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Abstract

The saliva of haematophagous arthropods contains an array of anti-haemostatic, anti-inflammatory and

immunomodulatory molecules that contribute to the success of the blood meal. The saliva of haematophagous

arthropods is also involved in the transmission and the establishment of pathogens in the host and in allergic

responses. This survey provides a comprehensive overview of the pharmacological activity and immunogenic

properties of the main salivary proteins characterised in various haematophagous arthropod species. The potential

biological and epidemiological applications of these immunogenic salivary molecules will be discussed with an

emphasis on their use as biomarkers of exposure to haematophagous arthropod bites or vaccine candidates that

are liable to improve host protection against vector-borne diseases.

Review
During the course of evolution, haematophagy has

arisen many times in disparate arthropod taxa. Between

the taxa, this feeding habit has evolved independently

over several million years [1,2] leading to morphophy-

siological differences among haematophagous arthro-

pods. At the molecular level, this is reflected by the

existence of a variety of pharmacologically active mole-

cules in arthropod saliva used to face the constraints of

vertebrate host haemostasis, inflammation and adaptive

immunity [3-5].

The saliva of haematophagous arthropods is also

responsible for causing allergic responses in human

hosts, which are manifested by cutaneous pruritic

wheal-and-flare reactions at the bite site [6,7]. Thus, a

high density of haematophagous arthropods can directly

affect human populations worldwide due to their pre-

sence and physical nuisance [8,9]. Beside this direct

effect, arthropods can also indirectly affect human

health by transmitting pathogens. Indeed, many viral,

bacterial, and eukaryotic pathogens have found haema-

tophagous arthropods ideal vectors to accomplish trans-

mission among vertebrates. Usually, a long-lasting co-

speciation has led to specific associations between

pathogens and vectors [2]. Hence, pathogens often

depend on few related species of vectors for transmis-

sion (Table 1). Some of these pathogens have even

taken advantage of the immunomodulatory properties of

haematophagous salivary proteins in order to enhance

their infectivity in the vertebrate host [10,11].

Arthropod-borne diseases are a major health problem

worldwide. They cause serious impacts on the economy

and survival of human populations living mainly in tro-

pical and sub-tropical countries [12-14]. To a lesser

extent, human populations in developed countries are

also exposed to a variety of vector-borne pathogens

[15-17]. Pathogen vaccine and prophylactic drug

research have so far produced little to protect indivi-

duals from many arthropod-borne diseases. Currently,

vaccines are only available for the yellow fever virus

[18], the Japanese encephalitis virus [19], the Rift valley

fever virus [20] and the tick-borne encephalitis virus

[21]. Protection against Plasmodium, the malaria para-

sites, still relies on the use of prophylactic drugs and is

hampered by the escalation of drug-resistance [22].

Thus, the primary mechanism to protect individuals

from vector-borne diseases is the prevention of bites

from infected arthropods. This can be achieved by a

combination of personal protective measures and vector

control strategies adapted to vector behaviour [23-26].

These methods have been historically successful in
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reducing [27-29] or eliminating [30,31] the transmission

of some vector-borne diseases. Currently, the effective-

ness of anti-vectorial measures and the evaluation of the

transmission of arthropod-borne diseases are deter-

mined by laboratory bioassay tests [32-35], by measuring

the incidence, morbidity or mortality of vector-borne

diseases in controlled clinical trials in the field [36,37]

or by entomological methods [38,39]. Concerning mos-

quito-borne diseases, the entomological reference

method to measure vector density is by catching landing

mosquitoes on humans, which provides a good estimate

of the average number of bites per person per day

received from one particular vector species [40]. How-

ever, in terms of execution and supervision, this method

is very laborious and dependent on the skills of the col-

lector. In addition, the deliberate exposure of human

volunteers to vectors has raised some ethical issues

against this technique. As the human bite rate was

shown to vary within small geographic areas [41,42], the

results of local catches cannot be extrapolated to larger

areas. Additionally, results from the human landing

catch performed by adults can be difficult to extrapolate

to children. Alternative entomological methods exist to

capture medically important haematophagous arthro-

pods, such as carbon dioxide dry ice traps, light traps

and odour baited traps (to collect flying dipterans) [43]

or the drag-flag method (to collect ticks) [44]. However,

these tools do not differentiate anthropophilic from zoo-

philic arthropods and cannot precisely assess the contact

between haematophagous arthropods and host. Hence,

the development of new indicators and methods to eval-

uate the effectiveness of anti-vectorial strategies at the

individual level is necessary.

A common feature shared among arthropod vectors is

their habit of feeding on blood involving the injection of

saliva into the host’s skin. One consequence of the

injection of salivary proteins is the eliciting of host anti-

body responses against these pharmacologically active

components [45-51]. Such observations suggest that

these antigenic components could potentially be used as

immunological tools to evaluate individual exposure to

arthropod bites.

This present survey is particularly concerned with the

current knowledge of antibody responses to the salivary

proteins of haematophagous arthropods. Immunogenic

salivary proteins of haematophagous arthropods were

first studied for their allergenic properties. However,

there is strong evidence for their application in improv-

ing host protection against some vector-borne diseases

and for their use as alternative immunological tools to

assess individual exposure to haematophagous arthropod

bites. An overview of the pharmacological activity of the

main salivary proteins characterised in various haemato-

phagous arthropod species will first be presented to pro-

vide a better understanding of the role of saliva in host

defence, including haemostasis and the immune

response.

Blood-feeding behaviour among haematophagous
arthropods
The phylum Arthropoda represents the vast majority of

metazoan life forms on earth, with a species richness

estimated at 5-10 million [52]. The blood-feeding habit

has arisen and evolved independently in more than

14,000 species from 400 genera and five orders in the

arthropod taxonomy [1,53]. These independent adop-

tions of haematophagy during the evolution of arthro-

pod vectors required morphological, behavioural and

biochemical adaptations in order to remove blood from

the skin of vertebrate hosts. Indeed, blood is not an easy

access nutrient due to its cryptic nature in addition to

the host’s behavioural and biological defensive response.

Mouthparts have adapted the following two strategies

to obtain blood from vertebrates: (i) lacerating dermal

capillaries and collecting the nutritive fluid in a hemor-

rhagic pool (pool feeding or telmophagy, e.g., flies from

the families Tabanidae and Psychodidae and Ixodoidae

(ticks) and (ii) by directly inserting mouthparts into a

capillary (capillary feeding or solenophagy, e.g., Culicidae

Table 1 Taxonomic classification of major vector-borne

diseases

Vectors Diseases

Order Family Genius

Diptera Culicidae Anopheles Malaria,

Lymphatic filariasis

Culex West Nile disease

Japanese encephalitis

Aedes Yellow fever

Chikungunya

Dengue

Psychodidae Phlebotomus Leishmaniasis

Lutzomyia

Glossinidae Glossina Human African
Trypanosomiasis

Simulidae Simulium Onchocerciasis

Tabanidae Tabanus Loiasis

Hemiptera Reduviidae Triatoma Chagas disease

Rhodnius

Ixodida Ixodidae Amblyomma Rickettsiosis

Tularemia

Ixodes Lyme disease

Babesiosis

Haemaphysalis Tularemia

Tick borne encephalitis

Argasidae Ornithodoros Relapsing fever

The taxonomic classification of the major hematophagous arthropod vectors

described in the present review is given with their corresponding diseases.
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(mosquitoes) and Reduviidae (bugs). The development

of these blood-feeding habits may have occurred in sev-

eral different ways. A prolonged and close association

between terrestrial hosts and arthropods that regularly

fed on dead parts of the host’s body or organic debris

associated with the nests or burrows may have gradually

established more profound parasitic relations charac-

terised by switching to a haematophagous diet. Alterna-

tively, the development of haematophagy would have

been facilitated in some capillary feeders by morphologi-

cal preadaptation of their ancestors to phytophagy or

entomophagy [2,54-56].

Other important blood-feeding behaviours are dis-

played among haematophagous arthropods, including

the duration of blood-feeding (which can range from

few minutes for Culicidae [57] to several days for ticks

[58]), the rate of anthropophily [59] or the obligate ver-

sus facultative haematophagous diet [56]. These singula-

rities among different haematophagous arthropods,

adding to other behavioural or biological features, such

as the length of the extrinsic incubation period (time

between the acquisition of an infectious agent by a vec-

tor and its ability to transmit it to other vertebrate

hosts) [60], the nycthemeral activity [61] or the repro-

ductive strategies (K- and r- selected arthropods) [62],

are additional features that may have significant implica-

tions on disease transmission and on the implementa-

tion of anti-vectorial strategies. However, whichever

blood-feeding strategies or feeding behaviour is used,

each adoption of haematophagy requires solutions to

counteract vertebrate host haemostatic, inflammatory

and immune responses. At the molecular level, haema-

tophagous arthropods have also developed, by an evolu-

tionary process, an important diversity of

pharmacological compounds in their saliva in order to

prevent these physiological responses.

The role of saliva in blood-feeding
Salivary components and host’s haemostasis

Haemostasis is a host cellular and molecular response

that prevents blood loss from a damaged vessel through

several redundant processes, such as blood vessel vaso-

constriction, formation of a primary platelet plug (pri-

mary haemostasis) or vessel strengthening by blood

coagulation (secondary haemostasis) [For review:

[63,64]].

Damage to blood vessel endothelium first results in

vasoconstriction that decreases blood flow at the bite

site to limit the haemorrhage. Two strategies are

employed by haematophagous arthropods to prevent

this phenomenon. Some arthropods display salivary

components which block host vasoconstrictor agents,

such as peroxidase from the Anopheles albimanus mos-

quitoes [65]. Other arthropods have strong vasodilators

in their saliva. For example, Lutzomyia longipalpis sand

flies and Simulium vittatum black flies express maxadi-

lan and Simulium vittatum erythema protein (SVEP) in

their saliva, respectively, which are the most potent

known vasodilators [66,67]. These two species are pool

feeders that require strong vasodilatory substances to

increase blood flow perfusion in superficial regions of

the skin. Closely related species can use separate

mechanisms to counteract vascular compression as illu-

strated by Phlebotomus sand flies that express adenosine

and 5’AMP vasodilators instead of maxadilan in their

saliva [68].

Vascular injuries due to the penetration of arthropod

mouthparts in the host skin are also accompanied by

the activation of platelets, which aggregate within sec-

onds to form a haemostatic plug using fibrinogen as a

connecting agent [63,69]. Convergent paths of evolution

have lead to similar molecules in different arthropod

species that inhibit or scavenge a panel of platelet-aggre-

gating factors (Additional file 1 Figure 1). Among them,

apyrase, an enzyme that hydrolyses ADP released by

damaged cells and activated platelets, is ubiquitously

found in the saliva of various haematophagous arthro-

pods [70-79]. Distinct salivary proteins from a single

species could present redundant effects, as illustrated by

the Rhodnius prolixus bug saliva, which contains both a

salivary apyrase and a protein named Rhodnius prolixus

aggregation inhibitor 1 (RPAI-1) that inhibits platelet

aggregation by direct binding to ADP [71,80]. More

diversified molecules targeting other platelet aggregation

agonists (e.g., thrombin, serotonin (5-HT) or thrombox-

ane A2) are exhibited by other arthropods (Additional

file 1 Figure 1).

