
Implementing the MPI Process Topology Mechanism∗

Jesper Larsson Träff
C&C Research Laboratories, NEC Europe Ltd.

Rathausallee 10, D-53757 Sankt Augustin, Germany
traff@ccrl-nece.de

Abstract

The topology functionality of the Message Passing Interface (MPI) provides a
portable, architecture-independent means for adapting application programs to the
communication architecture of the target hardware. However, current MPI implemen-
tations rarely go beyond the most trivial implementation, and simply performs no
process remapping.

We discuss the potential of the topology mechanism for systems with a hierarchical
communication architecture like clusters of SMP nodes. The MPI topology functional-
ity is a weak mechanism, and we argue about some of its shortcomings. We formulate
the topology optimization problem as a graph embedding problem, and show that for
hierarchical systems it can be solved by graph partitioning. We state the properties
of a new heuristic for solving both the embedding problem and the “easier” graph
partitioning problem.

The graph partitioning based framework has been fully implemented in MPI/SX
for the NEC SX-series of parallel vector computers. MPI/SX is thus one of very few
MPI implementations with a non-trivial topology functionality. On a 4 node NEC SX-6
significant communication performance improvements are achieved with synthetic MPI
benchmarks.

1 Introduction

To achieve portability, the Message Passing Interface (MPI) consciously hides the commu-
nication architecture of the underlying parallel system from the application programmer,
who works abstractly with sets of processes and communication modes like point-to-point,
one-sided and collective communication [3, 11]. It is the responsibility of every MPI im-
plementation to exploit its target architecture as efficiently as possible by using the most
suitable communication channels and best possible algorithms for collective communication
operations. But even the best MPI implementation cannot ensure that for instance frequently
communicating processes are placed “close” to each other. On todays clustered/hierarchical

∗0-7695-1524-X/02 $17.00 c©2002 IEEE

1

or even wide-area systems where communication performance between processes is highly
dependent on process placement, proper process assignment is an important performance is-
sue. Virtual communication topologies and a possibility for process remapping is the means
within MPI of adapting applications to specific communication architectures [11, Chapter
6]. The topology mechanism thus provides a handle for the application programmer to more
efficiently utilize systems with a hierarchical communication structure as exhibited for in-
stance by clusters of SMP nodes. Unfortunately, current MPI implementations do not go
beyond the most trivial realization of the topology functionality, and essentially ignore the
virtual topology information.

In this paper we present a general framework for implementing the topology function-
ality on systems whose communication system can be modeled by a (weighted) graph, and
formulate the resulting optimization problems as graph-embedding and graph-partitioning
problems. These problems are NP-complete, but there are a number of heuristics that can
produce good solutions cheaply. We state the properties of a new Kernighan-Lin like heuris-
tic for direct graph k-partitioning [12]. The heuristic can give better results than standard
algorithms using recursive bipartitioning, and in particular allows to improve not only the
value of a total cut, but also the maximum value of edges adjacent to any one subset. This is
an important property for the topology application. The heuristic has been incorporated into
the MPI/SX implementation for the NEC SX-series of parallel vector computers. In multi-
node SX-configurations up to 8 processors per node can communicate via shared memory,
and nodes are interconnected via the ultra-fast IXS crossbar switch. Multi-node SX-systems
are examples of high-performance hierarchical systems. We give results for synthetic MPI
benchmarks using various graph and grid communication patterns. These have been con-
structed so as to allow most communication to be mapped to intra-node, shared memory
communication. The results show that the partitioning heuristic is able to achieve a good
remapping, resulting in significant improvements in communication performance of up to a
factor of 9.

2 MPI Process Topologies

In MPI a set of processes is represented by a communicator, which also represents a (static)
mapping of MPI processes to physical processors. A virtual process topology is a commu-
nicator with user-provided, high-level information describing the preferred communication
pattern for the processes in the communicator. There are two types of virtual topologies. In
a graph topology the communication pattern is an undirected graph, and communication is
assumed to be between processes that are adjacent in the graph. In a Cartesian topology the
communication pattern is a d-dimensional grid, and communication is assumed to be among
processes at neighboring grid-points, which in the MPI standard implicitly means along a
dimension, not along a diagonal. From the application programmer’s point of view both
types of topologies describe a preferred or likely communication pattern: no communication
between processes in a virtual topology is forbidden.

Virtual topologies are created by collective operations. The calls MPI Graph create(comm,

..., reorder, &graphcomm) and MPI Cart create(comm, ..., reorder, &cartcomm) are
collective over the communicator comm and return new communicators graphcomm or cartcomm

2

with the topology information associated. The processes in the new communicator may be
reranked (if reorder is set to true): process i in the new communicator has rank i′ in the
“old” comm, and it may be that i �= i′. A pair of processes (i, j) that will communicate in the
virtual topology can thus be mapped to a pair (i′, j′) that in old comm happens to reside on,
say, the same shared-memory node. After remapping data redistribution may be necessary:
the “old” process i in comm may have to route data to process i in the new communicator,
that is to process i′ in the old comm. There is unfortunately no collective operation in MPI for
permutation routing to assist with this kind of redistribution. In the MPI_Graph_create call
all processes must supply the full communication graph. This is a non-scalable construct,
and furthermore error-prone since the processes must indeed supply an identical descrip-
tion of the graph. Apart from the remapping information provided implicitly by comparing
the old and new communicator, there are no high-level inquiry functions on virtual topolo-
gies to provide information on the potential communication improvements of a remapping.
This could be helpful for the application programmer in deciding (at run time) whether
the benefits of working with the reordered, new topology may outweigh the costs of data
redistribution.

In MPI a virtual topology is a static description of a communication pattern. It is not
possible to inform the MPI implementation about when communication will take place,
neither about the load (frequency, amount of data) of particular links. It is also not possible
to influence how the reranking should be performed, but as will be seen in the following
there is more than one possible optimization criterion. The application programmer has
no means of informing the MPI implementation which criterion is the most relevant. For
the Cartesian topology it is application dependent whether neighbors are found only along
the dimensions, or may also include the processes on the diagonals. The exact structure
of the neighborhood could possibly have influence on the remapping, but again there is no
means of informing the MPI implementation which neighborhood will be used in a given
application. A possible shortcoming of a different nature has to do with the fact that the
topology remapping problems are NP-hard (for most communication architectures), so that
there will be a tradeoff between solution quality and invested time. It is not possible via
MPI to specify how much time the MPI implementation should spend in finding a good
remapping satisfying the optimization criteria, but only the application programmer can
know how much he can afford to spend in a given situation.

A high-quality MPI will use the topology information provided by the user to reorder the
processes in the communicator to fit well with the underlying communication system. The
identity mapping, that is returning a communicator in which processes have not changed
ranks, is a legal implementation of the topology mechanism. Apparently, no current MPI
implementation goes beyond this trivial realization; a possible exception, though, is HP
MPI [4].

3 The MPI Topology Mapping Problem

Assume that the communication system of the target machine can be described by an undi-
rected, weighted host graph H = (V ′, E ′). The vertices V ′ correspond to processors, and the
weight w′(a, b) ≥ 0 of edge (a, b) ∈ E ′ models the cost of communication between processors

3

a and b. Thus weights are non-negative, and a larger weight shall mean more expensive
communication (higher latency, higher transmission cost). We assume that communication
from a to b has the same cost as communication from b to a. We assume that H is complete:
the underlying routing system will ensure that every processor can communicate with every
other processor. Note that this simplistic model does not account for traffic in the network
which may affect communication costs.

Let a virtual topology be given as an undirected, unweighted communication graph G =
(V,E). We handle MPI Cartesian topologies by the corresponding grid graphs, constructed
implicitly by the implementation. The nodes of G are MPI processes, and there is an edge
(u, v) between processes u and v if they want to communicate in the virtual topology. In an
MPI communicator there can be no overloading of processors, so |V | ≤ |V ′|; for simplicity
we assume |V | = |V ′| in this section)=.

The MPI topology mapping problem is to find an embedding of G into H, that is an
injective function π : V → V ′, that in some sense optimizes the placement of the processes
V onto the processors V ′ with respect to overall communication costs. There are at least
two relevant optimization criteria for the MPI topology mapping problem:

• Minimizing total Communication Costs by a mapping π : V → V ′ that minimizes

CC(π) =
∑

(u,v)∈E

w′(π(u), π(v))

i.e. minimizes the total use of expensive communication links (a, b) ∈ E ′ in the host
graph.

• Optimizing Load Balance by a mapping π : V → V ′ that minimizes

LB(π) = max
u∈V

∑

v∈ADJ(u)

w′(π(u), π(v))

where ADJ(u) = {v|(u, v) ∈ E}, i.e. minimizes the maximum number of expensive
communication links for any processor.

These problems are NP-complete, except for special graphs; they are trivial for complete
communication graphs since every edge of the host graph will be the target of an edge of the
communication graph.

For systems with a hierarchical communication system we can make more assumptions
about the host graph. We describe our hierarchical system by a tree as shown in Figure 1.
The individual processors appear at the leaves, each at the same depth h. We call this
a h-level system. The model can be extended to more complex systems, but we consider
only balanced systems here. An interior node at level � represents a set of processors that
can communicate with each other with the same cost w�(a, b). At level 0 all processors can
communicate via the most expensive medium of the system. At the leaves each processor
can communicate with itself via memory copy, and at intermediate levels processors can
communicate via for instance shared memory or other communication medium connecting
a subset of the processors of the system. Without loss of generality we assume that w0 ≥

4

a, b, . . .

ba

a, . . . b, c, . . . w1(b, c)

w2(c, c)w2(b, b)Level 2: c

w0(a, b)

Hierarchy tree T

Level 0:

Level 1:

Figure 1: Hierarchy tree for a two-level system.

w1 ≥ . . . ≥ w� ≥ . . . ≥ wh. The cost of communication between arbitrary processors a and
b is

w′(a, b) = wlca({a},{b})(a, b)

where lca(A,B) denotes the lowest common ancestor of two nodes A and B in the hierarchy
tree T . In other words processors communicate via the cheapest medium through which they
are connected. A homogeneous SMP cluster is an example of a 2-level hierarchical system.
Processors on the same shared memory node communicate via shared memory, all intra-node
communication can be assumed to be equally costly, and communication between processors
on different nodes is performed by a network that can often be assumed to be homogeneous:
inter-node communication cost is the same for all processor pairs.

We aim to show that the embedding problems for hierarchical systems can be solved by
(weighted) graph partitioning with generalized cost function. Let again G = (V,E) be a
communication graph with possible edge weights w(u, v) for (u,w) ∈ E. Let a k > 1 and
subset sizes s1, . . . , sk with

∑
si = |V | be given. Let V1, . . . , Vk be a partition of the vertex

set V of the communication graph into k disjoint subsets with |Vi| = si.
We now introduce a generalized cost function c(u, v) on G, which depends on both the

edge (u, v) ∈ E and on the current partition, expressed as a product w(u, v)W (i, j) of an
edge weight w(u, v) and a inter-subset weight W (i, j) for the subsets u ∈ Vi and v ∈ Vj

containing u and v. This kind of cost function was also used in [5].
Define

totalcut(V1, . . . , Vk, E, c) =
∑

{(u,v)∈E|u∈Vi,v∈Vj ,i�=j}
c(u, v)

maxcut(V1, . . . , Vk, E, c) = max
1≤i≤k

∑

{(u,v)∈E|u∈Vi,v �∈Vi}
c(u, v)

Similarly to the embedding problems, we define two optimization problems, namely

• minV1,...,Vk
totalcut(V1, . . . , Vk, E, c), i.e. finding a partition that minimizes the total

value of all edges between different subsets

• minV1,...,Vk
maxcut(V1, . . . , Vk, E, c), i.e. finding a partition that minimizes the maximum

number of edges adjacent to any subset of the partition

5

If we require all subsets to have size 1, and take the generalized cost function c(u, v)
to be w′(a, b) when u ∈ Va and v ∈ Vb, that is, when processes u and v are mapped to
processors a and b, it is clear that the embedding problem is a special case of the weighted
partitioning problem (with generalized cost function) with the correspondence totalcut = CC
and maxcut = LB. For hierarchical systems we can reduce the problem to a (more) standard
graph partitioning problem, in particular reduce the number k of subsets of the partition.

Theorem 1 Let G = (V,E) be a communication graph. For a h-level hierarchical system the
embedding problem of optimizing for total communication cost CC can be solved by weighted
graph partitioning (with generalized cost function), optimizing for totalcut with subset sizes
|Vi| equal to the sizes of the nodes of the hierarchical system at level h − 1.

