
IMPLEMENTING THE
RIVEST SHAMIR AND ADLEMAN

PUBLIC KEY ENCRYPTION ALGORITHM
ON A

STANDARD DIGITAL SIGNAL PROCESSOR

Paul Barrett, MSc (Oxon)
COMPUTER SECURITY LTD

August 1986

ABSTRACT

A description of the techniques employed at Oxford University to
obtain a high speed implementation of the RSA encryption algorithm on
an "off-the-shelf" digital signal processing chip. using these
techniques a two and a half second (average) encrypt time (for 512 bit
exponent and modulus) was achieved on a first generation DSP (The
Texas Instruments TMS 32010) and times below one second are achievable
On second generation parts. Furthermore the techniques of algorithm
development employed lead to a provably correct implementation.

WHY DSP?

At the time we started work we considered several implementation
options :
1. The first and most available option was an eight bit micro-

Processor - best estimates of 512 bits in 4 minutes (ie. 2 bits per
second) did not seem very promising.

2. A 16 bit micro-processor - might make it in 50 seconds - but that's
still too slow.

3. Discrete logic - was going to be extremely complex and messy.
4 . A bit slice system would be very expensive to develop and

implement.
5. And although a custom/semi-custom chip would be cheap to

manufacture, it would be expensive to develop and would be too
inflexible to allow commitment to the high volumes necessary to
make this approach economically viable.

A.M. Odlyzko (Ed.): Advances in Cryptology - CRYPT0 '86, LNCS 263, pp. 311-323, 1987.
0 Springer-Verlag Berlin Heidelberg 1987

312

One thing we did know about implementing the RSA algorithm is that it
involved lots of multiplication and so we decided to see if we could
utilise a dedicated hardware rnultiplier/accumulator or MAC.

6. A MAC taking 100 ns for a 16 x 16 multiply was available and looked
very promising. However, we quickly realised that we needed some
fairly specialised hardware to drive it and feed it with data.
Certainly no ordinary micro-processor would be able to keep up with
the MAC'S performance.

Just as we were beginning to despair the answer came to us courtesy Of
Texas Instruments who announced a new type of chip : the Digital
Signal Processor or DSP.

DIAGRAM ONE - DSP ARCHITECTURE

31 3

7. The DSP - is a MAC and a fast microprocessor on a single chip which
seemed to be the ideal combination... The first one available
was the TMS320 which has a 200ns cycle time for most instructions
including multiply. Our early performance estimates suggested that
with this chip five seconds for a 512 bit exponentiation should be
fairly easily achievable.

THE IMPLE13ENTATION

Having decided to use a DSP we have to develop a program for it. The
first problem is that there are no suitable DSP compilers available
and, although we might expect to eventually have to tune the assembler
code to take full advantage of the DSP architecture and optimise
performance, assembler is no good as a design language. Furthermore,
our choice of implementation technique must take into consideration
the nature of the application and in particular the requirement for
integrity. With this in mind we chose to use the program development
and validation techniques expounded by Prof. David Gries of Cornell
University. The notation used is a combination of predicate logic and
the "guarded command" form of computation guru Edsger Dijkstra.

TAE ALGORITRM

In our notation the RSA algorithm can be specified in terms of pre-
and post- conditions thus:

~ p e c fastexp.O (a: A , E , M ; out: c);
{ pre: 0 C: A < M & 0 S E }

I post: c = AE mod M 1
endspec

Where the pre conditions require that: the input data A is in the
range 0 to M , the modulus minus one and the exponent E is positive;
and post: the output data c equals A to the power E modulo M.

The basic algorithm we will work with to satisfy these conditions 1s
Knuth's 'square and multiply' exponentiation method with modulo
reduction incorporated. Thus:

proc fastexp.1 (a: A , E , M ; out: c) ;
{pre: O I A < M h O S E }

a, e, c := A,E,1 ;

314

{ inv: c * ae mod M = AE mod M }

{ bound: t = 2 * log~e + 1 1
- do e # O C e m o d 2 = O +

e,a : = e = 2 , a * a e M

1 e mod 2 #O +

od e,c := e-1, c * a mod M -

{ post: c = AE mod M 3

endproc

Notice that after initialisation of the variables the executable
portion of this fastexp has been reduced to a single loop command
albeit with two branches. Writing the algorithm in this very concise
form which may not at first seem natural, allows us to prove its
correctness more easily at a later stage.

