ

t)− Ptât+1(θ
t)πt(θ

t) = pt(θ
t)
[
ct(θ

t)− ŵtlt(θ
t)
]
= Pt

[
ct(θ

t)− ŵtlt(θ
t)
]
πt(θ

t).

Using (2) with Pt−1/Pt = Rt, we obtain from the above equation

ct(θ
t) + ât+1(θ

t) = ŵtlt(θ
t) +Rtât(θ

t−1),

which represents the household flow budget constraints.

Putting (6) and (7) together yields ât+1(θ
t) ≥ 0, ∀θt, t.

A.2 Proof of Proposition 1

With the imposition of Assumption 1, the FOC for consumption (9) yields

ct(θ
t) = (

ζt(θ
t)Pt

βt
)−

1

α .

32



Summing ct(θ
t) over θt gives the aggregate consumption at time t:

Ct =
∑

θt

ct(θ
t)πt(θ

t) =
∑

θt

(
ζt(θ

t)Pt

βt
)−

1

απ(θt)

= (
Pt

βt
)−

1

α

∑

θt

ζt(θ
t)−

1

απt(θ
t) = (

Pt

βt
)−

1

αHt,

which gives (18). Plugging (18) back into (9) gives (16).

From (10), we have

lt(θ
t) = (

θ
γ
t ζt(θ

t)ŵtPt

βt
)

1

γ−1 .

Summing lt(θ
t) over θt gives the aggregate labor supply at time t:

Lt =
∑

θt

lt(θ
t)πt(θ

t) =
∑

θt

(
θ
γ
t ζt(θ

t)ŵtPt

βt
)

1

γ−1π(θt)

= (
ŵtPt

βt
)

1

γ−1

∑

θt

θ
γ

γ−1

t ζt(θ
t)

1

γ−1πt(θ
t) = (

ŵtPt

βt
)

1

γ−1Jt,

which together with (18) gives (19). Plugging (19) back into (10) gives (17).

A.3 Proof of Proposition 2

“Only if” part: Condition 1 of Proposition 2—the resource constraints—is implied by a competitive

equilibrium since it is part of the definition. Note also that Conditions 5 and 6 of Proposition 2 are implied

by (8) and (11) from the household problem in a competitive equilibrium.

The remaining proof is to show that the time-zero budget constraint (3), the measurability conditions

(6), and the borrowing constraints (7) in the household problem can be re-expressed as Conditions 2-4

of Proposition 2. Substituting (2), (16)-(17) and (18)-(20), all of which build on the household’s optimal

behavior, into (3)-(7), we obtain Conditions 2-4.

“If” part: Suppose the sequence of asset holdings {ât+1(θ
t)}

∞

t=1
, aggregate allocations {Ct, Lt, Gt, Kt+1}

∞

t=1,

and cumulative multipliers {ζt(θ
t)}

∞

t=1
with the associated aggregate multipliers {Ht, Jt}

∞

t=1 satisfy Con-

ditions 1-6 stated in Proposition 2. We show that a competitive equilibrium of the HAIM economy can

be constructed in the following way.
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First, we pick the prices and taxes as defined below:

rt = FK(Kt, Lt), (46)

wt = FL(Kt, Lt), (47)

Pt = βtC−α
t Hα

t , (48)

1− τk,t+1 =

Pt

Pt+1
− 1

FK(Kt+1, Lt+1)− δ
=

1

β

(
Ct

Ct+1

)
−α (

Ht

Ht+1

)α

− 1

FK(Kt+1, Lt+1)− δ
, (49)

1− τl,t =
L
γ−1

t J
1−γ
t

FL(Kt, Lt)C
−α
t Hα

t

. (50)

Note that (46)-(47) correspond to the profit-maximization conditions of the representative firm and that

(49) ensures that the no-arbitrage condition (2) holds.

