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Preface

In this thesis, we link astrophysics and particle physics aspects in order to study the
implications of the nature and properties of different types of dark matter candidates
on the observable Universe. The main goal is to understand, depending on the proper-
ties of some dark matter particle candidates, different characteristics of the history of
structure formation in the Universe. From one side, the structures on large scales are
rather insensitive to the nature of the dark matter particles while, on the other side,
the sub-galactic scales strongly depend on the microphysics involving the dark mat-
ter species. The main property which connects the works on which this manuscript
is based is free-streaming. This is the phenomenon for which the dark matter par-
ticles can free-stream, that is propagate out of density perturbations, depending on
their nature. As a consequence, we see this effect on the observable Universe through
the suppression of the matter power spectrum at scales smaller than a characteristic
free-streaming length. This phenomenon is related to the so called small-scale crisis
of the standard cosmological model in which the prediction of gravitationally bound
structures of dark matter seems to be lower both in their mass and in their number,
with respect to those computed in numerical simulations based on the same model.
Free-streaming is also highly relevant for the first gravitationally bound dark matter
structures: after the dark matter particles end to oscillate with the rest of the thermal
bath, finally, they decouple kinetically, and this sets the size of those first structures.
The free-streaming leads to a cold dark matter (CDM) power spectrum with a cutoff
around a scale which is of the order of the Earth mass, namely 10−6M⊙.

First, in Chapter 1, we give a condensed description of our present understanding of
the Universe. Out of a very simple picture – as a whole, the Universe that can be
observed looks the same anywhere and in every direction –, and a surprising property
– it is expanding, “everything” is speeding away from us –, an elaborate account of its
past history and current characteristics can be developed and tested. Starting with
the basic equations that govern its evolution, we travel in time visiting the consecutive
epochs in which the evolution of the Universe was ruled by radiation, then matter
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Preface

and finally dark energy. Milestones like baryogenesis, the annihilation of electrons and
positrons, the primordial synthesis of nuclei, the emission of the Cosmic Microwave
Background or the formation of gravitationally bound structures, guide our way.

In Chapter 2, we continue to give an overview of our Universe but focusing our atten-
tion on the dark matter. We firstly explore some of the most popular particle physics
candidates for dark matter. To address where and how dark matter is, we present the
properties of dark matter halos. Finally, we describe the three different dark matter
detection methods: direct detection of the energy recoil of nuclei scattering off DM
particles; indirect detection of the final stable products of DM annihilation or de-
cay, as for example gamma rays; and colliders which aim to reproduce new particles
beyond the Standard Model, in particular at the Large Hadron Collider (LHC) at
CERN (the European Laboratory for Particle Physics).

Chapter 3 is based on [1], and deals with a phenomenological study of a mixed dark
matter model, where dark matter consists of a standard cold fraction plus a fraction
given by another component non-cold. By varying both the mass and the fraction
of the non-cold dark matter candidate in a sufficiently wide range, we cover a con-
siderable parameter space, allowing us to explore, in one time, consequences of more
than a single particle physics model. By using the most recent data from the Planck
satellite on the Cosmic Microwave Background (CMB), the Baryonic Acoustic Os-
cillations (BAO) measurements, and deriving constraints from the number of dwarf
spheroidal satellite galaxies in the Milky Way, we set bounds on the fraction of the
non-cold dark matter component with respect to the total dark matter, as a function
of its mass.

In Chapter 4, based on [2], we present a forecast on the mass of the first and smallest
dark matter bound systems – commonly referred to as protohalos – within a super-
symmetric model realized with 9 independent parameters. In this scenario, we explore
a cold dark matter power spectrum with a cutoff around a scale much smaller than
the reference minimum mass of 10−6M⊙ estimated for supersymmetric dark mat-
ter scenarios. We first analyse the kinetic decoupling temperature and the resulting
protohalo masses, which set the power spectrum cutoff. Then, we study correla-
tions among the temperature of kinetic decoupling and direct detection signatures
of dark matter, such as the spin-dependent and the spin-independent cross-sections.
We address the implications for indirect detection and the search of dark matter at
colliders. We find that, depending on the nature of the lightest supersymmetric dark
matter particle (the lightest neutralino), the values of annihilation cross sections and
protohalo masses can change significantly. We also cover scenarios where neutrali-
nos co-annihilate with other supersymmetric particles, and that could be potentially
tested by the Large Hadron Collider. We perform this work in the light of recent data
coming from particle physics experiments and relic density constraints.
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• FLRW: Friedmann-Lemâıtre-Robertson-Walker

• DM: Dark Matter

• CDM: Cold Dark Matter

• WIMPs: Weakly Interacting Massive Particles

• BAU: Baryon Asymmetry of the Universe

• CP: Charge conjugation combined with Parity

• LSS: Last Scattering Surface

• FIRAS: Far Infrared Absolute Spectrophotometer

• COBE: Cosmic Background Explorer

• IGM: Intergalactic Medium

• SN Ia: Supernovae Type Ia

• DE: Dark Energy

• BAO: Baryonic Acoustic Oscillations

• SDSS: Sloan Digital Sky Survey

• 2dFGRS: Six-Degree Field Galaxy Survey

• QCD: Quantum Chromodynamics

• SM: Standard Model

• SUSY: Supersymmetry

3



Acronyms

• MSSM: Minimal Supersymmetric Standard Model

• LSP: Lightest Supersymmetric Particle

• ΛCDM: Lambda Cold Dark Matter

• NFW: Navarro, Frenk, White

• PS: Press and Schechter

• LHC: Large Hadron Collider

• SI: Spin Independent

• SD: Spin Dependent

• MDM: Mixed Dark Matter

• PDF: Probability Density Function

• ACT: Atacama Cosmology Telescope

• SPT: South Pole Telescope

• ESA: European Space Agency

• MGS: Main Galaxy Sample

• BOSS: Baryon Oscillation Spectroscopic Survey

• EPS: Extended Press and Schechter

• MCMC: Markov Chains Monte Carlo

• GUT: Grand Unification Theory

• RGE: Renormalization Group Equations

• EWSB: Electroweak Symmetry Breaking

• pMSSM: Phenomenological Minimal Supersymmetric Standard Model

• LUX: Large Underground Xenon

• LZ: LUX-Zeppelin

• CMSSM: Constrained Supersymmetric extension of the Standard Model

4



1 Introduction

The ultimate physical system that we can dream of describing scientifically is the
Universe itself. Cosmology addresses the study of its origin, evolution and structure.
Cosmology is a field in constant and fast progress, owing to the improvement in the
available observational techniques of the last decades. The discovery of the recession
of galaxies – supporting the idea of an expanding Universe –, the discovery of the Cos-
mic Microwave Background radiation, understanding the synthesis and the resulting
abundances of the light elements, understanding the formation of bound structures,
all add up to prove that the standard model of Big Bang Cosmology provides indeed
a good description of the Universe in which we live. This Chapter is devoted to that
account.

1.1 The expansion of the Universe

Our present understanding of the Universe, Big Bang cosmology, rests on two central
ideas:

• the evidence that on large scales it is homogeneous,

• the fact that it is expanding.

The idea that the Universe is smooth on large scales is both powerful and simple,
since it condenses two important properties: homogeneity and isotropy. Indeed the
place we occupy in the Universe is in no way special. This is known as the Cosmo-
logical Principle. Homogeneity means that the Universe looks the same at each point
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1. Introduction

while isotropy means that it looks the same in all directions. Cosmological observa-
tions, such as the Cosmic Microwave Background (CMB), sustain the validity of the
Cosmological Principle.

The second key ingredient is the fact that the Universe is expanding. The evidence
is based on the observation that almost everything in the Universe appears to be
moving away from us, and further away something is, faster its recession appears to be.
Velocities are measured via the redshift, which is basically the Doppler effect applied
to light waves. Galaxies have a set of absorption and emission lines identifiable in
their spectra, whose characteristic frequencies are well known. If a galaxy is receding
from us, the characteristic lines move towards the red end of the spectrum, and the
effect is known as a redshift. On the other hand, if a galaxy is moving towards us,
the lines we observe are shifted towards higher frequencies, and this effect is known
as blueshift. In the late 1920’s, one of the most famous cosmologists, Edwin Hubble,
observed that the spectral lines of the chemical elements in the galaxies were shifted
from their normal positions towards the red part of the electromagnetic spectrum, [5]
(that is towards lower frequencies with respect to those obtained in the laboratory).
This is expressed in terms of a parameter z defined by1:

z =
λobs − λem

λem
, (1.1)

where λem and λobs are the wavelengths of light at the points of emission (the galaxy)
and observation (us). He concluded, for small redshift, that the velocity of recession
was proportional to the distance to the galaxy, according to the linear relation between
the redshift z and the distance D:

z = H0 D , (1.2)

known as Hubble’s law. The proportionality constant H0 is known as Hubble’s con-
stant, usually rewritten

H0 = 100hKm s−1 Mpc−1 , (1.3)

where h is the dimensionless reduced Hubble constant. The best recent measurements
of the Hubble parameter H0 given by the Planck temperature data combined with
Planck lensing [6] is:

H0 = 67.8 ± 0.9 Km s−1 Mpc−1 . (1.4)

It describes the average behaviour of galaxies extremely well, leading to the general
consideration that the redshift increases with the distance, or equivalently, as we
observe back to the past, the redshift increases.

1In first approximation, if a nearby object is receding at a speed v, then its redshift is z = v
c

,

where c is the speed of light.
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1.2. The Equations of the Universe

Homogeneity, isotropy and expansion determine the large scale structure of spacetime,
the Friedmann-Lemâıtre-Robertson-Walker (FLRW) model of the Universe, encoded
in the Robertson-Walker metric that we introduce in equation (1.5). In order to
analyse an expanding Universe, it is convenient to use comoving coordinates, in which,
by definition, the coordinate system follows the expansion, in such a way that a galaxy
with no peculiar velocity keeps its coordinates constant. Then, the most general line
element has the following form:

ds2 = gµνdx
µdxν =

dt2 − dR2(t) = dt2 − a2(t)

(

dr2

1 −Kr2
+ r2dθ2 + r2sin2θ dφ2

)

, (1.5)

where (t, r, θ, φ) are the comoving (spherical) coordinates and the scale factor a(t)
describes the expansion. The spatial curvature K describes the geometry, it assumes
the value +1 for an open Universe, 0 for a flat Universe, and −1 for a closed Universe.
If two galaxies are separated by a coordinate distance r0, the corresponding physical
distance R(t) is:

R(t) = a(t) r0 . (1.6)

In this way, if we derive equation (1.6) with respect to time, we find that:

Vr = ȧ r0 =
ȧ

a
R(t) = H R(t) , (1.7)

which is in fact the recession velocity among both galaxies. The relation above is
indeed Hubble’s law, (1.2) (a dot denotes a derivative with respect to cosmic time t).
We have also defined the Hubble parameter as:

H(t) =
ȧ

a
, (1.8)

whose present value is given by the Hubble constant in equation (1.3). Having di-
mension of (Time)−1, it offers a natural scale for the age of the Universe:

H−1
0 = 9.778h−1 Gyr . (1.9)

1.2 The Equations of the Universe

General Relativity provides the classical framework that describes the dynamics of
spacetime. Einstein equation relates geometry to matter content:

Gµν ≡ Rµν − 1

2
R gµν = 8πGTµν . (1.10)

7



1. Introduction

In this set of tensor equations, Gµν , Einstein’s tensor, describes geometry: Rµν is the
so-called Ricci tensor and R is the Ricci scalar curvature, both functions of the metric
gµν . On the other hand, Tµν is the energy-momentum tensor describing the matter
content. The energy-momentum tensor of a perfect fluid is

Tµν = (ρ+ p)uµuν − pgµν , (1.11)

where uµ is the 4-velocity of the fluid, and ρ and p are the energy density and pressure
measured by a comoving observer. Furthermore, the symmetry properties of the
Robertson-Walker metric reduce the ten coupled differential Einstein equations to
only two of them, the so-called Friedmann equations, which only depend on the scale
factor a(t). They are:

ȧ2

a2
+
K

a2
=

8πG

3
ρ , (1.12)

2
ä

a
+
ȧ2

a2
+
K

a2
= −8πGp , (1.13)

where we recall that the dot denotes the derivative with respect to the cosmic time
t, and H = ȧ/a is the Hubble parameter, defined in equation (1.8).
The energy density, ρ, should be thought as a sum running over all the forms of mat-
ter that fill the Universe; the same applies to p.
In both Friedmann equations the left-hand sides are given by the left-hand side of the
Einstein equation (1.10), in other words the geometry of a homogeneous and isotropic
Universe is fully characterized by the scale factor a(t), whereas the right-hand sides of
Friedmann equations directly come from the energy-momentum tensor Tµν of equa-
tion (1.11); at a cosmological level, following Einstein’s equation, geometry is related
to matter.

It is convenient to introduce two important quantities:

• the so-called critical density ρc, defined as

ρc ≡ 3H2

8πG
, (1.14)

• and the density parameter Ω, defined as

Ω ≡ ρ

ρc
=

8πG

3H2
ρ . (1.15)

In particular, the current critical density ρc,0 is:

ρc,0 =
3H2

8πG
= 1.879h2 × 10−29 g cm−3 = 8.099h2 × 10−11 eV4 . (1.16)
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1.2. The Equations of the Universe

The first Friedmann equation (1.12) can then be rewritten as:

H2 =
8πG

3
ρ− K

a2
−→ K

H2a2
= Ω − 1 . (1.17)

That is, the matter content, given by Ω, determines the spatial geometry of the
Universe:

• open Universe: K = −1 =⇒ ρ < ρc =⇒ Ω < 1 ;

• flat Universe: K = 0 =⇒ ρ = ρc =⇒ Ω = 1 ;

• closed Universe: K = +1 =⇒ ρ > ρc =⇒ Ω > 1 .

Recent measurements of CMB radiation have shown that the Universe is spatially flat
(Ω = 1 or K = 0) to within a few percent (see, e.g., Ref. [7]).

We can rewrite equations (1.12) and (1.13) to obtain a more convenient form for the
second Friedmann equation:

ä

a
= −4πG

3
(ρ+ 3p) = −4πG

3
ρ(1 + 3ω) , (1.18)

where ω = p/ρ is the fluid equation of state parameter. This fully characterizes the
fluid, in such a way that, for the case of a fluid composed by relativistic matter (that
we collectively call radiation), ωr = 1/3, while for regular baryons, in general any non-
relativistic, or cold matter, whose temperature is much smaller than its mass, ωm = 0.

Deriving the first Friedmann equation with respect to time

d

dt
(ȧ2 +K) =

d

dt

(

8πG

3
ρ a2

)

=⇒ 2ȧä =
8πG

3
(ρ̇a2 + 2ρ aȧ) , (1.19)

and using equation (1.18), we obtain the fluid equation

− (ρ+ 3p) aȧ = ρ̇ a2 + 2ρ aȧ =⇒ ρ̇ = −3H (ρ+ p) . (1.20)

Notice that it can be analogously obtained using the conservation of the energy-
momentum tensor of a perfect fluid:

Tµν;µ = 0 , (1.21)

where ;µ represents the covariant derivative.
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1. Introduction

Equation (1.20) describes the dependence of the energy density on the scale factor,
for an equation of state p = ωρ:

ρ̇a = −3ρ (1 + ω)ȧ , (1.22)

from which:
1

3 (1 + ω)

∫

dρ

ρ
=

∫

da

a
, (1.23)

and therefore,
ρ ∝ a−3(1+ω) . (1.24)

Following equation (1.24), the behaviours of matter and radiation energy densities
are

• ρr ∝ a−4, for radiation;

• ρm ∝ a−3, for matter.

These behaviours can also be understood from a more intuitive point of view. In the
case of matter density, the density is falling as the volume of the Universe increases,
i.e., with the scale factor to the third power, since the number of particles is constant.
In the case of radiation there is an additional a−1 factor coming from the fact that the
wavelength also increases with the expansion, in such a way that the energy density
scales inversely with the fourth power of the scale factor.

We can also analyse the behaviour of the scale factor as a function of time2

ȧ

a
∝ a−3(1+ω)/2 , (1.25)

which, integrated,

∫

da a3(1+ω)/2 a−1 ∝
∫

dt (1.26)

leads to:

a(t) ∝ (t− t0)
2

3(1+ω) , (1.27)

where t0 is a constant. An analytical expression for the Hubble parameter can be
found as:

H(t) =
2

3(1 + ω)(t− t0)
. (1.28)

2Here and in the following, we assume K = 0 unless otherwise stated.
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1.2. The Equations of the Universe

Equations (1.27) and (1.28) are valid for all values of ω except ω = −1. When ω is
−1, i.e. p = −ρ, it follows from equation (1.24) that the energy density ρ is constant.
This corresponds to the cosmological constant, denoted by Λ.

Through equation (1.27) we can understand the behaviour of the scale factor a(t)
depending on the dominant contribution to the energy density of the Universe:

• for a radiation dominated Universe a(t) ∝ t1/2,

• for a matter dominated Universe a(t) ∝ t2/3,

• finally, in the case of a cosmological constant dominated Universe, the scale
factor evolves as a(t) ∝ exp(H t), that is, it has an exponential expansion.

In order to analyse the dominant component at different epochs, one needs to know
what the values that the observed densities of the different components of the Universe
assume nowadays.
The current densities of the baryonic matter and the total matter (dark plus baryonic),
neutrinos, and photons are:

ρb,0 = 0.857 × 10−30 Ωb,0 h
2 g cm−3

≈ 1.62 × 10−12 eV4

Ωb,0 = 0.02205 ± 0.00028 ; (1.29)

ρm,0 = 0.502 × 10−29 Ωm,0 h
2 g cm−3

≈ 1.21 × 10−11 eV4

Ωm,0 = 0.315 ± 0.017 ; (1.30)

ρν,0 = 3.194 × 10−34 g cm−3

= 8.69 × 10−13 eV4

Ων,0 ≃ 1.7 × 10−5 ; (1.31)

ργ,0 = 4.64 × 10−34 g cm−3

= 3.37 × 10−15 eV4

Ωγ,0 ≃ 2.5 × 10−5 . (1.32)
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1. Introduction

The value of the baryonic density comes from the limits on the light element pro-
duction in the early Universe, the so-called Nucleosynthesis epoch, which requires
Ωb,0h2 ≈ 0.02, a result in agreement with other observational results, like CMB
anisotropies. The total matter density, Ωm,0 ≈ 0.3, is mainly measured gravitation-
ally via the rotation curves of galaxies, gravitational lensing, X-ray emission from hot
gas in clusters of galaxies, and via measurements of peculiar velocities in the large
scale structure distribution. An upper limit on the neutrino density is obtained using
the limits on the sum of the total masses of the three mass eigenstates [8]. The photon
density is measured via the temperature of the CMB radiation.
As we can see, the matter density is currently at least five orders of magnitude larger
than the radiation density. Radiation energy density falls off more rapidly than mat-
ter energy density, therefore, there was a time in which both densities contributed
equally to the energy density of the Universe. This time, the so-called equality epoch,
separates the early radiation dominated epoch from the subsequent matter domina-
tion. Notice that while Ωm,0 ≈ 0.3, baryonic matter only provides Ωb,0 ≈ 0.04: dark
matter accounts for that difference. In addition, as anticipated previously, the total
energy density is quite closely the critical one, i.e. Ω = 1, but the contributions (1.29)
to (1.32) do not sum up to 1! The missing piece is attributed to dark energy, which
would then be the current dominant contribution: we thus live in a dark energy, or
cosmological constant dominated, epoch.

1.3 The Age of the Universe

We devote this Section to what probably was one of the first indications of the exis-
tence of dark energy: the age of the Universe [9, 10, 11].
As we have discussed in Section 1.1, referring to equation (1.9), the inverse of the
Hubble parameter gives roughly the age of the Universe.

We rewrite the first Friedmann equation:

H2 =
8πG

3
ρ− K

a2
, (1.33)

where the energy density has to be thought of as the sum over all the components,
namely relativistic matter, non-relativistic matter and the cosmological constant,

ρ =
∑

i

ρi,0

(

a

a0

)−3(1+ω)

=
∑

i

ρi,0(1 + z)3(1+ω) . (1.34)

Using equation (1.34), for a flat Universe (K = 0), the Hubble parameter reads:

H2(z) = H2
0

∑

Ωi,0(1 + z)3(1+ω) , (1.35)
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1.3. The Age of the Universe

where we have considered, besides the relativistic and non-relativistic matter, an extra

component coined dark energy and Ωi,0 = ρi,0

ρc,0
= 3H2

0ρi,0

8πG . That is,

H(z) = H0

[

Ωr,0(1 + z)4 + Ωm,0(1 + z)3 + Ωr,0(1 + z)3(1+ωDE)
]1/2

. (1.36)

The total energy density is:

ρ0 = ρm,0 + ρr,0 + ρΛ,0 , (1.37)

or
1 = Ωm,0 + Ωr,0 + ΩΛ,0 . (1.38)

Let us consider a Universe filled only with non-relativistic matter, ω = 0, and a
cosmological constant, ω = −1. Then, the Hubble parameter becomes:

H2(z) = H2
0 [Ωm,0(1 + z)3 + ΩΛ,0] . (1.39)

Using the relation

dt = − dz

(1 + z)H
, (1.40)

the age of the Universe is:

t0 =

∫ ∞

0

dz

(1 + z)H(z)
. (1.41)

We compute the integral in equation (1.41) making some assumptions. We have
neglected relativistic matter since it plays a small role in the late Universe; in addition
the radiation dominated epoch is much shorter than the total age of the Universe or,
in other words, the integral in equation (1.41) is not particularly affected by redshifts
z > 1000. The age of the Universe is then

t0 =
1

H0

∫ ∞

0

dz

(1 + z)[Ωm,0(1 + z)3 + ΩΛ,0]1/2
. (1.42)

Integrating equation (1.42), and using Ωm,0 + ΩΛ,0 = 1, we obtain:

t0 =
1

3H0

1
√

1 − Ωm,0
log

[

1 +
√

1 − Ωm,0

1 −
√

1 − Ωm,0

]

. (1.43)

In the limit ΩΛ,0 → 0, Ωm,0 → 1, we find that:

t0 =
2

3H0
. (1.44)
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A Universe without a cosmological constant would have, approximately, an age within
the range 8 Gyr < t0 < 10 Gyr (1 Gyr = 109 years), where we have put h = 0.68.
However, different groups have estimated the age of globular clusters [12] to be within
the range 12.7 Gyr < t0 < 13.5 Gyr. In most cases, globular clusters seem to be older
than 11 Gyr, being inconsistent with the age of a matter dominated Universe. The
age of the Universe increases by including dark energy with an equation of state with
ω close to −1.
On the other hand, if we consider an open Universe, ΩK,0 > 0 and the cosmic age
increases but still remains low compared to the age of the globular clusters mentioned
above. As an example, let us consider a Universe with Ωm,0 + ΩK,0 = 1 (and hence
zero cosmological constant). Then, the age of the Universe would be:

t0 =
1

H0

1

1 − Ωm,0

[

1 +
Ωm,0

2
√

1 − Ωm,0
log

(

1 +
√

1 − Ωm,0

1 −
√

1 − Ωm,0

)]

, (1.45)

where, in the limit ΩK,0 → 1, Ωm,0 → 0, the age of the Universe becomes t0 =
1
H0

= 13 Gyr. However, the curvature of the Universe has been constrained by the
recent Planck measurements [6], to be much smaller than unity. An open Universe
without dark energy is inconsistent with the age of the oldest stars present in the
Universe, while a flat Universe with a cosmological constant is consistent with the
Planck constraints, for a matter density value of Ωm,0 = 0.3089, and for a dark
energy density of ΩΛ,0 = 0.6911.

In the following Sections, we will explore the most salient features of the three eras
that have characterized the history of the Universe: the radiation, the matter and the
dark energy epochs.

1.4 Radiation Dominated Epoch

Since expansion of the Universe dilutes densities, the conditions in the past must
have corresponded to higher densities and thus, to higher temperatures. This points
back to the initial dense and hot state from which the Universe has evolved. In this
Big Bang picture, the evolution of the Universe is essentially a thermal history of
expansion and cooling. To describe it, thermodynamics is required.

1.4.1 Thermodynamics of the Early Universe

The most relevant quantities associated to a weakly interacting gas of identical parti-
cles with g internal degrees of freedom are given in terms of its phase space distribution
function f(~p). The number density n, the energy density ρ, and the pressure p are:
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1.4. Radiation Dominated Epoch

n =
g

(2π)3

∫ ∞

0

d3p f(~p) , (1.46)

ρ =
g

(2π)3

∫ ∞

0

d3pE(~p) f(~p) , (1.47)

p =
g

(2π)3

∫ ∞

0

d3p
|~p|2
3E

f(~p) , (1.48)

where E2 = |~p|2 + m2. For a species in thermal equilibrium, the phase space dis-
tribution function f is given by the familiar Fermi-Dirac (+) or Bose-Einstein (−)
distributions (for fermions or bosons, respectively):

f(~p) =
1

exp
(

E−µ
T

)

± 1
, (1.49)

where µ is the chemical potential of the species. If the species is in chemical equi-
librium, then its chemical potential µ is related to chemical potentials of the other
species with which it interacts.
From the equilibrium distributions, it follows that the number density n, the energy
density ρ, and the pressure p of a species of mass m, with chemical potential µ, at
temperature T are:

n =
g

(2π)3

∫ ∞

m

(E2 −m2)1/2

exp[(E − µ)/T ] ± 1
E dE , (1.50)

ρ =
g

(2π)3

∫ ∞

m

(E2 −m2)1/2

exp[(E − µ)/T ] ± 1
E2 dE , (1.51)

p =
g

(2π)3

∫ ∞

m

(E2 −m2)1/2

exp[(E − µ)/T ] ± 1
dE . (1.52)

In a situation of local thermodynamic equilibrium, the number density, the energy
density and the pressure of relativistic species (T ≫ m) are given by:

n =

{

ζ(3)
π2 g T 3 , for bosons,

3
4
ζ
π2 g T

4 , for fermions. ,
(1.53)

ρ =

{

π2

30 g T
4 , for bosons,

7
8
π2

30 g T
4 , for fermions. ,

(1.54)

p =
ρ

3
. (1.55)
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Here ζ(n) is the Riemann zeta function, and ζ(3) = 1.20206....
In the case of non-relativistic particles (T ≪ m), these thermodynamical quantities
are given by:

n = g

(

mT

2π

)3/4

exp[−(m− µ)/T ] , (1.56)

ρ = mn , (1.57)

p = nT ≪ ρ . (1.58)

and the distribution function, n, converges to a Maxwell-Boltzmann distribution.

When relativistic species give the main contribution to ρ and p, i.e. during the radi-
ation dominated epoch that we are describing in this Section, the above expressions
simplify to:

ρ =
π2

30
g∗ T

4 , (1.59)

p =
ρ

3
=
π2

90
g∗ T

4 , (1.60)

where g∗ counts the total number of degrees of freedom of relativistic3 fermions and
bosons i (i.e. those species with mass mi ≪ T ):

g∗ =
∑

i=bosons

gi

(

Ti
T

)4

+
7

8

∑

i=fermions

gi

(

Ti
T

)4

. (1.61)

Furthermore, when g∗ ≃ constant, p = ρ
3 (i.e. ω = 1/3) and a(t) ∝ t1/2. Then, we

have (the Planck mass is MP = 1/
√
G):

H =

√

8π3

90
g

1/2
∗

T 2

MP
≃ 1.66 g1/2

∗
T 2

MP
, (1.62)

t =
1

2H
≃ 0.301 g−1/2

∗
MP

T 2
. (1.63)

In the evolution of the Universe, when the reaction rates Γint (which in general
depend on the temperature) of particles in the thermal bath are much larger than the
expansion rate, H, local thermal equilibrium is maintained. In this case, the entropy

3Since g∗ is related to the number of relativistic species in the Universe, and massive species change

from relativistic to non-relativistic when T ∼ m, it is a function of the cosmological temperature T .
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1.4. Radiation Dominated Epoch

per comoving volume element remains constant. The entropy in a comoving volume
provides a very useful fiducial quantity during the expansion. On the contrary, when
the rate of interactions coupling a species to the expanding fluid becomes smaller
than the expansion rate, this species decouples and evolves independently. In order
to estimate the temperatures of the different species after they leave equilibrium, we
can use the fact that the expansion is adiabatic.4 For a given comoving volume V :

T dS = d(ρ V ) + p dV = V dρ+ (ρ+ p)dV = d[(ρ+ p)V ] − V dp , (1.64)

where ρ and p are the equilibrium energy density and pressure, respectively. Using:

dS =

(

∂S

∂ρ

) (

dρ

dT

)

dT +

(

∂S

∂V

)

dV , (1.65)

we obtain:

∂S

∂T
=

(

∂S

∂ρ

) (

dρ

dT

)

dT =
V

T

dρ

dT
, (1.66)

∂S

∂V
=

ρ+ p

T
. (1.67)

From the integrability condition,

∂2S

∂T ∂V
=

∂2S

∂V ∂T
, (1.68)

we have:

∂

∂T

(

ρ+ p

T

)

= − 1

T 2
(ρ+ p) +

1

T

dρ

dT
+

1

T

dp

dT
=

∂

∂V

(

V

T

dρ

dT

)

=
1

T

dρ

dT
, (1.69)

and therefore:
dp =

ρ+ p

T
dT . (1.70)

If we substitute equation (1.70) into equation (1.64), we can obtain the entropy:

dS =
1

T
d[(ρ+ p)V ] − (ρ+ p)V

T 2
dT , (1.71)

4We recall that the second law of thermodynamics results in the formula dS ≥ dQ

T
. In an

adiabatic transformation we have dQ = 0, since there is no heat exchange with the outside, and then

dS ≥ 0. The Universe, by definition, is thermally isolated, then dSUniverse ≥ 0.
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from which:

dS = d

[

(ρ+ p)V

T
+ constant

]

. (1.72)

Therefore, beside an additive constant, the entropy per comoving volume is given by:

S =
(ρ+ p)V

T
. (1.73)

Rewriting the first law (energy conservation) as:

d[(ρ+ p)V ] = V dp , (1.74)

we substitute equation (1.70) into (1.74), obtaining:

d

[

(ρ+ p)V

T

]

= 0 . (1.75)

This result implies that, in thermal equilibrium, the entropy per comoving volume,
S, is conserved.

It is useful to define the entropy density, s, as:

s ≡ S

V
=
ρ+ p

T
. (1.76)

The entropy is dominated by the contribution of relativistic particles, whose energy
density and pressure are given by equations (B.11) and (1.60), respectively; therefore,
the entropy density can be written as:

s =
2π2

45
g∗S T

3 , (1.77)

where

g∗S =
∑

i=bosons

gi

(

Ti
T

)3

+
7

8

∑

i=fermions

gi

(

Ti
T

)3

. (1.78)

As long as all particle species have the same temperature, g∗ = g∗S .
Conservation of entropy implies that S V ∝ g∗S a

3 T 3 remains constant, and therefore
the temperature evolves as:

T ∝ g
−1/3
∗S a−1 . (1.79)
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1.4. Radiation Dominated Epoch

In fact, when g∗S is constant, the known result T ∝ a−1, is obtained.
When one of the species becomes non-relativistic or annihilates, its entropy is trans-
ferred to the other relativistic particles still present in the thermal plasma; g∗S be-
comes smaller, and the decrease of the temperature T is slower (notice however that
it still scales with a−1, but with a different coefficient).
An important cosmological quantity is the so-called baryon-photon ratio, η = nB/nγ .
To obtain it, we make use of the fact that the number of photons, nγ , is proportional
to the entropy density:

s =
2π4

90ζ(3)
g∗S nγ ≃ 1.8 g∗S nγ . (1.80)

Then, the baryon-photon density ratio is given by:

η =
nb − n̄b
nγ

≃ 1.8 g∗S
nb
s
, (1.81)

where nb and n̄b are the densities of baryons and antibaryons, respectively.
As long as interactions that do not conserve baryon number occur very slowly, the
baryon number in a comoving volume is conserved (except in the very early period
where baryogenesis is supposed to take place). Conservation of both baryon number
and entropy, implies that the ratio η varies only with g∗S .

1.4.2 The relic density

In the previous Sections we have seen that the history of the Universe can been
understood through the evolution of the scale factor a(t). What General Relativity
provides through the Hubble rateH(t) = ȧ/a, is the connection between this evolution
and the energy density of the Universe. Now we see that in order to understand the
thermal history of the Universe we must compare particle interaction rates, Γ’s, and
the expansion rate, H. For T ∝ a−1, the rate of change for the temperature is
set by the expansion rate Ṫ /T = −H. As already mentioned, a good criterion to
identify if a species is in equilibrium or not with the plasma in the Universe, is to
compare its interaction rate, Γ, with the expansion rate H: if Γ < H, interactions
with the plasma are not sufficient to keep that species in equilibrium, i.e. with the
same (plasma) temperature. That species decouples.

1.4.2.1 Chemical and kinetic decoupling

A first example of that decoupling phenomenon concerns the amount of dark matter
(DM) left over in the evolution of the early Universe. We focus on a popular class of
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plausible cold dark matter (CDM) candidates, Weakly Interacting Massive Particles
(WIMPs) [13, 14], stable particles, having rather weak interactions with standard
model (SM) particles, which can yield the correct abundance to reproduce the ob-
served DM density. In early times, at high temperatures, they are coupled with the
rest of the plasma in such a way that processes of pair–annihilation and pair–creation,

X + X̄ ⇄ l + l̄ , (1.82)

mantained WIMPs in equilibrium. X stands for WIMP and X̄ is its anti-particle,5

while l and l̄ denote generic components of the primordial plasma. It is important to
stress that WIMPs are not only in thermal equilibrium, but in chemical equilibrium:
although pair–annihilation and pair–creation do change the amount of dark matter,
at that stage both reactions are balanced, they proceed with the same rate. As the
Universe expands and the average distance between particles increases, both processes
slow down. In a very simplistic picture, they just “stop”, and the DM population,
not interacting anymore with the plasma, freezes-out: the WIMP number density per
comoving volume remains practically constant until today. A more detailed descrip-
tion involves a proper treatment of the dynamical evolution of the DM density: this
is given by the Boltzmann equations. In Appendix B additional details can be found,
for the moment let us concentrate on a simple derivation of the dark matter relic
density. In a generic WIMP scenario, two DM particles X can annihilate producing
two light particles l – (1.82) –. If nX and nl are the number densities of X and l

(respectively), the Boltzmann equation reads:

a−3 d(nXa3)

dt
= n2

X,eq〈σv〉
{

n2
l

n2
l,eq

− n2
X

n2
X,eq

}

, (1.83)

where 〈σv〉 is the averaged annihilation cross section times the relative velocity of the
DM particles, while nl,eq and nX,eq correspond, respectively, to the number densities
of light and WIMP particles at thermal equilibrium. Since the light particles are
assumed to be part of the cosmic plasma (or equivalently in equilibrum with it), then
nl,eq = nl, and the Boltzmann equation becomes:

a−3 d(nXa3)

dt
= 〈σv〉

{

n2
X,eq − n2

X

}

. (1.84)

Introducing the number of WIMPs per coming volume NX and the entropy density
in (1.77), we have

dNX
dt

= s 〈σv〉
{

N2
X,eq −N2

X

}

. (1.85)

Changing to a more convenient variable for the time evolution, x = mX/T ,

dNX
dx

=
2π2

45
g∗S(T )

m3
X〈σv〉

H(mX)

1

x2

{

N2
X,eq −N2

X

}

. (1.86)

5In case the WIMP is its own anti-particle, we have X = X̄.
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This differential equation is a Riccati equation, which does not have an analytic
solution (of course, numerical solutions can be obtained). However, some simple
considerations are sufficient to obtain a good estimate of the relic density. First, since
NX,eq will drop with the temperature, we neglect it:

dNX
dx

= −2π2

45
g∗S(T )

m3
X〈σv〉

H(mX)

1

x2
N2
X . (1.87)

Next, one can integrate from the freeze out time (or temperature), xf to a much later
instant x → ∞, to obtain

1

N∞
X

− 1

Nf
X

=
2π2

45
g∗S(T )

m3
X〈σv〉

H(mX)

1

xf
. (1.88)

Since N∞
X ≪ Nf

X , we are left with

1

N∞
X

≃ 2π2

45
g∗S(T )

m3
X〈σv〉

H(mX)

1

xf
. (1.89)

It is important to stress that the abundance of WIMPs after freeze out, the relic
density N∞

X , is inversely proportional to the annihilation cross section 〈σv〉: larger
annihilation cross sections give later decoupling times and smaller relic densities. In
order to reproduce the relic density as measured by Planck, ΩDMh2 = 0.1197, the
required annihilation cross section is

〈σv〉 ∼ 3 × 10−26 cm3 s−1. (1.90)

This cross section value coincides with typical weak interaction cross sections, hence
the interest and popularity of WIMPs: WIMPs will typically have the right cross
sections to reproduce the correct relic density of DM.

Chemical decoupling set the relic abundance of DM, but it may not signal the end
of DM interactions. Indeed, after the freeze-out, WIMPs can still undergo elastic
scattering processes with other particles of the primordial plasma:

X l → X l . (1.91)

This process does not change the amount of X’s, but can still keep WIMPs in equilib-
rium with the plasma: in this case one refers to kinetic equilibrium. When the rates
of these processes drop below the expansion rate of the Universe, WIMPs finally de-
couple and we have kinetic decoupling. The idea of kinetic decoupling is relevant for
considerations related to the formation of DM structures under the influence of grav-
ity (as we will address later): before kinetic decoupling, interaction with the plasma
can inhibit the formation of DM structures below a certain scale through the process
of the collisional damping [15, 16].
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Summarizing, the chemical decoupling of WIMPs in the early universe determines
their relic density today. Kinetic decoupling, on the other hand, happens only consid-
erably later and sets a scale that can directly be translated into a small-scale cutoff
in the spectrum of matter density fluctuations, corresponding to the least massive
protohalos that can form, an argument that will be taken on in Chapter 4.

1.4.3 Decoupling of Neutrinos and e
± annihilation

As we have seen before, to maintain a species in local thermodynamical equilibrium,
it is necessary that the interaction rate Γ is larger than the expansion rate of the
Universe, H. In the early Universe, massless neutrinos are kept in equilibrium via
electroweak interactions whose cross section is approximately given by σ ≃ G2

F T
2,

where G2
F = (292.80 GeV)−2 is the Fermi constant. For relativistic neutrinos the

number density is n ∝ T 3, so that the interaction rate (per neutrino) is:

Γint = nσ|v| ≃ G2
F T

5 , (1.92)

where |v| ≈ 1. Comparing Γint in equation (1.92) with the expansion rate in equation
(1.62),

Γint
H

≃ MP G
2
F T

5

T 2
≃
(

T

0.8MeV

)3

, (1.93)

and thus, at temperatures below 0.8 MeV, the electroweak interaction rate is not able
to keep the neutrinos in thermodynamical equilibrium. At temperatures of order 1
MeV, neutrinos species (adequately assumed relativistic) decouple from the primor-
dial plasma. Just after neutrino decoupling, the temperature decreases below the
electron-positron mass whose annihilation transfers entropy to the photons, but not
to the already decoupled neutrinos. It is then possible to estimate the difference
in the temperature of photons and neutrinos using equation (1.79). Because of the
annihilation of e± pairs, the number of degrees of freedom of the primordial plasma
decreases from g∗ = 2 + 7

2 = 11
2 to g∗ = 2 (just photons). As discussed before, a

decrease in g∗ does not lead to an actual increase in Tγ , but rather causes the Tγ
decrease to slow down. This is the reason why aTγ in equation (1.79) is larger by

a factor
(

11
4

)1/3
, while aTν remains constant. After e± annihilation, aTγ remains

constant too. Therefore, the present ratio of Tγ and Tν is:

Tγ,0
Tν,0

=

(

11

4

)1/3

≃ 1.40 . (1.94)

Since we measure Tγ,0 = 2.728 K (we just anticipate the result of the CMB measure-
ments in Section 1.5.1), the current expected neutrino temperature is Tν,0 ≃ 1.94 K.

22



1.4. Radiation Dominated Epoch

It is then possible to calculate the number of degrees of freedom g∗ and g∗S today
(assuming 3 massless neutrino species), both constant after e± annihilation:

g∗ = 2 +
7

8
× 2 × 3 ×

(

4

11

)4/3

= 3.36 , (1.95)

g∗S = 2 +
7

8
× 2 × 3 × 4

11
= 3.91 . (1.96)

With Tγ,0 = 2.728 K, the present number densities of photons and neutrinos are

nγ,0 =
2ζ(3)

π2
T 3 ≈ 420 cm−3 , (1.97)

nν,0 =
2ζ(3)

π2
T 3 =

3

11
nγ,0 ≈ 115

cm−3

flavor
. (1.98)

The corresponding energy density of photons is:

ργ,0 =
2π2

30
T 4 = 4.64 × 10−34 g cm−3 , (1.99)

or, in terms of the critical density:

Ωγ,0 h
2 =

ργ,0
ρc,0

≃ 2.5 × 10−5 . (1.100)

In this way, we can estimate the entropy of the Universe:

s =
2π2

45
g∗S T

3 ≡ 2970 cm−3 , (1.101)

as well as the baryon-photon ratio:

ηb = 7.04
nb
s

=
ρb

MP s
≈ 2.75 × 10−8 Ωb,0 h

2 ≈ 5.5 × 10−10 , (1.102)

that is, there are ∼ 1010 photons per baryon!

A key question in particle physics addressing the early Universe concerns the baryon
asymmetry problem, whose name is baryogenesis.
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1.4.4 Baryogenesis

One of the outstanding challenges of the interface between particle physics and cos-
mology is the explanation of the observed baryonic asymmetry in the Universe.
All astrophysical observations indicate that our visible Universe is dominated by mat-
ter and there is very little antimatter. This matter dominance in our Universe is
crucial for our existence, but an understanding of why there is more matter than
antimatter is difficult.

The so-called baryon asymmetry of the Universe (BAU) is characterized by the ratio
of the baryon number density to the photon entropy density ηb that we have presented
in equation (1.102). We know from studies of the Cosmic Microwave Background and
Big Bang nucleosynthesis that ηb is of the order of 10−10.

In this baryon asymmetry problem, called baryogenesis, all antibaryons, or more gen-
erally speaking, antimatter, annihilate with baryonic matter producing radiation and
only a relatively small amount of antibaryons can survive up to the present day.
Such an annihilation has made the asymmetry much greater today than in the early
Universe. Indeed, at high temperature, during the first instants of the Universe life,
there were large numbers of thermal quark-antiquark pairs. Kolb and Turner [17],
estimated 30 million antiquarks for every 30 million and 1 quarks during this epoch,
in such a way that there is a tiny asymmetry!

There is currently insufficient observational evidence to explain why the Universe
contains far more baryons than antibaryons. A candidate explanation for this phe-
nomenon must allow the Sakharov conditions to be satisfied at some time after the
end of cosmological inflation.

In 1967, Andrei Sakharov [18] enunciated the three conditions necessary to account
for the baryon-antibaryon asymmetry of the Universe. Sakharov’s conditions for the
creation of non-zero baryon number from an initially baryon symmetric state are:

• the baryon number must be violated;

• C (charge conjugation) and CP (charge conjugation combined with parity) must
be violated;

• the asymmetry must be created under non-equilibrium conditions.

Concerning the first condition, it is evident that, if the baryon asymmetry developed
from a symmetric high temperature state, the baryon number must have been vio-
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lated at some stage. Baryon number violation is a generic feature of grand unified
theories which unify the strong and the electroweak interaction.
The second condition is necessary in order to ensure that a net baryon number is
created, even in the presence of interactions which violate baryon conservation. C
and CP violation have been observed in the weak interactions of several systems (for
example kaons and B mesons).
The third condition is necessary because baryons and antibaryons have the same mass
and so, thermodynamically, they would have the same abundances in thermodynamic
equilibrium, despite the violation of the baryon number and C and CP invariance.
This last condition states that the rate of a reaction which generates baryon-asymmetry
must be less than the rate of expansion of the Universe. In this situation the particles
and their corresponding antiparticles do not achieve thermal equilibrium due to rapid
expansion decreasing the occurrence of pair annihilation.

In principle, the Standard Model of elementary particle physics contains all of these
ingredients, but they are not present with an amount sufficient to produce the ob-
served abundance of baryonic matter. Consequently, we must look for physics beyond
the Standard Model in order to find a successful baryogenesis mechanism, and this
open problem is beyond the scope of our discussion.

The next step after baryogenesis is the much better understood primordial nucleosyn-
thesis, during which light atomic nuclei began to form.

1.4.5 Primordial Nucleosynthesis

Our next milestone is primordial nucleosynthesis. According to detailed calculations
(see e.g. [17]), nucleosynthesis might have occurred at energies around T ≈ 0.1 MeV.
A priori one would expect that nucleosynthesis occurs at higher temperatures, since
the binding energies of nucleons in nuclei have, typically, values in the range of several
MeV. Since the complete treatment is well beyond the scope of this Section, we just
comment some of the basic features underlying the full picture.
The main factor responsible for this low temperature is the extremely large entropy
of the Universe. When the temperature drops below some typical nuclear binding
energy, most photons do not have enough energy to reverse the binding of nucleons.
Nevertheless, in the thermal distribution of photons, because of their overabundance,
the absolute number of them having energies higher than this typical binding energy
is indeed sufficient to block the process. This fact holds the nucleosynthesis process
until lower temperatures.

The ratio of neutrons to protons is of particular importance to the outcome of pri-
mordial nucleosynthesis. When the weak interaction rate drops below the Hubble
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rate and neutrinos leave equilibrium, the weak reactions that convert protons into
neutrons, and viceversa,

νe + n ⇄ p+ e− , (1.103)

e+ + n ⇄ p+ ν̄e , (1.104)

stop, freezing the neutron to proton ratio.

Therefore, considering the Maxwell-Boltzmann distribution in equation (1.56), with
a temperature T = 0.8 MeV, and in the case in which Γint < H, we obtain:

nn
np

≈ e−(mn−mp)/T ≈ 0.2 ≈ 1

5
, (1.105)

where mn = 939.565 MeV and mp = 938.272 MeV. Furthermore, this fraction does
not remain constant, because neutrons are still converting into protons via β-decay.
When the temperature reaches 0.1 MeV, the ratio has the value:

nn
np

≈ 1

7
. (1.106)

It is then possible to give a very rough estimate of the mass fraction corresponding
to 4He, YP . Since 4He is composed by 2 neutrons and 2 protons, assuming that
all neutrons are used to form helium nuclei, and the excess of protons are, instead,
hydrogen nuclei, we obtain:

YP =
4nHe
nN

=
4(nn/2)

nn + np
=

2(nn/np)

1 + (nn/np)
≈ 0.25 . (1.107)

Obviously, a complete treatment should be formulated in terms of thermal distribu-
tions, etc. We refer the reader to ref. [17] for further details and just review the main
results in the following.
The only isotopes that are predicted to be produced in significant amounts (A/H >

10−12) during the epoch of primordial nucleosynthesis are: D, 3He, 4He, and 7Li.
These primordial abundances are sensitive, as anticipated, to several physical quan-
tities: the neutron half-life τ1/2(n) (and thus the ratio between neutrons and protons
after weak interactions stop), the number of degrees of freedom g∗, which directly
affects the Hubble parameter, and the baryon to photon ratio, η, which constrains
the present baryon density (Ωb,0 h2 ≈ 0.02) through the abundance of light nuclei.

Primordial nucleosynthesis is the earliest clear test of the Standard Model. Nuclear
reactions that took place from t ≃ 0.01 s to 100 s (corresponding to T ≃ 10 MeV
to 0.1 MeV) resulted in the production of substantial amounts of D (D/H ≃ 10−5),
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3He (3He/H ≃ 10−5), 4He (mass fraction Y ≃ 0.25) and 7Li (7Li/H ≃ 1 to 2 ×
10−10). D and 4He are of particular importance, because there are no contemporary
astrophysical processes that can account for their observed abundances. Ordinary
stars produce 4He. Nevertheless, even in regions where there has been significant
stellar processing, the stellar contribution to YP is only about ≃ 0.05. While the
observed Deuterium abundance is very small, even this small contribution is difficult
to account for, because almost all astrophysical processes destroy the weakly-bound
deuteron, which burns at a relatively low temperature 0.5 × 106 K.
At present there is concordance between the predicted and the observed abundances
for these four isotopes, provided that the baryon to photon ratio is approximately
η ∼ 5 × 10−10, corresponding to Ωb,0 h2 ∼ 0.02.

1.5 Matter Dominated Epoch

After primordial nucleosynthesis we are left with a plasma consisting of photons and
ionized nuclei in thermal equilibrium in a radiation dominated Universe. Temperature
and energy densities decrease as the Universe expands, but as analysed before, matter
and radiation evolve differently, since

ρr
ρm

=
ρr,0
ρm,0

(a0

a

)

=
ρr,0
ρm,0

(1 + z) , (1.108)

where ρr and ρm are the radiation and matter energy densities, respectively (the
subindex 0 refers to the present epoch). Thus it is possible to calculate the equality
time, that is the time when ρm became the dominant component of energy density:

1 + zeq =
ρm,0
ρr,0

= 2.4 × 104 Ωm,0 h
2 ≈ 3600 , (1.109)

which corresponds to a temperature

Teq = T0(1 + zeq) = 65472 Ωm,0 h
2 K ≈ 9800 K ≈ 0.85 eV . (1.110)

Although the process of decoupling between matter and radiation is not instantaneous,
for temperatures below 0.85 eV, matter is the dominant component in the right hand
side of the Friedmann equation.
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1.5.1 Recombination and the Cosmic Background Radiation

Equilibrium in the plasma formed by matter and radiation is maintained through
Thomson scattering. However, this situation will only last until ionized nuclei capture
the remaining electrons, becoming then neutral atoms which decouple from radiation:
this is the so-called recombination process. Afterwards, radiation can travel freely in
the form of the Cosmic Microwave Background (CMB) radiation.

Since a detailed description is much more involved than the previous outline, we will
just present a qualitative overview of the recombination process that brings us to the
release of the CMB. The hydrogen binding energy is the difference between the free
proton plus electron masses and the bound state mass:

Q = mH − (mp −me) = −13.6 eV . (1.111)

Therefore, a priori, neutral atoms could be formed below this temperature. For the
reaction

p+ e− ⇄ H + γ , (1.112)

to be in equilibrium, the number densities of the species involved should follow

nH
ne np

=

(

2π

me T

)
3
2

exp(Q/T ) . (1.113)

Assuming overall charge neutrality, np = ne, we can introduce the ionization fraction
X = np

np+nH
to obtain

1 −X

X
= np

(

2π

me T

)
3
2

exp(Q/T ) . (1.114)

Using np = η nγ , together with nγ = 2ζ(3)
π2 T 3 ≃ 0.24T 3,

1 −X

X2
= 3.84 η

(

T

me

)
3
2

exp(Q/T ) . (1.115)

For a reference value X ∼ 0.5, solving for the temperature gives T ∼ 4000 K (∼ 0.3
eV), corresponding to z ≃ 1500: almost two orders of magnitude below the naive ex-
pectation. As happened with primordial nucleosynthesis, the huge amount of photons
per baryon delays recombination until lower temperatures are reached. A complete
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derivation yields a lower temperature, placing the last scattering surface (LSS) at
z ≈ 1100, when the Universe is ∼ 300, 000 years old. Photons, distributed according
to a blackbody equilibrium spectrum, can then freely propagate.

The confirmation of the blackbody spectrum came only in the 90’s, when it was
measured by the FIRAS (Far Infrared Absolute Spectrophotometer) instrument on
board of the COBE (Cosmic Background Explorer) satellite6, which gave the 2006
Nobel prize to John Mather[19] together with George Smoot, who received it for the
discovery of the anisotropies of the Cosmic Background Radiation [20].
In Fig. 1.1, the COBE curve shows an incredible agreement with a blackbody curve
of the CMB radiation spectrum. In the figure, the error bars have been multiplied
by a factor of 400 in order to be visible. While FIRAS measured the temperature of
CMB of T0 = 2.725, the recent result is [21]:

T0 = 2.72548 ± 0.00057 K. (1.116)

The COBE observations were crucial for cosmology. From the point of view of the
structure of the Universe on the very largest angular scales, they show that the cosmic
radiation is homogeneously and isotropically distributed in all directions (and this is
in agreement with the Cosmological Principle), with fluctuations of the order of 10−5.
On the other hand, such observations also show that this radiation is the cooled
remnant of the very hot early phases of the Big Bang.

As stated above, the CMB presents temperature fluctuations δT/T , anisotropies,
at the level of one part in ∼ 105: the study of these anisotropies requires further
understanding of the physics of the early Universe. They can be classified according
to their origin:

• primary anisotropies are related to phenomena at the LSS and before,

• secondary anisotropies are related instead to effects occuring between the LSS
and the observer, for example the interaction of the CMB with hot gas or with
gravitational potentials.

Let us briefly describe the physical origin of them.

There are two types of effects involved in primary anisotropies: (1) acoustic oscilla-
tions and (2) collisionless damping.

6The only satisfactory approach for determining the detailed spectrum and the isotropy of the

Cosmic Background Radiation over the whole sky was to place the receiver system in a satellite

above the Earth’s atmosphere,and this was achieved by the Cosmic Background Explorer (COBE)

of NASA, which was launched in November 1989. The mission was dedicated to studies of the

background radiation, not only in the millimetre and submillimetre, but also throughout the infrared

waveband from 2 to 1000 µm.
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Figure 1.1: Data from the FIRAS instrument on the COBE satellite plotted over a tem-

perature spectrum of a blackbody with a temperature of 2.725 K. The error bars have been

increased by a factor of 400 to be visible. From http://planck.caltech.edu
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(1) Within the photon-baryon plasma two effects compete: gravitational attraction
favors condensation of baryons while photon pressure tends to homogenize den-
sities. The interplay of both effects creates oscillations (like sound waves, hence
the label acoustic). When photons decouple at recombination, a characteris-
tic peak structure is imprinted in the spectrum of anisotropies. The (angular)
location of the peaks gives significant information on different aspects: on the
curvature, on baryon density or on the nature of the primordial density pertur-
bations7 (isocurvature or adiabatic).

(2) Collisionless or diffusion damping is the diffusion of photons from hot, overdense
regions, to cold, underdense ones, which tends to smooth out density variations.
The finite depth of the LSS (recombination is not instantaneous) also contributes
to this phenomenon.

Secondary, or late-time anisotropies, have a different origin. While one expects, af-
ter recombination, that CMB photons propagate undisturbed in the resulting neutral
medium, observations of galaxies indicate that the intergalactic medium is, on the
contrary, ionized. This is due to a reionization period, that we will address in Section
1.5.3. Scattering of photons with the charges in this medium (a) erases anisotropies
(on small scales) and (b) introduces polarization. Two additional effects may also
cause anisotropies, the Sunyaev-Zel’dovich effect (scattering of CMB photons by high
energy electrons) and the Sachs-Wolfe effect (gravitational redshift/blueshift in vary-
ing gravitational fields); a detailed description of them is beyond the scope of this
summary.

The pre-galactic gas was very strongly coupled to the background radiation by Thom-
son scattering. Indeed, because of the Thomson scattering of the background radia-
tion, we cannot obtain any direct information on what was going on at early epochs,
we can only observe the very surface layers at which the Universe became transparent
to radiation, that is the LSS, whose fluctuations, observed by COBE, are interpreted
as the very low intensity “small waves” present on that surface on angular scales of 7◦

and larger. These “small waves” grow under gravity and will eventually define some
of the very largest scale structures in the local Universe. Figure 1.2 shows the current
CMB radiation temperature sky map obtained by the Planck collaboration.

7The origin of density perturbations, in other words, the fact that there are primordial per-

turbations at all, and their characteristics, is a different question. In Section 1.7 we will mention

how inflation, which initially addresses other problems of the standard cosmological model, can also

accommodate primordial perturbations.
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Figure 1.2: Cosmic Microwave Background seen from Planck. From http://www.esa.int/

1.5.2 The Structure Formation

As the Cosmological Principle states, the Universe is homogeneous on sufficiently
large scales; nevertheless, on small scales, it is rather inhomogeneous, for example,
in clusters of galaxies the average density is about 102-103 times the cosmic average
density, while in single galaxies the average density is even larger, about 105 times
the average density of the Universe. Even though galaxies and clusters of galaxies
are complex systems, cosmology describes their arisal through two ingredients: (1)
primordial inhomogeneities typically coming from the inflationary period (that we ad-
dress in Section 1.7), (2) evolution of such inhomogeneities, at a later stage, depending
on the interplay between gravitational attraction and pressure. In other words, the
primordial inhomogeneities in (1) provide the initial conditions for the dynamical evo-
lution given by (2). In particular, if in some region there is a small overdensity δρ

over the average background density ρ, δρ ≪ ρ, it may grow to δρ ∼ ρ and evolve
towards bound structures in which star formation and other astrophysical processes
lead to formation of galaxies and clusters of galaxies as we know them.

The isotropy of the CMB radiation implies a very smooth Universe at recombina-
tion, with energy density perturbations δρ

ρ ≪ 1. This justifies adopting a linear,
perturbative approach, to describe a significant part of their evolution.

In Appendix A, we review the classical Newtonian treatment of gravitational insta-
bilities due to Jeans, including its extension to an expanding Universe. This classical
picture illustrates much of the physics relevant to understand the evolution of density
perturbations.

The dark matter component is the protagonist of structure formation: following a
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process known as hierarchical structure formation model, small pieces of DM start
to conglomerate and build larger structures. That is, smaller clumps begin to merge
and become larger. Ordinary (baryonic) matter follows. This hierarchical structure
of conglomerations of DM is a non-linear process and it needs to be simulated using
N-body simulations: numerical dynamical simulations where systems with a large
number of clumps evolve under the influence of gravity. The results of N-body sim-
ulations suggest that, in the Universe, dark matter condenses in large filaments and
haloes which have an intricate structure similar to a web.

The formation of these structures sets limits on the nature of DM. The scale of
the structures is controlled by the collisional damping, by the kinetic decoupling
and by the free-streaming length, λfs, the mean distance particles travel between
interactions. For example, a DM particle with a larger free-streaming length can
stream out of regions with overdensities and erase structures smaller than a given
scale. Light particles, as for example Standard Model neutrinos with mass mν <

6 eV,8 are characterized by a free-streaming length of the order of λfs ∼ 100 Mpc.
It means that if all DM in the Universe had been formed by only Standard Model
neutrinos, the typical size of the resulting structures would correspond to galaxy
superclusters. In that kind of scenario, the hierarchical structure formation, rather
than bottom-up, would be top-down: supercluster-scale structures would form first
and then, by fragmentation, smaller objects as galaxies would form later. On the
contrary, a WIMP DM, like for example a supersymmetric neutralino, has a small λfs

and, consequently, can form smaller bound objects. In this case, the minimum size
of the DM bound structure is within 10−11 to 102M⊙, and it is set by the collisional
damping and free-streaming [23, 24],9 as we will see in Chapter 4.

1.5.3 Reionization

The dark ages of the Universe end when the first stars and galaxies start to form.
These objects begin to emit ultraviolet radiation building up ionized regions in the
surrounding environments. The amount of ionized gas in the Universe increases until
the hydrogen is completely ionized. The period is known as the epoch of Reionization.
Observations of the CMB, spectra of distant quasars, the studies of the 21-cm line
in hydrogen, and other cosmological probes, indicate that the intergalactic medium

8The most stringent limit on the neutrino mass, is related to the anti-electron neutrino mass

from Tritium decay experiment, gives mν̄e < 2.0 eV [22]. If combined with the largest of the mass

difference between the three neutrinos, i.e. ∆mν ∼ 0.05 eV [22], it is possible to derive an upper

bound on the sum of the neutrino masses of mν . 6 eV.
9The primordial spectrum of density fluctuations in neutralino CDM has a sharp cut-off due to

two damping mechanisms: collisional damping during the kinetic decoupling of the neutralinos and

free streaming after last scattering of neutralinos.
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(IGM) went towards a phase, at redshift z ≈ 10, in which most of the atomic hydrogen
of the Universe was reionized. By studying the Gunn-Peterson effect, that is the
absorption trough observed in the spectra of quasars at frequencies higher than those
Lyman-α [26], it has been possible to know that the fraction of ionized hydrogen
between redshifts z = 5.5 and z = 6, has experienced a rapid increase. On the other
hand, CMB measurements indicate that 9%, approximately, of the CMB photons
were scattered by free electrons after the recombination epoch, confirming that the
reionization of the Universe happened at z ≈ 10.

1.6 Λ (or Dark Energy) Dominated Epoch

In the two last decades a set of cosmological observations led to a new cosmological
scenario. There was an improvement in the measurement of the anisotropies of the
CMB, and the expansion rate of the Universe was measured using distant Supernovae
Type Ia (SN Ia). In 1998, two independent groups [27, 28] observing the luminosity of
Supernovae type Ia, reported that the Universe is in a phase of accelerated expansion,
indicating the presence of a cosmological constant that contributes about 70% of the
present energy density. Supernova data, combined with other different cosmological
datasets, lead to a a description in which there is a negative pressure fluid, coined
Dark Energy (DE), that is the dominant component in the energy density of the
Universe, driving its dynamics nowadays.
The cosmological constant, Λ, is the simplest candidate for the dark energy because
it is characterized by a constant energy density in both space and time, and has an
equation of state with ω = −1.

In Section 1.2 we have seen the Einstein equations, where Gµν is the Einstein tensor
that satisfies the Bianchi Identities Gµν ;µ = 0, in such a way that the conservation
of the energy-momentum tensor Tµν ;µ = 0 is automatically verified. Since the metric
tensor gµν is constant with respect to covariant derivation, there is freedom to add
terms proportional to gµν without violating that conservation law. Then, the Einstein
equation given in equation (1.10) can be modified to:

Rµν − 1

2
R gµν + Λ gµν = 8πGTµν , (1.117)

where Λ is a constant. For a FLRW metric, the modified Einstein equation gives:

H2 =
8πG

3
ρ− K

a2
+

Λ

3
, (1.118)

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
. (1.119)
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Equation (1.119) shows that Λ acts as a repulsive force, opposing gravity.

1.7 A short digression: Inflation

The standard Big Bang model sketched to this point, suffers from problems related
to its initial conditions.

• The horizon problem: even if different regions of the Universe were not in causal
contact with each other, at some point in the very early Universe, they had the
same temperature.

• The flatness problem: observations indicate that the current total energy density
in the Universe is Ω0 = 1, but, if the Universe was closed or open during its
early stages, it should have departed from Ω0 ∼ 1 rapidly, since:

(Ω − 1)RD = (Ωi − 1)

(

t

ti

)2/3

, (1.120)

(Ω − 1)MD = (Ωi − 1)
t

ti
, (1.121)

during radiation (RD) and matter (RM) domination, respectively, and for an
open or a closed Universe.

In 1981, Alan Guth understood that the horizon and flatness problems could be solved
by an early phase of exponential expansion of the Universe called inflation. The origi-
nal model had problems in yielding an homogeneous and isotropic Universe, reheating
and a radiation dominated epoch. Nevertheless, an accelerated expansion phase was
soon recognized to be useful to explain the initial conditions of the Universe. Models
without the problems of the original proposal followed (see e.g., [30, 31, 32]).
Inflation would explain the homogeneity and isotropy of the Universe starting from
the fact that it has expanded from a small region that was in causal contact before
inflation. We present some of the basic ideas, as a detailed account is beyond our
scope. Initially particles were in causal contact with each other. Before the beginning
of the inflationary expansion, the physical scale was smaller than the particle horizon,
and the particles could be in a homogeneous state. With the exponential expansion
due to inflation, the causally connected regions were threw out of their particle hori-
zons. After the inflationary epoch, there was a release of a big amount of energy
(phenomenon known as “reheating”), and the Universe entered the radiation domi-
nated epoch, expanding as a ∝ t1/2. The exponential expansion drew the geometry
of the inflated Universe towards flatness, Ωk = 0, yielding to the flatness problem.
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The issue related to inflation is the question of primordial anisotropies mentioned in
Section 1.5.1: the inflationary picture gives rise to primordial anisotropies due to tiny
quantum fluctuations of the inflaton field

1.8 The Power Spectra of Fluctuations

1.8.1 The Angular Power Spectrum

Perturbations in the photons phase space distribution correspond to fluctuations in
the cosmic microwave background radiation. In order to have information on how
these anisotropies appear on the sky, we should obtain the angular power spectrum:

Cℓ = 〈|aℓm|2〉 , (1.122)

where aℓm are the expansion coefficients of the temperature anisotropies in spherical
harmonics and 〈. . .〉 stands for an average. Since the CMB temperature fluctuations
that we observe are defined on the last scattering surface, it is convenient to expand
them in spherical harmonics; this is the analogue of a Fourier expansion for functions
that live on the surface of a sphere.
The spherical harmonics are defined as:

Yℓm(θ, φ) =

√

(2ℓ+ 1)(ℓ−m)!

4π (ℓ+m)!
Pmℓ (cos θ) eimφ , (1.123)

where Pmℓ are the associated Legendre polynomials, and ℓ and m are integers such
that ℓ ≥ 0 and |m| ≤ ℓ, and (θ, φ) are the usual spherical angles. These functions
provide a complete orthonormal set on the unit sphere, where the orthonormality is

∫

Yℓm(θ, φ)Y ∗
ℓ′m′(θ, φ) dΩ = δℓℓ′δmm′ , (1.124)

and completeness means that we can expand any square-integrable function ∆ as

∆(θ, φ) =
∞
∑

ℓ=0

ℓ
∑

m=−ℓ

aℓm Yℓm(θ, φ) . (1.125)

The expansion coefficients aℓm are defined as

aℓm ≡
∫

Y ∗
ℓm(θ, φ) ∆(θ, φ) dΩ . (1.126)
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1.8. The Power Spectra of Fluctuations

In our case ∆(θ, φ) will be the temperature fluctuation:

∆(θ, φ) ≡ T (θ, φ) − 〈T (θ, φ)〉
〈T (θ, φ)〉 . (1.127)

In terms of the unit vector n̂ = (sin θ, cosφ, sin θ sinφ, cos θ), equation (B.14) can be
rewritten as

∆T (n̂) ≡ T (n̂) − 〈T (n̂)〉
〈T (n̂)〉 , (1.128)

where T (n̂) is the CMB temperature observed in the sky in the direction n̂.
Experimentally, observing the sky in two directions n̂ and n̂′, separated by an angle θ
(that is n̂ · n̂′ = cos θ), and averaging over all pairs (n̂, n̂′) with the same n̂ · n̂′ = cos θ,
we obtain the two point correlation function, C(θ),

C(θ) = 〈∆T (n̂) ∆T (n̂′)〉 . (1.129)

Using the expansion in spherical harmonics of ∆T (n̂), together with

〈aℓm aℓ′m′〉 = δℓℓ′ δmm′ Cℓ , (1.130)

and the addition theorem

ℓ
∑

m=−ℓ

Y ∗
ℓm(n̂)Yℓm(n̂′) =

2ℓ+ 1

4π
Pℓ(n̂ · n̂′) , (1.131)

equation (1.129) can be rewritten as:

C(θ) =
∑

ℓ

2ℓ+ 1

4π
Cℓ Pℓ(cos θ) . (1.132)

Cℓ is known as the angular power spectrum.

During the last decade, a large amount of experiments have measured the small and
the large angular temperature fluctuations of the CMB, detecting a series of acoustic
peaks in the anisotropy power spectrum, that are relevant before recombination.

The characteristics of such peaks are sensitive to the value of the cosmological param-
eters, in particular to Ωtot, Ωb and the scalar spectral index ns. Therefore, the CMB
power spectrum provides information on combinations of fundamental cosmological
parameters.
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As mentioned previously, before recombination, the baryons in the Universe were cou-
pled to the photons of the CMB via Thomson scattering. Photon pressure, opposing
the gravitational collapse of matter, produced sound waves in the plasma (composed
by these two coupled fluids: baryons and photons). After recombination, baryons
and photons separated, but the effects of the acoustic oscillations remained imprinted
in the spatial structure of the baryons and, eventually, on dark matter. This phe-
nomenon is known as Baryonic Acoustic Oscillations (BAO), and was seen in 2005
by the Sloan Digital Sky Survey (SDSS) [33] and 2dFGRS [34], and later was de-
tected by other surveys (see, e.g. [35, 36, 37]). The typical lengthscale of the acoustic
oscillations depends on the sound horizon of the Universe at the epoch of recombina-
tion. The sound horizon is the comoving distance that a sound wave can travel before
recombination, and it depends only on the matter density. The relative heights of
the acoustic peaks in the CMB anisotropy power spectrum measure this density with
excellent accuracy (see [38] for further details).

Figure 1.3 displays the CMB temperature anisotropies Dℓ = Cℓ

2π ℓ(ℓ + 1) versus the
multipole ℓ, in which the curve represents the theoretical prediction of the angular
power spectrum, and the points are data measured by the Planck satellite.

Figure 1.3: Planck CMB temperature anisotropy power spectrum [6].
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1.8. The Power Spectra of Fluctuations

1.8.2 The Matter Power Spectrum

As discussed in Section 1.5.2, after recombination of the hydrogen atoms and the
release of the CMB, the Universe enters a period known as the dark ages, in which
the potential wells seeded by dark matter start attracting the baryons. Baryonic
matter, since Thomson scattering has ceased, can collapse gravitationally, forming
what will later become the first galaxies and stars.
The evolution of small density perturbations

δ(~x, t) =
ρ(~x, t)

ρ̄
− 1 , (1.133)

with ρ̄ the average density of the Universe, under the influence of gravity, is described
in appendix A. The standard (statistical) study of the properties of these perturba-
tions concentrates on two observables:

• The correlation function

ξ(~r) = 〈δ(~x+ ~r)δ(~x)〉 , (1.134)

where the average 〈· · · 〉 is taken over the entire statistical ensemble of points ~x,
and ~r is the comoving distance from the point ~x.

• The matter power spectrum

It is defined as the Fourier transform of the correlation function ξ(~r):

P (~k) =

∫

d3r ξ(~r) ei
~k·~r, (1.135)

that is:
P (~k) = (2π)−3〈δ~kδ

∗
~k′

〉 . (1.136)

where ~k is the comoving wave number associated with a given mode.

In the case of an isotropic and homogeneous distribution, the correlation function, ξ,
is only a function of r = |~r|, in such a way that ξ(~r) = ξ(|~r| = r). In the case of a
Poissonian distribution, ξ(r) = 0; but it is not the case for the distribution of matter
in the Universe, because of the clustering effects of gravity.
If the density fluctuations δ follow a Gaussian distribution, the power spectrum gives
a complete statistical description of the fluctuations.

The matter power spectrum measured today comes from the time evolution of a
primordial power spectrum (typically generated by inflation, as mentioned in Section
1.7). Most (inflation) models predict a simple power law spectrum of perturbations:

P (k) = kn , n ≈ 1 (primordial) , (1.137)
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where n is the scalar spectral index. For n = 1 (Harrison-Zel’dovich spectrum) the
power spectrum is said to be scale invariant; it means that the gravitational potential
fluctuations have the same amplitude over all scales when they enter the horizon.
Nevertheless, this primordial shape changes and develops as the Universe evolves. A
particular transition takes place at matter-radiation equality, developing a small-scale
shape:

P (k) = kn−4 , (small-scale) . (1.138)

In general, physical processes affecting sub-horizon perturbations (like self-gravity,
pressure support and damping processes) will determine a modification of the form of
the primordial power spectrum, expressed by the transfer function T (k, z), that de-
scribes the evolution of perturbations from the inflationary era to the matter-radiation
equality, in the following form:

P (k, z) = A(z) kn T (k, z) , (1.139)

where the normalization A(z) is determined observationally.

For large scales, the spectrum has the inflationary shape P (k) ∝ kn, because large
scale modes are observed when they were not in causal contact, or when they entered
the horizon during the matter dominated epoch. In each case, only gravitational pro-
cesses have a role, and the transfer function is approximately T (k, z) = 1.
On small scales, the matter power spectrum turns over, because smaller scale modes
enter the horizon during the radiation dominated epoch. The large expansion rate
determined by photons prevents the growth of structures until the matter dominated
epoch is reached. It means that smaller modes enter the horizon earlier, and undergo
more suppression. This causes a decrease in the matter power spectrum as, on small
scales, the value of k increases.
The turn-over of the power spectrum corresponds to the scale of the horizon at the
matter-radiation equality.
The matter power spectrum depends, generally, on various matter components in
the Universe which are able to cluster, like cold dark matter, baryons and massive
neutrinos, each one with its own transfer function. Cold dark matter starts to grow ap-
preciably after the matter-radiation equivalence, while baryonic and collisional matter
are strongly coupled to radiation and oscillate until the decoupling epoch, at z ∼ 1100,
when the baryonic Jeans mass falls by several orders of magnitude, so baryons can
follow the same evolution as dark matter. Then, during the recombination epoch, the
mean free path of photons increases, determining a smearing of the fluctuations in
the baryon distribution. Another relevant quantity is the amount of dark energy.10

The large scale structures of the Universe begin to form when the pressure due to

10We remind the reader that, working in a flat Friedmann-Lemâıtre-Robertson-Walker background,

the total energy density of the Universe is ΩΛ +Ωm = 1. This means that the matter power spectrum

also depends on the amount of dark energy today: different values of the density parameter of dark
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1.8. The Power Spectra of Fluctuations

photons becomes smaller than the gravitational force due to the non-relativistic mat-
ter; this occurs after matter-radiation equality. Therefore, matter-radiation equality
sets the position of the peak in the matter power spectrum: the wavenumber keq,
where the sub-index eq stands for equality, separates the “large scale” from the “small
scale” modes.

In Figure 1.4 we show illustrative matter power spectrum data.

Figure 1.4: Linear matter power spectrum P (k) versus the wavenumber k extrapolated to

z = 0, from various measurements of cosmological structure. From [39].

energy, ΩΛ, determine different values for the density parameter of matter, Ωm, which determines

matter-radiation equivalence and thus the turn-over scale of the matter power spectrum.
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2 Dark Matter Properties

In the previous Chapter, dark matter has been introduced with no particular emphasis
on the empiric motivations supporting its existence. Section 2.1 reviews some of the
strongest points that make us know that dark matter exists. In Section 2.2 we explore
some of the most popular particle physics candidates for dark matter. Dark Radiation,
that is the possibility that some dark matter is relativistic instead of cold, is discussed
in Section 2.3. To address where and how dark matter is, the properties of dark matter
halos are presented in Section 2.4. To close this Chapter, Section 2.6 is devoted to
the different dark matter detection methods.

2.1 Dark matter evidences

The fact that DM does exist is solid and very well motivated by several observations.
In the following we present some of the most persuasive cosmological and astrophysical
phenomena requiring the existence of DM.

• Galaxy rotation curves

The earliest evidence for DM at galactic scales comes from the observation that
luminous objects (stars, gas clouds) have larger velocities than those expected if
they only feel the gravitational attraction of other visible matter. This anoma-
lous behavior can be dramatically illustrated with the galactic rotation curves,
i.e. representing rotation velocities of bound objects as a function of the distance
from the galactic center. The rotational velocity of an object on a Keplerian
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2. Dark Matter Properties

orbit with radius r is
v(r) ∝

√

M(r)/r , (2.1)

with M(r) is the galactic mass enclosed within radius r from the center. There-
fore, for objects out to very large radii one would expect v(r) ∝ 1/

√
r. Instead,

the observations find that v becomes approximately constant out to the largest
values of r where the rotation curve can be measured [40]. This implies that the
baryonic matter alone cannot explain this result: the presence of unseen (dark)
matter in the galaxy can account for it. As an illustrative example, figure 2.1
shows the velocity rotation curve of the galaxy NCG 6503 as a function of radial
distance from its galactic center.

Figure 2.1: The rotation curve of galaxy NGC 6503. The dark matter halo contribution

is shown by the dashed–dotted line. Points with error bars come from the 21–cm line of

neutral hydrogen while the solid line is a model fitting the data from[40].

• Cosmic Microwave Background

As anticipated in Section 1.8.1, the anisotropies in the Cosmic Microwave Back-
ground, in particular the characteristics of the peaks in the angular power spec-
trum (see Fig.1.3) provide sensitivity to the total energy density of matter:
baryonic matter barely accounts for a small fraction of it (∼ 1/8).

• Gravitational lensing
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2.1. Dark matter evidences

In General Relativity light rays are deflected by gravity. The deflection of light
by massive bodies is referred to as Gravitational Lensing; it solely depends on
the projected, two–dimensional mass distribution of the lensing object. Further-
more, it is independent of the luminosity and composition of the lens [41]. Lens-
ing offers an ideal way to detect and study dark matter through the mismatch
between the amount of “lensing” matter and the amount of visible matter in the
lens. The Bullet Cluster provides one of the most striking examples [42, 43].
In Fig. 2.2 the mass distributions reconstructed from Gravitational Lensing
and from X–ray emitting hot gas in the Bullet Cluster can be seen: they are
completely different.

Figure 2.2: Reconstructed mass distributions: lensing (blue) and X–ray (red).

• Structure formation

As anticipated in 1.5.2, the dark matter component has a central role in our
understanding of the formation of structures. The pressure and temperature
of the baryonic matter would prevent the formation of structures (for example
stars) through the Jeans instability. On the other hand, dark matter can collapse
gravitationally; with this additional attraction, baryonic matter can collapse as
well, to form structures.

• Velocity dispersion of galaxies

At scales of galaxy clusters, a strong evidence comes from the measurements of
the peculiar velocities of galaxies. For a virialized cluster, they are a measure
of their gravitational potential energy. The first analysis was performed by F.
Zwicky in 1933 in the Coma cluster: it pointed to a large amount of inferred
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unknown matter (which he labelled for the first time “dark matter”).

• Intracluster hot gas

Another evidence for dark matter in galaxy clusters is the existence of enormous
amounts of hot gas in the intracluster medium. This implies that there should
be a huge amount of non–luminous matter that provides the binding potential
to hold on the gas there.

2.2 Dark Matter Candidates

Attending to the impressive amount of evidence in favour of the existence of dark
matter, many efforts have been devoted to put forward plausible dark matter candi-
dates with a fundamental particle physics nature. Supersymmetric scenarios, extra
dimensions, extended scalar sectors, additional (sterile) neutrinos or axions, provide
dark matter candidates with a wide range of characteristics and peculiarities. In
this Section we sketch the basic properties of three different DM candidates: sterile
neutrinos, axions and neutralinos.

2.2.1 Sterile neutrinos

In the formulation of the Standard Model of particle physics, neutrinos were origi-
nally considered massless: only left-handed neutrinos were introduced. Nevertheless,
experiments have shown that neutrinos do have a tiny mass which is often interpreted
as a motivation for beyond the Standard Model physics. Weak singlet right-handed
neutrinos have no standard model charge and are thus called sterile neutrinos. Be-
sides their use to provide neutrino masses, including the popular see-saw mechanism
[44, 45], or their appearance in grand unification theories, sterile neutrinos could
constitute dark matter. A number of constraints apply to this kind of scenario.

1. As a dark matter candidate, sterile neutrinos would not be completely dark:
since they could mix with active neutrinos, radiative decays sterile ν → active
ν + γ could produce emission lines. The absence of such signals puts very
stringent constraints on the sterile mass and the sterile-active mixing.

2. One can also obtain quite model independent constraints on the absolute mass of
sterile neutrinos through their fermionic nature. Requiring that their degeneracy
pressure (as a fermionic particle gas) does not give velocities larger than the
escape velocity in massive dark matter dominated objects, for example the dwarf
spheroidal satellites [46], imposes lower bounds on the sterile mass in the keV
ballpark.
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3. Since sterile neutrinos with keV masses may act as warm matter, their propaga-
tion may suppress the power spectrum below the characteristic free-streaming
length. Studies on small scales, in particular analyses of Lyman-α emission lines
[47], yield lower mass bounds at the keV level.

2.2.2 Axions

The original motivation for axions came from the strong CP problem. Although per-
turbative QCD is CP conserving (C stands for charge conjugation and P for parity), a
topological “θ” term which violates CP can be added to the QCD Lagrangian. Exper-
imental constraints like limits on the electric dipole moment of the neutron force the
parameter controlling that CP violating term to be highly fine-tuned or suppressed.
This is the strong CP problem. One solution proposed by Peccei and Quinn introduced
a global U(1) symmetry of QCD (without the topological “θ” term), spontaneously
broken. The axion is the pseudo-Nambu-Goldstone boson linked to the U(1) sym-
metry breaking; the strong CP problem is solved when the minimum of the effective
potential is obtained for the value of θ which naturally produces the mentioned fine-
tuning. It was later recognized that axions could be a dark matter candidate. While
the original proposal was ruled out by particle experiments (typically through the
constraints on the mixing of the axion with other neutral pseudoscalar particles like
π0 or η), there is a variety of axion models with motivations ranging from the strong
CP problem (those are QCD-axions) to extensions of the standard model and string
theory.

2.2.3 Neutralinos

Supersymmetry (SUSY) is one of the most popular ideas for physics beyond the
Standard Model. SUSY is a symmetry which brings together the two basic types
(according to their spacetime properties) of elementary particles, bosons and fermions,
into multiplets. Many SUSY models have been considered in the literature with
the Minimal Supersymmetric Standard Model, the MSSM, being the most widely
discussed. Besides aesthetic motivations and its important role in string theories, the
main motivations for having SUSY close to the electroweak scale are the following.

• The hierarchy problem: the sensitivity of the mass scale of electroweak symme-
try breaking to physics at much larger energy scales through radiative correc-
tions, would drag all the Standard Model particle masses to values of the high
energy scale order, unless highly fine-tuned.

• When Supersymmetry is supplemented with an additional symmetry require-
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ment, conservation of R-parity, the lightest supersymmetric particle (LSP) could
constitute a dark matter candidate.

• Incorporating SUSY to Grand Unification Theories typically improves the uni-
fication of gauge couplings in the renormalization group evolution from low to
high energies.

Further details on some of these aspects are addressed in Chapter 4; for the moment
let us comment on the basics that allow SUSY to provide DM candidates. First, it is
important to stress that SUSY should be broken. If it was not, supersymmetric com-
panions of all known SM particles should exist with equal masses like, for example, a
“scalar electron” with the same electron mass: there is no evidence of such particles,
and SUSY should be broken. For that breaking not to spoil the solution of the hierar-
chy problem, it has to be introduced through “soft” terms (technically this means that
the SUSY breaking terms only involve dimension 2 or 3 operators). SUSY would in
principle allow baryon and lepton number violating interactions, leading for example
to very fast proton decay, in clear contradiction with experiment. This problematic
possibility can be tamed through the introduction of a discrete symmetry, R-parity,
which essentially assigns R = +1 to SM particles and R = −1 to their superpartners.
Since it is a discrete symmetry, it is multiplicatively conserved in interactions. Two
important consequences follow. First, in production, supersymmetric particles should
come in pairs. Second, in decays, heavier supersymmetric particles can only decay
to lighter supersymmetric particles; it is then clear that the lightest supersymmetric
particle, the LSP, has no valid decay mode: it has to be stable, providing a first
interesting property for a viable DM candidate. Furthermore, among the available
superpartners, several are electrically neutral: the sneutrino, the gravitino and neu-
tralinos. The most popular DM candidate among them is the lightest neutralino.
Neutralinos are neutral fermions, and there are four of them: the superpartners of
the B and W3 gauge bosons, and the superpartners of the two neutral scalar bosons
in the two Higgs doublets (contrary to the SM, SUSY requires two Higgs doublets).
They are not mass eigenstates, and which combination of them is the lightest depends
on gauge couplings, on the pattern of electroweak symmetry breaking (the ratio of
the vacuum expectation values of the two doublets, tan β) and on the SUSY breaking
gaugino mass terms. As a last comment, it is also clear that the lightest neutralino
has weak interactions and thus fits well into the WIMP paradigm.

2.3 Dark radiation

Dark matter particles are non-relativistic at the current epoch. Nevertheless, the
possibility that some dark matter fraction is relativistic today, can occur. This leads
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to additional relativistic degrees of freedom generically known as dark radiation, to
which we devote this short section.
The total energy density associated to relativistic degrees of freedom is

ρrad =

[

1 +
7

8

(

4

11

)4/3

Neff

]

ργ = [1 + 0.227Neff ]ργ , (2.2)

where ργ is the energy density of the CMB photons at temperature Tγ = 2.725 K and
Neff is an effective number of relativistic degrees of freedom. In the standard scenario,
the predicted value is Neff = 3.046, corresponding to the three active neutrinos;
it deviates from Neff = 3 due to non–instantaneous neutrino decoupling from the
primordial photon–baryon plasma [49, 50].

Deviations of Neff from its standard value may indicate, for example, that the thermal
history of the active neutrinos is different from what we expect, or that additional
relativistic particles are present in the Universe. A non–standard value of Neff may
affect the Big Bang Nucleosynthesis era [51, 52, 53], and the matter-radiation equality.
A shift in the matter-radiation equality would cause a change in the expansion rate
at decoupling, affecting the sound horizon and the angular scale of the peaks of
the CMB spectrum, and altering the CMB spectrum by an increased Silk damping
at small scales. Dark radiation models contain, apart from photons and the three
standard active neutrinos, additional relativistic degrees of freedom, for example the
sterile neutrinos or the axions introduced in Section 2.2. In order to parametrize
their presence, it is usual to describe the extra dark radiation component as ∆Neff ≡
Neff − 3.046, that is, the difference between the total dark radiation background and
the effective number of light active neutrinos.

The dark radiation component is characterized, in general, by its clustering properties,
namely an effective speed of sound and a viscosity (see, e.g. [54]):

• the rest frame sound speed c2
eff which, being analogous to the sound speed of the

baryon-photon plasma, controls the Jeans length and therefore the perturbation
in the pressure-density of the fluid;

• the viscosity parameter c2
vis of the dark radiation, which controls the relation-

ship between velocity/metric shear and anisotropic stress, i.e. characterizes the
degree of anisotropies in the fluid.

Despite the efforts devoted to put bounds in the extra radiation components, current
results are compatible with the standard prediction of 3.046 [6, 55]. The most recent
measurements from the Planck satellite, using both temperature and polarization, and
from the Baryonic Acoustic Oscillations, give as best constraint Neff = 3.04±0.18 [6].
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2.4 Dark Matter Halo Properties

As discussed in Section 1.5.2, dark matter has a central role in the formation of
structures; gravitationally bound structures of dark matter are known as dark matter
halos. In the following subsections we briefly describe some quantities characterizing
the properties of DM halos: the density profiles, the concentration parameter and the
halo mass function.

2.4.1 The density profiles

Numerical N-body simulations provide a trustworthy method of calculating the evo-
lution of the DM distribution; they can provide robust predictions for the clustering
of the DM component. Recent numerical simulations of only CDM, seem to indicate
that the density distribution in individual halos can be described in the following
forms:

ρ(r) =
ρs

(r/rs)α(1 + r/rs)β
, (2.3)

or

ρ(r) =
ρs

(r/rs)α[1 + (r/rs)β ]
, (2.4)

where r is the radial coordinate, rs is the scale radius, and ρs is set by the DM density
at the scale radius. Setting α = 1 and β = 2 in Eq. (2.3), we obtain the so–called
Navarro, Frenk and White (NFW) profile [56, 57]. On the other hand, by setting
α = β = 1.5 in Eq. (2.4), we obtain the Moore profile [58]. The two expressions have
the same behavior at large radius and they are both singular towards the center of
the halo (the Moore profile, however, diverges faster than the NFW profile, see Fig.
2.3).

Recent works [60, 61, 62, 63, 64] have shown that a spherical Einasto profile as

ρ(r) = ρs exp

{

− 2

α

[(

r

rs

)α

− 1

]}

(2.5)

gives a better description of spherical CDM halos with respect to the NFW profile.

In all cases, after fixing the values of the α and β parameters, different choices to
characterize the profile are commonly used: one can use either ρs and rs, or use
the total halo mass M and the concentration parameter to be introduced in the
following. Most studies of the evolution of structural parameters for CDM halos use
a NFW profile: this will be, for example, the choice in Chapter 4.
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Figure 2.3: Halo dark DM for different halo profiles. (From [59]).

2.4.2 The concentration parameter

The concentration parameter, c, is a parameter that measures the concentration of
dark matter in a halo. It depends both on the halo mass and redshift and it is related
to the value of the background density when the halo forms: small mass halos have
larger values of c than large mass halos since they form earlier [65]. The behavior of
c as a function of M has been extensively studied (see, e.g., [65, 66] and references
therein).

The concentration parameter can be determined in two ways from N–body simula-
tions:

• By fitting the density profiles of the resolved halos with a given profile and
obtaining the virial radius R∆ and the scale radius rs: then, the concentration
parameter is defined as the ratio between the virial radius and scale radius of a
halo (see, e.g., [65, 56, 57]):

c∆ =
R∆

rs
. (2.6)

• By relating the ratio of the maximal circular velocity Vmax and the virial velocity
to a concentration parameter dependent expression computed from the density
profile, and extracting numerically c from that relation, as in [67, 66].
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Even if these methods give similar results at low redshifts, the second gives higher
concentrations (at the ∼ 15% level) at high masses and redshifts [66, 63].

2.4.3 The halo mass function

The halo mass function is the differential number density of dark matter halos per unit
mass, dn/dM . The halo mass function is determined through N–body simulations
and analytical models to interpret them. For example, Press and Schechter (PS) [68]
made the first analytical approach assuming that the fraction of mass contained in
halos which have larger mass than a given value, is connected with the fraction of the
volume over which the background initial density is larger than a given threshold.

In the PS theory, the fraction of the Universe which condenses into objects with mass
larger than the halo mass M , can be written in the universal form:

νf(ν) =
1√
2πσ

∫ ∞

δsc

dδ exp

(

− δ2

σ2

)

=
1

2
erfc

(

ν√
2

)

, (2.7)

where ν ≡ δsc/σ(M). δsc is the critical overdensity which corresponds to collapsed
regions (the sub-index sc stands for spherical collapse), and σ(M) is the root mean
square (rms) density fluctuation, in linear theory, in spheres containing a mean mass
M . By differentiating Eq. (2.7) with respect to the mass M , and then by multiplying
it by ρ̄/M , where ρ̄ is the mean density, one obtains the mass function of halos:

dn

dM
=

ρ̄

M
f(ν)

(

dν

dM

)

. (2.8)

where n is the halo number density. The physics of halo collapse, including the
dependence on δsc, is encoded in the function f(ν) (see, for example, [69]).

2.5 Dark matter substructures properties

In Section 1.5.2 we have mentioned that structure formation proceeds hierarchically,
with low–mass halos forming first and then larger–mass halos resulting from the merg-
ing and accretion of those smaller halos. Traditionally, N–body cosmological simula-
tions have also been used to study DM self–bound substructures, also called subhalos.
The study of both the statistical and structural properties of the subhalo population
is of prime importance because subhalos represent important probes of the mass ac-
cretion history and dynamics of more massive DM halos, called host halos, and thus
of the underlying cosmological model. During the last years improved N–body cosmo-
logical simulations have been crucial for understanding the properties of substructure
within a galaxy (as our Milky Way, for example) in a ΛCDM Universe.
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As already mentioned, DM density profiles are fixed in terms of a few parameters.
For example, if the DM profile is a NFW, the internal structure of a halo can be
determined by the halo mass and the halo concentration. However, for a subhalo, the
functional form for the concentration–mass relation, csub(Msub), is not yet known,
since it is difficult to define such subhalo concentrations with the simulations. There
are two main reasons for which describing the structural properties of a subhalo is
not straightforward:

1. the definition of the subhalos virial radius is not well known. The reason is due
to the tidal stripping that removes mass from the external parts of subhalos
and, as a consequence, with respect to halos of the same mass, subhalos are
truncated at smaller values of the radius [70, 71];

2. present simulations are not able to resolve the inner profile at small radius inside
the main halo.

For this purpose, if the concentration parameter is derived by the maximum of the
circular speed (see Section 2.4.2) instead of the definition in Eq. (2.6), it will not
depend on the density profile. So, the concentration parameter can be written [70,
71, 72] as the mean physical density ρ̄ in a region of radius Rmax (such that at Rmax
the peak circular velocity Vmax is attained), over the critical density of the Universe
today ρc (as defined in Eq. (1.14)),

c =
ρ̄(Rmax)

ρc
. (2.9)

The numerator in Eq. (2.9) is defined as

ρ̄(Rmax) =
3

4

M(Rmax)

πR3
max

=
3

4

V 2
max

πGR2
max

, (2.10)

where1 we have written the mass M(Rmax) = V 2
maxRmax/G, with G the gravitational

constant. Replacing the expressions for ρc and ρ(Rmax) in Eq. (2.9), the concentra-
tion parameter reads

c = 2

(

Vmax
H0Rmax

)

, (2.11)

in such a way that c is directly obtained from numerically simulated halos, indepen-
dently of a given density profile.

On the other hand, it is posible to convert between c∆ in Eq. (2.6) and c in Eq.
(2.11). Since the circular velocity is V 2

c (r) = GM(r)/r, for a NFW density profile we
have

M(r) =

∫

ρ(r)4πr2dr = 4πρsr
3
sf(r) , (2.12)

1We have used F ∝ GM/r2, and the centrifugal force, Fc ∝ v2/r.
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and thus:

V 2
c (r) = 4πGρsr

3
s

f(r)

r
, (2.13)

with

f(r/rs) = ln(1 + r/rs)
r/rs

1 + r/rs
. (2.14)

The maximum value of Vc, Vmax, for a NFW halo is at [73]

Rmax = 2.163 rs . (2.15)

From Eq. (2.13), the ratio between the maximum velocity Vmax and the circular
velocity at the virial radius, V∆, reads

(

Vmax
V∆

)2

=
f(Rmax/rs)

f(R∆/rs)

R∆

Rmax
=
f(Rmax/rs)

f(c∆)

c∆

2.163
, (2.16)

where in the last equality we used Eq. (2.6) and Eq. (2.15). In addition,

V 2
∆ =

GM∆

R∆
, (2.17)

with M∆ the mass enclosed in a spherical region of radius r∆,

M∆ =
4π

3
R3

∆∆ ρc , (2.18)

and ∆ the overdensity with respect to the critical density ρc (or, alternatively, with
respect to the mean density ρ̄, depending on the chosen convention).2 Combining
Eqs. (2.15) and (2.18), we find that the relation of c∆ and c for a NWF density
profile is given by:

c =
( c∆

2.163

)3 f(2.163)

c∆
∆ . (2.19)

2.6 Methods for dark matter detection

In Section 2.1 we have given a short account of the abundant and convincing evidence
in favour of the existence of dark matter: gravity is a central ingredient in all cases. On
the other hand, as discussed in Section 1.4.2 concerning the dark matter relic density
in the WIMP case, interactions in addition to gravity have an important role, more
so when particle physics candidates for DM are considered. This opens additional
challenging avenues to probe its nature. Figure 2.4 summarises them diagramatically.

2It is common to define halos either with a reference value ∆ = 200 for the overdensity, or through

the virial overdensity assuming spherical collapse [74].
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Figure 2.4: dark matter probes.

In this Section we will briefly present these three different methods to detect DM.

• Direct detection experiments look for signals of scattering of DM off target
nuclei, represented in Fig. 2.4(a), like for example energy deposition in under-
ground detectors.

• Indirect detection looks for signatures of DM annihilation, represented in Fig.
2.4(b), such as gamma-ray emission, from dense celestial environments.

• Finally, as represented in Fig. 2.4(c), it could be possible to directly produce
DM in facilities such as the Large Hadron Collider (LHC).

2.6.1 Direct detection

Direct DM searches try to detect DM particles by measuring nuclear recoils produced
by DM scattering. This would be possible if our own Galaxy was filled with WIMPs
as expected, since many of them would pass through the Earth and would weakly
interact with ordinary matter, namely with SM particles. The key ingredients for the
calculation of the signal in direct detection experiments are: 1) the density and the
velocity distribution of WIMPs in the solar neighborhood, and 2) the WIMP–nucleon
scattering cross section. From this information we can evaluate the rate of events
expected in an experiment (i.e. WIMP–nucleon scattering events) per unit time and
per unit detector material mass. The expected number of DM-nucleon scattering
events per nuclear recoil energy dN/dEr, in a given detector is given by [75]:

dN

dEr
=

ρ

mNmdm

∫ ∞

vmin

vf(~v + ~ue)
dσ

dEr
d3v , (2.20)
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where mN is the mass of the nucleus in the detector, mdm is the DM particle mass, ρ
is the local DM density, vmin =

√

ErmN/2µ2
N

3 is the minimun velocity necessary to
produce a recoil of energy Er, and dσ/dEr is the differential interaction cross–section.
The distribution of DM particle velocities in the Galaxy is given by f(v). Since the
velocities in Eq. (2.20) are in the Earth’s rest frame, ue boosts this distribution of
galactic DM velocities into the correct frame.

The interaction between WIMPs and the nuclei is divided into two components: spin-
dependent (SD) and spin-independent (SI):

dσ

dE
=
dσSD
dE

+
dσSI
dE

. (2.21)

The SD cross-section is a function of the total nuclear spin of the nucleus J ; there is
a J(J + 1) enhancement from the nuclear spin J .

The SI cross-section is a function of the total mass of the nuclei; for a heavy nuclear
target, the scattering increases the cross-section by the square of the atomic number
A.

Assuming that the SI scattering cross–section is given by [76, 77]:

dσ

dEr
=
σ0mNF (Er)

2µ2
Nv

2
, (2.22)

where σ0 is the zero–momentum DM–nuclei cross–section and F (E) the nuclear form
factor, thus, the DM–nuclei recoil rate simplifies to

dN

dEr
=

σρ

2µ2mdm
F (Er)

∫ ∞

vmin(Er)

f(~v + ~ue)

v
d3v . (2.23)

Assuming that the dark matter couples equally to protons and neutrons, the scattering
cross–section between DM and nucleons is given by [76, 77]:

σ(E) = σ0

(

µN
µp

)2

A2 , (2.24)

where σ0 is the zero–momentum DM–nucleon cross–section, µp is the DM–proton
reduced mass, and A is the atomic number of the nucleus which DM interacts with.

On the other hand, if the DM–nucleus scattering is SD, i.e., if the DM couples to nuclei
via their spin, instead of Eq. (2.22), the expression for the differential cross–section
reads [78]:

dN

dEr
=

16mN

πv2
Λ2G2

F J(J + 1)
S(E)

S(0)
, (2.25)

3 µN is the DM–nucleus reduced mass defined as µN = mχmN /(mχ + mN ).
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where GF is the Fermi constant, J , as mentioned before, is the total spin of the
nucleus, S(E) is the spin form factor and Λ = 1

J [ap〈Sp〉+an〈Sn〉], with 〈Sp〉 and 〈Sn〉
the expectation values for the spin of the proton and neutron, respectively, and ap
and an the coupling constants for the proton and neutron, respectively.

Many detection experiments, based on the detection of DM particles through their
elastic scattering with nuclei, have produced quite strong limits. In Fig.2.5 we show
the current constraints on the spin–independent nuclear scattering cross–section as a
function of WIMP mass.

On the other hand, the most relevant direct detection bounds for SD interactions
come from Large Underground Xenon (LUX) experiment and are shown in Fig.2.6.

Figure 2.5: Current spin–independent elastic scattering cross section results [79]. The yellow

shaded region correspond to a coherent neutrino scattering background.

2.6.2 Indirect detection

Indirect DM searches are complementary to DM direct detection searches. They
consist essentially in detecting final states of DM annihilations or decays, i.e. the
particles produced when DM particles annihilate or decay. These products appear
as fluxes of different types of particles: charged particles (electrons and positrons,
protons and antiprotons, deuterium and antideuterium), photons (gamma–rays, X–
rays, synchrotron radiation) and neutrinos. For DM annihilation, the flux of this
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Figure 2.6: Current spin-dependent WIMP–nucleon cross section limits from the LUX

experiment [80].

radiation is proportional to the annihilation rate, which in turn is proportional to the
squared DM density; for DM decays, it is instead proportional to the DM density. In
any case, this means that the best places to look for DM in the Universe indirectly,
will be those with the highest DM concentrations.

Attending to the shape of most popular DM density profiles (as described in Section
2.4.1) like, for example, the NFW profile, the center of a galaxy (e.g., the center of
our Milky Way) is expected to be the most promising region, having the highest DM
density (despite having higher astrophysical backgrounds too). The essential expres-
sions for indirect detection fluxes are shown below, in Section 2.6.2.1, for gamma-rays.
However, this picture remains incomplete without the important role of substructures.
According to our present understanding of structure formation, relying for example on
simulations based on the ΛCDM model, as discussed in Section 1.5.2, structures in the
Universe form hierarchically with small halos of DM collapsing first, and then merg-
ing and becoming larger. As a consequence, DM halos are populated with smaller,
denser halos, the so–called subhalos. Since these substructures correspond to local
DM overdensities, they can provide a significant enhancement of the annihilation
rate, contributing substantially to the overall gamma-ray emission observed from the
Galactic Center [81, 82, 83]. This enhancement of the dark matter indirect signal is
often referred to as the boost factor, which is discussed in Section 2.6.2.2.
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2.6.2.1 Indirect detection fluxes

The calculation of the flux of gamma–rays due to DM particles annihilation reads

dΦi
dE

=
dNi
dE

〈σv〉
4πm2

DM

∫

l.o.s.

dℓρ2(φ, ℓ) . (2.26)

Here, dΦi

dE ≡ dNann

dAdt dΩ dE is the number of annihilations per unit time, per unit volume,
per energy; dNi/dE is the spectrum of secondary particles of species i (gamma–rays)
from annihilation; σ is the DM particle’s pair annihilation cross section, v is the
relative velocity of the DM particles, and 〈〉 denotes the average over the thermal
velocity distribution; ℓ is a distance along the line–of–sight (l.o.s), and ρ is the DM
density, φ is the angle between the line of sight ℓ and the direction of the galactic
center. The flux observed is found by integrating the DM density squared ρ2 along
the line–of–sight, connecting the observer on the Earth to the galactic center. If the
DM particle is its own anti–particle , Eq. (2.26) is reduced by a factor of 2.

For the case of decaying DM particles in the halo, the differential flux of gamma-rays,
the integral along the line of sight reads:

dΦi
dE

=
dNi
dE

〈σv〉
4πτDMmDM

∫

l.o.s.

dℓρ(φ, ℓ) . (2.27)

where τDM is the lifetime of the decaying particle, and dNi/dE is the energy spectrum
of i particles emitted per decay.

2.6.2.2 Boost factor for Dark Matter annihilation

As we have seen in precedence, the flux of DM annihilation products (gamma-rays)
in different astrophysical regions is proportional to the square of the DM density
and thus, regions where the DM density is higher are, in principle, the most promis-
ing targets. Hierarchical structure formation in the context of ΛCDM implies that
larger halos proliferate of smaller structures, and this clumpy distribution can signif-
icantly boost the DM annihilation signal. In order to estimate the boost factor due
to DM annihilations, the contribution from the smallest halos has to be included.
The minimum subhalo mass depends on the free–streaming of DM particles from
high to low density regions [84] and on the effect of acoustic oscillations [85, 86] ,
which generate an exponential cutoff in the power spectrum and thus, set the cut-
off mass. However, these processes depend on the particle physics and cosmological
models [24, 87, 88] and hence, the minimum mass is very uncertain, with possible
values within Mmin = 10−11 − 10−4M⊙ (see for example Section 4.5.2 for the analysis
corresponding to the supersymmetric scenario to which Chapter 4 is devoted).

The boost factor of the luminosity from dark matter annihilations in a halo of mass
M due to its clumpy distribution of matter is given by [89, 90]
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B(M) =
4π

Lno−sub(M)

∫ M

Mmin

∫ Rvir

0

dn(m, r)

dm
L(m, r)r2 dr dm , (2.28)

where Lno−sub(M) is the luminosity for (smooth) halo distribution without substruc-
tures, L(m, r) is the luminosity of a subhalo of mass m at a distance r from the center
of the host halo, Mmin is the minimum mass of the subhalo, Rvir is the virial radius
and dn(m, r)/dm is the subhalo mass function per unit of volume.

The computation of the boost factor of a given halo of mass M due to the substructure
inside it will be undertaken in Chapter 4, where we investigate the impact of different
values of Mmin on the gamma-ray luminosity due to DM annihilation. The luminosity
from the smooth distribution, Lno−sub(M), is:

Lno−sub(M) ≡
∫

ρ(r)2 4π r2 dr =
4π

3
r3
s ρ

2
s

[

1 − 1

(1 +Rvir/rs)3

]

, (2.29)

where we have assumed an NFW profile.

2.6.3 Accelerator searches

An additional avenue for DM searches is the production of DM particles in laboratory
experiments. In the case of massive DM candidates, as in SUSY scenarios, since
sparticles are expected to have masses typically above the electroweak scale, they can
only be searched at powerful particle colliders, like the Large Hadron Collider (LHC)
now in operation.

At colliders such as the LHC, with available center of mass energies at the multi-TeV
level, the goal is to look for events where WIMPs are produced. The production of
WIMPs and their properties may be inferred by the observation of missing energy-
momentum in the reconstructed final states. Many of the DM candidates can be
produced copiously at the LHC, either directly or as decay products of other particles.
Measurements are then able to provide information regarding not only the masses but
also the couplings of both the DM candidate and the additional particles with which
it interacts (relevant, in addition, in the calculation of the DM relic density [91, 92]).
Recent monojet analyses by ATLAS [93, 94] and CMS demonstrate that the LHC
is indeed quite competitive with respect to direct DM searches, in particular for low
masses. In Figure 2.7 we show an overview of these results.

***
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(a) Spin-independent (b) Spin-dependent

Figure 2.7: 90%-confidence upper limits obtained from a recent ATLAS monojet analysis at

a center-of-mass energy of 8 TeV on the spin-independent (left) and spin–dependent (right)

DM–nucleon scattering cross section as a function of DM mass mX for different operators.

Results from direct-detection experiments for the spin-independent and spin–dependent cross

section and the CMS results are shown for comparison [93].
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3
Cold Dark Matter plus

X: Constraints on the

second dark inert

component in the

Universe

In the previous two Chapters we have presented an overview of standard Big Bang
cosmology and how structure formation based on gravitational instabilities may arise;
we also gave a brief overview on the role of dark matter in particle physics, introducing,
as well, the detection methods adopted to search it. In this Chapter we address one
of the specific work developed for this thesis: the study of a second inert component
of DM within mixed dark matter (MDM) models. This Chapter is based on Ref [1],
where we study the phenomenology of a broad range of MDM models consisting of a
standard cold fraction of DM plus a fraction given by another component, non-cold.
We deal with a scenario where the dominant species has to be (nearly) cold to account
for current observations, but the sub-dominant species of DM could be warm or hot,
or even contribute as a relativistic component.

The different ingredients that have to be considered for such analyses are the following.

• Theoretical framework/Modelling

We consider MDM models which go beyond the reference ΛCDM standard
model through the inclusion of a non-cold dark matter species whose temper-
ature is the same of the standard neutrinos. This second inert component of
dark matter contributes to the total amount of dark matter in the Universe
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as Ωdm ≈ Ωcdm + Ωncdm , where Ωcdm and Ωncdm are the density of CDM and
non-cold DM components, respectively. The effects of this non-cold DM compo-
nent are quantified through two parameters: its mass, mncdm, and its fraction,
fncdm. We study two typical classes of candidates for the non-cold DM com-
ponent: fermions and bosons that froze-out when still relativistic. In this work
we do not consider any specific particle physics model, that would be necessary
in order to compute a non-thermal decoupling of the non-cold DM particle,
and we assume that the non-cold DM component was in thermal equilibrium in
the early Universe, when it was still relativistic. In Sec. 3.1 we introduce the
fundamentals of this MDM model.

• Goal

The goal of this analysis, within the MDM framework, is to study how cosmo-
logical measurements can be used to derive limits on the fraction fncdm of the
non-cold DM component with respect to the total DM, as a function of its mass
mncdm.

• Statistical Method

With this definite goal in mind, the next step is the methodology to be used.
The statistical framework that we chose to conduct the analyses is Bayesian
inference. We explain the basics of Bayesian analyses in Section 3.2.1. Beside
the general Bayesian framework, in Section 3.3, we give details on the imple-
mentation of the theoretical framework in the software packages used.

• Data

The last, necessary, ingredient required to confront theoretical predictions with
experimental input is the data. We combine the most recent CMB temperature,
polarization and lensing measurements from the Planck satellite, and the most
recent BAO data with the predictions of the number of dwarf spheroidal satellite
galaxies. We describe the different sources of data in Section 3.3.

After settling these different ingredients, we present our results in Sections 3.4 and
3.5.

3.1 Cold Dark Matter plus non-so clumpy Dark

Matter

The ΛCDM model introduced in Chapter 1 is an extremely succesful model, consistent
with the majority of current cosmological measurements as, for example, the acoustic
peaks of the CMB, and the large scale structure observations [6, 95]. The ΛCDM
model has six parameters: the energy density of CDM, Ωcdm; the baryon energy
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density, Ωb; the reionization optical depth, τ ; the angular scale of the acoustic peaks,
θ; the amplitude and the tilt of the power spectrum of initial curvature perturbations,
As and ns. In addition, as we saw in Section 2.3, the Universe also contains relativistic
particles defined in Eq.(2.2). Despite its great observational success, there are still
some pending issues concerning the standard ΛCDM paradigm, related to several
cosmological observations on galactic and sub-galactic scales, which are not in full
agreement with the predictions of the ΛCDM model (see e.g. [96, 97]).

Important challenges for the ΛCDM model are the so-called too big to fail problem [98]
and the Milky Way satellite problem [99, 100]. The former refers to the fact that the
measured Galactic velocities indicate that dwarf galaxies are hosted by haloes that
are less massive than those predicted by numerical simulations based on the ΛCDM
model. The latter is related to predictions within the ΛCDM cosmology for the
number of DM subhalos, which is much larger than the observed number of satellite
galaxies that orbit close to the Milky Way. A number of solutions to these two
problems have been proposed in the literature (see, e.g., the recent works [101, 102]
and references therein).

We consider a modified version of the most economical pure CDM model, allowing for
a mixed DM cosmology with an additional dark and inert relic. An important subset
of these models, where today’s DM consists of an admixture of cold and warm DM
particles, have been dubbed mixed DM models (see the Ref. [103, 104, 105]). They are
a plausible solution to alleviate the small-scale crisis of the ΛCDM cosmology, while
leaving the predictions from the CDM model at large scales unchanged. The reason
is the following: the particle associated to this second DM component has a larger
free-streaming length, affecting the matter power spectrum on the smallest scales,
improving the compatibility with the observations of the local Universe. Usually,
the free-streaming length is defined as 1 the comoving distance a particle can travel
from its production time or time of last scattering, t0, to the time of matter-radiation
equality (MRE), teq. The approximate expression is given by [17]:

λfs =

∫ teq

t0

dt
v(t)

a(t)
≈
∫ tNR

t0

dt
c dt

a(t)
+

∫ teq

tNR

dt
v(t)

a(t)
, (3.1)

where tNR is the time when the particle of DM becomes non-relativistic, and a(t) is
the scale factor. In the relativistic regime, the velocity of the particle is v(t) ∼ c, while
in the non-relativistic case its momentum redshifts with the expansion as v ∝ a(t)−1.
The effect of the free-streaming is, thus, quantified by the length that a particle travels
before the primordial perturbations start to grow (around matter-radiation equality)
[106]. This effect depends on the velocity of the particle, varying from a scale value

1Alternatively free-streaming can be thought of in terms of the critical Jeans mass in the linear

evolution of the matter perturbations (see, e.g. [106]).
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of few megaparsec for a warm dark matter component up to the size of the Hubble
radius for a relativistic species.

In such a scenario, the non-cold DM species could be either a fermion or a boson. The
difference between these cases is in the velocity distribution function. One example
of fermion for our non-cold DM particle could be the sterile neutrino (introduced
in Section 2.2.1): a sterile neutrino with mass in the keV range is a “warm” DM
particle [107, 108, 109]. On the other hand, a boson non-cold DM candidate could be
a thermal axion (introduced in Section 2.2.2).

We perform our analysis allowing both the mass and the fraction of the non-cold DM
candidate to vary in a very large range. Thus, we will cover a very wide parameter
space, exploring at once much more than a single particle physics model. Notice
that this is a very wide region for the non-cold DM properties and therefore there
are parts in which our results will overlap with other complementary analyses. That
would be the case for both the bosonic axion, for which a part of the parameter space
is ruled out by astrophysical constraints [110], and the fermionic sterile neutrino, that
is constrained to have a mass larger than approximately 1 eV by oscillation searches
and relatively large mixing angle [111]. In the latter case, we refer to sterile neutrinos
motivated by laboratory anomalies, i.e. those that have a large mixing angle with
active neutrinos. Nevertheless, we are not excluding the existence of sterile neutrinos
with small mixing angle and with m < 1 eV, but those are not relevant since they did
not reach the equilibrium in the early Universe [112].

However, we are focusing here on the constraining power of cosmological tools alone
for a wide range of models. We do not aim to study specific particle physics candidates
for which a combination of all the possible available measurements may further restrict
the non-cold DM parameter region.

3.1.1 Model description

Our MDM model is described by the mass of the non-cold particle, mncdm, and the
fraction of this non-cold component, fncdm. We define that fractional amount of
non-cold DM species as

fncdm ≡ Ωncdm

Ωcdm + Ωncdm
, (3.2)

where Ωx ≡ ρx/ρc, ρcdm and ρncdm are the mass-energy densities of the CDM and non-
cold DM components, respectively, and ρc is the critical density of the Universe. Note
that the total energy density of DM today is, strictly speaking, not exactly given by
Ωcdm +Ωncdm, since Ωncdm can be potentially relativistic in our scenario. However, we
note that for all cases of interest, Ωdm ≈ Ωcdm +Ωncdm will be approximately correct,
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since the fraction that dark radiation can contribute to the energy density today is
strongly constrained or, in other words, if the non-cold DM component is radiation,
then Ωncdm ≪ 1.

The phase space distribution of particles in thermal equilibrium that decoupled when
still relativistic reads as in Eqs.(1.49). We stress again that we are assuming that,
once, the non-cold DM component was in thermal equilibrium. It means that we
consider a thermal production mechanism for both sterile neutrinos and axions. In
the very first and simplest model, sterile neutrinos can be produced in the early
Universe via mixing with the active neutrinos [113, 114, 115, 47, 116]. In the latter
case, light axions, with mass 0.1eV . m . 2eV, can be produced in the early Universe
via thermal processes, behaving as extra hot DM components, together with the
three standard relic neutrinos (see Refs. [117, 118, 119, 120, 121, 122] for current and
forecasted future cosmological constraints on these models).

We assume that the non-cold DM component freezes out while still being relativistic
(E = p), and with zero chemical potential (µ = 0). In that case, the functional form
of the momentum distribution is conserved at all later times, with a temperature re-
shifting like T ∝ 1 + z as the Universe expands [17]. We fix the actual temperature of
the second component of DM as the same of the standard neutrinos. Namely, Tncdm =
Tν = 0.716Tcmb, where Tν is the temperature of the active neutrinos, and Tcmb =
2.38 × 10−4 eV is the CMB temperature today. Even if we consider a specific value
of Tncdm, we are not restricting ourselves, since what is relevant for the cosmological
calculations is the ratio mncdm/Tncdm. This means that the results that we find for a
particle with mass mncdm and temperature Tncdm = Tν can be easily translated into
constraints for a model where the non-cold DM particle is described by any other
temperature T ′ by rescaling the mass accordingly as m′ = mncdmT

′/Tncdm.

3.2 Statistical Analysis

The model introduced above, “lives” in a multi-dimensional parameter space. In
order to explore this parameter space and derive bounds or favored regions for the
parameters in which we are interested, we do a Bayesian analysis.

3.2.1 Bayesian Inference

In this Section we give a short and necessarily incomplete account of Bayesian in-
ference, which is the approach we have adopted to analyze our MDM model in the
light of existing datasets. There is a wide literature on the subject of Bayesian statis-
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tics and we refer the interested reader to [123, 124, 125] (see also [126, 127] for the
Bayesian method in Cosmology), which provide a physically-oriented introduction to
the subject.

Uncertainty is inherent to the understanding of nature that we gain through experi-
ment: it is the fuzziness with which we know physical constants, parameters of models,
results of experiments, etc. Within this fuzziness we assign different degrees of belief
to different possible values/results. Probability is this assignment of degree of belief.
Constructed with a few axioms, probability theory provides a fundamental tool to
describe consistently our state of knowledge.

The state of knowledge of a given physical quantity is described by a probability
density function2 (from now PDF, also called probability density function in the case
of discrete variables). The output of an experiment can be understood as the PDF
of data within a given model. It is crucial to understand the role played by “within
a given model”: this PDF is a conditional PDF. For a given set of parameters “θ”
describing the model, we assign different degrees of belief to data “d”. The conditional
probability function

p(d|θ) , (3.3)

quantifies this degree of belief. However, in the Bayesian approach, our goal is a
different one as we want to quantify the degree of belief in a model given a dataset,
i.e. we want to estimate the conditional probability of θ given d:

p(θ|d) . (3.4)

The relation between the two conditional probability functions, or more precisely
the inference of p(θ|d) from p(d|θ) is obtained through Bayes Theorem. For two
propositions A and B,

P (A ∩B) = P (A|B)P (B) = P (B|A)P (A) . (3.5)

That is, the probability of “A and B (logical AND) is true” is equal to:

• the probability of “A is true” knowing that “B is true” multiplied by the prob-
ability of “B is true”,

• the probability of “B is true” knowing that “A is true” multiplied by the prob-
ability of “A is true”.

Consequently

P (B|A) =
P (A|B)P (B)

P (A)
, (3.6)

2In fact our state of knowledge of a given set of physical quantities is described by a joint

probability density function; individual PDFs lack the may-be-correlated nature of the information.
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where the denominator is a normalization factor and represents the data probability.
For continuous PDFs3,

p(θ|d) =
p(d|θ) p(θ)

∫

dθ p(d|θ) p(θ)
. (3.7)

This simple relation is the cornerstone of the inference process. Let us analyse the
different factors:

• p(d|θ), the likelihood, is the degree of belief in d given θ,

• p(θ), prior, is a priori degree of belief in θ,

• p(θ|d), the posterior, the degree of belief in θ given d; that is, how the incor-
porated knowledge of d modifies our prior knowledge of θ.

Posterior probability density functions express our state of knowledge about the value
of the different quantities. Bayesian inference is sometimes criticised for the “arbi-
trariness” of the prior election and its influence on the posterior distribution4. This
can motivate some degree of scepticism with respect to Bayesian methods; never-
theless, they are quite natural: we always have a certain knowledge of the involved
priors (allowed ranges for parameters, etc); if the posterior distribution is sensitive
to the prior distribution, what we learn is the poverty of the information that data
incorporates to our knowledge compared to our previous knowledge, the prior.

As we have seen, the inference process is achieved through the evaluation of p(θ|d)
in Eq. (3.7). For any parameter θ̃ we are not interested in5, we marginalize over θ̃,
that is, we integrate over θ̃ to obtain the marginalized PDF p(θ|d)|Mar{θ̃},

p(θ|d)|Mar{θ̃} =

∫

dθ̃ p(d|θ, θ̃) p(θ, θ̃)
∫

dθ
∫

dθ̃ p(d|θ, θ̃) p(θ, θ̃)
. (3.8)

Marginalization is indeed important: since the likelihood function takes values in a
parameter space which is typically multi-dimensional, reducing the information to
subspaces that one could really handle and represent – typically one or two dimen-
sional spaces – becomes necessary. In those subspaces it is still possible to study
important properties such as correlations.

It is common practice to present the results of the inference process in terms of
credible regions, that is regions, in the one or two dimensional space of some quantity
of interest, that include a given fraction of the probability, typically 68% and/or 95%

3Notice that in the denominator we use p(d) =
∫

dθ p(d|θ)p(θ).
4Because of this, “Bayesian” is sometimes replaced by “subjective”; in these terms, objectivity

is only thinkable as inter-subjectivity, i.e. through the obtention of conclusions common to several

subjective inferences.
5For clarity, we now explicitely separate the parameter space in θ and θ̃.
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(for a one dimensional gaussian these are just the ±1, 2 standard deviation intervals).
Usually, those regions are constructed in such a way that the PDF anywhere inside
the region is larger than the PDF anywhere ouside the region.

Before addressing the basics of the method, some additional comments concerning the
likelihood are in order. The likelihood function p(d|θ), usually labeled L, contains
all the experimental information to be used (of course, information already used to
shape the prior is not to be included in the likelihood). Independent measurements
contribute multiplicatively to the global L. One frequent example of likelihood func-
tion used to model experimental results is a Gaussian distribution. Let us illustrate
it with an example. Consider: (1) a prediction Q(θ) for some observable in a given
theoretical framework (it depends on the parameters θ) and (2) an experimental mea-
surement of the quantity Q that we model through a Gaussian (characterized by a
central value µQ and a standard deviation σQ). The corresponding likelihood function
would be

L =
1√

2πσQ
exp

(

− (Q(θ) − µQ)2

2σ2
Q

)

. (3.9)

Gaussian likelihoods are particularly convenient when different independent measure-
ments enter the global likelihood: as the global likelihood is the product of all of
them, their exponents just add. In this case it is rather common to use equivalently
the χ2 function; for the example above, it would just be

χ2 =
(Q(θ) − µQ)2

σ2
Q

, (3.10)

that is χ2 = −2 ln L + c, where the constant c is irrelevant and thus omitted.

3.3 Dataset and Implementation

In the previous Sections we have seen the model we want to analyse and the methods
that this analysis should follow. Now we move from the abstract/conceptual level of
those Sections to the real implementation: that is, at a practical level, what is done
and how it is done.

3.3.1 CMB dataset

We consider the CMB data of the most recent Planck data release [6], using the
full temperature power spectrum at multipoles 2 ≤ ℓ ≤ 2500 (Planck TT) and the
polarization power spectra in the range 2 ≤ ℓ ≤ 29 (lowP). We also include the
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information on the gravitational lensing power spectrum estimated from the CMB
trispectrum analysis, as implemented in the Planck lensing likelihood described in
Ref. [128]. The presence of the large scale structures affects the CMB spectrum in
a manner related to gravitational lensing. Gravitational lensing measurements can
constrain the late time expansion and the clustering of matter through CMB data.

In addition, we have to consider the nuisance parameters, which parametrize both the
systematic uncertainties and the astrophysical processes that affect the cosmological
parameters (see Ref. [129] for further details). In order to exclude some unresolved
foreground contributions and constrain better the nuisance parameters used in the
likelihood codes, it is common to consider as well the high multipoles of the CMB
spectrum. The addition of high-ℓ in the analysis is done by considering the likelihood
codes from some Earth-based CMB experiments as the Atacama Cosmology Telescope
(ACT) [130] and the South Pole Telescope (SPT) [131], since they have a better
angular resolution. However, we follow a very conservative approach and neglect the
small-scale polarization measurements (i.e., the so-called highP), as there could still
be some level of systematics contamination [6].

In order to perform our numerical analyses, we have made use of the publicly available
Planck likelihoods [129]6. We refer to the combination of the data mentioned above
as the “CMB dataset”.

3.3.1.1 Planck

Since data from the planck satellite plays a central role (see also Figures 1.2 and 1.3)
let us remind what is Planck. Planck is a mission of the European Space Agency
(ESA) whose objective was to observe - with extreme accuracy - the primordial light
of the Universe (the CMB anisotropies), both in temperature and polarization. It was
launched in 2009 and used two different instruments, one at low frequency (Low Fre-
quency Instrument) and another one at high frequency (High Frequency Instrument),
to probe the emission in the microwave wavelengths at nine different frequencies, in
order to subtract the signal of the CMB from the foreground contributions coming
from the Milky Way. The CMB temperature spectrum is obtained from the Low Fre-
quency and the High Frequency Instruments using different methods for both the low
and high multipoles (low-ℓ and high-ℓ, respectively). The spectra and the likelihoods
of the last data release were obtained by considering the following maps:

• For low multipoles (2 ≤ ℓ ≤ 29) maps between 70 and 353 GHz were considered
using a 94% fraction of the sky;

• For high multipoles and for the temperature spectrum (2 ≤ ℓ ≤ 2500) maps at

6The likelihood codes are publicly available at the Planck Legacy Archive (http://pla.esac.

esa.int/pla/).
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100, 143 and 217 GHz were considered, using 66%, 57% and 47% of the sky,
respectively. On the other hand, for the polarization spectra, they used the
same maps but with a fraction of the sky of 70%, 50% and 41%, respectively,
in order to avoid regions with a considerably high dust signal.

3.3.2 BAO dataset

Introduced in Section 1.8, we recall that the baryonic acoustic oscillations, caused by
the baryons-photon fluid, leave a characteristic scale in the clustering of matter which
is visible in the matter power spectrum at late time7.

In our analysis, we also consider the Baryonic Acoustic Oscillation (BAO) measure-
ments from several experiments. They are 6dFGS [35] at redshift z = 0.1, the SDSS
Main Galaxy Sample (MGS) [134] at redshift zeff = 0.15, and the BOSS experiment
Data Release 11 (DR11) using both the results from the LOWZ and CMASS sam-
ples [95] at redshifts zeff = 0.32 and zeff = 0.57, respectively.

3.3.2.1 6dF Galaxy Survey (6dFGS)

The 6dF Galaxy Survey (6dFGS) is a redshift survey which covers 17.000 square
degrees of the southern sky. We use a subsample containing ∼ 75.000 galaxies at a
low redshift (z = 0.106) of the 6dF Galaxy Survey (6dFGS) [35] because it allows to
constrain the distance-redshift relation through baryon acoustic oscillations. We are
interested in the power spectrum P (k) at low redshift.

3.3.2.2 SDSS Main Galaxy Sample (MGS)

The SDSS Main Galaxy Sample (MGS) is a sample of 63.163 galaxies with z < 0.2
from the Sloan Digital Sky Survey (SDSS) Data Release 7 [135], that covers 6813
square degrees with an effective redshift z = 0.15.

3.3.2.3 CMASS

CMASS are massive and high luminosity galaxies within the Baryon Oscillation Spec-
troscopic Survey (BOSS) [136]. CMASS galaxies are luminous enough to probe large
volumes with sufficient high density to detect, unambiguously, the BAO features.
The sample considered here contains 743.803 galaxies covering an effective area of
8.377 square degrees with an effective redshift z = 0.57 and in a redshift range
0.43 < z < 0.7 [95].

7See also [132] for a review, and [133] for details on the cosmological implication of BAO mea-

surements.
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3.3.2.4 LOWZ

LOWZ is a sample similar to CMASS, but smaller, which contains 265.369 galaxies
and that covers an effective area of 7.341 square degrees in the redshift range 0.15 <
z < 0.43 and with an effective redshift z = 0.32 [95].

3.3.3 Dwarf spheroidal number counts

In Section 2.4.3, we have seen that one method to define the halo mass function can
be inferred through analytical models such as the Press and Schechter [137] (PS)
model. The PS approach goes as follows: assuming that the initial fluctuations follow
a Gaussian distribution, a region with a mass overdensity above a certain threshold
(eventually) collapses to form a bound object [137]. Nevertheless, the PS theory
presents a problem: after integrating the halo mass function of Eq. (2.7) over the
entire mass range (i.e., ν ≡ δsc/σ(M) → 0 when σ(M) → ∞) only half of the mass
of the whole Universe ends up in collapsed objects8. This issue was solved simply
multiplying Eq. (2.7) by a factor of 2. There were several improvements over the PS
model as, for example, the excursion set approach, also referred to as the Extended
PS model (EPS) [69, 138] (see [139] for a review), that naturally accounts for this
missing factor of 2. This technique has been amply used to study, for example, the
clustering of dark matter haloes as well as the halo formation.

The PS/EPS approaches fail to describe the halo formation in cosmologies with sup-
pressed power spectra (see, e.g., [140, 141, 106, 142]), since the mass function cannot
reproduce the halo abundance of warm dark matter or mixed dark matter cosmolo-
gies. One elegant method of circumventing this issue is to assume the sharp k-space
filter approach, but maintaining the relations between the mass M and the filtering
scale R. In the standard PS/EPS formalisms, given a density field δ(~x), it is possible
to “filter” it by using a normalized window function W (~x;R) (

∫

W (~x;R)d3x = 1).
The window function is chosen to be a top hat in real space. In Fourier space, it is
W (k|M) = [3 sin(kR) − kR cos(kR)]/(kR)3, where the relation between the mass M
and the filtering scale R reads M = 4

3πρcR
3 [137]. This relation among M and R is

also maintained with the choice of a sharp-k filter [109].

The EPS approach, adapted to the sharp-k model, can be used to estimate the av-
erage number of dwarf galaxies orbiting a galaxy like our Milky Way. This has been
performed in Refs. [143, 144] where, instead of using a standard EPS approach, the
simplified procedure of [145] was followed.

8The reason is that we assigned probability zero for all the density fields with δ < δc. These

underdense regions correspond to half the mass. The low density peaks will end up in collapsed

halos of larger mass. Therefore, only overdense regions participate in the spherical collapse.
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Besides including the above CMB and BAO measurements, we derive constraints
from the number of dwarf spheroidal satellite galaxies in the Milky Way. This type
of galaxies are characterized by a low luminosity and by a mass-to-light ratio much
larger than regular galaxies. Nevertheless, the determination of DM in such galaxies
is uncertain, since dwarf spheroidals do not have gas in their outer parts. On the other
hand, their distribution and number is a probe of the matter perturbations at sub-
Mpc scales, which can potentially be affected by the free streaming of the non-cold
DM component in our model. For this reason, we estimate the number of satellites
predicted for a given MDM scenario. To do this, we have followed the procedure
described in Ref. [143, 144], where the authors use a relation based on the conditional
mass function normalized to the Aquarius N-body simulation [72]. The conditional
mass function is an application of the EPS model. It is as that of Eq. (2.7) but with
the origin translated, namely with δsc and σ2(M) shifted, in order to describe the
fact that the subhalo is collapsing inside the high density host rather that low density
background. For additional details, see Ref. [139]. According to [138], the expression
of the conditional mass function reads

dN

d lnM
(M |M0) = −M0

M
σf(δc, σ|δc,0, σ0)

d ln σ

d lnM
, (3.11)

where M , σ and δc are the mass, the variance and the critical overdensity of the
“subhalo”, respectively. The sub-index 0 stands for host halo. By using a sharp-k
filter approach, it simplifies as

dNsk
d lnM

(M |M0) =
1

6π2

M0

M
f(δc, σ|δc,0, σ0)

P (1/R)

R3
, (3.12)

where P (1/R) is the matter power spectrum, the sub-index sk indicates “sharp-k”,
and M and R are related by the same cubic relation mentioned above. The term
f(δc, σ|δc,0, σ0) is the shape of the conditional mass function:

f(δc, σ|δc,0, σ0) =
(δc − δc,0)
√

2π(σ − σ0)
exp

[

− (δc − δc,0)2

2(σ − σ0)

]

. (3.13)

The shape of the function f(ν) ≡ f(δ, σ) in Eq. (2.7) is a Gaussian, while here
f(δc, σ|δc,0, σ0) appears as a Gaussian with the multiplying factor (δc − δc,0) which is
related to the fact that a subhalo is a fluctuation on top of a fluctuation.

The expected number of the dwarf satellite galaxies can be calculated by integrating
the conditional mass function over δc:

dNsat
d lnM

=
1

N

∫ ∞

δc,0

dNsk
d lnM

dδc . (3.14)

where N is a normalization constant.
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We followed the procedure of [143, 144] where, after normalizing 3.14 to the Aquarius
N-body simulation, the estimate for the number of the satellites reads

dNsat
d lnMsat

=
1

Cn

1

6π2

(

Mhh

Msat

)

P (1/Rsat)

R3
sat

√

2π(Ssat − Shh)
, (3.15)

where hh stands for “host halo” (the Milky Way in our case), sat stands for “satellites,”
and Cn = 45 is a number which mimics the results of N-body simulations. In the
following we assume Mhh = 1.77 · 1012h−1M⊙ for the Milky Way (MW) and we take
Msat,0 = 108h−1M⊙ as a lower integration limit for the calculation of the number of
satellite galaxies. Hence, we only consider satellite galaxies above that mass [143].

The parameters Ri, Si and Mi (i = sat, hh) are, respectively, the radius, the variance9

and the mass of the satellite galaxies or of the host-halo, defined as

Si(M) =
1

2π2

∫ ∞

0

k2P (k)W 2(k|M)dk , Mi =
4π

3
Ωmρc(cRi)

3 . (3.16)

The number c = 2.5 is fixed in order to give the best match to N-body simulations. For
the calculation of the mass and the variance, we use the k-sharp filter approach. This
filter cuts all the scales k below the cut-off scale 1/Rsat and it is written in terms of
the window function W (k|M) (in Fourier space) that enters the above equation (3.16).
The window function is:

W (k|M) =

{

1, if k ≤ ks(M) ;

0, if k > ks(M) ,
(3.17)

where ks(M) is the cut-off scale as a function of the mass.

The computation of the number of the dwarf spheroidal galaxies has been implemented
in a likelihood function (labelled “SAT”), incorporeted into Montepython. We define
the satellite likelihood as a half-Gaussian with mean Nsat = 61 and standard deviation
σNsat

= 13.10 In other words, we only consider satellite galaxy bounds when the
predicted number of satellite galaxies within a given model is below the mean number
of galaxy satellites that are (expected to be) observed, with the present observations
(Nsat = 61) representing only a lower limit. This assumes the plausible scenario
that not all dwarf spheroidal galaxies in the relevant mass range have been found up
to now, and that the number of satellite galaxies might increase by ongoing and/or
future searches.

9S is the variance of the gaussian random field of which the halo is an excursion [69].
10The choice of Nsat = 61 is motivated by Refs. [144, 146], in which the authors add to the eleven

standard satellites the fifteen observed by SDSS, after having corrected for the limited sky coverage

of the SDSS catalogue (fsky ≃ 0.28), resulting in ∼ 61±13 satellite galaxies. The error only accounts

for the SDSS sample, for which we assume Poisson statistics, see Ref. [146].
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Figure 3.1: Estimate of the number of satellites with mass M inside a host halo with
mass Mhh = 1.77 · 1012h−1M⊙, for two different MDM models. The thin green solid
line which separates the two coloured regions refers to a non-cold DM component
with fraction fncdm = 0.25 and mass mncdm = 103 eV, corresponding to a total
of ≃ 60 dwarf spheroidal satellites galaxies. The black line which limits the upper
coloured region refers to a model where the fraction is fncdm = 0.9 and the mass is
mncdm = 105 eV, corresponding to a total of ≃ 160 dwarf spheroidal galaxies.
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In Fig. 3.1, we show the number of satellite galaxies, see Eq. (3.15), versus the satel-
lite mass, for a Milky Way-like host halo with mass Mhh = 1.77 · 1012h−1M⊙. We
show two cases. The first case depicts a situation where the mass of the non-cold DM
particle is large (mncdm = 105 eV) and it constitutes almost all the DM (fncdm = 0.9).
The other case is for smaller values of the mass and the fraction of the non-cold DM
species, having mncdm = 103 eV and fncdm = 0.25, respectively. For the ΛCDM-like
scenario we get Nsat ∼ 160, while for the second scenario we obtain Nsat ∼ 60, pro-
viding naively a better agreement with observations. However, we are conservatively
imposing that our model must reproduce at least the number of observed dwarf satel-
lite galaxies, penalizing only those cases for which the number of satellite galaxies is
smaller than the observed one. Hence, both of the exemplary MDM scenarios will be
equally allowed by the “SAT” likelihood, since future measurements may detect more
of these objects.

3.3.4 Boltzmann code and scanner

To calculate the evolution of matter perturbations in the Universe and evaluate the
CMB and BAO observables, we use the Boltzmann solver code CLASS [147]. The
tool used for the computation of the likelihoods is Montepython [148], which informs
CLASS about the cosmological parameters and retrieves the computed quantities. In
order to explore the N-dimensional parameter space and get limits on the various
parameters, we adopt a nested sampling algorithm as implemented in the publicly
available Multinest code [149, 150, 151], a tool for the estimation of the Bayesian
evidence and of the parameter constraints. It uses an ellipsoidal and multimodal
nested-sampling algorithm to estimate the posterior probability over the entire pa-
rameter space. Then, we link Montepython to Multinest by using PyMultiNest [152]
which interacts with MultiNest. Namely, the inner MCMC routine in Montepython is
substituted with the algorithm of Multinest. In practice, instead of doing a standard
MCMC, the selection of the points is addressed by Multinest.

The varying cosmological parameters are the six basic ΛCDM parameters introduced
in Section 3.1, plus the mass of the non-cold DM component, mncdm and its fraction,
fncdm. In order to estimate the Bayesian evidence we give a prior as input. The
priors for the standard ΛCDM cosmological parameters are chosen to be flat, while
for the mass and the fraction of the non-cold DM component we use flat priors on
their logarithms, having:

log10(mncdm/eV) uniform in : [−5; 5] ; (3.18)

log10 fncdm uniform in : [−6; 0] . (3.19)

We stress again that this is a very wide region for the non-cold DM properties, and
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therefore there are parts in which our results will overlap with other complementary
analyses.
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Figure 3.2: Angular power spectrum for two different models. The green (red) solid
line refers to a non-cold DM component with fraction fncdm = 0.05 (fncdm = 0.25)
and mass mncdm = 1.5 eV (mncdm = 103 eV). The standard ΛCDM predictions are
depicted by a blue dashed line, that is not visible because it coincides with the red
one. The data points and errors are from the Planck 2015 data release [6] (see Fig.1.3.
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Figure 3.3: The same as in Fig. 3.2, but for the matter power spectrum. The data
points and their errors are from the BOSS DR11 measurements [95]. Notice that we
use BOSS DR11 data in its geometrical form, i.e. using the BAO information rather
than the shape of the power spectrum information.
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Before going to the main results, we first give an impression of how much the stan-
dard cosmological picture changes for two exemplary MDM scenarios explored here.
Figures 3.2 and 3.3 show the angular power spectra and the matter power spectra, re-
spectively, obtained by using two models: one with fncdm = 0.25 and mncdm = 1 keV,
and a second one with fncdm = 0.05 and mncdm = 1.5 eV. We show for comparison
the predictions for the standard ΛCDM model, as well as the measurements from the
latest data release of Planck satellite [6] (from the BOSS DR11 sample [95]) in the
case of the temperature anisotropies (matter) power spectrum.

Notice that for the case mncdm = 1 keV and fncdm = 0.25, the predictions for the
temperature power spectrum are essentially identical to those within the canonical
ΛCDM scenario for most of the scales. This is due to the fact that CMB physics is
basically unaffected by the free-streaming nature of a 1 keV particle that accounts
here for 25% of the total DM mass-energy density. There only exists a tiny difference
in the matter power spectrum at very small scales (see Fig. 3.3) due to the suppression
of the growth of matter perturbations induced by the non-zero velocity dispersions
of the non-cold DM component, even if it is not the dominant one. Therefore, we
expect this point in the parameter space to be allowed by both CMB data and satellite
galaxy measurements. On the other hand, the MDM model with fncdm = 0.05 and
mncdm = 1.5 eV gives predictions for the CMB temperature anisotropies that are not
compatible with the present CMB data. This is because the non-cold DM component
behaves as radiation at the decoupling period, enhancing the first acoustic peak height,
although the effect will be degenerate with the CDM energy density, in such a way
that one could partly compensate this enhancement by increasing the total DM energy
density. However, the suppression in the matter power spectrum for mncdm = 1.5 eV
occurs at much larger scales than before, due to the shorter free-streaming scale,
showing a clear discrepancy with power spectrum measurements.
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3.4 Results

In this Section we show the main results obtained in the analysis.

In Fig. 3.4, we show in equal-weight scatter plots11 our numerical results as function
of the fraction and mass of the non-cold DM component. As described above, the
results are based on the combination of CMB+SAT+BAO data. The samples are
colour-coded by the predicted number of satellite galaxies. We find that the number
counts of dwarfs start to be noticeably affected for fractions larger than a few percent,
and for masses up to around 10 keV. At 100 keV, the non-cold DM component behaves
essentially as CDM for our purposes.

In Fig. 3.5 we show the central results of this work. For each decade in the mass of
the non-cold DM component, we show the marginalized upper limits on its fraction
fncdm for both fermions and bosons. We find that the 95.4%CL limits for masses 1–10
keV are fncdm ≤ 0.29 (0.23) for fermions (bosons), and for masses 10–100 keV they
are fncdm ≤ 0.43 (0.45), respectively.

For large values of the non-cold DM mass, our limits on its fraction fncdm are com-
petitive to those existing in the literature; see, e.g., Ref. [153]. In this regime the
bounds come mainly from the BAO data and the number of satellites galaxies, since
CMB alone is not able to distinguish the heavy non-cold DM component from a pure
CDM one.

On the other hand, in the semi-relativistic regime, 10–100 µeV, the limits are very
strong, fncdm ≤ 3.3×10−6 (9.8×10−6) for fermions (bosons). This is expected, since in
the relativistic limit the current cosmological upper bounds on dark radiation, ∆Neff ,
apply. We use Eq. (2.2), where Neff is defined as the ratio of the energy density of
all relativistic species, ρx (which includes standard neutrinos plus any other non-cold
DM component in its relativistic regime), to that of photons as:

Neff =

(

8

7

)(

11

4

)4/3
ρx
ργ

. (3.20)

Indeed, we find for a very light non-cold DM particle:

fncdm =
Ωncdm

Ωdm
=

Ωγ ∆Neff

Ωdm
≈ 10−4∆Neff . (3.21)

Considering that the 95.4%CL limits that arise from the standard ΛCDM+Neff anal-
yses [6] correspond to ∆Neff . 0.3, our limits for fncdm when the mass is around
10–100 µeV are in reasonable agreement with Eq. (3.21). The agreement, however,

11The weights given by Multinest incorporate both likelihood and prior information.
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is not complete, especially in the fermion case. The reason is that the region of pa-
rameter space that corresponds to such a case is rather small and the shot noise of
the simulation has a significant role, so that even the Multinest algorithm cannot
properly explore it. The result is that the density of sampled points in the relevant
region is not sufficient to obtain exactly the expected constraints corresponding to
Eq. (3.21).

Moreover, as we can see in Fig. 3.5, there are several small unexpected differences
between the fermion and the boson case. These discrepancies between the two cases
are also due mainly to the shot noise of the Monte Carlo simulation.
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Figure 3.4: Samples in the (log10 fncdm, log10 mncdm) plane from CMB+SAT+BAO
data, colour-coded by the number of the satellite galaxies obtained for the case of a
fermionic (top panel) or bosonic (bottom panel) non-cold DM candidate.
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Figure 3.5: 2σ and 3σ upper limits on the fraction fncdm of the non-cold DM com-
ponent, obtained for different ranges of masses. In black (red) we present the results
derived from the analysis of the CMB+SAT+BAO datasets for a fermion (boson)
non-cold DM candidate.
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3.5 Discussions

In this work, we have explored the cosmological bounds arising from Planck CMB
temperature and polarization at low multipoles plus BAO measurements on general
cosmological models with a second non-cold dark component. To constrain this second
component of DM in the regime where it is warm, we include additional constraints
by requiring that the model does not under-predict the number of satellite galaxies
observed in the Milky Way. We adopt phase space distributions for the non-cold DM
species that correspond to a component that froze out while still being relativistic.

We compare results for bosonic and fermionic non-cold DM species. Our results show
that, for the adopted observables, there is not a substantial difference between the
allowed regions corresponding to the bosonic and fermionic cases. In the following we
summarise the most important results.

• We find that for small masses of this second species of DM, the limit on its
fraction relative to the total amount of DM in the universe (fncdm) is around
a few times 10−5. This limit is approximately close to what one would expect
from present constraints on the extra relativistic degrees of freedom ∆Neff .

• On the other hand, for high values of its mass, above fractions of keV, the CMB
is unable to distinguish among the non-cold DM and CDM components and one
therefore needs to look for independent observables such as the matter power
spectrum that we include through the measurements of the BAO scale. In that
case, we obtain for fncdm the following 2σ-level upper limits:

1. for non-cold DM particles with mass in the range 1–10 keV, fncdm ≤ 0.29
(0.23) in the fermionic (bosonic) case;

2. for non-cold DM particles with mass in the range 10–100 keV, fncdm ≤ 0.43
(0.45).

• For these (high) values of the mass of the non-cold DM component, our limits
on its fraction fncdm are slightly tighter than those existing in the literature (see
e.g. Ref. [154, 153, 155]).

• Forthcoming precise measurements of the matter power spectrum at small scales
may be able to further corner mixed DM scenarios.

***
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4
Prospects on the Dark

Matter Protohalos

within Supersymmetric

Models

This Chapter is based on paper [2], where a study of the kinetic decoupling of dark
matter within the context of a supersymmetric extension of the Standard Model is
used to analyse the properties of dark matter protohalos, in connection with the most
probable neutralino masses and the implications for direct, indirect detection and
colliders.

Section 4.1 is devoted to supersymmetric extensions of the SM. First, in subsection
4.1.1, we expand the initial discussion on the motivations for supersymmetric exten-
sions of the SM. In subsection 4.1.2, we discuss relevant aspects of supersymmetric
scenarios, in particular the one under consideration, taking into account the con-
straints after the first run of the LHC (with collisions at center-of-mass energies of
7-8 TeV1) while in Section 4.2, the concepts and tools involved in the analysis are
presented. Kinetic decoupling and protohalos are then addressed, within this super-
symmetric context, in section 4.3. The first results of the analysis are presented and
discussed in the following section: the most probable regions in parameter space in
4.4.1, and profile likelihood maps in 4.4.2. The implications for direct and indirect
detection of DM are then explored in subsections 4.5.1 and 4.5.2, respectively. A
short discussion of collider implications of the analysis is also included, in 4.5.3. To

1Since this work, the second run of the LHC has started with increased center-of-mass energies

of 13 TeV.
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h

λψ λψ

ψ

(a) Fermion loop.

h

S

λS

(b) Scalar loop.

Figure 4.1: One loop diagrams contributing to the Higgs mass corrections.

close the chapter, a summary of the results is given in section 4.6.

4.1 Supersymmetry

4.1.1 Motivations

Supersymmetry was introduced in section 2.2.3 as a class of scenarios which provide
dark matter candidates of the WIMP type. Additional motivations, in particular
addressing the hierarchy problem and improving the unification of gauge couplings in
Grand Unification theories, do also contribute to the interest of SUSY extensions of
the SM.

The hierarchy problem is a naturalness problem associated to the presence of a scalar,
the Higgs, in the SM. Consider the one-loop diagram in Figure 4.1(a), which involves
an interaction term λψ h ψ̄ψ among a scalar h (from now on, “the Higgs”) and a Dirac
fermion ψ. It gives a contribution (a “correction”) to the Higgs mass of the following
form:

δm2
h = − 1

8π2
|λψ|2{Λ2 + . . .} , (4.1)

with Λ some ultraviolet cutoff usually considered to be, at least, the energy scale at
which new physics enters the high energy (ultraviolet) behaviour of the theory.

If Λ is related to some Grand Unification scale or to the Planck mass scale, δm2
h,

which is expected to be a correction, is in fact many orders of magnitude larger than
the electroweak scale or the Higgs mass (the problem comes from the huge difference
among the 100 GeV scale and that high energy scale of new physics, not from the
precise value of the Higgs mass, 125 GeV, or the regularization scheme). This would
drag the whole SM spectrum to that high scale, since all the masses within the SM
are related to the Higgs. There is of course a way out. Since the physical Higgs mass
m2
h is the sum of that correction and a tree level value, m2

h = (m2
h)0 + δm2

h, the value
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of (m2
h)0 can be carefully tuned to obtain m2

h = (125 GeV)2 out of the difference of
two much, much, larger numbers. This way out, this kind of fine tuning, is unnatural.
There would be no reason for the scalar to be light (compared to high energy scale),
except for the tuning of the parameters up to many decimal places. In contrast to
the scalar case, loop corrections to fermion masses are proportional to the masses
themselves; when the mass of a fermion becomes zero, there is an additional chiral
symmetry which “protects” the mass from becoming non-zero. From that point of
view, having light fermions is natural. For vector mesons, having zero masses can also
be viewed as a natural consequence of symmetry, of gauge symmetry in that case, as
it happens, for example, with the photon. Coming back to our toy example, consider
now an additional interaction term λS h

2|S|2 of the Higgs with a complex scalar S.
The one-loop diagram of Figure 4.1(b) would give a contribution to the Higgs mass

δm2
h =

1

16π2
λS{Λ2 + . . .} . (4.2)

Now, if λS in Eq. (4.2) and λψ in Eq. (4.1) were related, owing to the relative −1
sign arising from the scalar versus fermion closed loop, a cancellation among both
contributions could arise. If that relation among couplings is based on a symmetry,
that cancellation would be natural, and no hierarchy problem would arise. In that
respect, this is what supersymmetry, a priori, achieves. Since exact supersymmetry
is not a possibility (superpartners of known fermions would have their same masses,
and that is not the case), it has to be broken, as mentioned in Section 2.2.3, softly, at
an energy scale of the order of the TeV. Although this reintroduces the need of some
fine tuning, it remains rather reduced.

Concerning unification of gauge couplings, running the renormalization group evolu-
tion of the three gauge couplings in the SM does not lead to a common value of all
three at any given energy scale (a common value of all three gauge couplings would be
a hint of a unified dynamics at that scale, then broken down and evolved differently
to low energies). The situation in supersymmetric scenarios is schematically sum-
marised in Figure 4.2: once the SUSY particles affect the evolution of the couplings,
the extrapolation to high energies can lead to a common value at around 1016 GeV.
For the interested reader we refer to the now classical introduction [156] for further
details.

4.1.2 Status

Despite the high expectations for the direct discovery of light SUSY particles at
the LHC (after the negative results at LEP and the Tevatron), so far no signal of
new physics has been found. This could be considered to be in tension with the
ideas of natural SUSY. Nevertheless, the mass of the Higgs boson, heavier than what
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Figure 4.2: Running couplings and unification in the MSSM. Figure from

http://sites.uci.edu/energyobserver/2012/12/02/update-on-some-higgs-blog-entries/

would be more easily accommodated, would rather point to a heavier mass spectrum
and suggest that the lack of discovery of sparticles in the first run of the LHC is a
consequence of the Higgs mass value.

In the MSSM, a lightest Higgs boson of around 125 GeV implies a range of MSUSY

between2 ∼ 103 GeV and ∼ 3 · 104 GeV, where MSUSY is the typical scale at which
SUSY particles decouple from the SM (for details, see [159, 160]). Hence, within
the MSSM framework, the Higgs mass and naturalness of the electroweak symmetry
breaking, require a tuning at the O(1)% level, see, e.g., [161]. This tension is, in any
case, relaxed going beyond the MSSM [162, 163, 164, 165, 166]. Moreover, since stops
contribute most to the Higgs mass, the allowed range of MSUSY could be translated
into a constraint on the stop sector, requiring stop masses typically larger than ∼ 3
TeV, unless they mix maximally [167], while the rest of the SUSY spectrum is left
rather unconstrained 3.

2This range is valid for relatively large values of tan β, the ratio of vacuum expectation values of

the two different Higgs doublets in the MSSM, Hu and Hd. Small values of tan β are disfavoured

since they force lighter Higgs (see, e.g., the reviews [157] and [158]).
3Notice however that for example [161] re-examined natural SUSY scenarios showing that light

stop masses, closer to the lower limits imposed by the Higgs mass, are not really a generic requirement

of natural SUSY scenarios.
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On the other hand, as already mentioned, one of the attractive aspects of SUSY, is
the apparent unification of gauge couplings (in the MSSM). Taking SUSY parameters
at MGUT and evolving with the renormalization group equations (RGE), leads to
implicit relations between sparticle masses when matching at low energies with the
SM is imposed4. In particular, for tan β = 10, the average of the two stop masses at
a scale of 1 TeV, m2

t̃
, expressed in terms of the soft parameters at MGUT [161], reads:

m2
t̃ ≃ 2.972M2

3 + 0.339m2
Q̃3

+ 0.305m2
Ũ3

+ 0.091M2
2

− 0.154m2
Hu

− 0.052A2
t + 0.017M2

1 . . .+m2
t , (4.3)

where M1, M2 and M3 are, respectively, the bino, wino and gluinos soft mass terms,
mQ̃3

and mŨ3
are the masses of the third generation squarks, and mHu

is the Hu

soft mass. Equation (4.3) shows that large stop masses imply large gluino masses,
Mg̃ ≃ 2.22M3, unless the mass terms of the third generation squarks are very large.

In terms of naturalness, the largest tuning necessary to obtain the correct electroweak
symmetry breaking (EWSB) concerns the µ parameter. From the minimization of the
Higgs potential one obtains

1

2
M2
Z = (1.62M2

3 − 0.64m2
Hu

+ 0.37m2
Q3

+ 0.29m2
U3

− 0.29AtM3

− 0.20M2
2 + 0.14M2M3 + 0.11A2

t + . . .) − µ2 . (4.4)

This expression is valid at a scale of 1 TeV, for tan β = 10 [161]. As in (4.3), the
M3 contribution has the largest coefficient. The bounds from ATLAS and CMS
[169, 170], mg̃ > 1.33 TeV on the gluino mass (assuming 100% decays to qq̄χ0

1 and
a mass difference between g̃ and χ0

1 of at least 200 GeV), are the more stringent for
naturalness. It is also important to stress that, according to equations (4.3) and (4.4),
naturalness and Higgs constraints affect mainly the gluino and squarks sector while
sleptons, Binos and Winos are basically unconstrained.

In a more general framework, the phenomenological MSSM, pMSSM for short, where
the MSSM is simply parameterized at the electroweak symmetry breaking scale, the
Higgs mass measurements constrain mainly the stop sector and leave the rest of the
spectrum effectively unconstrained. In this case, the main constraints on sparticle
masses come from LHC limits and from B-physics (see, e.g., Refs. [171, 172, 173, 174]).

Besides the tuning associated to the electroweak symmetry breaking, having a good
DM candidate also requires some tuning. References [175, 176] have studied the fine
tuning required to produce the correct DM relic density.

4Notice nevertheless that in gravity mediated SUSY breaking scenarios, conditions are rather set

at MPlanck. For some particular scenarios, starting the RGE running from MGUT instead of MPlanck

is not necessarily a correct approximation [168].
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4.2 Analysis

4.2.1 Generalities

Having introduced the SUSY context of our work from its particle physics side, this
Section details additional aspects of the analysis and the specific incarnation of the
MSSM that has been considered. In order to study the model, that is in order to study
its parameter space, numerical methods adequate for the task are sophisticated. The
analysis that has been done is a Bayesian one. Some basic statistical notions on
Bayesian analysis have been reviewed in Section 3.2.1.

At this point, we specify our SUSY scenario: we assume gravity mediated SUSY
breaking, and consider the MSSM with 10 fundamental parameters defined at the
unification scale of the gauge couplings, in addition to the Standard Model parameters.
Unification is assumed. Furthermore, squark masses, slepton masses and trilinear
terms follow universality (they do not distinguish among generations, in terms of
matrices in generation space, they are proportional to the identity matrix). Then,
the set of 10 parameters is

{gi, yi,M1,M2,M3,m
sq
0 ,m

sl
0 ,mH , A

sq
0 , A

sl
0 , µ,B}. (4.5)

gi and yi are, again, the gauge and Yukawa couplings. M1, M2, M3 are the gaugino
masses, while msq

0 , msl
0 and mH are the squark, slepton and neutral scalar masses,

respectively. Asq
0 and Asl

0 are the squark and slepton trilinear couplings, finally, as
already introduced, B is the bilinear Higgs coupling, and µ is the Higgs mass term in
the superpotential. It is more convenient to use the equivalent set of parameters

{SM,M1,M2,M3,m
sq
0 ,m

sl
0 ,mH , A

sq
0 , A

sl
0 , tan β, sign(µ)}, (4.6)

where SM stands for the SM parameters, since tan β, sign(µ) are more easily related
to observables than µ and B; the most relevant ones for the analysis are included in
Table 4.1. Without loss of generality, the sign of µ is fixed to +1; then, allowing Mi

to take positive and negative values, regions with relative phases between µ and Mi

are covered.

With our 9-parameter MSSM specified, let us comment on some differences among the
predictions of the scenario we consider and the most general MSSM. In our approach,
SUSY is assumed to break at the gauge-coupling unification scale. Although the
assumption is reasonable in gravity-mediated SUSY breaking scenarios, it is not the
only possibility. For example, in gauge mediated scenarios, this may happen, in
principle, at any scale. Moreover, the consequences of this assumption depend on
how much freedom is given to the soft parameters. Imposing the above mentioned
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Gaussian prior Range scanned ref.

Mt [GeV] 173.2 ± 0.9 (167.0, 178.2) [180]

mb(mb)M̄S [GeV] 4.20 ± 0.07 (3.92, 4.48) [181]

[αem(MZ)M̄S ]−1 127.955 ± 0.030 (127.835, 128.075) [181]

αs(MZ)M̄S 0.1176 ± 0.0020 (0.1096, 0.1256) [182]

Table 4.1: Relevant SM parameters, treated as nuisance parameters in the numerical anal-

ysis.

universality condition and the unification condition (right and left sfermions have
equal masses, as well as mHu

= mHd
), produces a specific hierarchy for the squark and

slepton masses; this hierarchy could be ameliorated by lowering the SUSY breaking
scale. This means that other possible hierarchies of sfermion masses will not be probed
in this scenario. In our case, for example, t̃1 is always the lightest squark, and τ̃1 the
lightest slepton. On the other hand, the universality condition does not introduce
new sources of flavour changes, and consequently, is well motivated by the low energy
experimental constraints from the flavour sector.

In the case of the phenomenological MSSM, the pMSSM mentioned in the previous
Section, the parameterisation is taken at the EWSB scale and thus the sparticle
masses do not “feel” the impact of the renormalization group equations (that is, there
is almost no “room” for the renormalization group evolution)5. Correlations among
parameters disappear, and the choice of priors most likely dominates the results, not
allowing to draw conclusions about most probable regions, for example. Anyway,
Bayesian analyses have been performed in the pMSSM from different perspectives
[177, 178, 179], in order for example to identify better which parameters are directly
constrained by experimental information (through the prior dependence of results in
each parameter)

In the analysis, following the lines of reference [183], two different priors are con-
sidered: standard log priors, “S-log priors”, that is log priors for each parameter
independently, and improved log priors, “I-log prior”, which assume a common origin
for the soft masses, as expected from SUSY breaking mechanisms. The range of the
parameters in the numerical analysis varies from 10 GeV to 106 GeV. Although both
priors are based on a uniform dependence in logarithms, they are rather different
from one another: the S-log priors, for example, favor large splittings between the
parameters, while for the I-log priors, since a common origin for the soft parameters
is assumed, this is not the case.

Basically, we assume a common scale with the values of the parameters being propor-

5Notice however that the universality condition is somehow taken into account in the pMSSM

when setting sfermion masses in the first and second generations equal.
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tional to that scale, which is to be marginalized over. Now, given the parameters θ1

and θ2 (with the same dimensions), in the standard log prior case, we would have

p(θ1, θ2) =
1

θ1

1

θ2
. (4.7)

In this case, consider two situations: (1) θ1 ∼ 10−10 and θ2 ∼ 1010, and (2) θ1 ∼
θ2 ∼ 1. The standard log prior assigns the same probability to both while we would
rather favor the second case if θ1 and θ2 are proportional to a common scale. The
I-log priors achieve that in a simple manner, with a prior of the form:

p(θ1, θ2) =
1

max(θ1, θ2)2
. (4.8)

That is, in the latter case, situations with either large or small values of some pa-
rameters, pay a probability penalty6. Notice, finally, that in this approach, which
incorporates naturalness arguments, we are able to explore large ranges for the dif-
ferent parameters and obtain consistent results.

Concerning the experimental input considered in our analysis, it is described in Table
4.2: it covers electroweak precision measurements [184], some B-physics observables
[185, 186, 187, 188, 189]7, the Higgs boson mass [194, 195], and constraints on the
WIMP-nucleon scattering cross-section by XENON-100 [196]. In addition, we include
the measured relic density according to the Planck collaboration results [197], since
we are assuming a scenario with a single DM component which is thermally produced
in the early Universe8

4.2.2 Tools

The numerical analysis involves the combined use of a number of tools (written in
Fortran and C++, which we briefly describe now. SuperBayeS-v2.0 is a set of routines
for parameter extraction within a Bayesian statistical approach in supersymmetric
scenarios. It implements the nested sampling MultiNest [149, 150] algorithm which,
although oriented to the efficient computation of the Bayesian evidence, does also pro-
duce posterior probability distributions. SuperBayeS interfaces/handles: Softsusy

6We refer to Sec. 3.3 of reference [183] for a more detailed discussion on the priors.
7More recent values would be, for example, BR(B̄ → sγ) = (3.43 ± 0.22 ± 0.07) × 10−4 [190] (see

also Refs. [191, 192]) and BR(B̄ → µ+µ−) = 2.8+0.7
−0.6 × 10−9 [193]. These measurements are still

in agreement (within uncertainties) with the values that are adopted in the analysis, and therefore,

their impact would not be large.
8We actually assume that 100% of dark matter consists of the neutralino. If there are other

dark matter components, one would need to regard the measurement of the dark matter density

determined by the Planck satellite as an upper limit, and follow some scaling ansaz as studied, e.g.,

in [198, 183].
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Observable Mean value Uncertainties Ref.
µ σ (exper.) τ (theor.)

MW [GeV] 80.399 0.023 0.015 [199]
sin2 θeff 0.23153 0.00016 0.00015 [199]
BR(B → Xsγ) × 104 3.55 0.26 0.30 [200]
R∆MBs

1.04 0.11 - [186]
BR(Bu→τν)

BR(Bu→τν)SM
1.63 0.54 - [200]

∆0− × 102 3.1 2.3 - [201]
BR(B→Dτν)
BR(B→Deν) × 102 41.6 12.8 3.5 [187]

Rl23 0.999 0.007 - [188]
BR(Ds → τν) × 102 5.38 0.32 0.2 [200]
BR(Ds → µν) × 103 5.81 0.43 0.2 [200]
BR(D → µν) × 104 3.82 0.33 0.2 [200]
Ωχh2 0.1196 0.0031 0.012 [202]
mh [GeV] 125.66 0.41 2.0 [180]
BR(Bs → µ+µ−) 3.2 × 10−9 1.5 × 10−9 10% [189]

Limit (95% CL ) τ (theor.) Ref.

Sparticle masses As in Table 4 of Ref. [203].
mχ − σSI

χN XENON100 2012 limits (224.6 × 34 kg days) [204]a

Table 4.2: Observables used for the computation of the likelihood function. For each

quantity, we use a likelihood function with mean µ and standard deviation s =
√

σ2 + τ2,

where σ is the experimental uncertainty and τ represents our estimate of the theoretical

uncertainty. Lower part: observables for which, at the moment, only limits exist. The

explicit form of the likelihood function is given in ref. [203]. In particular, in order to include

an appropriate theoretical uncertainty in the observables, the likelihood contains a smearing

out of experimental errors and limits.

aSince this work was published, improved XENON100 limits have been presented in Refs. [205,

206].
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[207] for the computation of the mass spectrum of the MSSM including one loop
corrections, micrOmegas [208] for the computation of the DM relic density, DarkSusy

[209] for the computation of direct9 and indirect detection observables, SusyBSG [211]
for the b → sγ computation within a Minimal Flavour Violating MSSM, and Superiso

[212] for other B-physics observables. In addition, for the Wino-like and Higgsino-like
LSP cases addressed in Section 4.4.1, the Sommerfeld enhancement10 of the primor-
dial and present day neutralino annihilation has been included, following the lines
of references [215, 216, 217, 218], using DarkSE [219, 220], which is a package for
DarkSusy.

4.3 Neutralinos and protohalos

As discussed in Chapter 2 and in the previous Sections, neutralinos are a clear example
of a WIMP-type dark matter candidate. With the WIMP hypothesis, the abundance
of DM originates from thermal decoupling in the early Universe. That is, when
the processes of pair-annihilation and pair-creation of WIMPs go out of chemical
equilibrium due to the Hubble expansion, the resulting number density freezes out
and remains constant, per comoving volume, until the present time. As discussed
in Section 1.4.2.1, this chemical decoupling, however, does not signal the end of the
interactions of the WIMPs with the thermal plasma. There could still be elastic
scattering processes with SM particles, which keep WIMPs in kinetic equilibrium
until later time (without modifying the abundance). When the rate of those elastic
scattering processes also falls below the Hubble expansion rate, the WIMPs enter the
so-called kinetic decoupling epoch. From that moment on, WIMPs are decoupled from
the thermal bath, and begin to free-stream. After this stage, the first gravitationally
bound DM structures begin to form; their size is set by the temperature of kinetic
decoupling, related to a small-scale cutoff in the primordial power spectrum of density
perturbations.

In reference [84] the primordial power spectrum was calculated including collisional
damping and free-streaming of WIMPs, showing that the free-streaming led to a cold
DM power spectrum with a cutoff around a scale corresponding to the Earth mass
∼ 10−6 M⊙ (see also references [85, 86, 16, 23]). One of the most challenging goals

9For the contribution of the light quarks to the nucleon form factors, concerning the spin-

independent WIMP-nucleon cross section, we have adopted the values fT u = 0.02698, fT d = 0.03906

and fT s = 0.36 [210].
10The Sommerfeld enhancement [213] is a non-relativistic effect that depends on three quantities:

the neutralino mass, the difference in mass between the neutralino and the next-to-lightest particle,

and the size of the coupling among them. In this context, the Sommerfeld enhancement of the

annihilation cross sections can significantly shift the neutralino mass consistent with the experimental

Ωcdmh2 value [214].
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today is to shed light on the nature of the small-scale cutoff in the primordial power
spectrum of density perturbations, often dubbed with the name of protohalo; protoha-
los are the smallest possible DM halos. Their properties are relevant for indirect DM
searches. As introduced in Section 2.6.2, indirect DM detection looks for signatures
of DM annihilation, such as gamma-ray photons, from dense celestial environments;
there, the protohalo mass is a relevant quantity to determine the enhancement of the
signal due to substructure, the “boost” factor. On the other hand, experiments of
direct detection of DM (see Section 2.22), look for energy deposition in underground
detectors due to scattering interactions between target nuclei and WIMPs around us;
they give valuable information on the scattering cross sections, and (anticipating re-
sults presented in the following), through the correlations discussed in this study, they
constrain the mass of the DM protohalos. Let us first discuss what is the smallest
mass of the protohalos.

As mentioned, WIMP interactions with the plasma in the early Universe produce
damping of the power spectrum before and after the kinetic decoupling. Before kinetic
decoupling, WIMPs behave as a fluid tightly coupled to that plasma. Interactions
produce shear viscosity in the WIMP fluid, causing the density perturbations (in that
WIMP fluid) to oscillate acoustically in the heat bath [85, 86]. The damping scale
set by these acoustic oscillations is given by the DM mass enclosed in the horizon at
this epoch, i.e, the size of the horizon when kinetic decoupling occurs[24]:

Mao ≈ 4π

3

ρχ(Tkd)

H3(Tkd)
= 3.4 × 10−6 M⊙

(

Tkd g
1/4
eff

50 MeV

)−3

, (4.9)

geff is the number of effective degrees of freedom in the early Universe and ρχ is the
DM density, both evaluated at the temperature of kinetic decoupling, Tkd.

After kinetic decoupling, WIMP interactions give a free-streaming scale which induces
a damping of density perturbations below a scale characterized by a (comoving) free-
streaming wavenumber, kfs [221, 84]. Therefore, if we have perturbations contained
in a sphere of radius π/kfs, we have the minimal mass of a DM protohalo, and then
the mass of the smallest protohalo allowed by free-streaming is [24]:

Mfs ≈ 4π

3
ρχ

(

π

kfs

)3

= 2.9 × 10−6 M⊙

(

1 + ln(g1/4
effTkd/50 MeV)/19.1

(mχ/100 GeV)1/2g
1/4
eff (Tkd/50 MeV)1/2

)3

.

(4.10)
Both mechanisms, collisional damping and free-streaming of WIMPs, lead to a cutoff
in the CDM power spectrum, from which the typical scale for the first haloes in the
hierachical picture of structure formation is set. The canonical value for the mass
of the DM protohalos is related to the nature of the DM particle. The SUSY based
predictions for the size of the DM protohalos fall in a range from 10−11 to 10−3 M⊙
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[24]. It is not clear, however, if these first and smallest halos survive until today, since
they can be destroyed either in the process of merging or during galaxy formation by
the so-called tidal stripping [70]. According to references [166, 222], the first halos
lose their mass during structure formation, but survive until today with their inner
density still intact.

For a typical WIMP one finds that the chemical-decoupling temperature is given by
Tcd ∼ m/25, where m is the WIMP mass, for an annihilation cross section 〈σv〉 ∼
10−26 cm3 s−1, (appropriate in order to obtain the CDM relic density as observed
today). On the other hand, the kinetic-decoupling temperature and, therefore, the
minimal protohalo mass, are not well constrained for WIMPs. A reference value of the
minimal protohalo mass for SUSY candidates is ∼ 10−6 M⊙, which was computed by
assuming a Bino-neutralino scattering with the SM particles through sfermions with
a mass of around twice the neutralino mass [16, 223, 224, 221]. The chosen nature of
the neutralino and the particular relation between the sfermions and Bino neutralino
was well motivated by a constrained SUSY extension of the SM (CMSSM), where
the typically light neutralinos (lighter than 1 TeV) that are able to reproduce the
correct relic density are mostly Bino that, efficiently, annihilate through sfermions in
the early Universe.

Even though Mph ∼ 10−6 M⊙ was a good estimate of the value of the smallest mass
of the DM protohalos for a “well motivated” neutralino, it is not a strong prediction
for a general neutralino DM. As described in [225], there are several ways to get a well
tempered neutralino; in a low-energy supersymmetric scenario, possible solutions that
reproduce the correct DM density are a pure Bino, a pure Higgsino or a pure Wino.
The Bino-neutralino, that annihilates through sfermions, is one of those possibilities.
Reference [24] performed a general study of the chemical and kinetic decoupling tem-
peratures Tcd and Tkd for the MSSM neutralino: as expected, m/Tcd ∼ 25, while
m/Tkd has a range of variation of almost four orders of magnitude, leading to a range
in Mph ∼ 10−12–10−3 M⊙. The reason of the big range of Tkd is that the interactions
involved in the annihilation of neutralinos, the ones which are constrained by the
relic density, are not necessarily the relevant ones for the “last” scattering of neutrali-
nos with the plasma, and, therefore, the relic density value does not constrain them.
For example, in the case of Wino-like or Higgsino-like neutralinos, the annihilation
products are mainly gauge bosons, whose interactions involve different couplings with
respect to the ones involved in the neutralino-fermion scattering.

It is important to mention that the computation of the kinetic decoupling tempera-
ture, and hence of the smallest protohalo mass, becomes more complicated when the
decoupling occurs close to the Quantum Chromodynamics (QCD) phase transition.
As mentioned above, the computation of Tkd and Mph is performed with DarkSusy,
following the lines described in reference [24]. For the case of two light (u, d) and
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one massive s quarks, the critical temperature is assumed to be Tc = 154 MeV. The
plasma is described including three quarks and gluons for a temperature T > 4Tc.
Therefore, in the following analysis, for the regions where the kinetic decoupling tem-
perature lies between Tc and 4Tc (154 MeV < Tkd < 616 MeV), Tkd will represent an
upper bound while Mph a lower bound.

4.4 Results

4.4.1 Most probable regions

The temperature of kinetic decoupling, the mass of the smallest protohalos and the
mass of the neutralino are the most relevant quantities involved in the analysis. Fig-
ure 4.3 shows the two dimensional joint posterior PDF for the temperature of kinetic
decoupling, Tkd, and for protohalo mass, Mph, against the neutralino mass mχ0

1
. The

contours represent 68% and 95% probability regions. As mentioned in subsection
4.2.1, we refer to 3.2.1 for details of the Bayesian analysis. One can clearly distin-
guish two most probable regions, around ∼ 1 TeV and ∼ 3 TeV. They correspond
to a Higgsino-like and to a Wino-like neutralino, respectively. Both the Higgs mass
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Figure 4.3: The two dimensional joint posterior PDF for kinetic decoupling temperature,

Tkd, versus the neutralino mass (left panel), and for the protohalo mass, Mph, versus the

neutralino mass (right panel). The region with higher probability density (with mχ0
1

∼ 1

TeV) corresponds to a Higgsino DM candidate, while in the second region the DM candidate

is a Wino.

measurement and the relic density constraint, as discussed in [183], are the main re-
sponsibles for the shift of the preferred regions towards high masses. