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Abstract Thermal infrared (TIR) cameras perfectly bridge the

gap between (i) on-site measurements of land surface tempera-

ture (LST) providing high temporal resolution at the cost of low

spatial coverage and (ii) remotely sensed data from satellites

that provide high spatial coverage at relatively low spatio-

temporal resolution. While LST data from satellite (LSTsat)

and airborne platforms are routinely corrected for atmospheric

effects, such corrections are barely applied for LST from

ground-based TIR imagery (using TIR cameras; LSTcam). We

show the consequences of neglecting atmospheric effects on

LSTcam of different vegetated surfaces at landscape scale. We

compare LST measured from different platforms, focusing on

the comparison of LST data from on-site radiometry (LSTosr)

and LSTcam using a commercially available TIR camera in the

region of Bozen/Bolzano (Italy). Given a digital elevation mod-

el and measured vertical air temperature profiles, we developed

a multiple linear regression model to correct LSTcam data for

atmospheric influences. We could show the distinct effect of

atmospheric conditions and related radiative processes along

the measurement path on LSTcam, proving the necessity to cor-

rect LSTcam data on landscape scale, despite their relatively low

measurement distances compared to remotely sensed data.

Corrected LSTcam data revealed the dampening effect of the

atmosphere, especially at high temperature differences between

the atmosphere and the vegetated surface. Not correcting for

these effects leads to erroneous LST estimates, in particular to

an underestimation of the heterogeneity in LST, both in time

and space. In the most pronounced case, we found a tempera-

ture range extension of almost 10 K.

Keywords Surface temperature . Thermal infrared camera .

Atmospheric correction . Digital elevationmodel . Alpine

environment

Introduction

Land surface temperature (LST) is a key variable for numer-

ous environmental functions. It represents the combined result

of all energy exchange processes between the atmosphere and

the land surface. Thus, LST has become a basic requirement

for model validation or model constraining in surface energy

and water budget modelling on various scales (Kalma et al.

2008; Kustas and Anderson 2009; and references therein). It

serves as a metric for soil moisture and vegetation condition in

eco/hydrological modelling and environmental monitoring

(Czajkowski et al. 2000; Kustas and Anderson 2009) and

has been used in the area of thermal anomalies and high-

temperature events detection (Sobrino et al. 2009; Teuling

et al. 2010). Further, LST data is widely used in urban climate

studies to quantify the surface urban heat island and to explore

its relationship with urban surface properties and air tempera-

ture variability as well as for surface-atmosphere exchange

processes in urban environments (Voogt and Oke 2003;

Weng 2009).

LST can be retrieved from various platforms and instru-

ments, depending on the application requirements regarding

spatial and temporal resolution. Remote sensing platforms

provide data with global coverage. They can routinely either

provide LST at a coarse spatial resolution at relatively high

overpass frequencies (e.g., Terra-MODIS, Aqua-MODIS,

NOAA-AVHRR) or provide less frequent but moderate

* Albin Hammerle

albin.hammerle@uibk.ac.at

1 University of Innsbruck, Innsbruck, Austria

2 Departement of Ecology, Technische Universtität Berlin,

Berlin, Germany

Int J Biometeorol (2017) 61:575–588

DOI 10.1007/s00484-016-1234-8

# The Author(s) 2016. This article is published with open access at Springerlink.com

http://crossmark.crossref.org/dialog/?doi=10.1007/s00484-016-1234-8&domain=pdf


resolution LST data (e.g., Terra-ASTER, Landsat). Recent

developments in the thermal remote sensing system even

show a trend towards coarser spatial resolutions (e.g.,

Sentinel mission). Airborne systems on the other hand can

provide relatively high temporal as well as high spatial reso-

lution LST information on a regional scale, with the drawback

of high costs. Infrared radiometers mounted on site provide

LSTat any temporal resolution integrated over a given field of

view on the expense of spatial coverage.

Thermal infrared (TIR) cameras have been continuously

refined since their broad commercial launch in the early

1990s and have found wide application since the 2000s due

to lower costs for uncooled focal plane sensor arrays and their

improved spatial and thermal resolution (Schuster and

Kolobrodov 2004). The high spatial and temporal resolution,

the operational simplicity, and increasing data storage capabil-

ities led to an increasing popularity of this system in many

ecological research areas (e.g., Hristov et al. 2008; Katra et al.

2007; McCafferty 2007).

While thermal remote sensing has already been widely ap-

plied in landscape ecology (Quattrochi and Luvall 1999 and

references therein), the demand for high-resolution data (both,

temporally and spatially) is unabated. Particularly in alpine

landscapes that are characterized by high spatial heterogeneity

and temporal dynamics (resulting from small-scale variations

in slope, aspect, and altitude), highly resolved LST data are

needed (Bertoldi et al. 2010; Heinl et al. 2012; Scherrer and

Körner 2010; Scherrer et al. 2011).

All thermal remote sensing data, independent of the instru-

ment used, is influenced by atmospheric conditions and radi-

ative processes along the measurement path (Chandrasekhar

1960). Several atmospheric correction approaches have been

established depending on sensor characteristics, e.g., the split

window technique (SWT) for multi-channel sensors (Becker

and Li 1990; Kerr et al. 1992; Price 1984; Sobrino et al. 1991),

where Bsplit window^ refers to radiance differences observed

by each atmospheric window of the respective TIR channel.