Second, we show that the household problem can be solved. Let the individual consumption and labor

allocations be given by (16) and (17). Then, individual consumption and labor allocations together with

prices defined in (46)-(50) satisfy the first-order conditions, (9) and (10), of the household problem. To

derive the household’s Euler equation, we combine the individual consumption allocations, prices defined

in (46)-(50), and Conditions 5-6. The time-zero budget constraint (3), the measurability conditions (6),

and the borrowing constraints (7) in the household problem can be obtained by using (46)-(50) plus

Conditions 2-4.

Third, we need to make sure that all markets clear. Plugging in individual consumption allocations

(16) into Condition 1 implies that the market clearing condition of the goods market is satisfied. The labor

market clearing condition is achieved by aggregating (17) across all households. For the asset market, we

pick {Bt+1}
∞

t=1 such that

Bt+1 =
∑

θt

ât+1(θ
t)−Kt+1,

which ensures that the asset market clears in each time period.

The last condition to be met in competitive equilibrium is the government budget constraint. From
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(3), we have

B1 +K1 = â1 =
∑

t≥1

Pt

∑

θt

[
ct(θ

t)πt(θ
t)− ŵtlt(θ

t)πt(θ
t)
]

=
∑

t≥1

Pt [Ct − wtLt + τl,twtLt]

=
∑

t≥1

Pt [Ct + rtKt − F (Kt, Lt) + τl,twtLt] ,

where the derivation has made use of ŵt = wt(1 − τl,t) and F (Kt, Lt) = wtLt + rtKt. Utilizing the

resource constraint and the no-arbitrage condition (2) then gives

B1 +K1 =
∑

t≥1

Pt [rtKt −Kt+1 + (1− δ)Kt + τl,twtLt −Gt]

=
∑

t≥1

Pt [(1 + (1− τk,t) (rt − δ))Kt −Kt+1 + τk,t (rt − δ)Kt + τl,twtLt −Gt]

=
∑

t≥1

Pt

[
Pt−1

Pt

Kt −Kt+1 + τk,t (rt − δ)Kt + τl,twtLt −Gt

]

= P0K1 +
∑

t≥1

Pt [τk,t (rt − δ)Kt + τl,twtLt −Gt] ,

which leads to the time-zero government budget constraint since we normalize P0 = 1.

A.4 Proof for the Case of α < 1 with limt→∞Mt > 0

Part 1 of both (34) and (35) vanish in steady state because of βR < 1. Part 2 of (35) is positive in steady

state because of limt→∞ Nt > 0. Given α < 1, Part 2 of (34) is also positive because of limt→∞ Mt > 0 by

presumption. Thus, given βR < 1, the divergent µt implied by limt→∞

(
βt

∏t

s=1 Rs

)
µt > 0 contradicts

neither (34) nor (35) in steady state. We conclude that both the divergent µt and a convergent µt+1/µt

can coexist and be consistent with the FOCs (29)-(31) in steady state.

Using (34), we have

µt+1

µt

=
C−α

t+1

∑
θt+1

(
ct+1(θt+1)

Ct+1

)1−α

πt+1(θ
t+1) + (1− α)Mt+1/β

t+1
∏t+1

s=1 Rs

C−α
t

∑
θt

(
ct(θt)
Ct

)1−α

πt(θt) + (1− α)Mt/βt
∏t

s=1 Rs

=

(
βt

∏t

s=1 Rs

)
C−α

t+1

∑
θt+1

(
ct+1(θt+1)

Ct+1

)1−α

πt+1(θ
t+1) + (1− α)Mt+1/βRt+1

(
βt

∏t

s=1 Rs

)
C−α

t

∑
θt

(
ct(θt)
Ct

)1−α

πt(θt) + (1− α)Mt

.
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Since both
(

βt
∏

t

s=1 Rs

)

C−α

t+1

∑

θt+1

(

ct+1(θt+1)
Ct+1

)1−α

πt+1(θ
t+1) and

(

βt
∏

t

s=1 Rs

)

C−α

t

∑

θt

(

ct(θt)
Ct

)1−α

πt(θ
t) equal zero in the limit with βR < 1 in steady state, we obtain

lim
t→∞

µt+1

µt

=
1

βR
lim
t→∞

Mt+1

Mt

,

where limt→∞

Mt+1

Mt

is a constant in steady state. The FOC (31) in steady state then yields

1 = (1/R) lim
t→∞

Mt+1

Mt

[FK (K,L)− δ + 1] , (51)

which fails to satisfy the MGR, unless limt→∞

Mt+1

Mt

= βR < 1. However, the result of limt→∞

Mt+1

Mt

< 1

implies that Mt itself goes to zero in the limit, which contradicts our presumption of limt→∞ Mt > 0.