This platelet activation prepares the implementation of

secondary haemostasis by exposing the surface of acti-

vated platelets to coagulation proteins. Through a series

of reactions involving several blood coagulation factors,

the coagulation pathway (including the contact activa-

tion pathway and tissue factor pathway) is propagated

until the formation of thrombin. The latter converts cir-

culating soluble fibrinogen into insoluble fibrin, leading

to blood clotting and complete cessation of haemor-

rhage [81-83]. As a result of convergent evolution, a

variety of unrelated arthropod species have developed

salivary inhibitors toward thrombin, a prime target to

overcome both primary and secondary haemostasis

(Additional file 1 Figure 1). As observed for primary

haemostasis, more than one anticoagulant compound

can be found in the saliva of a single haematophagous

arthropod, as exemplified by hamadarin and anophensin,

which are two anticoagulants targeting the contact acti-

vation pathway isolated in An.stephensi [84,85]. This

redundancy of function reinforces the efficiency of the

anti-haemostatic response.
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Salivary components and host’s immunity

Adding to haemostatic defences, vertebrate hosts have

evolved systems of immune defences to eliminate for-

eign organisms in the body, which can largely impair

haematophagous arthropod blood-feeding. Tissue injury

causes the immediate onset of acute inflammation and

innate immunity, which promote tissue repair, prevent

colonisation of the damaged tissues by opportunistic

pathogens and initiates adaptive immunity, which is

more specific.

Inflammation is characterised by multiple interactions

between resident cells of the epidermis and dermis, such

as endothelial cells, leucocytes, mast cells, neutrophils

and platelets, which are the first to make contact with

arthropod mouthparts as well as their saliva and their

potential pathogens. These cells release pro-inflamma-

tory mediators and chemotactic factors such as hista-

mine, macrophage inflammatory protein-1a (MIP-1a)

and leukotrienes [86-88], which activate and recruit leu-

cocytes at the site of haemorrhage. The majority of sali-

vary molecules inhibiting or scavenging these pro-

inflammatory agonists were extensively studied in tick

saliva (e.g., argasid or ixodid) compared to other arthro-

pods (Additional file 1 Figure 2). Due to their habit of

remaining attached to their host for a long period to

feed until repletion, ticks are strongly dependent upon

the potent immunosuppressive activities of their salivary

components. Tick salivary components can then act on

different actors of the innate immune response, such as

the complement system [89-91], macrophages [92],

Figure 1 Schematic representation of arthropod salivary proteins acting on primary and secondary haemostasis. Haematophagous

arthropods (HA) induce injuries to vascular endothelium when probing for a blood meal. The initial event of this vascular damage is

vasoconstriction (1), which retards extravascular blood loss and enhances the adhesion of platelets to exposed subendothelial collagen. This

adhesion activates platelets (2) and causes the release of platelet activation agonists (Adenosine diphosphate (ADP), Thrombin, Thromboxane A2
(TXA2), serotonin (5-HT)) as well as platelet membrane integrin receptor aIIbb3. Fibrinogen binds to this receptor and crosslinks platelets to form

a platelet plug. The blood coagulation cascade (3) is then initiated to strengthen the platelet plug with fibrin at the site of injury. The

coagulation cascade is separated into two pathways converging into a common pathway. The contact activation pathway (intrinsic) involves

high-molecular weight kininogen (HMWK), prekallikrein (PK), factor XII, factor XI and factor IX (3a), and the tissue factor pathway (extrinsic)

involves the tissue factor and factor VII complex (3b). Both pathways lead to the activation of factor X. The common pathway leads to the

generation of thrombin from prothrombin and the ultimate production of insoluble fibrin from fibrinogen. HA have evolved anti-haemostatic

salivary proteins that inhibit specific agonists and factors of platelet aggregation and the blood coagulation cascade. The known actions of some

HA salivary proteins listed in Additional file 1 are indicated. (Salivary protein affiliation to HA families is indicated by colour as represented on the

bottom right corner legend).
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natural killer cells [93,94] and the synthesis of proin-

flammatory cytokines [95,96], to succeed their blood

meal. The suppressive effect induced by saliva on innate

immunity was less studied in other haematophagous

arthropods. Even though whole saliva or salivary gland

extracts from Culicidae and Psychodidae have been

found to induce a suppressive effect on innate immunity

[97,98], several immunosuppressor components remain

to be determined at the molecular level.

Tissue damage and inflammation can lead to the

extracellular production of adenosine from ATP degra-

dation. Adenosine can have analgesic or pronociceptive

effects depending on the activation of different periph-

eral receptors [99]. Pain perception can induce defensive

behaviours from the host that could be deleterious to

haematophagous arthropods. As a consequence, adeno-

sine deaminase enzymes detected in saliva of various

arthropods [100-102] were proposed to suppress pain

perception by degrading adenosine at the bite site [101].

The innate immune system can also influence the type

of adaptive immune response that develops. Haemato-

phagous arthropod saliva can greatly impair the develop-

ment of an appropriate adaptive immune response by

the host by altering the function of antigen presenting

cells (APC), such as macrophages [103] or dendritic

cells (DC) [95,104,105]. These cells are involved in the

capture and processing of salivary or pathogen antigens

at the bite site, as well as in antigen presentation to T

lymphocytes in the draining lymph nodes [106], which

promotes cell and antibody mediated responses

Figure 2 Schematic representation of arthropod salivary proteins involved in the modulation of innate and adaptive immunity.

