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Introduction

Tumor mutational burden (TMB) is emerging as new 

predictive biomarker to select patients that benefit from 

immune checkpoint inhibitor therapy (1-7). It is commonly 

defined as the total number of somatic coding mutations 

and associated with the emergence of neoantigens 

that trigger anti-tumor immunity (8-10). As a defense 

mechanism, tumors acquire expression of checkpoint 

regulators, like programmed death-ligand 1 (PD-L1), the 

action of which can be overcome in clinical practice with 

therapeutic antibodies against PD-1 (programmed cell 

death protein 1) or PD-L1 alone or in combination with  

CTLA-4 (cytotoxic T-lymphocyte-associated protein 4) 

inhibitors or chemotherapy or more recently small-molecule 

kinase inhibitors (11-13). In numerous clinical trials over the 
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past few years (14-21), these therapies have demonstrated 

impressive anti-tumor activity and are already approved for 

a large number of tumor entities in various indications (22) 

including non-small cell lung cancer (NSCLC) (23,24). 

Up to now, patient selection for immuno-oncologic (IO) 

treatment has been mainly based on expression of PD-L1 

as assessed by immunohistochemistry (25,26). However, 

accumulating data suggest a much greater utility of TMB 

for this purpose.

A retrospective analysis of the CheckMate (CM) 026 

trial investigating first-line nivolumab vs. platinum-based 

chemotherapy in stage IV or recurrent NSCLC (27) 

uncovered that patients with high TMB showed higher 

response rates and longer progression-free survival (PFS) 

with PD-1 blockade (Table 1). Moreover, among TMB-high 

patients, a high (≥50%) PD-L1 expression distinguished 

an even more favorable subgroup with presumably “hot”, 

immunologically reactive tumors, but it had no predictive 

value among TMB-low cases. In keeping with these data, 

a post-hoc analysis in the nivolumab-ipilimumab arm of 

the CM 012 trial (28) also showed longer PFS of TMB-

high cases under IO therapy, especially if PD-L1 was 

additionally present, but limited benefit in the TMB-low 

subgroup regardless of PD-L1 expression. Conversely, by 

focusing on PD-L1 negative patients, the CM 227 trial 

demonstrated a significant and incremental benefit from 

administration of nivolumab alone or in combination with 

ipilimumab for TMB-high cases, while additional presence 

of low TMB defined a truly refractory subset, for which 

novel IO approaches or non-IO treatment will be necessary 

(31,40). Notably, in all aforementioned analyses, PD-L1 

expression was not associated with TMB levels, indicating 

that the two biomarkers are largely independent in NSCLC 

and probably also in other cancers (41). In addition, their 

results collectively may suggest a more fundamental role 

of a higher TMB for efficacy of currently available IO 

treatments, which therefore emerges as a potentially more 

suitable basis for the selection of NSCLC patients likely 

to benefit from them. At present, caution is definitely 

warranted, because overall survival (OS) data in conjunction 

with TMB are still pending and TMB measurement has 

not been used yet as an upfront stratification parameter in a 
prospective trial design. However, recent preliminary data 

suggest that higher TMB, but not higher PD-L1 expression 

levels, can reliably distinguish NSCLC patients predestined 

to experience long-term (>18 months) remissions with IO 

treatments, which is of utmost clinical importance, because 

it represents a proxy for “functional cure” (42). Since 

TMB appears to be predictive for efficacy of checkpoint 

blockade across diverse cancers (2,3), it is as an additional 

biomarker next to PD-L1 expected to improve care of many 

patients, which currently drives intense efforts for seamless 

integration of TMB assays in routine diagnostics.

TMB and cutoff values

Similar to the challenges of using PD-(L)1 expression 

as a biomarker for patient selection (43), there are many 

unsolved aspects of TMB assessment and interpretation 

which will need to be addressed before widespread adoption. 

