
Middlesex University Research Repository
An open access repository of

Middlesex University research

http://eprints.mdx.ac.uk

Bottone, Michele, Palumbo, Filippo, Primiero, Giuseppe, Raimondi, Franco ORCID logoORCID:
https://orcid.org/0000-0002-9508-7713 and Stocker, Richard (2016) Implementing virtual

pheromones in BDI robots using MQTT and Jason. 2016 5th IEEE International Conference on
Cloud Networking (Cloudnet). In: 2016 5th IEEE International Conference on Cloud Networking
(Cloudnet), 03-05 Oct 2016, Pisa, Italy. ISBN 9781509050932. [Conference or Workshop Item]

(doi:10.1109/CloudNet.2016.22)

Final accepted version (with author’s formatting)

This version is available at: https://eprints.mdx.ac.uk/21921/

Copyright:

Middlesex University Research Repository makes the University’s research available electronically.

Copyright and moral rights to this work are retained by the author and/or other copyright owners
unless otherwise stated. The work is supplied on the understanding that any use for commercial gain
is strictly forbidden. A copy may be downloaded for personal, non-commercial, research or study
without prior permission and without charge.

Works, including theses and research projects, may not be reproduced in any format or medium, or
extensive quotations taken from them, or their content changed in any way, without first obtaining
permission in writing from the copyright holder(s). They may not be sold or exploited commercially in
any format or medium without the prior written permission of the copyright holder(s).

Full bibliographic details must be given when referring to, or quoting from full items including the
author’s name, the title of the work, publication details where relevant (place, publisher, date), pag-
ination, and for theses or dissertations the awarding institution, the degree type awarded, and the
date of the award.

If you believe that any material held in the repository infringes copyright law, please contact the
Repository Team at Middlesex University via the following email address:

eprints@mdx.ac.uk

The item will be removed from the repository while any claim is being investigated.

See also repository copyright: re-use policy: http://eprints.mdx.ac.uk/policies.html#copy

http://eprints.mdx.ac.uk
https://eprints.mdx.ac.uk/21921/
mailto:eprints@mdx.ac.uk
http://eprints.mdx.ac.uk/policies.html#copy

Implementing Virtual Pheromones in BDI Robots
Using MQTT and Jason

Michele Bottone∗, Filippo Palumbo†, Giuseppe Primiero∗, Franco Raimondi∗ and Richard Stocker∗
∗Department of Computer Science, Middlesex University, London, United Kingdom

†Institute of Information Science and Technologies “Alessandro Faedo”, National Research Council, Pisa, Italy

Abstract—Robotic coordination is a crucial issue in the de-
velopment of many applications in swarm robotics, ranging
from mapping unknown and potentially dangerous areas to the
synthesis of plans to achieve complex tasks such as moving goods
between locations under resource constraints. In this context,
stigmergy is a widely employed approach to robotic coordination
based on the idea of interacting with the environment by means
of markers called pheromones. Pheromones do not need to be
“physical marks”, and a number of works have investigated
the use of digital, virtual pheromones. In this paper, we show
how the concept of virtual pheromones can be implemented
in Jason, a Java-based interpreter for an extended version of
AgentSpeak, providing a high-level modelling and execution
environment for multi-agent systems. We also exploit MQTT, a
messaging infrastructure for the Internet-of-Things. This allows
the implementation of stigmergic algorithms in a high-level
declarative language, building on top of low-level infrastructures
typically used only for controlling sensors and actuators.

Index Terms—stigmergy, cloud robotics, multi-agent systems

I. INTRODUCTION

Multi-Agent Systems (MASs) are increasingly becoming a
key tool for a variety of applications such as traffic control,
manufacturing, e-commerce, patient monitoring, or games [1].
This is due to the possibilities offered by MAS to naturally
model, design, and implement several aspects of multiple
interacting intelligent agents within an environment. MAS can
be used to solve problems that are difficult or impossible for
individual agents or monolithic systems to solve. In the robotic
field, MAS are often used to have multiple robots working
together. In particular, they offer communication, coordination,
task planning, and distributed agent frameworks. When there is
the need to scale up to potentially thousands of robots, we can
talk about Swarm Robotics (SR). Many old MAS algorithms
could not support such large numbers and did not address robot
physical formation. Swarm robotics uses the intelligence that
emerges from the interactions among individual robots [2].