Obviously this basic algorithm will need to be written in a
substantially different form before our target DSP can execute it and
in order to arrive at an assembler code version we go through a
process of step-wise refinement. At each step of refinement the
algorithm is re-written in a form which can be proven to be equivalent
to its predecessor. In the case of our RSA algorithm most of the
refinement is necessary in order to be able to represent and operate
on the several hundred bit long integers within the constraints of a
16 bit architecture; the implementation of conditions, loops and other
program constraints being fairly straightforward on the micro-
processor-like DSP.

In order to keep our top level program simple and well structured we
introduce two procedures (subroutines) which we call 'longmult' and
'longmod' to handle respectively the long integer multiplication and
modulo reduction.

Here is the specification
pre/post condition form:

~ ~ e c longmult.O
{ pre: 0 5

of these procedures, once again using the

in: u,v; a: w);
u,v < bn 1
-

315

{ post: w = u * v 1
endspec

longmod.0 (2: w,m; out: v);
c pre: o s w < m2 1
{ post: v = w mod m 3

endspec

THE HEART OF THE ALGORITHM

These two procedures really are the heart of the algorithm; and the
key to performance is going to be their design. First let us consider
what algorithm to use for long multiplication. The problem we have is
similar to one we learned to solve at school. There we knew, from a
memorised table, how to multiply up to 12 times 12 but faced with a
larger multiplication (and assuming that we all went to school before
the advent of the pocket calculator) we used a paper and pencil
algorithm which went something l i k e this (referring to diagram two): 6
times 2 is 12, 2 down carry 1, 2 times 2 is 4 plus one is 5 and SO on
repeating for each row, shifting one column left each time and
finishing with a final addition sum. This is a fairly convenient
method of hand calculation but how efficient is it?

Taking the general case of an n by n digit multiply - for each row we
have to do n multiplications, 2n fetches, n i 1 stores and, n carry
and add operations. Plus the final additions which require n2 fetches
and adds plus carries etc. Assuming all perations are equivalent to
execute that makes in the order of 6n2 instructions.

Let's try it another way using the same principle but working in
columns not rows and saving all the carries till we sum each column.

DIAGRAM TWO - LONG MULTIPLICATION AT SCHOOL

3 0 7 8 2 6
4 1 5 1 3 2 x

6 1 5 6 5 2
9 2 3 4 7 8 -

3 0 7 8 2 6 - -
1 5 3 9 1 3 0 - - -
3 0 7 8 2 6 - - - -

1 2 3 1 3 0 4 - - - - -

1 2 7 7 8 8 4 2 3 0 3 2

31 6

DIAGRAM THRXE - ALTERNATIVE LONG MULTIPLICATION

3 0 7 8 2 6
4 1 5 1 3 2 x

6 0 1 4 1 6 4 1 2
9 0 2 1 2 4 6 1 8 -

3 0 7 8 2 6 - -
1 5 0 3 5 40 1 0 3 0 - - -

3 0 7 8 2 6 - - - -
1 2 0 2 8 3 2 8 2 4 - - - - -

1 2 7 7 8 8 4 2 3 0 3 2

Referring to diagram 3 : here 6 times 2 is 1 2 , 2 down 1 to carry, 2

times 2 is 4 , 6 times 3 is 18 , 1 8 plus 4 is 22 plus 1 is 23, 3 down 2

to carry and so on for the other columns. This time we have the same
number of multiplies and adds but have saved a set of fetches and
carries leaving an order of 4n2 instructions, ie a saving of 3 3 % over
the previous method. A further 50% saving can be obtained at
implementation by taking advantage of a feature of the TMS320 DSP

which allows auto increment and decrement of data pointers during
multiply and accumulate operations - this effectively gives us the
data fetching for free. Using this feature the core of our multiply
program is as shown in diagram four.

In the DSP we have two auxiliary registers A R O and AR1 which we use as
data pointers and a T register which contains the multiplicand for any
multiplication instructions.

The MPY * star instruction multiplies the contents of the T-
register by the data pointed to by the current auxiliary register.
The LTA * star instruction loads the T register (with new data
pointed to by the current auxiliary register) and adds the result of
the previous multiply into the accumulator.

DIAGRAM FOUR - MULTIPLICATION PROGRAM CORE

MPY * +, 1
LTA * -, 0

31 7

MPY * +, 1
LTA * -, 0
MPY * f , 1
LTA * -, 0
MPY * +, 1

.

The + and - respectively increment and decrement the current auxiliary
register and the 0 or 1 at the end selects a new auxiliary register as

current for the next instruction. Both arguments for each successive
multiply can thus be changed for no overhead while we multiply and
add; which is what we need for the column based multiplication
procedure just described.

With this method we do have to ensure that we don't overflow the
accumulator before the end of a column. However, it is a fairly
simple calculation to work out the optimum word length to satisfy this
condition.

In practice we are prevented from using 16 bit words (on the early
DSP'S anyway) because they take all data as being in two's compliment
form. Some of the more recent DSP's do help out by providing 40 bit
accumulators and unsigned arithmetic.

Next let's consider the modulo reduction operation. We have an
intermediate value (say W) which is the result of a long multiply
calculation and we want to find the remainder when W is divided by the
modulus M. That is we want:

X = W mod M = W - M * (W div M)

where 'div' is normal integer division.

Division on a DSP is hard (that is to say expensive in time) but given
that throughout any single exponentiation we will always be using the
same modulus and that we have available easy or 'cheap'
multiplication, we can calculate (once only for each M) R equals the
reciprocal of M and subsequently obtain our result, X, by two

31 8

multiplications and a subtraction:

X = W - M * (W * R)

The problem is that R in this case is a real number considerably
smaller than one.

Thus, if we are to use this method we need to approximate and scale R.
That is multiply R by some power of 2 and round off in order to
represent R as an integer.

The trade off in this is fairly clear - the more accurately we
represent R (and other intermediate values) the longer it will take to
do the multiplications, the less accurately the greater the error we
will have to correct at the end.

The mathematics of this trade-off are more complex than it would at
first appear so I will just assume the results that we proved in our
paper at Oxford.

LONGMOD PROCEDURE (refer to Diagram Five)

If M is represented as n base b digits (and therefore W is 2n base b
digits) then R should be represented as the integer

R : = b2n div M
Note that R here will have n + 1 digits as a result of the second
precondition defining the range of M.

Next we multiply the most significant n + 1 digits of W by R and then
multiply the n most significant digits of this result by M and
subtracting the n + 1 least significant digits of this from the
corresponding part of W. Our calculations show that the result x so
obtained will always be in the range 0 to 3M - 1. In other words at
most two further subtractions of M are required to give us the result
we are looking for.

It is possible to show that for about 90% of the values of W and M,
the initial value of X obtained will be less than M and that only in
1% of cases will X exceed 2M and thus require two correcting
subtractions.

319

DIAGRAM FIVE - LONGMOD

It can be seen from all this that for large n this modulo reduction
method takes about the same time to execute as two long
multiplications. Actually we can do almost twice as well as this by
only calculating half the product in each long multiplication since
the other half of each product is not required.

Thus, apart from the small overhead of calculating the reciprocal R
(which could of course be done in advance and stored with its
corresponding M as part of the RSA key) the modulo calculation is not
much slower than the long multiplication.

FASTEXP CONTINUED

Returning now to the top level Fastexp algorithm. If we represent the
exponent E as a sequence of n base b digits where b = 2f then our next
requirement of the algorithm will require two nested loops to take
care of respectively the digits and bits of E. Skipping a Couple of
refinement steps, our fastexp procedure is as shown in Diagram six,

DIAGRAM S I X - PROC FASTEXP.4
proc fastexp.4 (~ : A E M; out: c);

(p r e : O I A < M & O < E }
(en-l ... e0)b := E;
a,c,i := A,I,O;

320

- do (en-l ... ei)b = 0 +

(eif-1 . . . ei0) 2 := ei ;
j := 0;
- d o j < f +
- if eij = 0 + skip

$$ e i , = O + c : = c * a & M

- fi;

a := a * a mod M;
j : = j + 1 od ; -

od - i : = i + :

{ post: c = AE mod M 1

endproc

which with a few further refinements, including insertion of our
subroutines longmult and longmod and globalisation of the data
(to save on parameter passing), can be translated almost directly into
the TMS320 assembler code listed in Diagram seven. Notice how simple
the program appears.

DIAGRAM SEVW - PROC FASTEXP.7

*
*
EXP

*
LOOP1

ENDLl

proc fastexp.7(var A,E,M,R,C)

LAR AR1,N to initialize C

LACK CO
ADDS DATAO DATAO is XRAM data page address
ADDS N

SUBS ONE decrement ACC

BAN2 LOOP1

LARP 1 use AR1 as a counter

MAR *- AR1 := N-1
CO is ~ R A M relative address of CO

ACC is pointer to CAR,

TBLW 2 ERO "CN-1 - .. c := 0 "
repeat LOOP? while ARl>O and dec AR1

TBLW ONE 'lC* := 1"
ZAC
SACL I "i := 0"

32 1

*
LOOP 2

*
LOOP3

LSBl

*
LSBO

*

ENDL3

ENDL 2 *

LACK EO
ADDS DATAO
ADDS I
TBLR EI
LACK F
SUBS ONE
SACL J

ZALS EI
AND ONE
BZ LSBO

LACK CO
ADDS DATAO
SACL X
CALL LONMUL
CALL LONMOD

LACK A0
ADDS DATAO
SACL X
CALL LONMUL
CALL LONMOD

LAC EI,15
SACH EI
ZALS J
SUBS ONE
SACL J
BGEZ LOOP3

ZALS I
ADDS ONE
SACL I
SUBS NE
BLZ LOOP2

endproc

EO is XRAM relative address of EO

I~ACC := ~ 1 ~ 1 1

"if ACC = + skip" (to LSBO)
"if ACC = 1 + I r

9 X := address of C
"call longmult (C)
"call longmod (C) 'I

x := address of A0
"call longmult (A)
"call longmod(A)"

"EI := EI div 2"

llj := j - 1 1 1

"repeat LOOP3 while j > O "

lli := i+l"

'Irepeat LOOP2 while itn,"

There are only 43 machine code instructions required apart from the
multiplcation and modulo procedures.

This simplicity is, another direct benefit of the rigourous
development methodology employed.

PERFORMANCE AND SECOND GENERATION DSP'S

This implementation of Ifastexpl takes on average (that is with an

322

exponent composed of half 0's and half 1's) 2.6 seconds to execute
with 512 bit modulus and exponent on a Texas Instruments TMS32010
running at its maximum clock rate of 20 MHz. The 32010 (originally
just called the TMs320) was the first general purpose DSP on the
market but second generation DSP's are appearing now from most
manufacturers and speed calculations using our algorithm suggest that
times below 1 second will be possible on the TMS320C25 and below one
quarter of a second on the Motorola DSP56200 which has a 24 x 24
multiplier and 56 bit accumulator.

The third (or is it fifth?) generation DSP from Inmos (the IMSA 100)
which is part of the Transputer family, has on board no less than 32
16 x 16 multiplier/accumulators and should prove to be the fastest yet
once we have refined our algorithm into the OCCAM parallel processing
language which is executed directly by the transputer hardware.

CUSTOM CHIPS

Finally, I know that I started this presentation by stating that we
decided against a custom silicon RSA implementation on the grounds of
development cost and inflexibility, but a number of developments have
taken place since we originally came to that conclusion. Most
importantly the advent of silicon compilers and low volume custom
silicon processes has reduced the turnaround time and development cost
to a point where manufacture of a few hundred chips is a viable
proposition. Furthermore, the increase in demand for fast RSA

solutions plus the ultimate unit cost and performance advantages has
led Computer Security Limited's sister company, RAANND Systems Ltd, to
develop a custom RSA chip. Dr Gordon Rankine, the Managing Director
of RAANND and the architect of this RSA chip, code named Thomas, has
documented his presentation of this design elsewhere in the
proceedings.

323

REFWENCES

R L Rivest, A Shamir and L Adlernan, "A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems" , Communications ACM V o l 21
(2) (Feb 1978)

Dorothy E R Denning, "Cryptography and Data Security", Addisson-
Wesley (1983)

Texas Instruments, "TMS 32010 User's Guide"' (1983)

Donald E Knuth, "The Art of Computer Programming Volume 2-
Seminumerical Algorithms", Addisson-Wesley (second edition - 1981)
P D Barrett, "Communications Authentication and Security using Public
Key Encryption - A Design for Implementation." (Oxford University
Programming Research Group MSc Thesis (1984)

C A R Hoare, "Notes of Communicating Sequential Processes", Oxford
University Computing Laboratory (1983)

David Gries, "The Science of Computer Programming", Springer-Verlay
(1981)

Edsger Dijkstra, "A Discipline of Programming", Prentice Hall (1976)

+

