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Multiple regression is one of the most popular statistical techniques used in behavioral science
research. There are three ways in which it is typically used:

1) Testing a full model, interpreting the model and each of its components.

2) Adding components to a model and interpreting the value of the increment.

3) Using a stepwise method in which variables are added or deleted from a model in sequence
to come up with a final "good" or "best" predictive model.

This paper deals with the third of these methods, the stepwise method.

Defining the term "stepwise"

In considering the stepwise method it is necessary to contrast the stepwise method used as a
computer program with the stepwise method used as a methodological procedure and to note the
different ways in which the stepwise method can be used.

Many computer programs are called "stepwise" programs because they can be used to build models
using a stepwise method with default or user-specified alternatives controlling factors of the
selection process including the criteria for entering and removing variables.

Stepwise computer programs can be used in four ways:

1) The program selects a model automatically using only the default values.

2) The program selects a model automatically using some or all user-specified values in place
of default values.

3) The researcher uses the output of the program to help in selecting a model.

4) The program is used to make specified incremental tests by adding one or more variables
to other variables.

Methods one and two are, almost without exception, the methods used in journal articles that claim
to be using the "stepwise method". However, few of them specify what statistical criteria are used
for adding and removing variables. In most cases the default values are probably used (method
one). Critics of the stepwise method usually criticize the use of stepwise programs in either of the
two automatic ways listed (methods one and two).

Since method three uses the professional judgment of the researcher in the selection of the final
model, this procedure will be suggested as the appropriate use of the stepwise method in this paper.
Method four uses the stepwise computer p vam, but it is not a use of the stepwise method so will
not be considered here.

The stepwise method as a procedure can be used to describe at least four different variable
selection strategies.

1) Forward method

The selection begins with no variables in the model and variables are added one at a time
if they meet the statistical criterion for entering variables.



2) Backward method

The selection begins with all variables in the model and variables are removed one at a time
if they meet the statistical criterion for removing variables.

3) Forward stepwise method

This is a variation of the forward method in which at each step, before any variable is
added, variables already in the model are considered for removal if they meet the statistical
criterion for removing variables.

4) Backward stepwise method

This is a variation of the backward method in which at each step, before any variable is
removed, variables not in the model are considered for addition if they meet the statistical
criterion for entering variables.

Usually in journal articles the method used is just called "stepwise" with no indication of which of
the four methods or procedures is used. The method that is used in most cases is probably the
forward stepwise method which is the default procedure for most stepwise computer programs.

Criticisms of the stepwise method

The stepwise method has been frequently criticized by rnethodologists (Davidson, 1988; Huberty,
1989; Thompson, 1989) and almost all authors of textbooks on multiple regression (i.e., Berensen
et al., 1983; Chatterjee & Price, 1977; Cohen & Cohen, 1975; Draper & Smith, 1981; Freund &
Minton, 1979; Gunst & Mason, 1980; Kleinbaum & Kupper, 1988; Morrison, 1983; Myers, 1986;
Neter et al., 1983; Pedhazur, 1982; Wittink, 1988; Younger, 1979). The criticisms are both general
and specific. Two examples of general criticisms are:

Someone has characterized the user of stepwise regression as a person who checks his or her
brain at the entrance of the computer center. (Wittink, 1988, p. 259)

Stepwise regression is probably the most abused computerized statistical technique ever devised.
If you think you need stepwise regression to solve a particular problem you have, it is almost
certain that you do not. Professional statisticians rarely use automated stepwise regression.
(Wilkinson, 1984, p. 196)

Critics of the stepwise method suggest the following considerations for selecting a subset of
predictors for a prediction model:

1) Selection of variables for a regression model should not be an automatic or mechanical
process.

2) No one method will consistently select the "best" model.

3) There is no one "best" model according to any common criterion such as the maximum R2.

4) The stepwise method should not be used to build models for ex?lanatory research.

5) The stepwise method has limited usefulness when predictors are highly correlated, if 1, key
set of variables work in combination, or when suppression exists.
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6) The order in which variables enter the model should not be used as an indicator of the value
of the variable as a predictor.

If a stepwise method is used to select a model in the automatic way that is most commonly found
in the literature, it is quite likely that:

1) Other models with the same number of predictors may very well have a larger R2.

2) Smaller models inay very well predict an equivalent R2.

3) Variables not included in the model may be just as good or better predictors than some of
the variables in the model.

4) The variables will probably not enter the model in order of their importance in the final
model.

Misuses of the stepwise method

In spite of these criticisms and suggestions, there are still many research studies reported in the
recent literature in which these guidelines are violated. Most of these studies have the following
characteristics:

1) Models selected by the computer are called the "best" or "optimum" model for maximizing
the explained variance (R2) with the minimum number of predictors (k).

2) No description is given of the process by which the model was selected other than the term
"the stepwise method was used". In most cases an automatic process was probably used.

3) Explanatory interpretations are made by defining "good" predictors as those in the model
and "poor" predictors as those not in the model.

4) The interpretation of the model includes a ranking of the variables in the model in terms
of importance based on order of entry.

5) No mention is made of the interrelationship of the variables in the description of the
procedures used or in the interpretation of the final model selected.

Examples of misuses

Examples of these uses/misuses of stepwise regression found in the educational literature in 1988
and 1989 include:

1) We found tht "most consistent variables that are most closely associated" with the criterion.

2) Variable A was picked as the "main predictor."

3) We wanted to find the "optimum equation."

4) The analysis yielded an "optimum predictor equation with as few predictors as possible."
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5) "This allows the most consistent variables that are most closely associated with learning to
be identified."

6) "The use of [variable A and variable 13.1 as predictors revealed that [variable A] predicted
[variable Y). [Variable B] proved to lack significant predictive utility." In this article: a table
reported that the zero-order correlations between Y and variables A and B were .49 and .48.
Variable B did not appear in the final model.

Should stepwise methods be used?

Although most, if not all statisticians would agree that stepwise methods should not be used when
an explanatory model is desired, it is common to see research articles where explanatory
interpretations are made to a model that is called a "prediction" model. Even if a predictive model
is being selected, determining the value of each of the predictors in the prediction model requires
more than what the stepwise method provides. Order of entry should not be used for this purpose.
Stepwise methods should not be used to determine the number of variables in the final model. If
multicollinearity exists in the data set, stepwise meth6dsare especially suspect. In most cases, either
the multicollinearity should be removed by removing variables, or other procedures should be used.

Since from the critics' point of view the stepwise methods are usually used in an inappropriate
manner, the question then is whether the stepwise method should be a recommended technique for
statistical analysis, and if so, how should it be used.

The objective of this paper is to consider the conditions under which variable selection procedures
such as stepwise procedures can be used appropriately in educational research.

Value of using stepwise methods

The stepwise method is appropriate for situations in which a prediction model is desired, not an
explanation model. In these situations, it is best used for exploratory analysis where little theory
is available to guide in the se' action of variables for the prediction model (Wittink, 1988).