Proof: We have seen above a trivial solution with k = |V | and all si = 1. To reduce the
number of subsets we make the following observations.

Let k be the number of nodes at level h − 1 in T , and number the nodes Ni arbitrarily
from 1 to k. Let the subset sizes for the partitioning problem be the sizes of the (h−1)-level
nodes, si = |Ni|. Let w0 be the cost of communication within the (h− 1)-level nodes (which
is assumed to be the same for all nodes Ni). We define the generalized cost function for the
graph partitioning problem by

c(u, v) = wlca(Ni,Nj)(u, v) − w0

when u ∈ Vi and v ∈ Vj.
Assume now that we have a partition V1, . . . , Vk that minimizes totalcut(V1, . . . , Vk, E, c).

From this partition we construct an embedding f of G by taking f(u) for u ∈ Vi to be an
arbitrary processor a in Ni. The value CC(f) is clearly independent of the choice of a, since
all a ∈ Ni have the same edge weights. We have

CC(f) = totalcut(V1, . . . , Vk, E, c) + |E|w0

since w0 by the definition of c(u, v) does not contribute to the cut edges, and since all
node-internal (non-cut) edges have weight w0.

We claim that this embedding is optimal. Assume for the sake of contradiction that
a better embedding π exists. From π we construct a partition V ′

1 , . . . , V
′
k of V by setting

V ′
i = {u ∈ V |π(u) ∈ Ni} (note that by the numbering of the nodes Ni, |Vi| = |V ′

i |). The
value of this partition with respect to the generalized cost function c is

totalcut′(V ′
1 , . . . , V

′
k , E, c) = CC(π) − |E|w0

Thus CC(π) < CC(f) implies totalcut′(V ′
1 , . . . , V

′
k , E, c) < totalcut(V1, . . . , Vk, E, c), contra-

dicting the optimality of the partition V1, . . . , Vk. �

For the important case of two-level systems, like clusters of SMP nodes, the embedding
problem reduces to unweighted graph partitioning. Such a system has intra-node communi-
cation costs w0 and inter-node communication costs w1 with w0 < w1.

6

Theorem 2 Let G = (V,E) be a communication graph. For two-level hierarchical systems
the embedding problem of optimizing for total communication cost can be solved by unweighted
graph partitioning , optimizing for totalcut with subset sizes |Vi| equal to the sizes of the level
one nodes of the hierarchical system.

Proof: Let an optimal partition V1, . . . , Vk be given from which we trivially construct an
embedding f as above. The value of the embedding is CC(f) = totalcut(V1, . . . , Vk, E)w1 +
|{(u, v) ∈ E|u ∈ Vi, v ∈ Vi, i = 1, . . . , k}|w0, that is the value of the cut plus the total weight
of the intra-node (non-cut) edges. Again this embedding is optimal. Assume on the contrary
that an embedding π with π with CC(π) < CC(f) exists. The value CC(π) can be written as
a cut value plus a contribution by the intra-node edges. It cannot be that CC(π) < CC(f) by
π having fewer intra-node edges than f , because then π would have more external edges, and
since w0 < w1 this would mean CC(π) > CC(f). Thus, the only way CC(π) < CC(f) would
be by having a smaller totalcut, contradicting that the partition V1, . . . , Vk was optimal. �

Analogous observations holds for the load balance embedding problem (LB): we can use
maxcut-partitioning to obtain an embedding which minimizes the maximum weight of edges
adjacent to any node Ni. The embedding thus optimizes the load balance of the (h−1)-level
nodes, but not the load balance of each individual processor.

4 Solving the optimization problems

Both the graph embedding and the graph partitioning problem are NP-complete, and thus
cannot for even moderately large graphs be solved exactly. Many heuristics have been
proposed for the partition problem that produce good results fast. Currently the best results
are achieved by multilevel methods [5, 6, 13]. These methods at some point use a refinement
heuristic to improve the quality of an intermediate partition.