When implementing a SR system, an efficient method for
sharing and utilising the information that is gathered by
multiple robots is required. A key concept in the optimisation
of SR is “stigmergy”: communication by way of the envi-
ronment [3]. Stigmergy is used in biology to describe the
influence of the persisting environmental effects of previous
actions on the behaviour of an agent acting in the modified
environment. It was originally proposed by Grassé [4] to ex-
plain his observations on termite building behaviour. Termites
exchange among them the “quality” of a path by marking
it with pheromones so that a positive feedback mechanism
ends eventually in most insects following the “best” path. In
this vision, pheromone robotics [5], [6] is a good approach
to implement the interactions among multiple robots. Each
individual robot gathers, simplifies, and shares information
from the environment for interaction among multiple robots. In

different works [7], [8], authors propose the concept of virtual
pheromones, defined as engrams created by the agents not in
the environment, but in a representation of it as a map.

A swarm robot system is a multi-robot ecosystem which
consists of a large number of simple, lightweight, and in-
teroperating robots. In this regard, the ability to connect to
the Internet can be taken advantage in multiple ways. One
is to exploit the resources cloud computing can offer in
order to lower the single robot’s computational and memory
capabilities. In this way, we can centralise the computational
effort for the update of the virtual pheromone map in a remote
back-end server, external to the swarm.

We present an approach to concretely realise coordination
among robots, by addressing all layers from physical to
high-level delivery mechanisms. In particular, we show how
stigmergy can be achieved using a messaging mechanism for
the Internet of Things (IoT), namely MQTT. At the same
time, we show how to implement stigmergy in Jason, a Belief-
Desire-Intention (BDI) framework for multi-agent systems. We
describe an implementation of this framework that we have
tested on a limited resource device (a Raspberry Pi 3).

The rest of the paper is organised as follows: Section II
introduces the key concepts and technologies used related to
the literature, Section III shows the implementation details and
insights on the cooperation mechanism by means of MQTT
topics and the pheromone construction by means of Jason BDI
agents, while Section IV draws the conclusions.

II. PRELIMINARIES AND RELATED WORK

A. Stigmergy
Stigmergy [9], [10] is a mechanism of spontaneous, indirect

coordination between agents, where the trace left in the
environment by an action stimulates the performance of a
subsequent action, by the same or a different agent. The word
Stigmergy is derived from the Greek words stigma (sign)
and ergon (work/action), capturing the notion that an agent’s
action leaves signs in the environment that he and other
agents sense and that determine and incite their subsequent
actions. It is a form of self-organisation that produces complex,
apparently intelligent structures, without the need for any
planning, control, or even communication among the agents. It
was first observed in social insects: ants for example exchange
information by laying down pheromones on their way back
to the nest when they have found food. In this way, they
collectively develop a complex network of trails, connecting
the nest in the most efficient way to the different food sources.

This mechanism is widely used in pervasive computing
domains, ranging from indoor localisation [11], to ambient
assisted living [12] and general sensor network scenarios [13].

For its specific features, stigmergy can be easily integrated
in a MAS as a different method of communication between
agents, which exchange information by altering the environ-
ment releasing digital pheromones. These are “marks” on the
virtual environment which can be perceived by agents for a
limited time after their release. As a result, simple, local, and
unplanned actions of the agents emerge in a complex and
apparently intelligent behaviour of the system as a whole.

In the literature, several works exploited the stigmergy to
build MASs. In [14] a mixture of formation, planning and
coordination strategies are used to address the topic of self-
assembly robots. They introduced the concept of extended
stigmergy in order to enable robots to pass information to one
another. In [15], the authors present a series of experiments
where a group of mobile robots gather 81 randomly distributed
objects and cluster them into one pile using stigmergy.

B. The Jason BDI framework
An agent is usually considered to be an entity with one

or more of the following properties: autonomy, social ability,
reactivity, pro-activity [16]. A MAS could be easily charac-
terised by means of its Beliefs, Intentions, and Desires (BDI).
Among the existing BDI frameworks [17], we have chosen
Jason because it is representative of an important approach
to BDI architectures: Jason/AgentSpeak is essentially a rule-
based system that makes use of the notion of planning. The
underlying structure for AgentSpeak [18] relies on the concept
of a reasoning cycle: an agent has beliefs, based on what it
perceives and communicates with other agents; beliefs can
produce desires, intended as states of the world that the
agent wants to achieve; the agent deliberates on its desires
and decides to commit to some; desires to which the agent
is committed become intentions, to satisfy which the agent
executes plans that lead to action. The behaviour of the agent
(i.e., its actions) is thus explained or caused by what it intends
(i.e., the desires it decided to pursue).