Stepwise methods are very helpful if used properly when a subset of predictor variables is needed
to be selected. A major advantage of stepwise methods is that by examining theoutput of each step
of the model building process the researcher can see how each variable acts in different
combinations which can be used to help the researcher to select the variables for the final model.

Observing the change in the partial correlations (and/or regression coefficients) as variables are
added and deleted gives a feel for the variables that is difficult to get in any other way. If both
forward and backward stepwise methods are used in conjunction with an all possible subsets
program such as BMDP9R, a great variety of "good" models can be examined. An earlier study by
Thayer (1986) showed that the backward stepwise and all possible subsets methods freguidy gave
different models than the forward stepwise method, in some cases with much higher Rz values with
the same or slightly me :e predictors.

The value of each potential predictor can be examined by comparing the zero-order correlations
with the partial correlations at each step in the stepwise process. If the partial correlations remain
high relative to the zero-order correlation, then the researcher can be confident of the stability of
the variable in many prediction situations. If the partial correlations change markedly, then it will
take some analysis to determine the dynamics involved, particularly noting which variables seem to
be causing the changes.
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How not to use stepwise methods

If stepwise methods are used the following procedures should be avoided:

1) Stepwise methods should not be used alone as the only procedure, especially if the
researcher is looking for the "best" or "optimum" prediction model. An all possible subsets
program such as BMDP9R should be used in conjunction with stepwise methods. It is also
very desirable to use both the forward and backward stepwise methods to examine
alternative models. When one method is used the temptation is great to use the model that
the computer selects as the final model. The final model should be selected as a result of
many considerations, not only the statistical criterion used by the stepwise program.

2) Stepwise methods should not be used automatically using the default values. The default
values of F(or p)-to-enter and F(or p)-to-remove are seldom appropriate for good model
selection. Whether the default values are used or not, they should be specified in the
reporting of the results.

3) The p values given for the increments at each step should not be taken at "face" value.
Huberty (1989) suggests that "the .ail probabilities . . . should not be taken too seriously.
And one should certainly not refer such probabilities to conventional significance levels to
determine the 'significance' of an entered or removed response variable."

How to run stepwise programs

If a stepwise program is used to provide data to the researcher for model selection, the following
suggestions are offered:

1) Reduce the number of variables to work with to a size that will allow you to do an "all
possible subsets" (BMDP9R) run. If computer memory permits, do a backward stepwise run
to find the best 27 (or number that can be run by an all possible subsets program). If there
are too many variables to do a backward run, then do a forward run with a very low F-to-
enter, forcing in all theoretically important variables to find the "best" 27 (or so).

2) Allow theoretically important variables (variables that have been shown or are hypothesized
to be "causal" variables) to be entered first by foioing them in the model or allowing them
to be eligible for entrance if they satisfy the statistical criterion for entering variables.

3) Set low F-to-enter or high p-to-enter values, such as F = 0.00-2.00 or p = .10-1.00 (Myers,
1986; Wittink, 1988). You should allow the computer to enter more variables (if forward)
or delete more variables (if backward) then desired for a final model, in order to consider
more variables than you will use in the selected model. The major advantage of this is to
allow more combinations of variables to be considered in the final model.

4) Run both forward and backward stepwise and all possible subsets procedures in order to
consider alternative models and to examine the performance of the variables in different
models.

The forward stepwise method frequently gives smaller models than the backward stepwise
method and the researcher can observe changes occurring in the partial correlations (and/or
regression coefficients) of variables which give a feel for the stability of the variable (Thayer,
1986).
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The backward stepwise method has an advantage over the forward stepwise method because
combinations of variables that work together but not singly are considered. The forward
stepwise method will miss them (Thayer, 1986).

The all possible subsets method encourages examination of more then one model by
providing statistics for many models of varying sizes.

5) Cross-validate alternative models suggested by the stepwise and all possible subsets runs.
This can be done either by generating an equation from half of the data and cross-validating
it on the other half, or by selecting another sample for the cross-validation.

6) Select the final model intelligently by using as many of the following criteria as possible:

Each variable in the model should contribute a meaningful amount to the total R2 of the
model (the incremental R squared of that variable in addition to the others in the model).
With a large N the "best" model may be a smaller model than that suggested by considering
only the p values of the variables.

The variables selected should as much as possible be theoretically meaningful variables.

The variables selected should as much as possible hz -/e partial correlations (and regression
coefficients) which are relatively stable in the various steps or with different models. As
variables are added or deleted in the stepwise process, if the sign of the partial correlation
and regression coefficient for a predictor changes, that variable may not perform well in a
cross-validation situation. If a partial correlation (and regression coefficient) becomes larger
as the model increases in size, the variable should bf studied closely to see whether there
is some suppression or multicollinearity in the data that needs to be considered in the
selection of the final model.

The variables selected should appear in many "good" models. Variables that only work in
a few combinations would be unlikely to work well in a prediction model with new data.

The model should be one of the best models considered in terms of cross-validation.

How to report stepwise results

If stepwise procedures are used properly, many decisions must be made concerning how to run the
stepwise program and how to select the variables for the final model. It is important that these
decisions should be included in the final report.

The following procedures used should be reported:

1) F-to-enter/remove or p-to-enter/remove values used.

2) Stepping method used: forward, forward stepwise, backward, or backward stepwise.

3) Default or substitute values used.

4) Which alternative models were examined.

5) Results of stepwise methods compared to those of the all possible subsets method.

6) How subjective judgment (theory, etc.) was used in selecting variables for the model.
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The following statistical results should b,- reported:

1) For each variable considered:

Zero-order correlations and partial correlations with the dependent variable at each
step.

2) For each variable selected:

Why it was selected.

The stability of its regression coefficient, b or B, (or its partial correlation) in different
models.

3) For each variable not selected:

Why it was not selected.

Whether the variable was a good predictor in other combinations of variables tested or
a good predictor alone.

Summer

When model selection is being done, the stepwise method can be helpful if the initial choice of
variables is chosen as much as possible using theory, the defaults are not used automatically, more
than one run is done using different variable selection methods, and the final model is chosen
through an intelligent process, not automatically using the final model generated by the computer
program.

Example

Appendices A-C report computer printouts and models of three variable selection computer runs:
forward stepwise, backward stepwise and all possible subsets, using t. c., BMDP2R and BMDP9R
computer programs on data set A6 from Gunst and Mason (1980, pp 355, 363). These printouts,
summary tables and comments inserted where appropriate, illustrate most of the points presented
in this paper.

To make interpretation easier, the BMDP2R listing in Appendix A is a combined forward and
backward run but the variables entered and removed are in the same order as they were with runs
done using the forward stepwise and backward stepwise methods using F-to-enter/rerLove values
of 2.00/1.99.

Table 1 reports a summary of the models selected by the forward and backward stepwise methods
described in more detail in Appendix A. With the forward stepwise method, variable 2 was the first
variable entered. If the default F-to-enter value of 4.00 had been used, variable 2 would not have
entered and the 0-predictor model Nould have been selected.

Using F-to-enter/remove values of 2.00/1.99, the automatic forward stepwise method selected a 2-
predictor model with an R2 of .1495 which was the same as the best 2-predictor model found using
the all possible subsets method. If the forward stepwise method would have been allowed to
continue adding variables with F's below 2.00, the larger models selected became progressively
worse compared to those identified as the "best" of the same model size by the all possible subsets
method.
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Table 1

Summary of Models Selected By Forward and Backward Stepwise Methods

Predictors Step Method Variables in the Model R2
2 2 Forward 2 4 .1495
2 26 Backward 2 13 .0903

4 4 Forward 2 4 8 10 .2108
4 24 Backward 2 6 13 15 .1783

5 5 Forward 2 4 8 10 12 .2428
5 23 Backward 2 6 12 13 15 .2289

6 6 Forward 2 4 8 9 10 12 .2649
6 22 Backward 2 5 6 12 13 15 .2966

7 7 Forward 2 4 5 8 9 10 12 .2963
7 21 Backward 2 5 6 9 12 13 15 .3472

The model selected by the backward stepwise method was a 7-predictor mr,del which was the same
model chosen by the all possible subsets as the best model of any size. If smaller models had been
chosen with the backward stepwise method, they would have become progressively poorer than the
"best" model of the same size selected by the all possible subsets method. Forward stepwise gave
better small models while backward stepwise gave better large models.

Appendix B reports the printout of the BMDP9R all possible subsets run on the A6 data. One 4-
predictor modei, four 5-predictor models, at least ten 6-predictor models, and at least ten 7-
predictor models had Cp values lower than the recommended minimum value (k+ 1 where k is the
number of predictors in the model). The model with the lowest CD value was a 7-predictor model.
Although this model was identified as the "best" model by BMDP9R, all of the models with lower
than minimum ;values could be considered to be "good enough" models. The best 2, 4, 5, 6, and
7 predictor models along with all other models with acceptable C, values with these model sizes are
reported in Appendices A-C.

Table 2 compares the models selected by the all possible subsets method with those of the forward
stepwise and backward stepwise methods. The three methods neverzave the same models with 2,
4, 5, 6, or 7 predictors.

The models selected by the forward stepwise method wel e identified by the all possible subsets
methods as the best 2-predictor model, the 2nd best 4-predictor model, the 5th best 5-predictor
model and not in the top ten 6 or 7-predictor models. The models selected by the backward
stepwise method were identified by the all possible subsets methods as the 4th best 2-predictor
model, not in the top ten 4 or 5-predictor model, the 2nd best 6-predictor model, and the best 7-
predictor model.

Variables 4, 8 and 10 were three of the first four variables entered in the forward stepwise method
but they were also three of the first five removed in the backward stepwise method. Using the
order of entry criterion for importance would indicate that 4, 8 and 10 were some of the best
variables if you used the forward stepwise method or some of the worst variables if you used the
backward stepwise method.

If the forward stepwise method would have been used to select the "best" model and order of entry
was used to indicate importance (which should not be done), variable 2 would be called the "most
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.
important" varable and variable 4 the "next most important". If better models had been used, such
as those shown in Appendix C, and contribution to R2 was used as the criterion for importance,
variable 2 would have been the "most important" in every model, but variable 4 did not appear in
any of the models.

Table 2

Models Selected By All Possible Subsets, FL -ward Stepwise and Backward Stepwise Methods

Predictors Method Variables in the Model
All Possible

R2 Ranking
2 All Possible Subsets 2 4 .1495
2 Forward 2 4 .1495 1st
2 Backward 2 13 .0903 4th

4 All Possible Subsets 2 4 5 9 .2278
4 Forward 2 4 8 10 .2108 2nd
4 Backward 2 6 13 15 .1783 Not in toi. 10

5 All Possible Subsets 2 5 9 12 13 .2699
5 Forward 2 4 8 10 12 .2428 5th
5 Backward 2 6 12 13 15 .2289 Not in top 10

6 All Possible Subsets 2 3 5 12 13 15 .3000
6 Forward 2 4 8 9 10 12 .2649 Not in top 10
6 Backward 2 5 6 12 13 15 .2966 2nd

7 All Possible Subsets 2 5 6 9 12 13 15 .3472
7 Forward 2 4 5 8 9 10 12 .2963 Not in top 10
7 Backward 2 5 6 9 12 13 15 .3472 1st

Variable 5 was the second best variable in two of the four "best" models in Appendix C and Table
3 but the least important variable in tLz other two models. Since these models are good
competitors for the "best" model as explained later, it can been seen that even using contribution
to R2 is likely to mislead in indicating the importance of variables, since it can be so heavily
dependent on what other variables are in the model.

The listing of the partial con.elations for each variable for each step gives an indication of the
stability of the variables. Variable 2, the "most important" variable, is very stable, while other
variables are shown to vary somewhat. None of the variables changes signs while in the model
(indicated by as asterisk in the printout).

Disregarding theory in the selection of models, there were four models with 5, 6, and 7-predictors
that appear to be worthy of selection as a "best" model are listed in Table 3. More complete
information on the models is provided in Appendix C.

Variables 2, 5, 12, and 13 appear in all of these models, variable 15 in four of the models, variable
9 in three of the models, and variables 3 and 6 in only two of the models. In the list of partial
correlations at each step in Appendix A it is clear that variable 6 is a better predictor in most
situations and therefore would be expected to do better in cross validation. The best 5, 6, and 7
predictor models are then those with asterisks by the R2 values in Table 3. The choice between
these models could be done after cross-validation and consideration of other criteria not discussed
in this paper.

9 11



Table 3

Candidates for "Best" Model

Number of Predictors Variables in the Model
5 2 5 9 12 13 .269878*

6 2 3 5 12 13 15 .299565
6 2 5 6 12 13 15 .296645*

7 2 5 6 9 12 13 15 .347206*
7 2 3 5 9 12 13 15 .346599

* "best" models
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Appendix A

Forward/Barkward Stepwise Rendlts

BM0P2R STEPWISE REGRESSION

PROGRAM INSTRUCTIONS

/input file=,a60.

format=free.
variables=15.

/regress dependent=1.

independent=2 to 15.
enter =0.01,500.

remove=0.00,499.
/print part.