For graph bipartitioning a particularly simple and elegant heuristic is the so called
Kernighan-Lin heuristic [8]. An initial bipartition is improved by repeatedly constructing a
sequence of swaps of pairs of nodes which overall improves the solution quality. The power
of the heuristic stems from the fact that it can tolerate intermediate swaps which increase
the cut-value, as long as the total sequence leads to a decrease. Experimental evidence
suggests that the number of times such a swap sequence can be found is small (constant).
Thus, the complexity of the Kernighan-Lin heuristic largely depends on the complexity of
finding the sequence of swaps. A fast, but theoretically weaker (in terms of solution quality)
algorithm for finding moves (instead of swaps) was by Fiduccia and Mattheyses [1], the so
called “linear-time” heuristic.

The k-partitioning required to solve the topology optimization problems can be done by
recursive bipartitioning. However, with recursive bipartitioning it is difficult to control the
value of the overall maximum cut (as required by the load balance embedding problem (LB)
and thus, by the theorems in Section 3, the maxcut minimization problem), and recursive
bipartitioning can, for the totalcut problem, lead to bad results [10], even if bipartitioning
is done optimally. A further, minor drawback is that the running time by recursive biparti-
tioning increases by a log k factor over the bipartitioning time. In [12] a new algorithm for

7

direct k-partitioning is given, which shows that the complexity of constructing a sequence of
vertex moves that improves the overall solution is independent of k. By having a global view
of the current k-partition, this new heuristic makes it possible to maintain also the current
value of maxcut, and thus find a sequence of swaps that improves maxcut. The algorithm
is simple to implement, and is the basis for the MPI/SX topology implementation. The
following results are proved in [12].

Let a graph G = (V,E), k > 1 and subset sizes s1, . . . , sk,
∑

si = |V | be given. Let the
cost function c(u, v) depend only on edge the (u, v) (and not on the subsets to which u and
v currently belong), that is we consider the standard graph partitioning problem.

Theorem 3 The data structures (priority queues) needed to select the next vertex to move
can be initialized in O(n+m) time. For weighted graphs G, the vertex resulting in the largest
decrease in total cut value can be selected in O(log n) time, and the data structure updates
for the next move can be done in O(d log n) time steps, where d is the degree of the selected
vertex. A sequence of up to n moves that improves the current solution can thus be found in
O((n + m) log n) time steps.

Corollary 1 For unweighted graphs, special data structures reduce the selection time for the
best vertex to move to O(1) and the update time to O(d), where d is the degree of the selected
vertex.

The heuristic can also tolerate imbalance, i.e. work with the relaxation that |Vi| = si +
b(i), where b(i) is some positive or negative amount of unbalance tolerated for subset Vi,
and

∑
si = |V |. For the MPI topology functionality we use this property to find a good

embedding for the case where |V | < |V ′|, that is, for the case where the host graph (in MPI
implicitly given by the base communicator) has more nodes than the communication graph
(in MPI given by the virtual topology). In this case there are (h − 1)-level nodes V ′

i that
will not become full. We take si = min{|V ′

i |, |V | − ∑
j<i sj}, and allow imbalance b(i) = −si

for the full sets si = |V ′
i | and imbalance b(i) = |V ′

i |− si for the remaining sets with si < |V ′
i |.

Allowing imbalance gives the heuristic more possibilities to find a partition with good cut
value.

For the partitioning problem with generalized cost function c(u, v) depending also on the
subsets to which u and v currently belong, we have the following.

Theorem 4 Data structures can be initialized in O(n + m) steps. The best vertex to move
can be selected in O(log n) time, while the updates of data structures for the next move takes
O(kd log n) time steps. Thus a sequence of up to n best moves can be found in O((n +
km) log n) time steps.

The generalized partition problem, which as remarked includes the embedding problem,
is a factor k more expensive to solve with the Kernighan-Lin like heuristic than graph
partitioning with a simple cost function. Theorem 1 makes it possible for hierarchical systems
to reduce the number of subsets from |V | to some k < |V | equal to the number of nodes at
level h−1 of the hierarchical system. For two-level systems Theorem 2 ensures that standard
graph partitioning suffices, which for the heuristic solution saves a factor k in the running
time.