Given that limt→∞

Mt+1

Mt

≥ 1 must hold, we obtain from (2) and (51)

R = [1 + (1− τk)(r − δ)] ≥ [FK (K,L)− δ + 1] ,

which shows that τk ≤ 0 at the Ramsey steady state.
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1 Justify our infinite-dimensional Lagrangian

One possible way of justification is to follow the work of Alvarez and Jermann (2000). In terms of our

notation, they mainly imposed two conditions:

(i) The implied interest rates for the allocation {ct (θ
t)} are high, i.e.,

∑
t

∑
θt
ptct (θ

t) < ∞ (see

Definition 3.4 of their paper).

(ii) For each θt, there is a constant b(θt) such that |u (ct (θ
t))| ≤ b(θt)u′ (ct (θ

t)) ct (θ
t) for all t (see

equation (4.6) of their paper).

With the imposition of these two conditions, Alvarez and Jermann (2000) showed that the resulting

Lagrangian of their problem is finite. Condition (ii) is satisfied under our Assusmption 1 if α 6= 1.

However, the log utility (i.e., α = 1) fails to satisfy the condition (see Remark 1 after equation (4.6)

in their paper). In view of the fact that our Assumption 1 allows for the log utility case, we turn to the

work of Le Van and Saglam (2004), which provides a set of sufficient conditions to justify expressing the

Lagrangian L̃ as an infinite sum.1

Let ℓ∞ denote the space of bounded sequences and ℓ1 the space of summable sequences. Le Van and

Saglam (2004) considered the following optimization problem (P):

min f(x) s.t. g(x) ≤ 0 with x ∈ ℓ∞,

where f : ℓ∞ → R ∪ {+∞}, g(x) = {gt(x)}
∞

t=0
with each gt : ℓ∞ → R ∪ {+∞}, and f and gt are

convex functions. Define ̥ = {x ∈ ℓ∞ | f(x) < +∞} and Γ = {x ∈ ℓ∞ | gt(x) < +∞, ∀t}. Since

the domain of the problem P belongs to ℓ∞, in applying the method of Lagrange multipliers to solve the

problem, there are questions with regard to whether the Lagrange multipliers exist and whether they can

be represented by a summable sequence in ℓ1.

It is important to recognize that f and gt are functions from ℓ∞ to R ∪ {+∞}. Dechert (1982)

considered the situation where f and gt are functions from ℓ∞ to R. Le Van and Saglam (2004) extended

it to the situation where f and gt are functions from ℓ∞ to R∪{+∞}. This extension is important, in that

it allows for the case where − log c goes to infinity as c → 0 and the case where gt(x) may go to infinity.

To present multipliers as a summable sequence of real numbers in the infinite dimensional space,

Le Van and Saglam (2004) put restrictions on the asymptotic behavior of the objective functional f(x)

and the constraint functions g(x). For x, y ∈ ℓ∞ and T ∈ N, define xT (x, y) = xt if t ≤ T and

xT (x, y) = yt if t > T . Le Van and Saglam (2004) proposed the following:

1Other relevant works include Dechert (1982) and Rustichini (1998). Golosov, Tsyvinski, and Werquin (2016) provided a

survey on the issue.
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(1) Assumption f. If x ∈ ̥, y ∈ ℓ∞ and xT (x, y) ∈ ̥ for all T large enough, then limT→∞ f(xT (x, y)) =

f(x).

(2) Assumption g. If x, y ∈ Γ and xT (x, y) ∈ Γ for all T large enough, then

(a) limT→∞ gt(x
T (x, y)) = gt(x), ∀t.