AgentSpeak(L) is an abstract declarative programming lan-
guage for implementing BDI agents with Prolog-like instruc-
tions, which can be extended to fit specific needs. Its syntax
defines agent programs as a set of logical beliefs, rules and
plans, and is formally defined in the following way.

For S a finite set of symbols including predicates, actions,
and constants, and V a set of variables, one can define vectors
of terms in first-order logic:
• If b is a predicate symbol and t a term, we define b(t) to

be a belief atom.
• if bA(t) and bB(t) are belief atoms, where A and B can

be conjunctions, disjunctions or negations of belief literals,
then the rule bA(t) : − bB(t) describes how the latter is
inferred from the former.

• If g(t) is a belief atom, then !g(t) and ?g(t) are goals, !g(t)
denoting an achievement goal and ?g(t) a test goal.

• If p(t) is a belief atom or goal, then +p(t) and −p(t) are
triggering events with + and − denoting respectively the
addition and deletion of a belief to be held or goal to be
achieved.

• If a is an action symbol and t a term, then a(t) is an action.
• If e is a triggering event, c1, . . . , cm are beliefs and
q1, . . . , qn are goals or actions, the rule e : c1, . . . , cm ←
q1, . . . , qn defines a plan, with c1, . . . , cm its context and
q1, . . . , qn its body.

Jason [19] programming revolves around plans, which are
the closest thing there is to a function or method in declarative
languages. Actions in the body of an expression are executed
in sequence as a consequence of the triggering of the plan,
which can consist of belief addition and removal, requests to
achieve and un-achieve (sub)goals, or built-in or user-defined
internal actions that change the environment or the agent’s
state over time. In Jason, ground literals are also extended
by strong negation, annotations, and message passing. Jason
extends the AgentSpeak syntax into an extensible and cus-
tomisable Java-based, open-source development environment
and interpreter. In particular, Jason allows for the definition
of bespoke environments extending a base Environment class.
The proposed approach is supported by the recent advances in
literature regarding the use of Jason as language for the imple-
mentation of stigmergy in BDI agents. In particular, authors
in [20] extend Jason with shared beliefs using stigmergy.

We exploit the easy customisation of Jason in the next
section to implement an efficient interaction with an MQTT
infrastructure and to realise the virtual pheromone approach.

C. MQTT
The Message Queue Telemetry Transport (MQTT) is a

lightweight protocol initially developed for wireless sensor
networks and running on top of TCP/IP connections [21].
MQTT messages are characterised by a topic and by a Quality
of Service (QoS). A broker is required to dispatch messages
from publishers to subscribers. When a client connects to
the broker, it is identified by an ID and it can perform the
following actions: connect, disconnect, subscribe (to a topic),
unsubscribe (from a topic), and publish a message under a
certain topic and at a given QoS. Topics are organised in a
hierarchy, for instance the message t1/t2/t3/t4 has t1 has main
topic, t2 as subtopic, t3 as subsubtopic, etc.. Subscribers can
specify patterns using the symbols + (matching one occurrence
of a topic) and # (matching any number of topics). For
instance, t1/#/t4 will match t1/t2/t3/t4, but t1/+/t4 will not.

MQTT provides three levels of Quality of Service:
• Level 0: the message is sent at most once (either by the

client or by the broker), with no guarantee of delivery.
• Level 1: the message is sent at least once, until a confirma-

tion is received.
• Level 2: the message is sent exactly once.

Several open source implementations are available, both
for brokers and for clients. In our experiments, we have
employed an on-line broker and the associate MQTT client
available at http://www.hivemq.com/. The latter allows both
subscription and publishing of messages. A local broker can
also be implemented using Mosquitto (http://mosquitto.org/).

For the purposes of this work, we will assume that a broker
is available and we will employ the MQTT Java library Paho,
which “provides open-source client implementations of MQTT
messaging protocols aimed at new, existing, and emerging
applications for Machine-to-Machine (M2M) and Internet of
Things (IoT)” (http://www.eclipse.org/paho/). The Java code
listed in Figure 1 shows how to create a client that connects
to a public broker (line 14), subscribes to a topic (line 18),
and sends a message (lines 21 to 23). When a message whose
topic matches the one specified on line 8 is generated, a
listener (line 17) is invoked. In previous work [22], we showed
the potential of implementing MQTT on resource-constrained

1 public class SimpleMQTTSubscriberAndPublisher implements
MqttCallback {

2
3 private MqttClient client;
4 private static String BROKER_ADDR="tcp://broker.hivemq

.com:1883";
5 private static String CLIENT_NAME="TestStigmergyBDI";
6
7 // The topic we are interested in.
8 private static String SUBSCRIBED_TOPIC="MQTTTest";
9

10 public SimpleMQTTSubscriberAndPublisher() {
11
12 // Connect to the broker:
13 client = new MqttClient(BROKER_ADDR, CLIENT_NAME);
14 client.connect();
15
16 // Set callback for subscriptions
17 client.setCallback(this);
18 client.subscribe(SUBSCRIBED_TOPIC+"/#");
19
20 // Publish a message under a topic
21 MqttMessage message = new MqttMessage();
22 message.setPayload("Hello World".getBytes());
23 client.publish("pubTopic/subtopic", message);
24 }
25 }

Fig. 1. Java MQTT client (excerpts).

devices such as Arduino and Raspberry Pi. In this work,
we exploit the features offered by MQTT to dispatch and
distribute information about the virtual pheromone map shared
by the robots embedding a Raspberry Pi platform.

III. IMPLEMENTING VIRTUAL PHEROMONES

A. Connecting MQTT with Jason
In Jason, modellers can modify the environment and

thus, the beliefs of the agents. Specifically, a new En-
vironment can be created by subclassing the Jason class
Environment.java. Figure 2 reports excerpts from the
implementation of a bridge between a MQTT infrastructure
and Jason. The new class MQTTEnvironment subclasses
the default Environment class and extends the initialisation
method (line 3) with the connection to a MQTT broker and
the subscription to appropriate topics (lines 9 and 10). The
key method here is messageArrived on line 16 that is
invoked when a message arrives from the broker. The message
is appropriately parsed and a new percept is created (line
18). This percept may result in a new belief in an agent and
gives rise to new intentions. Similarly, the Environment can
be extended in a very simple way with new actions that can
be invoked by agents when they want to publish a MQTT
message.

1 public class MQTTEnvironment extends Environment
implements MqttCallback {

2
3 public void init(String[] args) {
4 // [...]
5 try {
6 client = new MqttClient(MQTT_BROKER, "JasonMQTT");
7 client.connect();
8 // [...]
9 client.setCallback(this);

10 client.subscribe("TOPIC/#");
11 } catch (Exception e) {
12 e.printStackTrace();
13 }
14 }
15
16 public void messageArrived(String topic, MqttMessage

message) throws Exception {
17 // [...]
18 addPercept(Literal.parseLiteral(parse_message(topic,

message)));
19 }
20 }

Fig. 2. Jason - MQTT bridging environment.

B. Implementing stigmergy in Jason
We start by extending the default environment

GridWorldModel, following the approach presented
in [20]. In particular, in the Java implementation of the
Environment, we add a private field holding the intensity
of pheromones in each cell of the grid. The intensity of
pheromones in the grid can be updated in two ways:
• Directly by one of the agents: implementing a new internal

action mark in the Java environment to send the appropriate
MQTT message to all the agents.

• Via MQTT: the message is delivered to the Java environment
by the callback method described in Figure 1.
Agents implemented in Jason can get a local map of the

intensity of pheromones in their neighbourhood by invoking a
new internal action getMarks implemented in the environ-
ment. The local map is an array of nine triples in the form
(x,y,i), where i is the pheromone intensity, centred around
the current position of the agent.