8

5 An implementation for the NEC SX-systems

The NEC SX-systems are powerful parallel vector machines with a hierarchical communica-
tion architecture. For the most recent in the series, the NEC (Cray) SX-6, up to 8 vector
processors, each with a peak performance of 8GFlops can be connected via a shared mem-
ory. Shared-memory nodes can be connected via a special, high-performance, bidirectional
crossbar switch. The communication bandwidth achieved with MPI/SX, the NEC propri-
etary MPI implementation, is about 15GBytes/second for intra-node communication, and
about 6GBytes/second for inter-node IXS communication. Also for one-sided and collective
communication MPI/SX is optimized to take advantage of shared memory communication
whenever possible. Because of the difference between intra- and inter-node bandwidth, pro-
cess remapping via the MPI topology mechanism can potentially have a large impact on
overall application performance.

In MPI/SX the communicator data structure stores information about the mapping of
processes to processors and nodes; in particular, any process can in constant time determine
the number of processes on its node as well as on all other nodes. In addition to the
user-provided communication graph (explicit or as a Cartesian topology) node sizes are
input to the k-partitioning procedure, which is executed only by the process with rank 0;
the resulting partition which serves as the basis for the reordering is broadcast to the other
processes participating in the collective topology creation call. Although sequential in nature
(one vertex is selected after the other when building up the move sequence) aspects of the
k-partitioning algorithm can be vectorized, in particular the expensive initialization of the
necessary priority queue data structures. By further tuning of the cut-off criteria, acceptable
running times (whatever that means, see Section 2) have been achieved. Parallel algorithms
for graph partitioning have been proposed [2, 7, 9, 14], and may have to be considered for
large systems. This, however, is future research.

6 Experimental evaluation

In this section we give a first experimental evaluation of the potential benefits of the topology
mechanism, and our specific implementation in terms of graph partitioning. Evaluation so
far has been done only with a synthetic benchmark with the following structure:

• a virtual topology over a base communicator is set up,

• (optional:) data are redistributed from processes in the base communicator that have
been remapped in the new communicator,

• each process in the virtual topology sends/receives (non-blocking) a message to/from
each of its neighbors, then waits locally for communication to complete. A number of
repetitions is performed.

This is done for explicit communication graphs with varying structure and for different Carte-
sian topologies. For graph topologies the base communicator is MPI_COMM_WORLD, while for
Cartesian topologies we give results for both a randomly reranked base communicator and

9

for MPI_COMM_WORLD. Most applications can be expected to set up a Cartesian topology over
MPI_COMM_WORLD, so the latter makes a fair comparison to the trivial topology implemen-
tation possible. For the Cartesian topologies communication is done with neighbors along
the dimensions as suggested by the MPI standard. It is worth noting here that applications
often communicate also with neighbors along the diagonals.

For graph topologies we use communication graphs with the following structure:

1. random graph, each vertex has random degree between 0 and 6, and randomly gener-
ated edges,

2. collection of random clusters of size 4, each vertex has 2 random edges within its
cluster, and 2 random edges possibly crossing to other clusters,

3. collection of random clusters of size 16, internal vertex degree 8, 2 random edges to
other clusters per vertex,

4. collection of cycles, each vertex v is connected to vertices (v + 1) mod n, (v + 2) mod
n, (v + 3) mod n, and

5. collection of 8-cliques.

The vertex set for these graphs is permuted randomly. Except for (3), the graphs have
degree less than 8, so with 8 processors per node a good remapping should ideally map
most communication to intra-node communication. For the graph (5) all communication
can indeed be mapped to intra-node communication.

Experiments have been done on an NEC SX-6 with 4 nodes of 8 processors each. The
results are shown in Tables 1 and 2. The maximum running time by a process is given
in milliseconds, both for topology creation and for the actual communication, which is for
10 repetitions with 50000 integers sent per neighbor. For the data redistribution we have
assumed 10 batches of 50000 integers; only the maximum redistribution time over all the
topologies is reported. These counts are, of course, completely arbitrary, and only intended
to give an impression of the relative costs.