Protective immunity against haematophagous arthropods (HA) involves both innate and adaptive immunity. Cells involved in the innate

response (e.g., neutrophils, natural killers cells (NK), mast cells and macrophages (MF)) represent the first line of defence. Once activated, these

cells release molecules (e.g., macrophage inflammatory proteins -1 a (MIP-1a), tumour necrosis factor- a (TNF- a) or leukotrienes (LB4, LTC4) that

initiate the inflammation process. This local inflammation can further be triggered by the activation of complement, which has chemotactic and

inflammatory properties. Endothelial cells and platelets can be activated by the binding of factors of the coagulation cascade to PAR receptors,

leading to an over-expression of surface adhesive molecules (ICAMs, E-selectin, P-selectin) that participate in neutrophil migration. Antigen

presenting cells, such as dendritic cells (DC) migrate to the lymph nodes where they interact with naïve CD4+ helper T lymphocytes (Th0 cells)

via the interplay of their T cell receptors (TCR) and major histocompatibility complex (MHC) class II proteins. Th0 cells have the potential to

proliferate and to differentiate into two distinct lineages of effectors cells: Th1 and Th2 cells. Memory T helper (Th M) cells, which can improve

the quality of the response to a subsequent exposure by developing more efficient memory capacity over time, are also produced. In a general

pattern, HA saliva down-regulates the expression of Th1 cytokines (such as IL-2) modulating the adaptive immune response to an antibody

mediated Th2 response. The action of saliva or salivary proteins is indicated in the figure as well as their corresponding organism’s family.

(Salivary protein affiliation to HA families is indicated by colour as represented on the bottom right corner legend).
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[107,108]. As a generalized pattern, salivary gland

extracts from several haematophagous arthropods can

inhibit Th1 cytokines secretion, such as IFN-g and IL-2

[109-112], promoting the development of an antibody-

mediated Th2 response [113-117]. This polarisation of

host immunity toward a Th2 response (to the detriment

of a Th1 cell-mediated response) is beneficial to the suc-

cess of the blood feeding but it may also have a benefi-

cial impact on pathogen transmission.

Salivary components and enhancement of vector-borne

pathogens infection

The discovery of the immuno-modulatory property of

saliva has stimulated several research groups to study

the involvement of salivary proteins from diverse vectors

in the transmission and the establishment of corre-

sponding pathogens into their hosts.

Titus and Ribeiro were the first to describe the enhan-

cing effect of sand fly salivary gland extracts on cuta-

neous leishmaniasis when coinoculated with Leishmania

promastigotes. Mice injected with Leishmania parasites

concomitantly with a small amount of salivary gland

proteins developed larger lesions and harboured more

parasites than controls [118]. The enhancing effect of

salivary extracts was confirmed with other Leishmania

and sand fly species [119,120]. Subsequent studies have

demonstrated that the injection of Triatominae bug sal-

iva into the skin of mice in the presence of Trypano-

soma cruzi parasites induced an up to six-fold blood

parasitaemia [121], and that the saliva of ixodid ticks

potentiated the transmission of Thogoto virus [122].

Interestingly, enhancement of Thogoto virus infection

was only observed with salivary gland extracts derived

from metastriate ixodid ticks but not from prostriate

ixodid ticks, argasid ticks or mosquito saliva [122].

These results highlight the strong specificity of the vec-

tor/pathogen interaction that is needed in order to

potentiate this enhancing transmission effect and sug-

gest that this effect may involve a limited number of

specific proteins to the haematophagous arthropod spe-

cies or genus.

Effectively, in Lutzomyia longipalpis sand fly, the vaso-

dilator maxadilan appears as the principal salivary mole-

cule responsible for this enhanced parasite transmission

as it exacerbates infection with Leishmania major to the

same degree as whole saliva [123]. For Borrelia burgdor-

feri, the spirochetal agent of Lyme disease, the Salp15

protein expressed in Ixodes scapularis tick saliva

enhances its transmission and survival within the verte-

brate host. The spirochaete pathogen specifically up-reg-

ulates the expression of Salp15 and associates with it in

order to be protected from borreliacidal effects induced

by antibody-mediated killing [124]. The enhanced infec-

tion induced by saliva seems to be a widespread

phenomenon in various vector species and for various

viruses, bacterial or parasite pathogens [121,122,125,126].

Mosquito saliva might also accelerate and amplify infec-

tions of West Nile virus [127,128], La Crosse virus [129]

or Cache-valley virus [130]. All these data suggest that

haematophagous arthropod vectors are not simply “flying

or crawling” syringes but rather play a dynamic role in

the host/vector/pathogen relationship. The participation

of saliva components in this transmission is supported by

the increase infectivity observed when pathogens are

delivered to the host by haematophagous arthropod bites

compared to delivery by a syringe without saliva proteins

[129,131-133].

All salivary proteins characterized in various hemato-

phagous arthropods so far give a global overview of

their complexity as well as their diversity both at their

molecular level as well as their targets. It is interesting

to note that only a minority of these salivary proteins

has been assigned a precise function. For instance, con-

cerning any tick species with a known genome or sali-

vary gland transcriptome, less than 5% of the salivary

proteins have their function verified [5]. Further knowl-

edge on the pharmacology of arthropod salivary proteins

might thus lead to the discovery of novel vasodilator,

anti-platelet, anti-clotting, analgesic or immunomodula-

tory compounds, used by hematophagous arthropods to

counteract host defenses. In addition, these salivary

molecules might also provide new immunological tools

to combat the direct and indirect nuisance caused by

these hematophagous arthopods.