The main difference between our approach and the one
presented in [20] is that in our case we have multiple instances
of Jason agents, one per robot, running in parallel. Moreover,
the approach of [20] relies on a local server for messaging,
while we employ MQTT as our communication mechanism.
This has the additional benefit of allowing the incorporation
of agents implemented in other frameworks, provided that
they support MQTT messaging. Figure 3 shows an example
of how two BDI robots interact with the MQTT Broker
in order to send their positions to the back-end server and
retrieve the local pheromone map (the mark structure) around
their position. All the robots present in the environment,
equipped with their own localisation system and wireless
communication, subscribe to the relative topics, where the lo-
cal pheromone map will be received: /VPM/map/robotID.
At each time step, robots send their position to the back-
end server publishing their coordinates to the MQTT topic:
/VPM/position/robotID. Then, the back-end server up-
dates the global virtual pheromone map and publishes the
local pheromone map to each robot by means of the dedicated
topics /VPM/map/robotID. Finally, the robots choose the
new position among the nine possibilities as the coordinates
of the point with the higher intensity (i). In absence of a local
pheromone map, robots choose the new position randomly.

The update process of the global pheromone map is based
on the potential field model [23]. At each time step, it
computes the intensity at distance dk from each pheromone
k using equation 1:

p(dk) =

pk
(
1− dk

σ

)
if 0 < dk < σ

0 if dk ≥ σ
(1)

where p(dk) is the intensity of pheromone k at distance dk
due to diffusion, σ is the sensitivity range, and pk is the actual
intensity of pheromone k. Due to the stigmergic aggregation
of all the N sources located within σ, the resulting pheromone
intensity sensed in an arbitrary location is given by equation 2:

P =

N∑
k=1

pk

(
1− dk

σ

)
. (2)

MQTT Broker

Global Virtual Pheromone Map

Simulation Environment

publish /VPM/position/1 (16,15)

publish /VPM/position/2 (10,10)

subscribe /VPM/map/2 (10,10)

robot1

robot2

0.82

0.79

0.75

0.62

0.59

0.68 0.75

0.86

0.94

publish /VPM/map/2 localPheromoneMap

Current position

Next position

Fig. 3. An example of how two BDI robots interact with the MQTT Broker in order to send their positions to the back-end server and retrieve the local
pheromone map (the mark structure) around their position.

Assuming that the evaporation effect decreases the
pheromone intensity linearly, it is possible to update the
resulting pheromone at time t as shown in equation 3:

P =

N∑
k=1

pk

(
1− dk

σ

)(
1− t− tk

τ

)
(3)

where tk is the time of creation of the pheromone k and
τ is the evaporation parameter. The value of P around the
current position of the robot is returned to it as a message
(localPheromoneMap in Figure 3) published on the topic pre-
viously subscribed /VPM/map/robotID, and thereafter the
robot acts as if it has its own pheromone sensing system [8],
choosing the next position as the max of the local pheromone
map (blue square in Figure 3).

IV. CONCLUSION

In this paper, we presented the implementation of a virtual
pheromone system based on MQTT and Jason. The presented
solution is suitable for modelling BDI agent behaviour in
swarm robotics scenarios. The capabilities offered by the
MQTT integration open a plethora of solutions in the cloud
robotics field, ranging from the creation of complex and robust
robots coordination across a variety of robotic platforms, to
the exploitation of the rapid increase in data transfer rates
to offload tasks without hard real time requirements. The
presence of the stigmergic coordination system among robots
allows the decentralisation of the computation outside the
“swarm”, with simpler entities with less requirements in terms
of computational resources creating an emerging intelligence
from the environment itself.

REFERENCES

[1] M. Schumacher, “Multi-agent systems,” Objective Coordination in
Multi-Agent System Engineering: Design and Implementation, pp. 9–
32, 2001.

[2] I. Navarro and F. Matı́a, “An introduction to swarm robotics,” ISRN
Robotics, vol. 2013, 2012.

[3] G. Beni, “From swarm intelligence to swarm robotics,” in International
Workshop on Swarm Robotics. Springer, 2004, pp. 1–9.

[4] P.-P. Grassé, “La reconstruction du nid et les coordinations interindi-
viduelles chezbellicositermes natalensis etcubitermes sp. la théorie de
la stigmergie: Essai d’interprétation du comportement des termites
constructeurs,” Insectes sociaux, vol. 6, no. 1, pp. 41–80, 1959.