(b) limt→∞

[
gt(x

T (x, y))− gt(y)
]
= 0 for all T large enough.

(c) ∃M such that ‖g(xT (x, y)‖ ≤ M for all T large enough.

Since the sequence xT (x, y) differs from x only for t > T , Assumption g-(a) basically requires that

gt(x) at t be little affected by changes in the distant future T ≫ t. Since the sequence xT (x, y) differs

from y only for a finite number of times, Assumption g-(b) basically requires that gt(x
T (x, y)) not be

very different from gt(y) when t is large. Assumption g-(c) is satisfied when g is continuous on Γ.

(3) Slater condition. ∃x0 ∈ ℓ∞ such that supt gt(x
0) < 0.

This condition requires that the feasible set of the problem P have an interior point.

We have the following result.

Theorem (Le Van and Saglam (2004)). Suppose (i) g(x) ∈ ℓ∞, ∀x ∈ Γ, (ii) Assumptions f and g are

satisfied, and (iii) x0 ∈ ℓ∞ satisfies the Slater condition. If x∗ is a solution of the problem P and

xT (x∗, x0) ∈ Γ ∩̥ for all T large enough, then there exists Λ ∈ ℓ1+ such that:

∀x ∈ ℓ∞, f(x) + Λg(x) ≥ f(x∗) + Λg(x∗) with Λg(x∗) = 0.

Let us incorporate an additional constraint g′(x) = 0 into the problem P. If g′(x) is linear and g′(x) =

0 holds as an equality all the time, then the Slater condition becomes: ∃x0 ∈ ℓ∞ such that supt gt(x
0) < 0

and g′(x0) = 0; see Boyd and Vandenberghe (2004).

We proceed to show that the Le Van-Saglam theorem applies here.

Let x = {ct(θ
t), lt(θ

t), ât(θ
t−1)}∞

t=1, f(x) = −U, and g(x) = {g1(x), g2t(x), g
′
t
(x)} with

g1(x) =
∑

t≥1

∑

θt

pt(θ
t)
[
ct(θ

t)− ŵtlt(θ
t)
]
− â1,

g2t(x) = −
∑

s≥t

∑

θs�θt

ps(θ
s) [cs(θ

s)− ŵsls(θ
s)] , ∀t ≥ 2, θt,

3



g′
t
(x) =

∑

s≥t

∑

θs�θt

ps(θ
s) [cs(θ

s)− ŵsls(θ
s)]− Pt−1ât(θ

t−1)πt(θ
t), ∀t ≥ 2, θt,

where g1(x) is the household’s time-zero budget constraint, {g2t(x)} corresponds to the borrowing con-

straints, and {g′
t
(x)} to the measurability conditions.

(i) By the definition of Γ, it is obvious that g(x) ∈ ℓ∞, ∀x ∈ Γ.

(ii) Assumptions f and g.

Assumption f.

Let x̂ = {ct(θ
t), lt(θ

t)}∞
t=1 ∈ ̥ and ŷ = {c′

t
(θt), l′

t
(θt)}∞

t=1 ∈ ℓ∞ with xT (x̂, ŷ) ∈ ̥ for all T large

enough. We have

f(xT (x̂, ŷ)) = −U(xT (x̂, ŷ)) =

−
T∑

t=1

βt
∑

θt

[
u(ct(θ

t))− v

(
lt(θ

t)

θt

)]
πt(θ

t)

︸ ︷︷ ︸
Part 1

−
∞∑

t=T+1

βt
∑

θt

[
u(c′

t
(θt))− v

(
l′
t
(θt)

θt

)]
πt(θ

t)

︸ ︷︷ ︸
Part 2

.

Because ŷ = {c′
t
(θt), l′

t
(θt)}∞

t=1 ∈ ℓ∞ (bounded sequences), xT (x̂, ŷ) ∈ ̥ = {x ∈ ℓ∞ | f(x) <

+∞}, and βT → 0 as T → ∞, Part 2 of the above equation will vanish as T → ∞ and, therefore, we

have limT→∞ f(xT (x̂, ŷ)) = f(x̂).