Salivary proteins and host antibody response:
immunological tools in sight?
Saliva of haematophagous arthropods and allergy

Since the mid-1930s, numerous studies have described

host immediate-type hypersensitivity (ITH) reactions in

response to the bite of various haematophagous arthro-

pod families, such as Psychodidae [134], Culicidae

[135-137] or Glossinidae [138]. This ITH skin reaction,

also known as type I hypersensitivity, is now widely

accepted to be an allergic reaction which involves the

production of IgE antibodies in response to specific sali-

vary allergens [6]. Several studies have attempted to

characterise the allergens involved in ITH by using dif-

ferent techniques (e.g., skin testing, RAST, ELISA,

Immunoblot) and different allergen preparations with

the aim of developing tools for diagnosis and treatment

of allergic reactions [139,140]. The comparison of the

allergenic potency of whole body, thoracic and abdom-

inal hemolymph and salivary glands from Triatoma pro-

tracta (reduviid bug) by RAST inhibition demonstrated

that the allergens were concentrated in the salivary

glands [139]. Similar results were observed for the

Ixodes holocyclus tick [141]. Recently, Wongkamchai
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and colleagues have gained further evidence that major

allergens are more abundant in saliva, followed by sali-

vary gland extracts and whole body extracts from four

mosquito species [142]. These different studies con-

firmed that the more concentrated source of allergens is

located in saliva and salivary glands from haematopha-

gous arthropods. Thus, saliva appears to be the prime

antigenic source for testing or treating haematophagous

arthropod-induced allergic reactions [143].

However, the collection of saliva is tedious, time con-

suming and constitutes a major drawback to the wide-

spread medicinal use of these salivary components

[143]. Hence, the synthetic production of arthropod vec-

tor saliva allergens is a promising alternative strategy for

producing safe and highly standardized allergens on a

large scale. A panel of studies using the immunoblot

method have revealed a number of salivary proteins

detected by IgE antibodies of individuals with skin

hypersensitivity to arthropod bites, including mosquitoes

[140,144-148], ticks [141,149] or reduviid bugs

[139,150]. Some of these salivary allergens are now well

characterised. For example, three recombinant Aedes

aegypti salivary allergens corresponding to a 68 kDa sali-

vary apyrase (rAed a1), a 37-kDa protein belonging to

the D7 family (rAed a2) and a 30 kDa salivary gland

allergen (rAed a3) elicit predominantly IgE responses in

mosquito-allergic individuals [151,152]. The authors

concluded that these recombinant allergens could

greatly facilitate the diagnosis and immunotherapy of

mosquito allergies. Recombinant salivary allergens were

also evaluated in other haematophagous arthropod spe-

cies and are presented in Table 2.

Currently, whole body extracts from mosquitoes are

used in the diagnosis and immunotherapy of mosquito

bite allergies [153,154]. However, these commercially

available samples contain many extraneous proteins that

are not present in mosquito saliva and might interfere

with diagnostics or may even cause additional sensitisa-

tion in subjects with a history of allergic reactions to

mosquito bites. Moreover, the treatment of mosquito

allergies is not widely used because considerable varia-

tions in the biological activity of these mosquito whole

body allergen extracts have been described [155]. Thus,

synthetic allergens appear to be a promising alternative

for the diagnosis of allergic individuals, but also may

improve desensitisation protocols and overcome the lack

of standardisations in allergen immunotherapy [7,142].

Saliva of haematophagous arthropods and vaccines

Over the course of the past 20 years, it has been

observed that a history of exposure to uninfected bites

has the ability to protect against several vector-borne

infections, including tularaemia [156] and Lyme borre-

liosis [157] in animals pre-exposed to tick bites. The

hypothesis that salivary components could be effective

vaccine candidates for reducing the morbidity of vector-

borne diseases in exposed individuals was strengthened

by the discovery that pre-exposure of mice to salivary

Table 2 Recombinant salivary proteins characterized in hematophagous arthropods and their immunological

applications

Protein
names

Organisms Additional informations MW
[kDa]

Application Ref.

rAed a1 Aedes aegypti Salivary apyrase 68 Allergy [151,152]

rAed a2 Aedes aegypti Belong to the D7 family 37 Allergy [151,152]

rAed a3 Aedes aegypti 30 kDa salivary gland allergen 30 Allergy [151,152]

Procalin Triatoma protracta Belong to the lipocalin family 20 Allergy [225]

Arg r 1 Argas reflexus Belong to the lipocalin family 17 Allergy [227]

Der-p2 Ixodes ricinus Dermatophagoides pteronyssinus allergen-
like

15.6 Allergy [226]

TAg5 Glosina m. morsitans Tsetse Antigen 5 28.9 Allergy [228]

Maxadilan Lutzomyia longipalpis - 9.5 Vaccine candidate [123]

SP15 Phlebotomus papatasi - 15 Vaccine candidate [162]

rLJM19 Lutzomyia longipalpis - 11 Vaccine candidate [229]

Salp15 Ixodes scapularis - 14.7 Vaccine candidate [163]

gSG6 Anopheles gambiae - 10 Immunological marker of
exposure

[218,219,230,220]

rTC Amblyomma.
americanum

Calreticulin 47.5 Immunological marker of
exposure

[221]

rLJM11 Lutzomyia longipalpis Yellow-related protein 43 Immunological marker of
exposure

[223,224]

rLJM17 Lutzomyia longipalpis Yellow-related protein 45 Immunological marker of
exposure

[223,224]
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gland extracts of Phlebotomus papatasii abrogates the

size of dermal lesions and reduces Leishmania major

parasite loads in tissue [158]. More recently, it was

shown that pre-exposing mice to Anopheles stephensi

bites could protect them from rodent malaria [159], but

these results are controversial [160].

These protective effects might be partly due to the

development of host immunity against vector salivary

proteins described as enhancing pathogen establishment.

Based on these reflections, Morris and colleagues have

tested the potential of Lutzomia longipalpis maxadilan

as a vaccine candidate to protect mice against Leishma-

nia infection (Table 2) [123]. Mice vaccinated with syn-

thetic maxadilan were highly resistant to infection, as

evidenced by smaller cutaneous lesions and a shorter

healing period compared to controls. As maxadilan is

only expressed in New World Psychodidae from the

genus Lutzomia [68], it cannot confer protection against

Leishmania infection transmitted by Old World sand

flies from the genus Phlebotomus. However, vaccination

with SP15, a 15 kD salivary protein from the Old World

P. papatasi sand fly, protected mice from Leishmania

infection [161,162]. These results highlight the challenge

in developing a universal vaccine to control a specific

pathogen transmitted by several vector species. Indeed,

the variability in the salivary repertoire of closely related

vector species implies that one must develop a salivary

vaccine candidate for each different vector transmitting

a specific pathogen. Additionally, one must take into

account the geographical distribution of these vectors to

determine the appropriate candidates that should be

used during vaccination campains.