/end

NUMBER OF CASES READ

VARIABLE STANDARD
NO. NAME MEAN DEVIATION

50

COEFFICIENT
OF VARIATION SKEWNESS KURTOSIS

SMALLEST

VALUE
LARGEST
VALUE

SMALLEST

STD SCORE

LARGEST

STD SCORE
1 X(1) 0.3162 0.0482 0.152482 0.5209 -0.3210 0.2210 0.4270 -1.9745 2.2981
2 X(2) 177.9060 6.7031 0.037678 0.0684 0.0559 163.1000 193.5000 -2.2088 2.3264
3 X(3) 78.3524 11.4684 0.146369 0.3066 -0.7693 54.2800 102.2600 -2.0990 2.0847
4 X(4) 40.9520 1.5861 0.038730 -0.2923 -0.3913 37.2000 43.8000 -2.3656 1.7956
5 X(5) 28.1060 1.4372 0.051134 0.0975 0.1848 24.2000 31.6000 -2.7178 2.4312
o X(6) 90.6200 5.9709 0.065890 0.2624 -1.0669 80.5000 101.2000 -1.6949 1.7719
7 X(7) 16.1300 6.1019 0.378293 0.0703 -0.1614 3.5000 32.0000 -2.0699 2.6008
8 X(8) 73.0800 12.9107 0.176666 0.4533 -0.5277 50.0000 104.0000 -1.7877 2.3949
9 X(9) 74.6000 8.1140 0.108767 -0.2439 0.9651 48.0000 90.0000 -3.2783 1.8980
10 X(10) 6.2800 4.3801 0.697469 0.8519 0.4282 0.0000 20.0000 -1.4338 3.1323
11 X(11) 193.3400 25.4547 0.131658 0.7104 0.7753 146.0000 272.0000 -1.8598 3.0902
12 X(12) 114.9400 10.3990 0.090473 0.6146 1.4698 91.0000 147.0000 -2.3021 3.0830
13 X(13) 5.4800 0.3637 0.066360 -1.1897 3.7250 4.0000 6.0000 -4.0698 1.4299
14 X(141 4.1740 0.5642 0.135163 0.1375 -0.2559 3.0000 5.5000 -2.0809 2.3503
15 X(15) 13.7680 7.3521 0.533998 0.6392 -0.2236 2.0100 32.6300 -1.5993 2.5655

CORRELATIONS

X(2) X(3) X(4) X(5) X(6) ...(7) X(8) X(9) X(10) X(11) X(12) X(13) X(14)

2 3 4 5 6 7 8 9 10 11 12 13 14
X(2) 2 1.000
X(3) 3 0.635 1.000
X(4) 4 0.654 0.666 1.000
X(5) 5 0.586 0.647 0.582 1.000
X(6) 6 0.426 0.889 0.554 0.522 1.000
X(7) 7 0.223 0.554 0.205 0.207 0.398 1.000
X(8) 8 -0.182 -0.264 -0.168 -0.323 -0.246 -0.006 1.000
X(9) 9 -0.187 -0.052 -0.145 0.148 -0.008 0.049 0.234 1.000
X(10) 10 -0.276 -0.576 -0.274 -0.158 -3.454 -0.670 0.155 0.054 1.000
X(11) 11 0.588 0.450 0.31.8 0.354 0.347 0.207 -0.064 -0.165 -0.358 1.000
X(12) 12 -0.151 -0.118 -0.042 -0.247 -0.065 0.244 0.528 0.155 -0.101 0.101 1.000
X(13) 13 0.216 -0.053 0.202 0.041 -0.162 -0.208 -0.300 -0.321 0.324 -0.031 -0.473 1.000
X(14) 14 -0.189 -0.368 -0.245 -0.229 -0.328 -0.336 0.007 0.134 0.213 -0.315 -0.018 -0.022 1.000
X(15) 15 0.364 C.810 J.329 0.414 0.727 0.843 -0.093 .0.047 -0.689 0.301 0.098 -0.205 -0.405
X(1) 1 0.222 0.056 -0.094 -0.056 -0.032 0.132 0.163 0.147 -0.158 0.160 -0.07L -0.149 -0.053

X(15) X(1)

15 1

X(15) 15 1.000
X(1) 1 0.165 1.000

Variable 2 had the highest zero-order correlations with x(1), the
dependent variable. Variables 7-11, 13 and 15 all had similar values.

STEPPING ALGORITHM F

DEPENDENT VARIABLE
1 X(1)

MINIMUM ACCEPTABLE F TO ENTER 0.010, 500.000
MAXIMUM ACCEPTABLE F TO REMOVE 0.000, 499.000 .

MINIRUM ACCEPTABLE TOLERANCE 0.01000
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STEP NO. 2

1, VARIABLE ENURED 4 X(4)

MULTIPLE R 0.3867
MULTIPLE R- SQUARE 9=1495
ADJUSTED R- SQUARE 0.1133

STD. ERROR OF EST. 0.0454

ANALYSIS OF VARIANCE
SUM OF SQUARES

REGRESSION 0.17033600E-01
RESIDUAL 0.96874410E-01

DF MEAN SQUARE F RATIO
2 0.8516802E-02 4.13

47 0.2061158E-02

VARIABLES IN EQUATION FOR X(1)

STD. ERROR STD REG
VARIABLE COEFFICIENT OF COEFF COEFF TOLERANCE

(Y-INTERCEPT 0.20221

F

TO REMOVE LEVEL.

VARIABLES NOT IN EQUATION

PARTIAL F

VARIABLE -ORR. TOLERANCE TO ENTER LEVEL

X(2) 2 0.00357 0.0013 0.496 0.57190 7.78 1 . X(3) 3 0.03034 0.48713 0.04 1

X(4) 4 -0.01272 0.0054 -0.418 0.57190 5.53 1 . X(5) 5 -0.14554 0.58742 1.00 1

. X(6) 6 -0.01457 0.68557 0.01 1

. X(7) 7 0.11971 0.94419 0.67 1

. X(8) P 0.20199 0.96277 1.96 1

. X(9) 9 0.19794 0.96429 1.88 1

This model was the model selected by forward stepwise . X(10) 10 -0.15485 0.90860 1.13 1

using an F-to-enter of 2.00. . X(11) 11 0.02914 0.65395 0.04 i

. X(12) 12 -0.02049 0.97184 0.02 1

. X(13) 13 -0.19154 0.94707 1.75 1

. X(14) 14 -0.06840 0.93861 0.22 1

. X(15) 15 0.14331 0.85272 0.96 1

STEP NO. 21

VARIABLE REMOVED 7 X(7)

MULTIPLE R
MULTIPLE R-SQUARE
ADJUSTED R-SQUARE

0.5892
0.3472
0.2384

STD. ERROR OF EST. 0.0421

ANALYSIS OF VARIANCE

SUM OF SQUARES
REGRESSION 0.39549630E-01
RESIDUAL 0.74358380E-01

VARIABLES IN

DF MEAN SQUARE F RATIO
7 0.5649948E-02 3.19

42 0.1770438E-02

EQUATION FOR X(1) VARIABLES NOT IN EQUATION

VARIABLE

(Y-INTERCEPT

COEFFICIENT
0.57824

STD. ERROR
OF COEFF

)