[5] D. Payton, R. Estkowski, and M. Howard, “Compound behaviors in
pheromone robotics,” Robotics and Autonomous Systems, vol. 44, no. 3,
pp. 229–240, 2003.

[6] J. D. McLurkin, “Stupid robot tricks: A behavior-based distributed
algorithm library for programming swarms of robots,” Ph.D. dissertation,
Massachusetts Institute of Technology, 2004.

[7] W.-S. Moon, J.-W. Jang, H.-S. Kim, and K.-R. Baek, “Virtual pheromone
map building and a utilization method for a multi-purpose swarm robot
system,” International Journal of Control, Automation and Systems,
vol. 13, no. 6, pp. 1446–1453, 2015.

[8] I. Susnea, G. Vasiliu, A. Filipescu, A. Serbencu, and A. Radaschin, “Vir-
tual pheromones to control mobile robots. a neural network approach,”
in 2009 IEEE International Conference on Automation and Logistics.
IEEE, 2009, pp. 1962–1967.

[9] O. Holland and C. Melhuish, “Stigmergy, self-organization, and sorting
in collective robotics,” Artificial life, vol. 5, no. 2, pp. 173–202, 1999.

[10] E. Bonabeau, “Editor’s introduction: stigmergy,” Artificial Life, vol. 5,
no. 2, pp. 95–96, 1999.

[11] F. Palumbo, P. Barsocchi, S. Chessa, and J. C. Augusto, “A stigmergic
approach to indoor localization using bluetooth low energy beacons,” in
Advanced Video and Signal Based Surveillance (AVSS), 2015 12th IEEE
International Conference on. IEEE, 2015, pp. 1–6.

[12] P. Barsocchi, M. G. Cimino, E. Ferro, A. Lazzeri, F. Palumbo, and
G. Vaglini, “Monitoring elderly behavior via indoor position-based
stigmergy,” Pervasive and Mobile Computing, vol. 23, pp. 26–42, 2015.

[13] F. Zambonelli, A. Omicini, B. Anzengruber, G. Castelli, F. L. De An-
gelis, G. D. M. Serugendo, S. Dobson, J. L. Fernandez-Marquez,
A. Ferscha, M. Mamei et al., “Developing pervasive multi-agent systems
with nature-inspired coordination,” Pervasive and Mobile Computing,
vol. 17, pp. 236–252, 2015.

[14] J. Werfel, Y. Bar-Yam, D. Rus, and R. Nagpal, “Distributed construction
by mobile robots with enhanced building blocks,” in Proceedings 2006
IEEE International Conference on Robotics and Automation, 2006.
ICRA 2006. IEEE, 2006, pp. 2787–2794.

[15] R. Beckers, O. Holland, and J.-L. Deneubourg, “From local actions to
global tasks: Stigmergy and collective robotics,” in Artificial life IV, vol.
181, 1994, p. 189.

[16] M. Wooldridge, An introduction to multiagent systems. John Wiley &
Sons, 2009.

[17] R. H. Bordini, L. Braubach, M. Dastani, A. E. F. Seghrouchni, J. J.
Gomez-Sanz, J. Leite, G. O’Hare, A. Pokahr, and A. Ricci, “A survey
of programming languages and platforms for multi-agent systems,”
Informatica, vol. 30, no. 1, 2006.

[18] R. H. Bordini, J. F. Hübner, and M. Wooldridge, Programming multi-
agent systems in AgentSpeak using Jason. John Wiley & Sons, 2007.

[19] J. Hübner and R. Bordini, “Jason,” http://jason.sourceforge.net.
[20] M. Barbieri and V. Mascardi, “Hive-BDI: Extending Jason with Shared

Beliefs and Stigmergy,” in ICAART (2). Citeseer, 2011, pp. 479–482.
[21] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “MQTT - A publish/-

subscribe protocol for Wireless Sensor Networks,” in Communication
Systems Software and Middleware and Workshops (COMSware) 2008.
3rd international conference on. IEEE, 2008, pp. 791–798.

[22] G. Barbon, M. Margolis, F. Palumbo, F. Raimondi, and N. Weldin,
“Taking Arduino to the Internet of Things: the ASIP programming
model,” Computer Communications, 2016.

[23] I. Susnea, “Engineering human stigmergy,” International Journal of
Computers Communications & Control, vol. 10, no. 3, pp. 420–427,
2015.