Assumption g.

Let x = {ct(θ
t), lt(θ

t), ât(θ
t−1)}∞

t=1 and y= {c′
t
(θt), l′

t
(θt), â′

t
(θt−1)}∞

t=1, where x, y ∈ Γ and xT (x, y) ∈

Γ for all T large enough.

(a) Holding t fixed, we have gt(x
T (x, y)) → gt(x) for T sufficiently large. This is true because y

belongs to ℓ∞ (bounded sequences), xT (x, y) ∈ Γ = {x ∈ ℓ∞ | gt(x) < +∞, ∀t}, and PT =
∏

T

s=1

1

Rs

with PT → 0 as T → ∞.

(b) For a fixed T , it is clear that gt(x
T (x, y)) = gt(y) as t > T .

(c) gt(x) is differential on Γ and hence is continuous on Γ.

(iii) Slater condition.

Let x0 = {c0
t
(θt), l0

t
(θt), â0

t
(θt−1)}∞

t=1 with {c0
t
(θt)}∞

t=1 = (c1, c̄, c̄, ...) , ∀θ
t,{l0

t
(θt)}∞

t=1 =
(
l1, l̄, l̄, ...

)
, ∀θt,

and {â0
t
(θt−1)}∞

t=1 specified below. Given {Pt, ŵt}
∞
t=1, there exist 0 < c̄ < ∞ and 0 < l̄ < ∞ such that

0 <
∑

s≥t

Ps

(
c̄− ŵsl̄

)
< ∞, ∀t ≥ 2, (1)

4



where Ps =
s∏

j=1

1

Rj
. Given â1 > 0 by our setup, let us pick {â0t (θ

t−1)}t≥2 = {â0t}t≥2, ∀θ
t−1, to satisfy

Pt−1â
0

t =
∑

s≥t

Ps

(
c̄− ŵsl̄

)
, ∀t ≥ 2. (2)

By (1) and (2), we know that 0 < â0
2
< ∞. Thus, there exist 0 < c1 < ∞ and 0 < l1 < ∞ such that

â1 > P1

(
c1 − ŵ1l1 + â0

2

)
. (3)

Given x0 that satisfies (1)-(3), we verify the Slater condition. First, we have

g2t(x
0) = −

∑

s≥t

∑

θs�θt

ps(θ
s)
(
c̄− ŵsl̄

)

= −
∑

s≥t

∑

θs�θt

Psπs(θ
s)
(
c̄− ŵsl̄

)
< 0, ∀t ≥ 2, θt,

where the last strict inequality holds because of (1).

Turning to g′t(x
0), we have

g′t
(
x0
)
=

∑

s≥t

∑

θs�θt

ps(θ
s)
(
c̄− ŵsl̄

)
− Pt−1â

0

tπt(θ
t)

=
∑

s≥t

∑

θs�θt

Psπs−t(θ
s|θt)πt

(
θt
) (

c̄− ŵsl̄
)
− Pt−1â

0

tπt(θ
t)

= πt

(
θt
)
[
∑

s≥t

Ps

(
c̄− ŵsl̄

)
− Pt−1â

0

t

]
, ∀t ≥ 2, θt,

where the last equality utilizes
∑

θs�θt πs−t(θ
s|θt) = 1. Because of (2), the last equality implies g′t (x

0) =

0, ∀t ≥ 2, θt.

As for g1(x
0), we have

g1(x
0) =

∑

θ1

π1

(
θ1
)

P1 (c1 − ŵ1l1) +

∑

s≥2

∑

θs�θ1

Psπs−1

(
θs|θ1

) (
c̄− ŵsl̄

)

− â1

=
[
P1 (c1 − ŵ1l1) + â0

2

]
− â1,

where the last equality invokes
∑

s≥2

∑
θs�θ1 Psπs−1 (θ

s|θ1)
(
c̄− ŵsl̄

)
=

∑
s≥2

Ps

(
c̄− ŵsl̄

)
= P1â

0

2
.