STD REG

COEFF TOLERANCE
F

TO REMOVE LEVEL. VARIABLE
PARTIAL
CORR. TOLERANCE TO ENTER LEVEL

X(2) 2 0.00423 0.0012 0.588 0.53012 11.78 1 . X(3) 3 -0.11216 0.07232 0.52 1

X(5) 5 -0.01570 0..0061 -0.468 0.47030 6.62 1 . X(4) 4 -0.05438 0.36713 0.12 1

X(6) 6 -0.00318 0.0016 -0.393 0.38895 3.87 1 . X(7) 7 -0.18517 0.18059 1.46 1

X(9) 9 0.15129E-02 0.8388E-03 0.255 0.77996 3.25 1 . X(8) 8 0.14242 0.61554 0.85 1

X(12) 12 -0.16762E-02 0.6988E-03 -0.362 0.68420 5.75 1 . X(10) 10 0.14081 0.42251 0.83 1

X(13) 13 -0.04381 0.0208 -0.330 0.63093 4.43 1 . X(11) 11 0.10966 0.58982 0.50 1

X(15) 15 0.00253 0.0012 0,386 0.43940 4.21 1 . X(14) 14 -0.09643 0.79427 0.38 1

This is the model that was selected by backward stepwise using an F-to-enter of 2.00.
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STEP NO. 22

VARIABLE REMOVED 9 X(9)

MULTIPLE R 0.5447
MULTIPLE R-SQUARE 0.2966
ADJUSTED R-SQUARE 0.1985

STD. ERROR OF EST. 0.0432

ANALYSIS OF VARIANCE

SUP! OF SQUARES DF MEAN SQUARE F RATIO
REGRESSION 0.33790250E-01 6 0.5631709E-02 3.02
RESIDUAL 0.80117760E-01 43 0.1863204F-02

VARIABLE

(Y-INTERCEPT

VARIABLES IN EQUATION FOR X(1)

STD. ERROR STD REG
COEFFICIENT OF COEFF COEFF TOLERANCE

0.75673 )

F

TO REMOVE
.

LEVEL.

.

VARIABLE

VARIABLES NOT IN EQUATION

PARTIAL F

CORR. TOLERANCE TO ENTER LEVEL

X(2) 2 0.00364 0.0012 0.506 0.56993 8.92 1 . X(3) 3 -0.13162 0.07290 0.74 1X(5) 5 -0.01199 0.0059 -0.357 0.53053 4.14 1 . X(4) 4 -0.08029 0.37123 0.27 1
X(6) 6 -0.00352 0.0016 -0.436 0.39451 4.59 1 . X(7) 7 -0.18857 0.18085 1.55 1X(12) 12 -0.15805E-02 0.7148E-03 -0.341 0.68815 4.89 1 . X(8) 8 0.19456 0.64908 1.65 1
X(13) 13 -0.05222 0.0208 -0.394 0.66426 6.30 1 . X(9) 9 0.26812 0.77996 3.25 1
X(15) 15 0.00261 0.0013 0.398 0.43996 4.26 1 . X(10) 10 0.17102 0.43055 1.27 1

. X(11) 11 0.06474 0.60307 0.18 1

. X(14) 14 -0.04708 0.81680 0.09 1

This is the 6 predictor model that would have been selected by backward stepwise

STEP NO. 23

VARIABLE REMOVED 5 X(5)

MULTIPLE R 0.4784
MULTIPLE P-SQUARE 0.2289
ADJUSTED R-SQUARE 0.1412

STD. ERROR OF EST. 0.0447

ANALYSIS OF VARIANCE

SUM OF SQUARES DF MEAN SQUARE F RATIO
REGRESSION 0.26069730E-01 5 0.5213945E-02 2.61
RESIDUAL 0.87838280E-01 44 0.1996325E-02

VARIABLE
(Y-INTERCEPT

VARIABLES IN EQUATION FOR X(1)

STD. ERROR STD REG
COEFFICIENT OF COEFF COEFF TOLERANCE

0.62171 )

F

TO REMOVE
.

LEVEL.
.

VARIABLE

VARIABLES NOT IN EQUATION

PARTIAL F

CORR. TOLERANCE TO ENTER LEVEL

X(2) 2 0.00250 0.0011 0.348 0.72136 4.99 1 . X(3) 3 -0.19981 0.07841 1.79 1X(6) 6 -0.00425 0.0017 -0.526 0.41403 6.54 1 . X(4) 4 -0.16324 0.40909 1.18 1X(12) 12 -0.12176E-02 0.7165E-03 -0.263 0.73387 2.89 1 . X(5) 5 -0.29647 0.53053 4.14 1X(13) 13 -0.04737 0.0214 -0.357 0.67307 4.90 1 . X(7) 7 -0.16202 0.18150 1.16 1X(15) 15 0.00245 0.0013 0.373 0.44178 3.51 1 . X(8) 8 0.22815 0.66399 2.36 1

. X(9) 9 0.14120 0.87984 0.87 1

. X(10) 10 0.07498 0.46620 0.24 1

. X(11) 11 0.05971 0.60311 0.15 1

. X(14) 14 -0.02641 0.81998 0.03 1

This is the 5 predictor model that would have been selected by backward stepwise.
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STEP NO. 24

VARIABLE REMOVED

MULTIPLE R

gULTIPLE R-SCOARE
ADJUSTED R-SQUARE

STD. ERROR OF EST.

12 X(12)

0.4222
0.1783

0.1052

0.0456

ANALYSIS OF VARIANCE

SUM OF SQUARES OF MEAN SQUARE F RATIO
REGRESSION 0.20304410E-01 4 0.5076102E-02 2.44
RESIDUAL 0.93603600E-01 45 0.2080080E-02

VARIABLE

(Y-INTERCEPT

VARIABLES IN EQUATION FOR X(1)

STD. ERROR STD REG
COEFFICIENT OF COEFF COEFF TOLERANCE

0.33832 )

F

TO REMOVE

.

LEVEL.

.

VARIABLES NOT IN EQUATION

PARTIAL F

VARIABLE CORR. TOLERANCE TO ENTER LEVEL

X(2) 2 0.00250 0.0011 0.348 0.72136 4.78 1 . X(3) 3 -0.13532 0.08226 0.82 1

X(6) 6 -0.00361 0.0017 -0.447 0.43646 4.77 1 . X(4) 4 -0.21748 0.43907 2.18 1

X(13) 13 -0.03077 0.0194 -0.232 0.85029 2.51 1 . X(5) 5 -0.21616 0.56578 2.16 1

X(15) 15 0.00207 0.0013 0.315 0.45494 2.48 1 . X(7) 7 -0.20628 0.19016 1.96 1

. X(8) 8 0.09303 0.81411 0.38 1

. X(9) 9 0.14000 0.87999 0.88 1

. X(10) 10 0.04373 0.47239 0.08 1

. X(11) 11 0.01118 0.62425 0.01 1

. X(12) 12 -0.24818 0.73387 2.89 1

. X(14) 14 -0.01307 0.82206 0.01 1

This is the 4 predictor model that would have been selected by backward stepwise.
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PARTIAL CORRELATIONS