Mutational burden is a continuous variable and the question 

arises how to define TMB-high tumors to enrich for 

patients likely to respond to IO therapy. Objective cut-

points for TMB are not universally established. Clinical 

trials have mostly deferred study-specific cut-points using 

median TMB or dividing patients in tertiles or quartiles 

according to measured TMB (Table 1). Studies of NSCLC 

employing whole exome sequencing (WES) have for example 

set cut-points at 158 (median) (28), 200 (median) (6), and 243 

(upper tertile) (27) mutations per exome. A study of SCLC 

determined 248 mutations per exome (34) to delineate the 

upper tertile, which is largely comparable to NSCLC. In 

a study of urothelial carcinoma, however, a lower number 

of 167 total mutations (35) was found to mark the upper 

tertile of patients. WES is considered the gold standard 

of TMB assessment but it bears noting that the size of 

the ‘exome’ depends on the enrichment method (exome 

capture kits) (44,45) used and that mutation types for 

TMB count vary between assays. Therefore, comparison 

of WES and panel sequencing in terms of TMB and cut-

points not only requires detailed information of the panel 

including bioinformatics but also a clear definition of the 

technical reference standard (i.e., WES). For targeted gene 

panel sequencing in NSCLC cut-points were set at around 

10 mutations per megabase (mut/Mbp) for Foundation 

Medicine panels (31,33) and 7.4 mut/Mpb for the MSK-

IMPACT panel (29). A recent bridging study (39) using 44 

samples from the Checkmate 26 trial demonstrated that the 

cut-point of 10 mut/Mbp (as determined by the FMI panel) 

relates to 199 missense mutations determined by WES. For 

urothelial carcinoma using the Foundation medicine (FMI) 

panel two different study-specific cut-points were applied 

with 9.65 mut/Mbp (median) (37) and 16 mut/Mbp (upper 

quartile) (36).
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Factors influencing TMB detection

For accurate TMB assessment pre-analytical, analytical, and 

post-analytical variables have to be considered and results 

be carefully interpreted in the overall context. Based on the 

current literature, five major parameters influencing TMB 
measurement and related cutoff values can be delineated: 

(I) tumor type (46,47); (II) indication including drug 

types; (III) pre-analytics (including assessment of tumor 

cellularity); (IV) method (WES vs. type of panel sequencing 

including size and composition of panels, read depth and 

coverage); and (V) bioinformatics (including: limit of 

detection (LOD), threshold for allelic frequency [clonal vs. 

subclonal mutation], and filter settings for germline events 
and deamination artifacts, definition of mutation). Pre-

analytical factors include input material, tumor cellularity, 

and DNA quality and quantity. Clinical trials have mostly 

employed formalin-fixed, paraffin-embedded (FFPE) tissue, 
either fresh (obtained for study purpose) or archived (routine 

clinical specimens) or occasionally obtained fresh frozen 

tissue plus blood for germline analysis. Table 2 gives an 

overview of the technical parameters of major TMB studies 

as provided in the respective papers. Assessment of tumor 

cellularity by a pathologist is warranted to ensure validity 

of input material (presence, percentage, and viability of 

tumor cells) and thereby aid subsequent interpretation 

of allelic frequencies. It should be noted, however, that 

tumor cellularity estimates itself influence allelic frequency 
calculations and related mutation counts (depending on 

LOD and filter settings). In daily clinical practice one 

most often has to resort to (archived) FFPE samples with 

usually suboptimal DNA quality (due to various degrees 

of DNA degradation and deamination artifacts) compared 

to fresh unfixed tissue. Quantities are also rather limited 

especially from routine clinical lung samples that are 

often small (transbronchial/endobronchial/image-guided) 

biopsies which are also used for standard pathology work-

up including (limited) immunohistochemistry for tumor 

typing and PD-L1 staining. Most of the time this is done 

sequentially requiring repeated cutting of the paraffin 

block which causes additional tissue loss. A one-stop shop 

approach that yields all the required sections in one session 

is needed to optimize material usage (Figure 1). However, this 

will require upfront communication between clinicians, lab 

personnel, and pathologists, also to ensure that additional 

immunohistochemical and genetic studies are only 

performed when absolutely needed for accurate diagnosis. 

Looking at recent clinical trials, a rather high attrition rate 

of patients that could not be assessed for TMB is apparent, 

which might be due to sequential testing, enrichment 

method used (hybrid capture requires higher amount of 

input DNA), or unplanned addition of TMB testing. In 

the CM 026 trail (27), of 541 randomized patients only for 

320 (59%) TMB could be assessed. Similar in the CM 227 

trail (31) in which of 1,739 patients, only 1,004 (58%) had 

TMB-evaluable samples. Only 98 (34%) patients of 288 in 

the CM 568 trial had evaluable samples (30). Also in the 

IMvigor211 trial (37) only 544 (58%) of 931 patients had 

tumor samples that could be successfully tested. 

In the future, blood based TMB assays might be an 

alternative in those clinical scenarios where tissue cannot 

be obtained and even more would allow for non-invasive 

monitoring of TMB over time. Assays are currently in 

development and first reports have shown correlation to 

TMB measured from tissue samples (48-50). However, 

current data are still preliminary and limited. One of the 

main factors influencing such approaches is the DNA yield 
obtained from a blood-draw: sequencing with sufficient 

sensitivity is well feasible but (tumor-related) DNA 

molecules that are not present cannot be sequenced (51).