By (3), we obtain g1(x
0) < 0.
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Finally, since {c0t (θ
t), l0t (θ

t)}∞t=1∈ ̥, it is clear that xT (x∗, x0) ∈ Γ ∩̥ for all T large enough.

2 GHH Preferences

We replace Assumption 1 (separable isoelastic preferences) with Assumption 2 (GHH preferences) and

report the results derived.

Households maximize their lifetime utility

U =
∞∑

t=1

βt
∑

θt

[
u(ct(θ

t),
lt(θ

t)

θt
)

]
πt(θ

t),

where u(.) takes the following form:

Assumption 2. u(c, l
θ
) = 1

1−α

(
c− 1

γ

(
l
θ

)γ)1−α

, α > 0, γ > 1.

2.1 Household Problem

The household Lagrangian is given by

L̂ = min
{χ,ν,ϕ}

max
{c,l,â}

∞∑

t=1

βt
∑

θt

[
u(ct(θ

t),
lt(θ

t)

θt
)

]
πt(θ

t)

−

∞∑

t=1

∑

θt

ζt(θ
t)pt(θ

t)
[
ct(θ

t)− ŵtlt(θ
t)
]
+ χâ1

−

∞∑

t=2

∑

θt

νt(θ
t)Pt−1ât(θ

t−1)πt(θ
t),

where

ζt+1(θ
t+1) = ζt(θ

t)− νt+1(θ
t+1)− ϕt+1(θ

t+1) with ζ1 = χ > 0.

The FOCs (9)-(11) become

βt

(
ct(θ

t)−
1

γ

(
lt (θ

t)

θt

)γ)−α

= ζt(θ
t)Pt,

βt

(
ct(θ

t)−
1

γ

(
lt (θ

t)

θt

)γ)−α

lt
(
θt
)γ−1

θ
−γ
t = ŵtζt(θ

t)Pt,

6



∑

θt+1≻θt

νt+1(θ
t+1)π(θt+1|θt) = 0.

The consumption and labor sharing rules are given, respectively, by

cs(θt) ≡

ct(θ
t)− 1

γ

(
lt(θt)
θt

)γ

Ct −
1

γ

L
γ
t

x
γ−1

t

=
ζt(θ

t)
−1

α

Ht

,

ls(θt) ≡
lt (θ

t)

Lt

=
θ

γ

γ−1

t

xt

,

where Ht ≡
∑

θt ζt(θ
t)

−1

α πt(θ
t) and xt ≡

∑
θt θ

γ

γ−1

t πt (θ
t).

The prices (18)-(20) become

Pt = βtHα
t

(
Ct −

1

γ

L
γ
t

x
γ−1

t

)
−α

,

ŵt =

(
Lt

xt

)γ−1

,

1

Rt+1

=
Pt+1

Pt

= β



Ct+1 −

1

γ

L
γ

t+1

x
γ−1

t+1

Ct −
1

γ

L
γ
t

x
γ−1

t




−α (
Ht+1

Ht

)α

.

Equation (21) becomes

κt

(
θt
)

≡ Pt

(
ct(θ

t)− ŵtlt(θ
t)
)

= βtHα
t

(
Ct −

1

γ

L
γ
t

x
γ−1

t

)
−α

[(
Ct −

1

γ

L
γ
t

x
γ−1

t

)
ζt(θ

t)
−1

α

Ht

−
γ − 1

γ

(
Lt

xt

)γ

θ
γ

γ−1

t

]
.

2.2 Ramsey Problem

The planner Lagrangian is given by

7



L = max
{Ct,Lt,Kt+1,{ât+1(θt)},{ζt(θt)}}

∑

t≥1

βtW (t) +
∑

t≥1

βtµt [F (Kt, Lt) + (1− δ)Kt −Kt+1 − Ct −Gt]

+
∑

t≥1

∑

θt

ξt(θ
t)

[
ζt(θ

t)−
∑

θt+1≻θt

ζt+1(θ
t+1)π(θt+1|θt)

]
− χP â1

−
∑

t≥2

βt−1Hα
t−1

(
Ct−1 −

1

γ

L
γ
t−1

x
γ−1
t−1

)−α∑

θt−1

ât(θ
t−1)