We see that the extra overhead for creating a virtual topology with non-trivial remapping
(here: 4-partitioning) is relatively small, between a factor 2 and 5. Topology creation time
is only a small fraction (about 10%) of the resulting communication time, and the sum of
creation time and resulting communication time is in all cases smaller than the communi-
cation time with the original communicator. The improvements in communication time are
also large enough to outweigh the costs of data redistribution (with the parameters chosen
here), except possibly for the 5×6 grid and the hypercube Cartesian topologies created over
MPI COMM WORLD. Thus applications with a moderate communication load (amount of data,
number of repetitions) can be expected to benefit from reordering. For 4-partitioning the
topology creation time is more or less independent of whether we optimize for total com-
munication cost (CC) or load balance (LB). For the Cartesian topologies optimal LB is the
slightly more expensive criterion.

We give maximum communication time over all processes for the virtual topologies with
(reorder set to 1) and without (reorder set to 0) process reranking. With reordering we

10

Max time Max time Optimization
no reorder reorder criterion

MPI Graph create(MPI COMM WORLD, ..., reorder, &graphcomm)

Random graph (1), 144 edges
Creation : 0.40 1.20 LB
Creation : 0.40 1.50 CC

Communication: 17.03 11.47 LB
Clustered graph (2), 141 edges

Creation: 0.40 1.12 LB
Creation: 0.40 0.91 CC

Communication: 15.32 9.50 LB
Clustered graph (3), 273 edges

Creation: 0.40 2.00 LB
Creation: 0.40 2.33 CC

Communication: 31.64 24.21 LB
Communication: 31.64 21.10 CC

Cycles graph (4), 192 edges
Creation: 0.40 1.38 LB
Creation: 0.40 1.63 CC

Communication: 20.23 7.14 LB
Clique graph (5), 224 edges

Creation: 0.40 0.96 LB
Creation: 0.40 0.82 CC

Communication: 24.72 3.41 LB
Maximum Redistribution: 0.00 3.57 LB/CC

Table 1: Graph topologies. Running times (in milliseconds) on a 4 node, 32 processor NEC
SX-6. Creation time for setting up the virtual topology, without and with remapping, and
resulting communication times. Optimization criterion is either total communication cost
(CC) or optimal load balance (LB).

11

Max time Max time Max time Max time Optimization
no reorder reorder no reorder reorder criterion

basecomm: random MPI COMM WORLD

MPI Cart create(basecomm, ..., reorder, &cartcomm)

2 × 16 Grid
Creation: 0.30 0.75 0.30 0.77 LB
Creation: 0.30 0.64 0.30 0.67 CC

Communication: 15.16 3.33 8.56 3.30 LB
3 × 10 Grid

Creation: 0.30 0.95 0.30 0.98 LB
Creation: 0.30 0.79 0.30 0.88 CC

Communication: 14.72 6.52 11.10 6.22 LB
4 × 8 Grid

Creation: 0.30 1.19 0.30 1.23 LB
Creation: 0.30 0.94 0.30 1.02 CC

Communication: 14.00 7.15 9.13 7.18 LB
5 × 6 Grid

Creation: 0.30 1.25 0.30 1.26 LB
Creation: 0.30 0.99 0.30 1.01 CC

Communication: 13.44 7.26 8.39 7.45 LB
2 × 2 × 8 Grid

Creation: 0.30 1.35 0.30 1.30 LB
Creation: 0.30 0.95 0.30 0.98 CC

Communication: 21.70 15.09 17.82 14.52 LB
Communication: 21.70 10.24 17.82 10.32 CC

3 × 3 × 3 Grid
Creation: 0.30 1.32 0.30 1.39 LB
Creation: 0.30 1.02 0.30 1.04 CC

Communication: 18.22 11.11 14.48 11.29 LB
25 Hypercube (2 × 2 × 2 × 2 × 2 Grid)

Creation: 0.30 1.11 0.30 1.12 LB
Creation: 0.30 0.87 0.30 0.89 CC

Communication: 35.32 18.19 18.63 18.21 LB

Table 2: Cartesian topologies. Running times (in milliseconds) on a 4 node, 32 processor
NEC SX-6. Creation time for setting up the virtual topology, without and with remapping,
and resulting communication times. Optimization criterion is either total communication
cost (CC) or optimal load balance (LB). For the Cartesian topologies basecomm is either a
randomly reranked communicator or MPI COMM WORLD.