VARIABLES 2 X(2) 3 X(3)
STEP

4 X(4) 5 X(5) 6 X(6) 7 X(7) 8 X(8) 9 X(9) 10 X(10) 11 X(11)

0 0.2221 0.0562 -0.0938 -0.0559 -0.0318 0.1324 0.1631 0.1473 -0.1585 0.1595
1 0.2223* -0.1129 -0.3245 -0.2356 -0.1434 0.0871 0.2122 0.1971 -0.1036 0.0365
2 0.3768* 0.0303 -0.3245* -0.1455 -0.0146 0.1197 0.2020 0.1979 -0.1548 0.0291
3 0.3975* 0.0704 -0.3183* -0.0974 0.0223 0.1138 0.2020* 0.1632 -0.1804 0.0192
4 0.3828* -0.0310 -0.3397* -0.0846 -0.0460 -0.0057 0.2218* 0.1616 -0.1804* -0.0300
5 0.3583* -0.0544 -0.3269* -0.1081 -0.0496 0.0388 0.2934* 0.1705 -0.2240* 0.0111
6 0.3754* -0.0866 -0.3278* -0.2068 -0.0762 0.0228 0.2693* 0.1705* -0.2244* 0.0286
7 0.4204* -0.0064 -0.2414* -0.2068* -0.0243 0.0658 0.2137* 0.2442* -0.2151* 0.0606
8 0.4444* -0.0245 -0.1903* -0.2474'" -0.0717 0.1104 0.1864* 0.2220* -0.1155* 0.0611
9 0.4462* -0.2154 -0.1743* -0.2824* -0.2324 0.0115 0.1711* 0.2241* 0.0083* 0.0822
10 0.4536* -0.0807 -0.0300* -0.3116* -0.2324* -0.1459 0.1109* 0.2243* 0.0866* 0.1410
11 0.4489* -0.0721 0.0063* -0.3287* -0.2721* -0.1459* 0.0859* 0.2320* 0.0755* 0.1419
12 0.3634* -0.0794 0.0392* -0.3500* -0.2936* -0.1468* 0.0745* 0.2516* 0.1154* 0.1419*
13 0.3671* -0.0794* 0.0607* -0.3304* -0.1897* -0.1419* 0.0779* 0.2497* 0.1013* 0.1457*
14 0.3688* -0.0785* 0.0549* -0.3321* -0.1896* -0.1440* 0.0733* 0.2537* 0.0942* 0.1279*
15 0.3671* -0.0794* 0.0607* -0.3304* -0.1897* -0.1419* 0.0779* 0.2497* 0.1013* 0.1457*
16 0.3842* -0.0645* 0.0607 -0.3326* -0.1805* -0.1323* 0.0930* 0.2442* 0.0867* 0.1354*
17 0.3951* -0.0645 0.0392 -0.3731* -0.3283* -0.1417* 0.0862* 0.2487* 0.1088* 0.1367*
18 0.4118* -0.0542 0.0586 -0.4059* -0.3506* -0.1521* 0.0862 0.2683* 0.1351* 0.1388*
19 0.3992* -0.0872 0.0097 -0.3872* -0.3470* -0.1850* 0.1179 0.2791* 0.1351 0.1093*
20 0.4770* -0.0818 -0.0050 -0.3809* -0.3403* -0.1852* 0.1135 0.2658* 0.1045 0.1093
21 0.4680* -0.1122 -0.0544 -0.3691* -0.2906* -0.1852 0.1424 0.2681* 0.1408 0.1097
22 0.4146* -0.1316 -0.0803 -0.2965* -0.3105* -0.1886 0.1946 0.2681 0.1710 0.0647
23 0.3191* -0.1998 -0.1632 -0.2965 -0.3598* -0.1620 0.2281 0.1412 0.0750 0.0597
24 0.3099* -0.1353 -0.2175 -0.2162 -0.3097* -0.2063 0.0930 0.1400 0.0437 0.0112
25 0.3321* 0.0332 -0.2502 -0.2058 -0.2167* 0.1024 0.1099 0.1484 -0.0946 0.0125
26 0.2636* -0.1743 -0.3154 -0.2652 -0.2167 0.0333 0.1657 0.1459 -0.0212 -0.0051
27 0.2223* -0.1129 -0.3245 -0.2356 -0.1434 0.0871 0.2122 0.1971 -0.1036 0.0365

Good Good Low Good
Always Small Atone Only

Not With
Atone X(15)

PARTIAL CORRELATIONS

VARIABLES 12 X(12) 13 X(13)
STEP

0 -0.0756 -0.1493
1 -0.0437 -0.2072
2 -0.0205 -0.1915
3 -0.1511 -0.1458
4 -0.2016 -0.0700
5 -0.2016* -0.1488
6 -0.2087* -0.1071
7 -0.2363* -0.1746
8 -0.2836* -0.1746*
9 -0.3028* -0.1922*
10 -0.3513* -0.2726*
11 -0.3280* -0.2823*
12 -0.3523* -0.2970*
13 -0.3599* -0.2973*
14 -0.3554* -0,2983*
15 -0.3599* -0.2973*
16 -0e3631* -0.3008*
17 -0.3581* -0.3122*
18 -0.3520* -0.3308*
19 -0.3298* -0.3048*
20 -0.3156* -0.3138*
21 -0.3471* -0.3090*
22 -0.3196* -0.3575*
23 -0.2482* -0.3166*
24 -0.2482 -0.229FP
25 -0.1992 -0.2622*
26 -0.1587 -0.2072*
27 -0.0437 -0.2072

14 X(14)

-0.0525

-0.0110
-0.0684
-0.0618

-0.0343

-0.0312
-0.0517

-0.0978
-0.1150

-0.0745
-0.0776

-0.0848
-0.0481

-0.0467
-0.0467*

-0.0467
-0.0534

-0.0524
-0.0625

-0.0803
-0.1028

-0.0964

-0.0471

-0.0264

-0.0131

-0.0736
-0.0072

-0.0110

15 X(15)

0:1650
0.0925

0.1433
0.1508
0.0443

0.0587

0.0320

0.1194
0.1444

0.1444*
0.2626*

0.2718*
0.2904*

0.3000*
0.2910*

0.3000*
0.3119*

0.3059*
0.3274*

0.3080*
0.3064*

0.3020*

0.3004*

0.2717*
0.2285*

0.2285

0.0298
0.0925

Good Good Good
Large Large Large
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SUMMARY TABLE

STEP
NO.