(
∑

θt≻θt−1

νP
t (θ

t)π(θt|θt−1)

)
πt−1(θ

t−1)

−
∑

t≥2

βt−1Hα
t−1

(
Ct−1 −

1

γ

L
γ
t−1

x
γ−1
t−1

)−α∑

θt−1

ât(θ
t−1)




∑
θt≻θt−1 φt(θ

t)π(θt|θt−1)×[∑
θt≻θt−1 ζt(θ

t)π(θt|θt−1)− ζt−1(θ
t−1)

]


 πt−1(θ

t−1)

with

W̃ (t) ≡
∑

θt

πt(θ
t)




1

1− α

(
ζt(θ

t)
−1

α

Ht

[
Ct −

1

γ

L
γ
t

x
γ−1
t

])1−α

︸ ︷︷ ︸
Part 1

+β−tηt(θ
t)κt

(
θt
)

︸ ︷︷ ︸
Part 2



,

where

ηt+1(θ
t+1) = ηt(θ

t) + νP
t+1(θ

t+1) + ϕP
t+1(θ

t+1), η1 = χP > 0.

The FOCs (28)-(31) remain unchanged, but WC(t) of (32) and −WL(t) of (33) are modified to be

W̃C(t) =

(
Ct −

1

γ

L
γ
t

x
γ−1
t

)−α∑

θt

cs(θt)1−απt(θ
t)

+ (1− α)Hα
t

(
Ct −

1

γ

L
γ
t

x
γ−1
t

)−α

M̃t

+
α (γ − 1)

γ
Hα

t

(
Ct −

1

γ

L
γ
t

x
γ−1
t

)−α−1(
Lt

xt

)γ

xtÑt,

−W̃L(t) =

(
Lt

xt

)γ−1(
Ct −

1

γ

L
γ
t

x
γ−1
t

)−α∑

θt

cs(θt)1−απt(θ
t)

+ (1− α)Hα
t

(
Ct −

1

γ

L
γ
t

x
γ−1
t

)−α(
Lt

xt

)γ−1

M̃t

+(γ − 1)Hα
t

(
Ct −

1

γ

L
γ
t

x
γ−1
t

)−α
[(

Lt

xt

)γ−1

+
α

γ

(
Ct −

1

γ

L
γ
t

x
γ−1
t

)−1(
Lt

xt

)2γ−1

xt

]
Ñt,
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where M̃t ≡
∑

θt cs(θ
t)ηt(θ

t)πt(θ
t) and Ñt ≡

∑
θt ls(θ

t)ηt(θ
t)πt(θ

t); M̃t and Ñt correspond to Mt and

Nt under Assumption 1.

Using W̃C(t) and −W̃L(t) plus Pt = βtHα
t

(
Ct −

1
γ

L
γ
t

x
γ−1

t

)
−α

and Pt =
∏t

s=1
1
Rs

, one can rewrite the

FOCs (29) and (30) as


 H−α

t

∑
θt cs(θ

t)1−απt(θ
t) + (1− α) M̃t

+α(γ−1)
γ

(
Ct −

1
γ

L
γ
t

x
γ−1

t

)
−1 (

Lt

xt

)γ

xtÑt


 = (βt

t∏

s=1

Rs)µt, (4)

ŵt


 H−α

t

∑
θt cs(θ

t)1−απt(θ
t) + (1− α) M̃t

+α(γ−1)
γ

(
Ct −

1
γ

L
γ
t

x
γ−1

t

)
−1 (

Lt

xt

)γ

xtÑt + (γ − 1) Ñt


 = (βt

t∏

s=1

Rs)µtFL(Kt, Lt), (5)

where we have used ŵt =
(

Lt

xt

)γ−1

in expressing the second equation. Putting (4) and (5) together leads

to

(βt

t∏

s=1

Rs)µt =
ŵt (γ − 1) Ñt

FL(Kt, Lt)− ŵt

. (6)

A finite positive µt in the limit leads to limt→∞ Ñt = 0 according to (6). Given limt→∞ Ht = ∞, we then

obtain from (4) that limt→∞ M̃t = 0 at the Ramsey steady state. We have the following result.