The efficacy of the Salp15 salivary protein as a vaccine

candidate, the other well described salivary molecule

isolated in I. scapularis ticks with an enhancing effect

on pathogen transmission, was also tested in vivo. Mice

immunised with recombinant Salp15 proteins were par-

tially protected against Lyme borreliosis spirochetes

transmitted by I. scapularis ticks [163]. Interestingly, the

co-immunisation with Salp15 and OspA (a Borrelia

burgdorferi outer-surface protein [164]) exerts a better

protection against B. burgdorferi than either of these

two candidates when used alone. Thus, the conjunction

of salivary proteins to traditional pathogen-based vac-

cine could improve host protection against vector-borne

disease infection. To our knowledge, no vaccine candi-

dates have been developed against salivary components

from other haematophagous arthropods. This relatively

new vaccine approach (i.e., targeting arthropod salivary

components required by a pathogen for its establish-

ment in the host) necessitates the characterisation of

salivary components exhibiting an enhancing effect on

pathogen infection. The development of multi-epitope

vaccines by the combination of pathogen-derived

antigens with appropriate salivary antigens from their

corresponding vectors could provide a better protection

against vector-borne diseases than pathogen-derived

vaccine candidates alone. Recently, An. stephensi saliva

was reported to enhance the progression of cerebral

malaria in a murine model [165]. The further characteri-

sation of salivary components involved in this effect

might lead to potential vaccine candidates, which could

be used in combination with other malaria vaccine can-

didates to protect against severe malaria [166,167].

Other vaccine strategies using salivary proteins were

undertaken in order to reduce host/vector contact by

avoiding blood intake or diminishing the duration of the

blood meal, particularly in ticks [168-170]. Additionally,

vaccine candidates targeting gut or body haematopha-

gous arthropod antigens were also developed to either

disrupt the biology of the vectors or to block pathogen

transmission. These approaches are promising to control

vector-borne diseases but are beyond the scope of this

review; supplementary details can be found in other

works [171-175].

Saliva of haematophagous arthropods and exposure

markers

Relationship between anti-saliva IgG responses and

haematophagous arthropod exposure

The absence of an antibody response against saliva from

mosquitoes or Culicoides midges in the sera of children

[176] or horses [177] living in Iceland (a country exempt

from these two biting arthropods) and the appearance of

an IgG antibody responses in animals or humans follow-

ing exposure to haematophagous arthropod bites

[144,177-179] are strong arguments suggesting that the

acquisition of an antibody response against haematopha-

gous arthropod saliva is exposure dependent.

The correlation between arthropod exposure and the

level of anti-saliva IgG antibody was first evidenced

using the sera from outdoor workers (in New Jersey, U.

S.A.) who had been exposed to Ixodes damini ticks dur-

ing their forestry activities [180]. Moreover, a significant

decrease of the IgG anti-tick saliva levels was observed

in the absence of tick exposure for several months

(from October to January) [180]. From this point, sev-

eral serological analyses demonstrated a relation

between the density of diverse haematophagous arthro-

pods and the level of antibody responses against their

saliva. A kinetic analysis of the serological response

against Aedes communis saliva from individuals living in

Finnish Lapland indicated that seasonal exposure to

mosquito bites elicited more intense antibody responses

toward salivary antigens [181]. In a larger cohort, using

sera from 1,059 Canadian blood donors sampled before

and after the summer mosquito exposure peak, Peng

and colleagues showed significant higher level of IgG
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antibody against Aedes vexans saliva after the summer

peak exposure [182]. Higher levels of anti-saliva IgG

antibodies were also detected in individuals exposed to

Glossina bites compared to non-exposed individuals

[50]. These works demonstrated that levels of serological

immune responses could be influenced by seasonal var-

iations of the level of haematophagous arthropod

densities.

Additionally, Orlandi-Pradines and colleagues have

evaluated the consequences of a transient exposure to

An. gambiae and Ae. aegypti mosquitoes in French tra-

vellers during a five-month journey to tropical Africa on

anti-saliva IgG responses [49]. This study reported that

several travellers from areas free of An. gambiae and Ae.

aegypti mosquitoes developed an antibody response

against saliva from these two unrelated mosquitoes.

Thus, transient exposure (e.g., seasons or travel into

endemic areas) to haematophagous arthropod bites

seems sufficient for developing an IgG response against

arthropod saliva. Additionally, IgM antibodies directed

against Triatoma infestans saliva can be detectable as

early as one day after a single encounter with several

triatomine bugs and decrease even more rapidly (18

days) than IgG in chickens [183]. These IgM responses

seem highly sensitive to the detection of bug exposures;

however, no association was observed between level of

exposure and IgM antibody levels. These results high-

light the potential use of the short persistence of IgM

responses (as a complement to measuring IgG

responses) as an indicator of recent exposure to haema-

tophagous arthropods. The observed link between anti-

saliva antibody responses and haematophagous arthro-

pod exposure, as well as the waning of these antibody

responses after a period of non-exposure, favour the

potential use of immunogenic saliva as an immunologi-

cal marker of exposure. Indeed, simple blood sampling

would give an indication of individual exposure to the

bites of specific vectors and could be used to complete

entomological surveys or to replace them when human

landing catch or other trapping methods are difficult to

implement [184]. Saliva-based immunological markers

of exposures would also be more appropriate than mea-

suring vector-borne disease incidence in clinical trials to

assess the effectiveness of anti-vectorial devices in areas

with low pathogen transmission intensity [185]. Finally,

it could be an alternative strategy compared to entomo-

logical methods (i.e., human landing catch) to assess

vector bite exposure particularly in children [186].