There are different SWT algorithms depending upon spectral

emissivity, water vapor content, view angle, or purely empir-

ical algorithms. Radiative transfer models together with atmo-

spheric profile data of pressure, temperature, and humidity are

often used to determine SWT algorithms or to perform atmo-

spheric corrections of TIR data derived from single-channel

sensors (Berk et al. 1998; Richter and Schläpfer 2002;

Schmugge et al. 1998). While these methods are commonly

applied to data derived from satellite (Dash et al. 2002; Prata

et al. 1995) or airborne platforms (Jacob et al. 2003;

Lagouarde et al. 2000; Lagouarde et al. 2004), such correc-

tions are not routinely applied in ground-based TIR imagery

in natural and urban environments at the landscape scale

(Heinl et al. 2012; Scherrer and Körner 2010; Scherrer and

Körner 2011; Scherrer et al. 2011; Tonolla et al. 2010;

Wawrzyniak et al. 2013; Westermann et al. 2011), partially

justified by relatively short atmospheric path lengths.

Existing methods for ground-based TIR imagery are either

simple, i.e., based on the assumption of a homogenous

sensor-target distance and constant atmospheric transmission

value (Yang and Li 2009), or more complex by using a radi-

ative transfer code, atmospheric data and under consideration

of differences in atmospheric path lengths (Meier and Scherer

2012; Meier et al. 2011; Sugawara et al. 2001).

This paper compares LST data measured from different

platforms. The main objective is to quantify the differences

between LST data from a ground-based TIR imagery

(LSTcam) and LST data from on-site radiometry (LSTosr).

Subsequently, an empirical model, based on a digital elevation

model and measured vertical air temperature profiles, was

developed. This model corrects LSTcam for atmospheric

influences.

Furthermore, we discuss the consequences of neglecting

atmospheric influences on LST data derived from ground-

based TIR imagery at the landscape scale.

Methods

The basis of the study was the comparison of surface temper-

atures measured (i) continuously by infrared radiometers

mounted above the canopy (on-site radiometry), (ii) frequent-

ly by a TIR camera operated at an elevated position within the

study region (ground-based TIR imagery), and (iii) by satellite

remote sensing (satellite-based TIR imagery).

Study region and experimental setup

The study was conducted in the region of Bozen/Bolzano in

the northernmost part of Italy (Fig. 1). The city of Bozen/

Bolzano is located in a basin at the transition of the central

Alps to the southern Alps, surrounded by four mountain

ranges. Ten microclimate stations were erected in the vicinity

of the city which spanned an elevational range from 239 to

857 m a.s.l. and covered three different land-use types (vine-

yard, orchard, and grassland).

These three land-use types cover 16, 29, and 4 % of the

investigated rural area, respectively (woodland 48 %). Three

out of ten microclimate stations were located in vineyards, six

in orchards, and one in a managed grassland. While vineyards

and orchards are by far the dominating land-use types in this

region, grasslands only occurred at higher elevations

(Table 1). No site was positioned closer than 20 m to any

building.

Meteorological measurements included air temperature

(Tair) and relative humidity (RH) at 2 m above ground

(Hobo Pro v2-U23-002; onset; Bourne, MA, USA), air tem-

perature 1 m above the canopy (PT 100; EMS; Brno,

Czech Republic), incoming solar radiation (SR) (S-LIB-
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M003; onset; Bourne, MA, USA) above the canopy, soil tem-

perature (Tsoil) at 0.1 and 0.25 m soil depth (PT 100; EMS;

Brno, Czech Republic), and soil water content (SWC) in

0.25 m soil depth (EC-10; Decagon Devices; Pullman, WA,

USA). Surface temperatures were derived using an infrared

radiometer (SI-111; Apogee Instruments; Logan, UT, USA)

mounted 1 m above the canopy. This sensor is sensitive in the

electromagnetic spectrum from 8 to 14 μm. Given the half-

angle field of view of 22° and the different canopy heights, the

visible surface areas ranged from 2 to 8 m2. Data were mea-

sured every minute and stored as 10 min average values. Land

surface temperatures (LST) derived from on-site radiometry

are henceforth referred to as LSTosr.

For ground-based TIR imagery, an elevated site on top of a

cliff edge (1077 m a.s.l.) was chosen as camera position

(Table 1). Measurements were done using the TIR camera

BJenoptik VarioCAM high resolution^ (Infratec; Dresden,

Germany), which is sensitive in the electromagnetic spectrum

from 7.5 to 14 μm. The camera resolution of 768 × 576 pixels

in combination with the standard lens (focal length 25 mm)

resulted in pixel sizes ranging from 2.2 to 6.3 m depending on

the given atmospheric path length (APL) per site (Table 1).

TIR images were taken on 13 days throughout the summer

and autumn season 2012 from an exposed position ca. 840 m

above the valley floor. While data were restricted to daytime

measurements on some days, we conducted 24-h measure-

ments on others. Measurements were done at least half hourly

(higher frequency around sunrise and sunset or at the times of

a satellite overpass), resulting in roughly 250 acquisition times

where all ten LSTosr sites were covered simultaneously. Image

processing was done using IRBIS® software (InfraTec;

Dresden, Germany). All TIR images were exported as

ASCII files and further analyzed using MATLAB (R2013b,

The MathWorks, Inc., USA). Despite the mean absolute dif-

ferences between LSTosr and LSTcam (0.8 K) being lower than

the TIR camera accuracy (±1.5 K), the two systems were

intercalibrated in an experimental setup. LST measured by

the ground-based TIR imagery are referred to as LSTcam.

Surface emissivity (ε) was considered equal to 1 for both

LSTosr and LSTcam unless specified differently, as pixels of

interest were completely covered by vegetation having a high

emissivity at all wavelengths.

Satellite-based TIR imagery was derived from ASTER

Level 2B03 data products with a spatial resolution (pixel size)

of 90 m, acquired on demand for seven dates in 2012 (21 and

28 June 2012; 7 July 2012; 8 and 24 August 2012; 11 and 18

October 2012). The images provide kinetic temperatures at

about 11:15 CET and represent the single pixel values at the

location of each microclimate station. The standard deviation

is calculated over this target pixel and the eight neighboring

pixels. Data affected by clouds were not considered for the

analyses so that the number of remotely sensed data per site

ranges between three and seven observations. LST derived

from remote sensing are henceforth referred to as LSTsat.

A vertical air temperature profile was measured at the

airport in Bozen/Bolzano (BZO) using a microwave ra-

diometer (MTP-5HE; ATTEX Ltd., Moscow, Russia)

(Fig. 1). This radiometer measured air temperature pro-

files up to 1000 m above surface (50 m vertical resolu-

tion; 10 min time resolution) with a temperature accuracy

from ±0.3 K (0–500 m) up to ±0.4 K (>500 m).

Radiometer data were provided by BAutonome Provinz

Bozen Südtirol/Provincia autonoma die Bolzano Alto

Adige^ (Landesagentur für Umwelt/Agenzia provinciale

Fig. 1 Study area in the basin of Bozen/Bolzano (I). Numbers denote

locations of on-site measurements and corresponding numbers refer to

site numbers in Tables 1, 2, and 4. Locations of ground-based TIR

imagery and of the microwave radiometer are marked with X and O,

respectively. The tetragon within the figure represents the transformed

marked section in Fig. 7 and Fig. 8 (black squares). Inset upper left:

schematic overview of the experimental setup. Map data: Google,

DigitalGlobe
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per l’ambiente; Labor für physikalische Chemie/Laboratorio

di chimica fisica). Average path temperatures (Tpath) were cal-

culated for each LSTcam measurement as the arithmetic mean

over the corresponding temperature profile segment, defined

by the site and camera elevation.

Processing of ground-based TIR imagery

To cover all field sites by ground-based TIR imagery at one

time, we had to pan the camera and take five TIR images

(scenes). While we always tried to position the camera the

same way and choose the same field of view, the different

scenes were not perfectly congruent. Thus, we chose one ref-

erence thermal image per scene and used the BComputer

Vision System Toolbox^ of MATLAB (R2013b, The

MathWorks, Inc., USA) to align all TIR images of one scene

with each other. More precisely, we (i) used the SURF blob

detector (detectSURFFeaturs-function; Bay et al. 2008) to

identify matching regions in the two TIR images, (ii) estimat-

ed the geometric transformation from matching point pairs

(estimateGeometricTransform-function; Torr and Zisserman

2000), and (iii) applied the geometric transformation to the

TIR image (imwrap-function).

Subsequently transformed TIR images (n = 3169) were

filtered based on a three-step quality check. (i) All images

obviously not matching the corresponding reference TIR im-

age by visual inspection were selected and removed (remain-

ing n = 2909; 92 %). (ii) Any TIR image not exceeding a

certain R2 value (night 0.6; day 0.8), when compared with

the reference scene or with less than five matching points

found in the SURF blob detector algorithm described above

were removed (remaining n = 2106; 66 %). (iii) For any av-

eraging interval with multiple LSTcammeasurements, only the

one closest in time to the LSTosr measurement was used, fur-

ther reducing the number of remaining LSTcam measurements

for the ten sites (remaining n = 2011; 63 %). Applying these

algorithms and filters resulted in a dataset of TIR image per

scene that perfectly matched each other. In order to get the

line-of-sight geometry for each TIR image pixel, the proce-

dure described in the following section was applied.

Derivation of line-of-sight geometry parameters

for ground-based TIR imagery

The oblique view of the TIR camera and the topography of the

observed landscape produce different line-of-sight (LOS) ge-

ometry parameters for each TIR image pixel. The LOS is fully

described by APL, by the altitude of the observed surface, and

by the view zenith angle (AVZ) under which the TIR camera

observes the surface. The calculation of spatially distributed

LOS values for every TIR image pixel is based on the idea that

every TIR image pixel has a corresponding 3D geographic

coordinate (x, y, z). In order to find these pixel-specificT
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coordinates, the perspective projection of the three-

dimensional (3-D) landscape onto the two-dimensional (2-

D) TIR image plane was modelled using a DEM of the study

region with a spatial resolution of 20 m (Autonomous

Province of Bolzano, South Tyrol, Italy). Further, we had to

know the geographic coordinates of the TIR camera location

and the geographic coordinates of the center pixel of the TIR

image (exterior orientation) as well as the size of the 2-D

image plane (768 × 576 pixels) and the horizontal and vertical

field of view (FOV) of the camera lens (interior orientation).

The horizontal FOV is 30° and the vertical FOV is 23°. A

detailed description of the perspective projection of the 3-D

DEM and calculation of FOV parameters are given in Meier

et al. (2011).