Proposition 5 Impose Assumption 2. Suppose that there is a Ramsey steady state with βR < 1 and

that the shadow price of resources, µt, converges to a finite positive value in the limit. Then

limt→∞ M̃t = limt→∞ Ñt = 0 at the Ramsey steady state.

By contrast, if limt→∞ Ñt > 0. This then implies from (6) that limt→∞(βt
∏t

s=1 Rs)µt > 0, which in

turn implies that µt must explode in the limit, given βR < 1 in steady state.

To be consistent with limt→∞(βt
∏t

s=1 Rs)µt > 0, it requires that the left-hand side of both (4) and

(5) be strictly positive in the limit. This is possible since limt→∞ Ñt > 0. Thus, unlike under Assumption

1, a Ramsey steady state with βR < 1 is possible for the case of α ≥ 1 as well as for the case of α < 1

under Assumption 2.

Finally, we examine whether the MGR holds at the Ramsey steady state. Using FL(Kt, Lt) − ŵt =

wtτl,t, (6) gives

lim
t→∞

µt+1

µt

= lim
t→∞

1

βRt+1




ŵt+1(γ−1)Ñt+1

wt+1τl,t+1

ŵt(γ−1)Ñt

wtτl,t


 =

1

βR
lim
t→∞

Ñt+1

Ñt

,

where we have utilized ŵt = ŵt+1 > 0 and wtτl,t = wt+1τl,t+1 > 0 in steady state.2 The FOC (31) in

2Equation (6) implies that τl,t ≥ 0. We can further rule out τl,t = τl,t+1 = 0 in steady state. Using ŵt = wt(1 − τl,t),
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steady state then yields

1 = (1/R) lim
t→∞

Ñt+1

Ñt

[FK (K,L)− δ + 1] , (7)

which fails to satisfy the MGR, unless limt→∞

Ñt+1

Ñt

= βR < 1. However, the result of limt→∞

Ñt+1

Ñt

< 1

implies that Ñt itself goes to zero in the limit, which contradicts the result of limt→∞ Ñt > 0. Given that

limt→∞

Ñt+1

Ñt

≥ 1 must hold, we obtain from (2) and (7)

R = [1 + (1− τk)(r − δ)] ≥ [FK (K,L)− δ + 1] ,

which shows that τk ≤ 0 at the Ramsey steady state.

To sum up, we state:

Proposition 6 Impose Assumption 2.

1. The shadow price of resources, µt, must explode in the limit if a Ramsey steady state with βR < 1

exists.

2. A Ramsey steady state with βR < 1 is possible, regardless of whether α > 1, α = 1, or α < 1;

however, the MGR fails to hold at the Ramsey steady state and the corresponding capital tax is

non-positive.
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equation (5) yields






H−α
t

∑

θt cs(θt)1−απt(θ
t) + (1− α) M̃t

+α(γ−1)
γ

(

Ct −
1
γ

L
γ
t

x
γ−1

t

)

−1 (
Lt

xt

)γ

xtÑt

+(γ − 1) Ñt
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Given that limt→∞ Ñt > 0, the result of τl,t = τl,t+1 = 0 in steady state will lead to a contradiction between the above

equality and equation (4).

10



GOLOSOV, M., A. TSYVINSKI, AND N. WERQUIN (2016): “Recursive Contracts and Endogenously

Incomplete Markets,” in Handbook of Macroeconomics, ed. by J. B. Taylor, and H. Uhlig, vol. 2, pp.

725–841. North Holland, Amsterdam.

LE VAN, C., AND H. C. SAGLAM (2004): “Optimal Growth Models and the Lagrange Multiplier,”

Journal of Mathematical Economics, 40(3-4), 393–410.

RUSTICHINI, A. (1998): “Lagrange Multipliers in Incentive-Constrained Problems,” Journal of Mathe-

matical Economics, 29(4), 365–380.

.

11