12

give results for load balance optimization (LB); only where a notable difference was observed,
we also give the communication time for the reordering optimized for total communication
cost (CC). With only 4 nodes, the difference between the two criteria is small, except for
the Cartesian 2 × 2 × 8 grid, where the CC criterion gives better communication time. A
conclusion as to which is better is not warranted. For all virtual topologies we see a no-
table improvement in communication time. For the graph topologies, we note especially
the improvement of a factor of almost 9 for the clique graph (5) – all communication is
indeed mapped to intra-node communication. For the other graphs improvements are be-
tween a factor 1.5 and 3. For Cartesian topologies created over a random base communicator
we observe similar improvements. As expected the trivial, block-wise process-to-processor
mapping implicit in MPI_COMM_WORLD (where processes 0, . . . , 7 are mapped to node 0, pro-
cesses 8, . . . , 15 to node 1, and so forth) provides a better Cartesian mapping than a random
communicator, but for many of the virtual topologies the block-wise mapping is far from
optimal. For instance, for the 2×16, 3×10 and for the 3-dimensional grids (very) worthwhile
improvements over the running times with MPI_COMM_WORLD can be obtained by reordering;
for the other two-dimensional grids and the hypercube, the process-to-processor mapping of
MPI_COMM_WORLD cannot be improved much.

7 Concluding remarks

We have described a general framework for implementing the MPI topology mechanism
on current hierarchical/clustered multiprocessor systems, and in particular shown that the
general embedding problem can be solved more easily by graph partitioning. We stated the
properties of a new Kernighan-Lin like heuristic for direct graph k-partitioning, which is
used for the process reranking within MPI/SX. With R12.2 of MPI/SX the implementation
described in this paper is available to users, and MPI/SX is thus one of very few MPI
implementations with a non-trivial realization of the MPI topology mechanism. Experiments
with simple benchmarks show considerable improvements in communication performance,
and demonstrate the potential of the MPI topology mechanism for better utilization of
parallel systems with a hierarchical communication system.

Acknowledgments

The author thanks Hubert Ritzdorf for continued discussions on MPI and much help with the
concrete topology implementation. Also Bruce Hendrickson and Robert Preis are thanked
for patient and helpful discussions on graph partitioning and the particular k-partitioning
heuristic used in the implementation.

References

[1] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving network
partitions. In 19th ACM/IEEE Design Automation Conference (DAC), pages 175–181,
1982.

13

[2] J. R. Gilbert and E. Zmijewski. A parallel graph partitioning algorithm for a message-
passing multiprocessor. International Journal of Parallel Programming, 16(6):427–449,
1987.

[3] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, W. Saphir, and
M. Snir. MPI – The Complete Reference, volume 2, The MPI Extensions. MIT Press,
1998.

[4] T. Hatazaki. Rank reordering strategy for MPI topology creation functions. In 5th
European PVM/MPI User’s Group Meeting, volume 1497 of Lecture Notes in Computer
Science, pages 188–195, 1998.

[5] B. Hendrickson and R. Leland. A multi-level algorithm for partitioning graphs. In
Proceedings of the 1995 ACM/IEEE Supercomputing Conference, 1995.

[6] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular graphs.
Journal of Parallel and Distributed Computing, 48(1):96–129, 1998.

[7] G. Karypis and V. Kumar. A parallel algorithm for multilevel graph partitioning and
sparse matrix ordering. Journal of Parallel and Distributed Computing, 48(1):71–95,
1998.

[8] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs.
Bell System Technical Journal, 49:291–307, 1970.

[9] J. E. Savage and M. G. Wloka. Parallelism in graph-partitioning. Journal of Parallel
and Distributed Computing, 13:257–272, 1991.

[10] H. Simon and S.-H. Teng. How good is recursive bisection. SIAM Journal on Scientific
Computing, 18(5):1436–1445, 1997.

[11] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI – The Complete
Reference, volume 1, The MPI Core. MIT Press, second edition, 1998.

[12] J. L. Träff. Direct graph k-partitioning with a Kernighan-Lin like heuristic. Manuscript
(submitted for publication), 2001.

[13] C. Walshaw and M. Cross. Mesh partitioning: a multilevel balancing and refinement
algorithm. SIAM Journal on Scientific Computing, 22(1):63–80, 2000.

[14] C. Walshaw and M. Cross. Parallel optimisation algorithms for multilevel mesh parti-
tioning. Parallel Computing, 26(2):1635–1660, 2000.

14