Multiple regression model to correct LSTcam

Establishing the multiple regression model was done using

IBM SPSS Statistics for Windows, Version 21.0 (IBM Corp;

Armonk, NY). The LST model was built using ordinary least

squares (OLS) regression based on 1839 observations with

LSTosr as dependent variable and four independent variables

(LSTcam; Tpath; difference of LSTcam and Tpath; APL). (i) All

independent variables were tested regarding multi-collineari-

ty, (ii) scatter plots of the dependent vs. each independent

variable were analyzed to check for non-linearity, (iii) the

significant independent variables were selected by forced en-

try OLS using ca. 50 % of available data (897 observations;

calibration dataset), (iv) a residual analysis was performed for

checking OLS assumptions, and finally (v) the LST model

was employed to predict the dependent variable for the re-

maining validation dataset (942 observations; validation

dataset).

Results

Data were collected continuously at the field sites from 1

May 2012 until 31 October 2012. Tair ranged from −5.2 °C

(30 October 2012) to 37.3 °C (20 August 2012), with a mean

Tair of 18.8 °C during that period (30-year average for that

period, 19.4 °C (Hydrographisches Amt Bozen/Ufficio

idrografico Bolzano)). While the coolest site on average was

the Wiesmanhof site, representing the highest-located site

(Fig. 1, Table 1), the lowest air temperatures were measured

at the Terlan site. The highest air temperature was measured at

the Alte Mendel Strasse site, a site located in close proximity

to Bozen/Bolzano (Fig. 1, Table 2). LSTosr ranged from

−5.7 °C (30 October 2012; Terlan) to 49.1 °C (26 July 2012;

Wiesmanhof), with an average LSTosr of 18.0 °C during the

measurement period (Table 2). Average wind speed ranged

from 0.8 m s−1 (Terlan site) up to 1.5 m s−1 (Wiesmanhof),

and mean solar radiation (SR) ranged from 196 W m−2

(Girlan) to 226 W m−2 (Glaninger Weg) among the ten field

sites (Table 2).

LSTsat compared to LSTcam and LSTosr

During the measurement campaign, LSTsat could be retrieved

from seven satellite overpasses. Excluding data with cloud

cover, 58 data points could be used from our ten field sites

to compare LSTsat with LSTosr and 32 data points to compare

LSTsat and LSTcam. LSTsat data are available as kinetic (kin)

LST (routinely corrected for atmospheric effects); thus, LSTosr
and LSTcam data had to be recalculated from radiant tempera-

ture by applying ε = 0.97 (deciduous vegetation and grass;

Jensen 2007) and an environmental temperature (Tsky; K) that

was modelled as a function of vapor pressure (ea; kPa) and air

Table 2 Meteorological conditions at the ten field sites throughout the measurement campaign 1 May 2012 until 31 October 2012

Site Tair 200 cm (°C) LSTosr (°C) SR

(W m−2)

Wind speed

(m s−1)

Nr. Name Min Max Mean Min Max Mean Mean Mean

1 Schreckbichl −1.5 35.9 18.6 −3.1 38.6 17.9 206 1.4

2 Girlan −2.6 35.9 18.2 −2.6 37.8 17.2 196 1.1

3 Unterrain −3.8 36.9 19.0 −4.4 33.3 17.6 210 1.1

4 Terlan −5.2 36.5 18.2 −5.7 33.6 17.4 201 0.8

5 Kaiserau −2.9 36.7 19.5 −3.3 39.1 18.3 202 1.0

6 Jennerhof −2.4 36.9 19.8 −3.1 36.1 18.7 205 0.8

7 Moritzing −3.7 37.0 19.2 −3.7 33.8 18.0 209 1.1

8 Alte Mendl Str −2.3 37.3 20.2 −3.1 40.2 19.4 196 0.9

9 Glaninger Weg −1.1 36.8 19.3 −2.9 43.0 18.8 226 1.3

10 Wiesmanhof −3.5 32.3 16.3 −5.0 49.1 16.8 213 1.5

Numbers (nr.) refer to numbers in Fig. 1

Tair air temperature 2 m above ground, LSTosr land surface temperature from on-site radiometry, SR shortwave radiation

Int J Biometeorol (2017) 61:575–588 579



temperature (Tair; K) following Campbell and Norman (1998)

(rearranged):

T sky ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:72⋅
ea

T air

� �1
7

⋅ T airð Þ4
4

s

This intercomparison was done using original LSTcam data,

not corrected for any atmospheric influences.

Generally, a good correlation of LSTosr (kin) and LSTsat
(kin) could be found applying these transformations, whereas

there is a distinct outlier datum in the Wiesmanhof dataset

(Fig. 2, left panel). In contrast, comparing LSTcam (kin) with

LSTsat (kin) did not reveal any outliers for the Wiesmanhof

data (Fig. 2, right panel). But, as evident from Fig. 2, LSTcam
(kin) and LSTsat (kin) estimates are clearly offset and show a

higher mean absolute error (MAE) compared to LSTosr (kin)

data.

The Wiesmanhof site was excluded in any further analysis

because of the following: (i) LSTosr (kin) does not always

coincide with LSTsat (kin) at the Wiesmanhof site, while this

site does not stand out when comparing LSTsat (kin) with

LSTcam (kin) data; (ii) in nine out of ten cases LSTosr (kin)

and LSTcam (kin) data are well correlated (except for the

Wiesmanhof site at high temperatures) (Fig. 3); and (iii) pho-

tographs of the measured plot at Wiesmanhof (taken regularly

at times of data collection or maintenance work; not shown)

showed withered vegetation right below the sensor during

periods with high air temperatures (end of July and around

the 20th of August) while no dryness was observed at the rest

of the meadow (plot not representative).

LSTcam vs. LSTosr

Radiant LSTcam and LSTosr were well correlated at nine

out of our ten sites (Fig. 3). As mentioned in the pre-

vious paragraph, the Wiesmanhof field site was exclud-

ed from any further analyses. Slope and offset of the

regression lines ranged from 0.69 to 0.92 and −0.81 to

5.94 K, respectively (Fig. 3). The coefficient of deter-

mination (R2) and the MAE ranged from 0.82 to 0.95

and 1.51 to 3.63 K, respectively, with an average MAE

of 2.61 K (Fig. 3).

As shown in Fig. 3, LSTcam are lower on average in all

cases compared to LSTosr, especially at higher temperatures,

clearly indicating the necessity to account for atmospheric

effects on LST measurements at landscape scales by TIR

cameras.

At all sites, uncorrected LSTcam is on average be-

tween 1.19 and 3.52 K lower than LSTosr. While these

average deviations appear to be rather small, the differ-

ences between LSTcam and LSTosr show a pronounced

diel cycle. The observed differences between these two

methods (ΔLST = LSTosr − LSTcam) ranged from −3.9

up to 11.5 K at the maximum. On average, ΔLST was

negative during the night time hours, ranging between

−3 and −1 K. At sunrise, mean ΔLST rose, reached its

Fig. 2 Left panel: intercomparison of kinetic land surface temperatures

measured on site by radiometry (LSTosr (kin)) and from remote sensing

(ASTER Level 2B03) (LSTsat (kin)). Right panel: intercomparison of

kinetic land surface temperatures measured by ground-based TIR

imagery (LSTcam (kin)) and from remote sensing (ASTER Level 2B03)

(LSTsat (kin)). Red line: 1:1 line, black solid line: regression line, black

dashed line: 95 % prediction interval of regression line, grey dashed line:

95% prediction interval of observations, grey shaded area: ±1.5 K on 1:1

line marking camera accuracy. Error bars on LSTsat data refer to the

standard deviation within a 3 × 3 pixel area centered around LSTosr
locations. Error bars on LSTcam (kin) data refer to the camera accuracy

of ±1.5 K
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maximum of 3.9 K around noon, and decreased again

from then on (Fig. 4).

Given Tpath from radiometer measurements, we calcu-

lated the difference between LSTosr and Tpath (ΔT).

Given ΔT, the residuals between LSTcam and LSTosr

could be explained to a very large extent. Eighty-one

percent of the residual variation is explained by ΔT

(n = 1839; p < 0.01) (Fig. 5).

Correcting LSTcam data according to this correlation

of the residuals with ΔT does result in slope and offset

Fig. 3 Correlations of land surface temperatures measured by on-site radiometery (LSTosr) and ground-based TIR imagery (LSTcam) per site including

correlation statistics. Grey dotted lines: 1:1 line; black bold lines: sls-regression line

Fig. 4 Upper panel: mean diel variations of land surface temperatures

measured by on-site radiometry (LSTosr) and by ground-based TIR

imagery (LSTcam), as well as path temperature (Tpath). Only data at times

with LSTcam data available were used. Lower panel: mean diel variation

of the differences between LSTosr and LSTcam as well as the differences

between LSTosr and Tpath. Error bars refer to 1 stdv in any case. For

reasons of clarity, error bars are shown for LSTcam data only in the upper

panel
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values ranging from 0.91 to 1.00 and −0.18 to 3.34 K,

respectively. R2 improved noticeably and ranged be-

tween 0.98 and 0.99, and the MAE was reduced from

2.61 K on average for uncorrected data to a range of

0.49 to 1.15 K (mean 0.74 K) for the nine sites.

While this finding does show the importance of at-

mospheric corrections on the data, this correlation is not

relevant for any data correction as this method would

require information on actual LST on landscape scale.

LST model calibration and validation

In order to correct LST on landscape scale, a multiple linear

regressionmodel was set up tomodel LSTosr by the use of four

independent variables (LSTcam, LSTcam − Tpath, Tpath, and

APL). Given a variance inflation factor (VIF) well above ten

indicating multi-collinearity, Tpath was excluded as an inde-

pendent variable from further analysis. With VIFs lower than

1.33, none of the remaining three independent variables

(LSTcam, LSTcam − Tpath, and APL) gave evidence for further

multi-collinearity (Kutner et al. 2003; Pan and Jackson 2008;

Rogerson 2001). Furthermore, no scatterplot of dependent vs.

independent variables revealed non-linear dependencies.

The three independent variablesgenerated ahighly significant

model (p < 0.001) with a determination coefficient of 0.92 (ad-

justedR2; rootmean squared error (RMSE)= 1.7K) based on ca.

50 % randomly chosen observations (calibration dataset).

Residual analysis revealed no not iceable pat tern

(heteroscedasticity) and no obvious deviation from normal

distribution.

Statistical validation of the model was done applying the

model to the remaining 50 % of observation data, which re-

sulted in an adjusted R2 = 0.93 (LSTosr = 1.00 LSTosr predict-

ed − 0.19; RMSE = 1.68 K).

Based on the available dataset (n = 1839) and the three

selected independent variables LSTcam, LSTcam − Tpath, and

APL, the LST model was given by:

LSTosr predicted ¼ −3:971þ 1:086 LSTcam

þ 0:767 LSTcam−Tpath

� �

þ 0:000469 APL; ð1Þ

representing a highly significant model for LST (p < 0.001;

adj. R2 = 0.93; RMSE = 1.70 K) (Fig. 6).

According to the standardized coefficients beta (~β ),

LSTcam exerted the highest influence on the LST model,

fo l lowed by the difference of LSTc am and Tpa t h

(LSTcam − Tpath) and atmospheric path length (APL) (Table 3).

LST model application

Average differences of LSTosr and Tpath during all measure-

ment campaigns ranged from −6 to 10 K. To demonstrate

consequences of these temperature differences, two differ-

ent situations for one field of view were selected, including

the stations Kaiserau, Jennerhof, Terlan, and Unterrain

(scene 2). On 2 August 2012 at 11:30 CET, a mean differ-

ence between LSTosr of these sites and Tpath of 6.7 K was

observed (example 1), while on 24 August at 03:00 CET,

Fig. 5 Correlations of the temperature difference between path

temperature (Tpath) and land surface temperatures from on-site radiometry

(LSTosr) and themeasurement difference between LSTosr and land surface

temperatures from ground TIR imagery (LSTcam) (ΔT) (grey dots).

Upper panel: absolute difference; grey horizontal bar refers to ±1.5 K

(camera accuracy). Lower panel: relative difference. Big black dots refer

to bin averaged data including their error bar (1 stdv)
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these two temperatures differed by −2.5 K on average (ex-

ample 2). These values represent rather high and low mea-

sured differences for that scene.

Presented in Table 4 are the meteorological conditions for

the times of examples 1 and 2. Data presented in Table 4

represent average conditions for these specific dates of the

year and times of the day. 2 August (example 1) was charac-

terized by bright sunshine until the time of presented measure-

ments, while on 24 August (example 2), it was partly cloudy

around midday and clear sky conditions for the rest of the day.

While LSTosr and Tair were relatively similar at the time of

example 1, Tpath was several degrees cooler on average, with

differences ranging from −6 down to −11 K (Table 4). In

contrast, at the time of example 2, the average Tpath was

2.1 K warmer than the average LSTosr, with differences rang-

ing from −0.2 up to 3.5 K.

Consequences of these conditions on LSTcam and ac-

cording corrections on these data by the LST model at

landscape scale are shown in Fig. 7 and Fig. 8. The

marked section in panels a–f was used to restrict data

to areas covered by vegetation, as the model setup was

done using data from such areas only. Results covering

settlement or industrial areas (right and lower thermal

image area, respectively) could thus not be validated.

This application of the LST model on landscape scale

clearly shows that correcting for atmospheric influences (i)

amplifies the measured LST spectrum (for the pronounced

case in Fig. 7, the LST range was extended by as much as

10 K for the marked section) and (ii) shifts median tempera-

tures depending on the difference between Tpath and surface

temperature.

Discussion

Various studies on LST have been conducted using ground-

based TIR cameras on landscape scale. These instruments

gained popularity in ecosystem research due to their high tem-

poral and spatial resolution as well as their operational sim-

plicity (Corsi 2010; Pron and Bissieux 2004). In this study, we

Fig. 6 a Correlation of measured land surface temperatures from on-site radiometry (LSTosr) with modelled LST including the regression line. b

Standardized residuals vs. unstandardized predicted values. c p-p-plot of observed (grey) vs expected (black) cumulative residual distribution

Table 3 Three variables exhibited significance and were used in our final LST model

LST model Unstandardized coefficients Standardized

coefficients ~β

T-value (t) Significance

(p value, two sided)

VIF

βi S.E.

(Constant) −3971 0.247 −16,060 0.000

LSTcam 1.086 0.008 0.909 142.350 0.000 1.086

LSTcam − Tpath 0.767 0.029 0.194 26.258 0.000 1.256

APL 0.000469 0.000 0.128 16.697 0.000 1.105

S.E. standard error, VIF variance inflation factor, LSTcam land surface temperatures measured by ground-based TIR imagery, Tpath measurement path

temperature, APL atmopsheric path length
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determined the magnitude of atmospheric effects on ground-

based radiant surface temperature by comparison of LSTcam
with LSTosr. Furthermore, we established a multiple linear

regression model to correct LSTcam data and to show the ef-

fects of Tpath and APL on LSTcam data.

While LSTosr and LSTsat data did show a good correlation,

LSTcam (kin) data, not corrected for atmospheric effects, were

clearly offset compared to LSTsat data (Fig. 2). Once corrected

for atmospheric effects, using our multiple linear regression

model, LSTsat and LSTcam (kin) agreed reasonably well, re-

ducing theMAE from 3.55 to 2.45 K (data not shown). Beside

atmospheric effects, the offset could to some degree also be a

result of thermal anisotropy, i.e., the LST depends on the

viewing direction of the sensor (Christen et al. 2012; Kimes

1980; Lagouarde et al. 2000; Lagouarde et al. 2004; Voogt and

Oke 2003). Under cloudless conditions, the satellite observes

Fig. 7 Example 1 (2 August 2012, 11:30 CET)—a elevation model, as

seen by ground-based TIR imagery. bResulting atmospheric path lengths

(APL) for each pixel. c Average path temperatures (Tpath) for the time the

infrared images were taken. d Land surface temperatures as measured by

ground-based TIR imagery (LSTcam). e Resulting LSTcam from model

application (LSTcam corr). f Difference between LSTcam and LSTcam corr.

g Temperature ranges of LSTcam and LSTcam corr for the entire scene. h

Temperature ranges of LSTcam and LSTcam corr for the marked section in

panels a–f. Grey shadings in g and h refer to min–max range, 90 %

percentile, 50 % percentile (IQR), and the median (black line), respec-

tively. i Histogram of the differences in panel f for the entire scene

Table 4 Meteorological conditions on reference days 2 August 2012 11:30 (example 1; E1) and 24 August 2012 03:00 (example 2; E2)

Site LSTosr (°C) Tair 2 m (°C) Tpath (°C) LSTcam (°C) SR (W m−2) Wind speed (m s−1) RH (%)

Nr. Name E1 E2 E1 E2 E1 E2 E1 E2 E1 E2 E1 E2 E1 E2

1 Schreckbichl 31.8 18.5 27.5 20.1 22.9 20.6 26.0 – 728 0 0.28 1.64 61 76

2 Girlan 30.1 17.7 28.4 20.0 23.1 20.7 25.5 20.6 – 0 1.24 0.68 57 77

3 Unterrain 29.3 19.4 32.1 20.7 23.5 20.9 26.5 21.0 728 0 1.00 0.52 60 80

4 Terlan 29.9 18.1 29.7 19.6 23.5 20.9 25.7 20.6 684 0 0.28 0.52 55 84

5 Kaiserau 29.6 17.4 30.7 18.2 23.5 20.9 27.6 20.5 756 0 0.84 0.28 53 95

6 Jennerhof 32.2 18.7 30.7 20.1 23.5 20.9 28.6 20.8 764 0 0.84 0.84 48 82

7 Moritzing 29.6 18.7 29.3 20.0 23.5 20.9 26.8 – 810 0 1.08 0.68 61 86

8 Alte Mendl Str 34.7 21.1 31.2 22.6 23.5 20.9 30.1 – 686 0 1.16 1.00 48 70

9 Glaninger Weg 32.6 18.7 28.3 20.7 23.0 20.6 28.7 – 828 0 1.48 0.76 49 75

Mean 31.1 18.7 29.8 20.2 23.4 20.8 27.3 20.7 762 0 0.91 0.77 55 81

Italicized sites are covered by scene 2 shown in Fig. 7 and Fig. 8. Numbers (nr.) refer to numbers in Fig. 1

584 Int J Biometeorol (2017) 61:575–588



predominantly sunlit surfaces because of the nadir view. The

oblique view of the TIR camera includes more vertical sur-

faces which could be cooler due to shading.

Focusing on the LSTosr and LSTcam comparison, we found

that LSTcam clearly deviate from LSTosr. ΔLST, the difference

between LSTosr and LSTcam, showed a pronounced diel cycle,

and ΔLSTwas negatively correlated (p < 0.001) with the dif-

ference between Tpath and LSTosr, with Tpath being derived

independently from microwave radiometer measurements.

These findings show a strong influence of atmospheric prop-

erties along the measuring path on the LSTcam measurements.

Using a multiple linear regression model, we could show that

the measured range of LSTcam data is amplified when account-

ing for Tpath and mean LST are shifted either positively or

negatively, depending on the temperature difference between

LSTosr and Tpath.

Comparing results of LSTosr with LSTcam of course holds

the problem of finding the exact pixel covering the LSTosr site

and the fact that these two methods differ in their spatial res-

olution. To check the validity of our results, we performed a

sensitivity analysis on our comparison of methods. To this

end, we defined a pixel region for any LSTosr site within a

thermal image with the pixel most likely covering the LSTosr
site centered within a 5 times 5 pixel domain (center pixel

surrounded by 24 pixels). Given these regions, we ran our

analysis (i) choosing the pixel within these regions matching

the LSTosr readings worst and (ii) choosing the one matching

the LSTosr reading closest. Even between these two extreme

scenarios, the mean difference in the RMSE comparing LSTosr
with LSTcam was as low as 0.16 K (range 0.0–0.63 K) and

differences in R2 were below 0.01 in any case. This low sen-

sitivity on the exact pixel location can be attributed to the land

cover in that region, which shows low variability at small

scales due to the intensive pomiculture. The site being most

sensitive to pixel localization was BAlte Mendel Strasse,^

which is located in close proximity to the settlement area of

Bozen/Bolzano.

Our findings of a distinct influence of the atmosphere on

LST derived from ground-based TIR imagery are in accor-

dance with numerous studies that report on the these influ-

ences from satellite-based measurements down to ground-

based measurements with APL of some hundred meters

(Chandrasekhar 1960; Jacob et al. 2003; Meier et al. 2011;

Norman et al. 1995; Voogt and Oke 2003). Meier et al.

(2011) and Wawrzyniak et al. (2013), for example, report a

magnitude of atmospheric effects during a diel cycle of up to

6.7 K in an urban environment and over natural environments,

respectively, at path lengths lower than 800 m. These effects

are particularly noticeable under the conditions of a high

surface-to-path temperature difference, a pattern described,

Fig. 8 Example 2 (24 August 2012, 03:00 CET)—a elevation model, as

seen by ground-based TIR imagery. bResulting atmospheric path lengths

(APL) for each pixel. c Average path temperatures (Tpath) for the time the

infrared thermograms were taken. d Land surface temperatures as

measured by ground-based TIR imagery (LSTcam). e Resulting LSTcam
from model application (LSTcam corr). f Difference between LSTcam and

LSTcam corr. g Temperature ranges of LSTcam and LSTcam corr for the entire

scene. h Temperature ranges of LSTcam and LSTcam corr for the marked

section in panels a–f. Grey shadings in g and h refer to min–max range,

90 % percentile, 50 % percentile (IQR), and the median (black line),

respectively. i Histogram of the differences in panel f for the entire scene

Int J Biometeorol (2017) 61:575–588 585



e.g., by Meier et al. (2011) as well. In the present study, this

difference alone explained 81 % of the variation in LSTcam-

LSTosr difference (p < 0.01) (Fig. 5).

Huge differences in temperature between a vegetated surface

and the air above it may occur at times with (i) a high energy

input, especially due to high incoming shortwave radiation

(Kahmen et al. 2011; Lambers et al. 1998; Martin et al. 1999;

Wilson et al. 1987), (ii) a low transpirational cooling due to

water limitation (Camoglu 2013; Fuchs 1990; Gates 1964;

Jackson et al. 1981), and (iii) low atmosphere-vegetation cou-

pling (Jones 1992; McNaughton and Jarvis 1983).

Due to the increase in solar radiation and a decrease in air

temperature with increasing altitude and the low atmospheric

coupling of short alpine vegetation (Goldberg and Bernhofer

2008; Jarvis and Mcnaughton 1986; Tappeiner and Cernusca

1996), mountain landscapes facilitate high surface to air tem-

perature differences. Furthermore, mountain regions feature

high spatial variability in slope, aspect, and altitude, which

in turn does lead to high spatial differences in the solar energy

input (Bertoldi et al. 2010; Garnier and Ohmura 1968; Isard

1983) and thus LST.

Given these conditions, any measurements of LST in

mountain landscapes, not accounting for atmospheric effects,

do not only result in inaccurate absolute LST data but also

underestimate the LST variability, both in space (Fig. 7 and

Fig. 8) and time, due to the diel cycle in LST-Tpath difference.

Under these circumstances, the findings of, e.g., Scherrer and

Körner (2010) may very likely even have underestimated the

described high LST variability within their investigated area.

One could argue that the atmospheric effects on LSTcam
data are lower than the camera accuracies. However, in order

to stay below ameasurement error of 1.5 K (camera accuracy),

the absolute differences between LSTosr and Tpath (ΔT) would

have had to be lower than 4.6 and 2.1 K on average for our

minimum APL (3260 m; Kaiserau) and our maximum APL

(9038 m; Terlan), respectively (data not shown). Given the

results shown in Fig. 5, ΔT reaches values as high as 15 K,

which is well above the thresholds described above. Put an-

other way, extrapolation of our data implies that an APL of

less than 1000 m would be required to stay within the ±1.5 K

range given by the accuracy of conventional TIR cameras.

The applied TIR camera is sensitive within a certain range

of the electromagnetic spectrum, (7.5–14 μm). Hence, the

proposed correction method is comparable with single-

channel methods that are applied to satellite sensors with a

single TIR band, e.g., LANDSAT (e.g., Sobrino et al. 2004).

A standard approach to obtain LST is to solve the radiative

transfer equation in the TIR spectrum. The atmospheric pa-

rameters, i.e., atmospheric transmissivity, between the surface

and the sensor as well as down-welling and up-welling atmo-

spheric radiance can be calculated from vertical profiles of

atmospheric temperature and water vapor and using radiative

transfer codes like MODTRAN (Berk et al. 2005; Berk et al.

1998). Our method has the advantage that we do not need the

radiative transfer simulations, but due to the oblique view of

the TIR camera at the landscape scale, we need to consider

spatial variability of LOS parameters in contrast to a near nadir

view of most satellite-based sensors. All single channel ap-

proaches need accurate data on temperature and water vapor

distribution in the atmosphere between the surface and the

sensor. Therefore, and as our study shows, on-site data about

the vertical distribution of at least atmospheric temperature

and a DEM of the study region should be available for LST

studies on landscape scale by means of ground-based TIR

imagery. This should be considered in the conception of ex-

perimental setups and field campaigns.

In a further study, we will compare our results with atmo-

spheric correction methods based on simulations with

MODTRAN and other models.

Conclusions

While atmospheric corrections on LST measurements are rou-

tinely applied on remote sensing or airborne systems, such

corrections had been neglected in many landscape-scale stud-

ies using TIR cameras, despite atmospheric measurement path

lengths of several hundred or thousand meters. Based on our

intensive field measurements and on our modelling results, we

were able to show that neglecting the atmospheric effect on

ground-based TIR imagery does lead to substantial measure-

ment errors. We could demonstrate that, depending on the

temperature difference between the land surface and the over-

lying air masses, these errors are relevant even at relatively

short measurement paths and particularly for spatially varying

LOS parameters due to an oblique view of the TIR camera.

Furthermore, our results suggest that differences in LST on

landscape scale are underestimated in both spatial and tempo-

ral domains, due to the dampening effect of the atmosphere on

the LST measurements.
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