In a recent clinical assay, Drame and colleagues con-

firmed the validity of using An. gambiae crude saliva as

an immunological marker to assess the efficaccy of

insecticide-treated nets (ITNs) in a malaria hypo-ende-

mic transmission area [187]. They measured anti-saliva

IgG levels, blood parasitaemia and vector densities

before and after the introduction of ITNs. A significant

decrease in the anti-saliva IgG response was observed

after the introduction of ITNs. This diminution of anti-

body response was associated with a drop in parasite

load but not with vector densities as measured by light

traps, a standard but highly biased and imprecise ento-

mological methods. Recently, antibody responses from

sentinel guinea pigs to salivary proteins of T. infestans,

the vector of T. cruzi, was shown to be a powerful tool

for the evaluation of vector control interventions against

Chagas disease [188]. These studies demonstrated that

anti-saliva antibody responses could be efficient tools to

assess the effectiveness of antivectorial strategies imple-

mented to control diverse vector borne diseases by giv-

ing an estimation of the real intensity of

haematophagous arthropod bites at the individual level.

Thus, variations of the IgG antibody level appeared to

be correlated with haematophagous arthropod density,

which was dependent on several factors, such as sea-

sons, ecological environments, individual activities or

the level of anti-vectorial protection.

Diversity and specificity of salivary components

As some areas can exhibit a high biodiversity in terms

of haematophagous arthropod species [189,190], a high

level of specificity is necessary to assess individual expo-

sure by immunological tests based on haematophagous

arthropod saliva. Several studies have reported diverse

degrees of cross-reactivity between different vector spe-

cies, ranging from low [191,192] to high species-specifi-

city [150,193-195]. The presence of cross-reactivity was

often described in related species [191,192], suggesting

that this phenomenon can occur in closely related saliva

components.

The specificity of the saliva based immunological test

is a prerequisite to assess individual exposure to a speci-

fic genus or species of arthropods. An important step

forward in the knowledge of the salivary protein diver-

sity in the phylum Arthropoda was the cataloguing of

salivary gland proteins expressed and secreted in several

species of haematophagous arthropods. The recent elu-

cidation of the genome of major haematophagous

arthropods [196-200] added to increasing transcriptomic

and proteomic work on salivary glands, making it possi-

ble to identify salivary molecules in various haematopha-

gous arthropods. To date, the transcription repertoire

(named sialotranscriptome) of at least 30 different spe-

cies of haematophagous arthropods has been drawn up,

revealing a number of both ubiquitous and specific pro-

teins throughout the taxonomic hierarchy [201-208].

The independent evolution of haematophagous arthro-

pods and host immune pressure over the salivary pro-

ducts led to a diversity of pharmacological molecules

even among different genera within a same family

[205,209]. An insight into the taxonomic variability at
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the protein sequence level of some haematophagous

arthropod salivary proteins is shown on Figure 3. The

homology/diversity of salivary proteins can be observed

at two levels: (i) Homologous salivary proteins can be

conserved at different taxonomic levels from genus to

the entire arthropod phylum and (ii) the distribution of

percentage identity of homologous proteins inside each

taxonomic level is highly variable. This supports the

existence of numerous candidates that can be used to

assess individual exposure to specific haematophagous

arthropods.

Interestingly, studies on haematophagous arthropod

saliva generally use inbred laboratory strains. However,

for one species, there exist distinct colonies coming

from arthropods collected in the field that differed in

their origins and laboratory colonisation histories. In

order to evaluate sialome divergence, which could occur

following the rearing of haematophagous arthropods

over several decades (e.g., mosquitoes), under laboratory

conditions, the sialomes (i.e., saliva and salivary gland)

of three mosquito colonies (i.e., Ae. aegypti colonies

Rockefeller, PAEA and Formosus) were compared using

1D SDS-PAGE [143,210]. At the saliva and salivary

gland level, no major differences were detected between

these three colonies, suggesting that the expression of

salivary proteins is highly conserved across populations.

Figure 3 Protein sequence diversity of haematophagous arthropods salivary proteins . Sequences of 13 salivary proteins of

haematophagous arthropods described in the present review were submitted to BLAST analysis on the non-redundant protein database (NCBInr,

NIH, Bethesda). The blastp program was used with default parameters excepting the following: search was done on the Arthropoda taxonomic

level (taxid: 6656, Nov 15th, 2010, 12,289,957 sequences), the E-value threshold was changed to a setting of 1 in order to recover only hits with

highest significance on the overall protein sequence and the hit-list size was set to 5000 proteins. The number of homologous proteins with a

score above 40 and their respective percentage of coverage and identity were recovered for all query proteins and sorted according to their

increasing percentage of coverage. The number of homologous proteins is indicated in brackets (this includes the query sequence) and the

distributions of both the percentage of coverage (bar graph with a coloured scale) and the percentage of identity (line profile above each bar

graph) are represented. Proteins are grouped according to the taxonomic level of the last common taxon regrouping their corresponding

homologous proteins. For graphical convenience, subclass, class and infraclass as well as superfamily, family and subfamily taxonomic levels were

grouped into class and family, respectively. Salivary proteins reported to be targeted by an immune response are indicated by an asterisk (*).
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But these data could not exclude the possibility that a

long history of laboratory rearing might have induced a

homogenisation of salivary protein repertoires, which

may differ from their field counterparts. This loss of

salivary protein diversity as a result of long-term coloni-

zation was hypothetised to be responsible of the

observed positive effects on the outcome of Leishmania

infection on mice pre-immunized with sand fly saliva

[211]. Indeed, pre-immunization of mice with saliva

from long-term colonized phlebotomine sand flies, was

reported to induce a better protection against Leishma-

nia infection than saliva from wild-caught or recently

colonised sand flies [211,212]. This preserved repertoire

of salivary proteins at the species level is essential to

develop anti-saliva based immunological tools to assess

individual exposure to different haematophagous arthro-

pod colonies settled in various areas throughout the

world. The access of salivary samples from wild-caught

arthropods using convenient procedures adapted to field

works would allow to assess the sialome diversity

between laboratory reared and wild arthropods [213].

Synthetic salivary components as immunological markers of

exposure

Major limits for developing a biological test of exposure

to haematophagous arthropod bites are the difficulty of

collecting saliva or salivary gland extracts and the lack

of standardisation in sampling. Effectively, the salivary

protein content of haematophagous arthropods can vary

according to their sex, age or diets [214-216]. Thus, a

gain of sensitivity, specificity and reproducibility could

be obtained by identifying the genus or species-specific

immunogenic salivary proteins and to produce them in

recombinant form or synthetic peptides.

The recombinant Anopheles gambiae salivary gland

protein 6 (gSG6), a small salivary protein highly pre-

served in the Anopheles genus [217], was evaluated as

an immunological marker of exposure [218]. The

recombinant protein was detected by IgG antibodies

from children exposed to the bite of An. gambiae.

BLAST analysis (NCBInr, NIH, Bethesda, Nov 15th,

2010) revealed that homologous proteins of gSG6

protein can only be found in 8 Anopheles species so

far, suggesting its specificity to the Anopheles genus

(Figure 3). This protein has recently been proposed as

a serological candidate marker of exposure to Afro-

tropical malaria vectors [219,220]. Human hosts

exposed to Amblyomma americanum and Dermacen-

tor variabilis ticks also develop a specific IgG

response against a recombinant calreticulin (rTC)

protein isolated from the salivary glands of the A.

americanum tick [221]. The use of recombinant sali-

vary proteins, which are highly preserved between

several related vector species, could be useful in

assessing the risk of disease transmission in

individuals living in areas where vector diversities are

not well characterised at the species level. Interest-

ingly, anti-rTC antibody seropositivity has higher spe-

cificity but lower sensitivity than antibodies directed

against whole saliva in detecting individuals that have

been exposed to ticks [222]. The use of a single

recombinant salivary protein to assess individual

exposure to tick bites may explain this lack of sensi-

tivity. Indeed, the use of two recombinant proteins

(named LJM17 and LJM11) was reported to be more

effective and sensitive than whole saliva to estimate

the level of exposure to Lutzomia longipalpis sand

flies, vectors of Leishmania parasites [223,224].

Recombinant proteins that have been primarily pro-

duced for their biological properties or their role in

allergic responses (Table 2) could also be considered

potential markers of exposure candidates [225-229].

Some of these proteins appear to be relatively specific to

the vector family or genus (Figure 3) and might be pro-

mising epidemiological markers of vector exposure.

Ribeiro and colleagues classified conserved salivary pro-

teins at different taxonomic levels in the suborder

Nematocera from which some other specific antigenic

candidates might emerge [205].

The detection and selection of highly specific peptides

inside the whole salivary protein sequence could further

increase the specificity of such immunological markers

and reduce production costs. In order to optimise the

specificity of the gSG6 biomarker, Poinsignon and col-

leagues have designed a gSG6-based peptide sequence

(gSG6-P1) according to its predicted immunogenic

properties [218]. A positive association between the

anti-gSG6-P1 IgG responses and the level of exposure

was observed in individuals exposed to An. gambiae

bites. This peptide was also detected in individuals

exposed to a very low number of the malaria vector

bites, suggesting its potential to reveal An. gambiae

exposure in a context where classical entomological

methods would be employed with difficulty (i.e., urban

areas, altitude, travellers) [230].

Taken together, all these data support the use of

immunogenic salivary components as new tools for

identifying individuals at risk to vector-borne diseases

and for monitoring haematophagous arthropod popula-

tions and anti-vector intervention strategies. A gain of

sensitivity and specificity could be achieved by the selec-

tion and production of recombinant antigens or peptides

that do not share sequence homology with other haema-

tophagous arthropod species. Such synthetic products

increase the amount of available protein for large cohort

studies using high-throughput methods such as Lumi-

nex technology. These multiplex assays are cost and

time effective and have proven to be useful strategies for

the detection of serum antibodies directed against
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infectious pathogens [231,232] and for evaluating indivi-

dual exposure to vector borne diseases [233].

Conclusion
In order to facilitate their blood meals, haematophagous

arthropods have elaborated a wide range of salivary

components that have essential roles in counteracting

host haemostatic defences. In addition to these pharma-

cological activities, salivary components can modulate

host immunity at the bite site and induce an immune

environment favourable for pathogen transmission. This

immuno-modulation is associated with the production

of specific antibody responses. Since the 1980s, several

studies have investigated the antibody responses of ver-

tebrate hosts against salivary proteins in an initial

attempt to treat uncomfortable allergic reactions to hae-

matophagous arthropod bites. The immunogenic prop-

erties of some salivary proteins can be used as vaccine

candidates for improving host protection against some

vector-borne diseases. Salivary proteins are likely to

become immunological markers for relevant estimation

of vector/host contacts, of the effectiveness of various

control or surveillance programs, and an estimation of

the pathogen transmission risk to complement methods

that are currently available. A gain in sensitivity, specifi-

city and reproducibility is expected to be obtained by

the identification of species-specific immunogenic sali-

vary peptides or the combination of several recombinant

salivary proteins.

Additional material

Additional file 1: Anti-hemostatic and immunomodulatory salivary

proteins in hematophagous arthropods. Known anti-hemostatic and

immunomodulatory properties of salivary proteins from diverse

hematophagous arthropods are presented.
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