VARIABLE
ENTERED REMOVED

MULTIPLE CHANGE

R RSO IN RSO

F TO
ENTER

F TO
REMOVE

NO.OF VAR.
INCLUDED

1 2 X(2) 0.2223 0.0494 0.0494 2.50 1

2 4 X(4) 0.3867 0.1495 0.1001 5.53 2

3 8 X(8) 0.4292 0.1842 0.0347 1.96 3

4 10 X(10) 0.4591 0.2108 0.0265 1.51 4
5 12 X(12) 0.4928 0.2428 0.0321 1.86 5

6 9 X(9) 0.5146 0.2649 0.0220 1.29 6
7 5 X(5) 0.5443 0.2963 0.0314 1.88 7
... 13 X(13) 0.5637 0.3178 0.0215 1.29 8
9 15 X(15) 0.5762 0.3320 0.0142 0.85 9
10 6 X(6) 0.6067 0.3681 0.0361 2.23 10

11 7 X(7) 0.6177 0.3815 0.0135 0.83 11

12 11 X(11) 0.6277 0.3940 0.0125 0.76 12

13 3 X(3) 0.6307 0.3978 0.0038 0.23 13

14 14 X(14) 0.6318 0.3991 0.0013 0.08 14

15 14 X(14) 0.6307 0.3978-0.0013 0.08 13

16 4 X(4) 0.6289 0.3956-0.0022 0.13 12

17 3 X(3) 0.6269 0.3930-0.0025 0.15 11

18 8 X(8) 0.62330.3885-0.0045 0.28 10

19 10 X(10) 0.6141 0.3771-0.0114 0.73 9
20 11 X(11) 0.6079 0.3696-0.0075 0.48 8
21 7 X(7) 0.5892 0.3472-0.0224 1.46 7
22 9 X(9) 0.5447 0.2966-0.0506 3.25 6
23 5 X(5) 0.4784 0.2289-0.0678 4.14 5

24 12 X(12) 0.4222 0.1783-0.0506 2.89 4
25 15 X(15) 0.3647 0.1330-0.0453 2.48 3
26 6 X(6) 0.3004 0.0903-0.0427 2.27 2
27 13 X(13) 0.2223 0.0494-0.0408 2.11 1
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Appendix B

All Possible Subsets Output

BROP9R - ALL POSSIBLE SUBSETS REGRESSIOM

PROGRAM INSTRUCTIONS

/input file=4661.

format=free.
variables=15.

/regress dependent=1.

independent=2 to 15.
/end

DEPENDENT VARIABLE 1 X(1)
NUMBER OF 'BEST' REGRESSIONS REPORTED 5

SELECTION CRITERION CP

NUMBER OF CASES READ 50

FOR EACH SUBSET SELECTED BY YOUR CRITERION, THE R-SQUARED, ADJUSTED R-SQUARED, MALLOWS' CP, AND THE VARIABLE NAMES ARE
PRINTED. THE REGRESSION COEFFICIENTS AND T-STATISTICS ARE PRINTED TO THE RIGHT OF THE VARIABLE NAMES. MANY OTHER SUBSETS MAY ALSO
BE REPORTED THAT ARE NOT ACCOMPANIED BY REGRESSION COEFFICIENTS AND T-STATISTICS.

THEY ARE NOT NECESSARILY BETTER THAN ANY SUBSET THAT HAS NOT BEEN PRINTED.

SUBSETS WITH 2 VARIABLES

SOME OF THESE SUBSETS MAY BE QUITE GOOD ALTHOUGH

ADJUSTED
R-SQUARED R-SQUARED CP

0.149539 0.113349 5.54 X(2) X(4) Forward Stepwise 2 Predictor (BEST) Model

0.102208 0.064004 8.29 X(2) X(5)

0.092249 0.053621 8.87 X(2) X(8)

0.090255 0.051543 8.99 X(2) X(13) Backward Stepwise 2 Predictor Model

SUBSETS WITH 4 VARIABLES

ADJUSTED
R-SQUARED R-SQUARED CP

0.227830 0.159193 4.98 X(2) X(4) X(5) X(9)

0.210777 0.140623 5.97 X(2) X(4) X(8) X(10) Forward Stepwise 4 Predictor Model

Backward Stepwise 4 Predictor Model
Not Listed In Best Ten 4 Predictor Models

SUBSETS WITH 5 VARIABLES

ADJUSTED
R-SQUARED R-SQUARED CP

0.269878 0.186910 4.53 VARIABLE COEFFICIENT T-STATISTIC
2 X(2) 0.00425862 3.43
5 X(5) -0.0169603 -2.88
9 X(9) 0.00166493 1.94
12 X(12) 0.00139223 -1.96
13 X(13) -0.0408527 -1.98

INTERCEPT 0.294943

0.252855 0.167953 5.52 X(2) M(3) X(12) X(13) X(15)

0.247058 0.161496 5.86 X(2) X(4) X(5) X(9) X(13)

0.244840 0.159026 5.99 X(2) X(5) X(8) X(12) X(13)

0.242845 0.156804 6.10 X(2) X(4) X(8) X(10) X(12) Forward Stepwise 4 Predictor Model

Backward Stepwise 5 Predictor Model
Not Listed In Best Ten 5 Predictor Models
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b
R-SQUARED

0.299565

ADJUSTED
R- SQUARED

0.201830

SUBSETS WITH 6 VARIABLES

CP

4.80 VARIABLE COEFFICIENT T-STATISTIC

2 X(2) 0.00469572 3.44
3 X(3) -0.00285065 -2.19

5 X(5) -0.0103034 -1.69
12 X(12) -0.00168170 -2.33

13 X(13) -0.0488981 -2.38
15 X(15) 0.00369285 2.30

INTERCEPT 0.404160

0.296645 0.198502 4.97 X(2) X(5) X(6) X(12) X(13) X(15) Backward Stepwise 6 Predictor Model

0.291666 0.192828 5.26 X(2) X(3) X(8) X(12) X(13) X(15)

0.290071 0.191011 5.35 X(2) X(4) X(5) X(9) X(12) X(13)

0.288310 0.189004 5.45 X(2) X(5) X(8) X(9) X(12) X(13)

0.287008 0.187520 5.53 X(2) X(5) X(9) X(12) X(13) X(15)

0.285008 0.185242 5.65 X(2) X(3) X(5) X(9) X(12) X(15)

0.282375 0.182242 5.80 X(2) X(5) X(9) X(12) X(13) X(14)

0.282028 0.181846 5.82 X(2) X(5) X(7) X(9) X(12) X(13)

0.281706 0.181479 5.84 X(2) X(5) X(6) X(9) X(12) X(13)

Forward Stepwise 6 Predictor Model
Not Listed In Best Ten 6 Predictor Models

SUBSETS WITH 7 VARIABLES

ADJUSTED
R-SQUARED R-SQUARED CP

0.:347206 0.238407 4.02 VAkIABLE COEFFICIENT T-STATISTIC Backward Stepwise 7 Predictor (BEST) Model
2 X(2) 0.00422728 3.43
5 X(5) -0.0156974 -2.57
6 X(6) -0.00317676 -1.97
9 X(9) 0.00151294 1.80
12 X(12) -0.00167624 -2.40
13 X(13) -0,0438120 -2.11

15 X(15) 0.00253197 2.05
INTERCEPT 0.578242

0.346599 0.237619 4.06 VARIABLE COEFFICIENT T-STATISTIC
2 X(2) 0.00513442 3.78
3 X(3) -0.00251951 -1.96
5 X(5) -0.0141462 -2.23
9 X(9) 0.00146501 1.74
12 X(12) -0.00175720 -2.49
13 X(13) -0.0409863 -1.99
15 X(15) 0.00345443 2.19
INTERCEPT 0.267485

Forward Stepwise 7 Predictor Model

Not Listed In Best Ten 7 Predictor Models



Appendix C

Model 1 -- All Possible Subsets Best 7 Predictor Model & Backward Stepwise 7 Predictor Model

STATISTICS FOR 'BEST' SUBSET

MALLOWS' CP 4.02
SQUARED MULTIPLE CORRELATION 0.34721
MULTIPLE CORRELATION 0.58924
ADJUSTED SQUARED MULT. CORR. 0.23841
RESIDUAL MEAN SQUARE 0.001770
STANDARD ERROR OF EST. 0.042077
F-STATISTIC 3.19
NUMERATOR DEGREES OF FREEDOM 7
DENOMINATOR DEGREES OF FREEDOM 42
SIGNIFICANCE (TAIL PROS.) 0.0084

NOTE THAT THE ABOVE F-STATISTIC AND ASSOCIATED SIGNIFICANCE TEND TO BE LIBERAL qPENEVER A SUBSET OF VARIABLES
IS SELECTED 8Y THE CP OR ADJUSTED k- SQUARED CRITERIA.

VARIABLE
NO. NAME

REGRESSION
COEFFICIENT

STANDARD

ERROR
STAND.

COEF.

T-

STAT.

2TAIL

SIG.

CONTRI-
TOL- BUTION

ERANCE TO R-SQ

INTERCEPT 0.578242 0.275920 11.993 2.10 0.042
2 X(2) 0.00422728 0.00123163 0.588 3.43 0.001 0.530117 0.18313
5 x(5) -0.0156974 0.00609880 -0.468 -2.57 0.014 0.470301 0.10297 2nd Highest Contribution to R-SQ
6 X(6) -0.00317676 0.00161419 -0.393 -1.97 0.056 0.388951 0.06020
9 X(9) 0.00151294 0.000838828 0.255 1.80 0.078 0.779956 0.05056
12 X(12) -0.00167624 0.000698809 -0.362 -2.40 0.021 0.684202 0.08943
13 X(13) -0.0438120 0.0208095 -0.330 -2.11 0.041 0.630935 0.06890
15 X(15) 0.00253197 0.00123339 0.386 2.05 0.046 0.439403 0.06530

THE CONTRIBUTION TO R-SQUARED FOR EACH VARIABLE IS THE AMOUNT 8Y WHICH R-SQUARED WOULD BE REDUCED IF THAT VARIABLE WERE
REMOVED FROM THE REGRESSION EQUATION.

Model 2 -- All Possible Subsets Best 6 Predictor Model

STATISTICS FOR 'BEST' SUBSET

SQUARED MULTIPLE CORRELATION 0.29956
MULTIPLE CORRELATION 0.54733
ADJUSTED SQUARED MULT. CORR. 0.20183
RESIDUAL MEAN SQUARE b.001855
STANDARD ERROR OF EST. 0.043075
F-STATISTIC 3.07
NUMERATOR DEGREES OF FREEDOM 6
DENOMINATOR DEGREES OF FREEDOM 43
SIGNIFICANCE (TAIL PROB.) 0.0138

VARIABLE
NO. NAME

REGRESSION
COEFFICIENT

STANDARD
ERROR

STAND.

COEF.

T-

STAT.
2TAIL

SIG.

CONTRI-

TOL- BUTION

ERANCE TO R-SQ

INTERCEPT 0.404160 0.248288 8.383 1.63 0.111
2 X(2) 0.00469572 0.00136419 0.653 3.44 0.001 0.452848 0.19300
3 X(3) -0.00285065 0.00130277 -0.678 -2.19 0.034 0.169636 0.07799
5 X(5) -0.0103034 0.00608455 -0.307 -1.69 0.098 0.495200 0.04671 Lowest Contribution to R-SQ12 X(12) -0.00168170 0.000721680 -0.363 -2.33 0.025 0.672333 0.08845
13 X(13) -0.0488981 0.0205573 -0.369 -2.38 0.022 0.677556 0.09216
15 X(15) 0.00369285 0.00160697 0.563 2.30 0.026 0.271283 0.08602

22

20



Model 3 -- Backward Stepwise 6 Predictor Model

SQUAREO MULTIPLE CORRELATION 0.29664
MULTIPLE CORRELATION 0.54465
ADJUSTED SQUARED 4ULT. CORR. 0.19350
RESIOUAL MEAN SQUARE 0.001863
STANOARO ERROR OF EST. 0.043165
F-STATISTIC 3.02
NUMERATOR OEGREES OF FREEOOM 6
OENOMINATOR OEGREES OF FREEOOM 43
SIGNIFICANCE (TAIL PROB.) 0.0148

VARIABLE

NO. NAME

REGRESSION
COEFFICIENT

STANOARO
ERROR

STANO.

COEF.

T-

STAT.

2TAIL

SIG.

CONTRI-
TOL- BI'TION

ERANCE TO R-SQ

INTERCEPT 0.756732 0.264225 13.695 2.86 0.006
2 X(2) 0.00364014 0.00121855 0.506 2.99 0.005 0.569933 0.14597
5 X(5) -0.0119911 0.00589071 -0.357 -2.04 0.048 0.530530 0.06778 Lowest Contribution to R-SQ
6 X(6) -0.00352246 3.00164422 -0.436 -2.14 0.038 0.394513 0.07507

12 X(12) -0.00158083 0.000714826 -0.341 -2.21 0.032 0.688146 0.08000
13 X(13) -0.0522187 0.0208053 -0.394 -2.51 0.016 0.664260 0.10304
15 X(15) 0.00261129 0.00126449 0.398 2.07 0.045 0.439962 0.06976

Model 4 -- All Possible Subsets Best 5 Predictor Model

SQUARED MULTIPLE CORRELATION 0.26988
MULTIPLE CORRELATION 0.51950
AOJUSTEO SQUARED MULT. CORR. 0.18691
RESIOUAL MEAN SQUARE 0.001890
STANDARD ERROR OF EST. 0.043476
F-STATISTIC 3.25
NUMERATOR OEGREES OF FREEOOM 5

OENOMINATOR OEGREES OF FREEOOM 44
SIGNIFICANCE (TAIL PROB.) 0.0138

CONTRI-
VARIABLE REGRESSION STANOARO STANO. T- 2TAIL TOL- BUTION

NO. NAME COEFFICIENT ERROR COEF. STAT. SIG. ERANCE TO R-SQ

INTERCEPT 0.294943 0.253049 6.117 1.17 0.250
2 X(2) 0.00425862 0.00124108 0.592 3.43 0.001 0.557368 0.19538
5 X(5) -0.0169603 0.00589221 -0.506 -2.88 0.006 0.537929 0.13748 2nd Highest Contribution to R-SQ
9 X(9) 0.00165493 0.000859501 0.280 1.94 0.059 0.793122 0.06226
12 X(12) -0.00139223 0.000709751 -0.300 -1.96 0.056 0.708118 0.06385
13 X(13) -0.0408527 0.0205961 -0.308 -1.98 0.054 0.687627 0.06529