Bioinformatics

Clinical interpretation of conventional sequencing 

approaches—though based on quantitative data like 

allele frequencies and base changes—mostly results in 

a qualitative result, e.g., presence or absence of a BRAF 

V600E mutation. In contrast, TMB as a continuous 

numerical value is a quantitative measurement. As such its 

measurement is more complex with the associated risk of 

capturing significant background noise. In daily clinical 

practice, germline samples are not routinely available for 

comparative sequencing due to regulatory constraints not 

permitting germline sequencing, logistic challenges, or 

financial considerations. Therefore, filtering of germline 

variants is paramount as not to count them as tumor 

specific mutations. Known polymorphisms with minor 

allele frequencies (MAF) <0.0001 annotated in the dbSNP 

and ExAC databases (52) should be filtered. Some groups 

have also introduced algorithms to predict germline  

mutations (53). Clonal hematopoiesis of indeterminate 

potential (Chip) might also contribute to few falsely 

attributed mutations in tumor-only sequencing (54) but is 

likely to be of only minor relevance in TMB assessment. 

Importantly, low allelic frequency C>T transitions that 

are introduced by fixation in formalin (i.e., deamination 
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artifacts) need to be filtered and not mistaken as true 

mutational events.

FMI excludes recurrent mutations occurring in tumors 

and truncating mutations of tumor suppressor genes from 

their TMB calculation to avoid overestimation of TMB 

since gene panels are usually heavily targeted at recurrently 

mutated genomic regions (55). Our own data indicate 

that this is a valid approach though the influence of hot 

spot mutations on TMB is not prominent (Buchhalter I, 

2018, submitted). Studies have used 5% allelic frequency 

as a cutoff to count mutations (LOD) to distinguish 

clonal vs. subclonal mutations which are entity specific 

and also influenced by therapy (56). In addition, patients 

with elevated clonal neo-antigen load and little subclonal 

heterogeneity were overrepresented in the group of patients 

benefitting from IO therapy (57). Whereas most WES 

studies included only non-synonymous mutations (mostly 

restricted to missense mutations) primarily for technical 

reasons (i.e., clear and reliable identification of this 

mutation type), panel sequencing approaches add insertions 

and deletions (indels) (Table 2). Some like FMI also include 

synonymous mutations, which even though they are not 

themselves giving rise to neoantigens, can be viewed as a 

surrogate marker for non-synonymous mutations elsewhere 

in the exome (55). Our own in-silico simulations indicate 

that inclusion of all mutations, even if they may not directly 

contribute to immunogenicity, increases precision of TMB 

estimation when using targeted gene panels (Buchhalter I, 

2018, submitted).

Another aspect to consider is that sequencing of 

larger portions of the exome will result in many more 

detected genetic variants. How should this be dealt with in 

inherently resource-limited health care settings? Should all 

of these variants be clinically evaluated and reported? They 

probably will have to, which will bind additional manpower 

and strain IT resources. What about a potentially increased 

discovery rate of incidental genetic findings that might 

warrant genetic counselling? Refinancing of extensive 

manpower, reagent, and infrastructure associated costs will 

be challenging.

Composition and size of panel

Though one would wish to gather as much information 

from a patient’s tumor by conducting comprehensive 

WES, this is currently not feasible in clinical practice due 

to significant associated costs, long turn-around time, and 
suboptimal, limited tissue samples.

Targeted panel sequencing to identify therapeutically 

actionable oncogenic driver genes has emerged as a routine 

sequencing assay in many academic centers. Given its 

comparatively low cost, rather quick turn-around time, and 

more and more widespread availability, it would be desirable 

to leverage it to also assess TMB. After deciding on 

enrichment method (amplification-based or hybrid capture) 
and desired read depth, the most important question arising 

is one of sequencing panel size: How much of the exome 

needs to be sequenced to make an accurate prediction of a 

tumor’s total mutational burden (Figure 2)? The precision of 

TMB estimation is combinatorially limited by the number 

of bases that are sequenced. An upper limit of precision can 

be derived based on a model where each base in the genome 

is mutated at with the same probability. We calculated 

combinatorial confidence intervals of TMB for sequencing 
panels of sizes between 0.1 and 10 Mbp (Figure 3). Good 

separation of a tumor with 20 mut/Mbp from a tumor with 

5 mut/Mbp was possible for panel sizes of 1 Mbp or larger.

In NSCLC and melanoma, both tumors with high 

mutational load mainly caused by exogenous agents 

tobacco and UV irradiation, respectively (58,59), cancer-

type specific algorithms were reported to allow for accurate 

Figure 1 One-stop shop approach to maximize specimen yield. 

Necessary molecular testing should best be indicated by the 

clinician or anticipated when the specimen is initially processed in 

the pathology laboratory. A sufficient number of slides should be 
precut to avoid re-cutting of the tissue block. Depicted are three 

groups of diagnostic tests that are often performed sequentially. # 

slides: approximated number of slides needed. In routine pathology, 

material usage is determined by the utilization of IHC stains. In 

molecular pathology, the number of slides/paraffin sections needed 
depends on the amount of tumor present and assays used.
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prediction of TMB with a small panel of 170 genes (60). 

However, in clinical practice the challenge is posed by 

patients with intermediate TMB, accurate identification 

of which is difficult with small gene panels, because TMB 
values represent a continuum rather than distinct clusters. 

The 468-gene MSK-IMPACT panel (29,61) and 315-gene 

FoundationOne panel (62,63) have demonstrated diagnostic 

utility in predicting TMB comparably to WES (Table 3). In 

our experience with in-silico modeling (Buchhalter I, 2018, 

submitted) and resequencing of samples that previously 

underwent WES (Endris et al., in preparation), panels 

covering less than 1 Mbp are not suitable for a reliable 

prediction of TMB, but larger panels, ideally 1.5–3 Mbp 

can provide a good approximation of mutational load, 

as shown before (68). Sequencing of larger panels will 

also require capable sequencing machines, like the S5XL 

(Thermo Fisher) or NextSeq and beyond (Illumina). 

But of course, panel size is not the only factor, as 

composition is equally important. An ideal panel must 

ensure one-stop shop analysis with a combination of 

driver gene mutation analysis and TMB assessment to 

ensure maximum yield of clinically relevant information 

Figure 2 Panel design influences TMB measurement. Amplicons (i.e., sequenced regions of exome) of arbitrary sequencing panels (Panels 
I–IV) are schematically depicted to illustrate differences in size and composition. Panel I is a small focused panel which might be used for 

entity specific investigations or when DNA is limited, like in liquid biopsies. Panel II and III are more comprehensive targeting additional 
exonic regions. Panel IV is a comprehensive tumor profiling panel developed for TMB detection. Indicated on exome are exemplified clonal 
(green), subclonal (red), and frameshift (orange) mutations, and indels (blue). TMB, tumor mutational burden.
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Figure 3 Precision of TMB estimation using targeted sequencing 

panels of size 0.1 to 10 Mbp. An upper limit for the precision 

of TMB estimates is set by the combinatorial error that comes 

from estimating the mutation rate (in mut/Mbp) by the number 

of mutations in a sequence of a limited length. In the display, 

the precision of TMB estimation (reported as 95% confidence 

interval) is illustrated for a tumor with high TMB (20 mut/Mbp, 

typically classified as immune therapy responder) and a tumor with 
low TMB (5 mut/Mbp, typically classified as immune therapy non-
responder). Sequencing panels larger than 1 Mbp are required to 

separate the tumors in the example with high precision. TMB, 

tumor mutational burden.
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with limited DNA, technical resources, and economic 

constrains. In the case of lung cancer, this includes clinically 

actionable mutations in EGFR exons 19–21 including 

T790M alterations, as well as genetic aberrations including 

gene fusions that affect ALK, ROS1, RET, NTRK, BRAF, 

ERBB2 (HER2), KRAS, and MET (69). Furthermore, 

panels should ideally incorporate additional positive and 

negative predictors for checkpoint inhibitor therapy in order 

to provide a better grasp of the complex interaction between 

tumor and the immune system. It is of particular interest 

to detect tumors with defects in DNA repair genes since 

these tumors are prone to an increased number of somatic 

mutations, potentially leading to formation of tumor specific 
antigens, and recognition by tumor infiltrating lymphocytes. 
Mismatch repair-deficient tumors that are microsatellite 

instable (MSI-H) respond better to anti PD-1 therapy  

(70-72), and MSI-H status represents the first tissue-

agnostic biomarker for checkpoint blockade with 

pembrolizumab (73,74). However, immune evasion 

mechanisms might still render an otherwise MSI-H 

tumor unresponsive to IO therapy (75,76). Defects 

in homologous recombination as caused by BRCA2 

mutations confer a better response to checkpoint inhibitor 

therapy in malignant melanoma (77) and BRCA1/2-

mutated high grade serous ovarian cancer exhibit a high 

mutational load (78). Mutations in POLD1 were noted 

in the lung cancer of a never-smoker with high TMB (6). 

POLE and POLD1 mutations occur in hypermutated 

colorectal and endometrial cancers (79,80). Loss-of-

function mutations in chromatin remodeling gene PBRM1 

sensitize tumors to IO therapy (22,81). On the flip side, 

loss of PTEN and subsequent activation of the PI3K-

AKT pathway induced resistance to the antitumor T cell 

immune response in preclinical models of melanoma (82). 

In human lung adeno- and squamous cell carcinomas, 

expression of PD-L1 was found to be closely linked to 

mTOR activation (83). Amplification of MDM2 family 

proteins or aberrations in EGFR were found in patients 

experiencing hyperprogressive disease under treatment 

with checkpoint inhibitors (84) though this association was 

not seen in a subsequent study (29). Collectively, these data 

suggest that hyperprogression is still poorly understood and 

requires further investigation. JAK1/2 mutations as well 

as STAT family members were shown to confer primary 

resistance to PD-1 blockade (85-88). Defects in the IFN-γ 
pathway (89) and antigen-presenting protein beta-2-

microglobulin (85,88,90,91) were shown to interfere with 

successful IO therapy. Patients with mutations in STK11 

did not respond to treatment (28,29,92). While these data 

strongly suggest that the concept of negative IO-response 

predictors has great potential and will enter clinical stage 

soon, it should be noted that data of prospective clinical 

trials, which demonstrate the true clinical utility of these 

biomarkers have not been reported yet. Results from this 

comprehensive molecular tumor profiling should ideally be 
available within 10 working days from sample submission in 

order to ensure timely patient management.

Overall, in several retrospective and prospective clinical 

trials across multiple tumor entities, TMB was shown 

to identify patients that will or will not benefit from IO 

therapy more accurately than PD-L1 expression. It is 

therefore a promising marker that in conjunction with other 

parameters, like PD-(L)1 immunohistochemistry, positive 

and negative molecular predictors, immune cell infiltrates 

and inflammatory signatures can facilitate a more accurate 
guidance of IO interventions. However, for widespread 

Table 3 Side-by-side comparison of TMB assays used in currently published datasets

Features WES MSK-IMPACT (MSKCC) FoundationOne CDx (FMI)

Genes ~22.000 468 324

Size ~30 Mbp
†

1.22 Mbp 0.8 Mbp

Germline 

filtering

Blood Blood Databanks (dbSNP, ExAC, FMI internal), 

algorithm

TMB Somatic, coding mutations (non-

synonymous)/exome

Somatic, coding mutations (non-

synonymous)/Mbp

Somatic, coding mutations (non-synonymous 

+ indels + synonymous)/Mbp

Ref. (64) (6,61,65,66) (62,67)

†
, the actual size of the ‘exome’ is influenced by the enrichment method (exome capture kit) used (44,45). TMB, tumor mutational burden; 

FMI, Foundation Medicine panels.
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clinical use, harmonization of assays and reporting is crucial 

in order to ensure validity and comparability of results 

with these of clinical trials. Two major efforts are currently 

underway to address the issue of standardized TMB 

estimation:

In the United States, Friends of Cancer Research (FoCR) 

gathered stakeholders primarily of industry and to a lesser 

degree academia to conduct a three-step harmonization 

project (93). First, in silico TMB analysis of TCGA datasets 

was performed to uncover factors of variability between 

different assays used. Next, a reference standard employing 

WES will be created to enable comparison of different 

gene panels. Lastly, clinically meaningful cutoff values will 

be determined in a retrospective analysis of samples with 

patient outcome data.

In Germany, an academia-driven round robin test 

carried out by Qualitätssicherungs-Initiative Pathologie 

QuIP GmbH (QuIP) (94), a joint venture of the two 

major German pathology societies Deutsche Gesellschaft 

für Pathologie (DGP) and Bundesverband Deutscher 

Pathologen e.V. (BDP), is in progress. In contrast to the 

FoCR initiative this will not only involve diagnostic and 

pharmaceutical companies but also eleven pathology 

institutes across Germany and Switzerland. Testing will be 

carried out on human tissue samples with validation against 

WES data.

Since these two initiatives approach the process of 

harmonization from different angles, a collaboration was 

initiated with the intention of joining forces and laying the 

ground for international and cross-sector standardization 

of TMB measurement and reporting. Considering 

the importance of TMB for the complex interaction 

between tumors and the immune system (95), these 

efforts are expected to also boost our understanding of 

microenvironment-related biomarkers, including abundance 

and clonal composition of immune cell infiltrates, thus 

paving the way for even more individualized and effective 

IO therapeutic strategies.
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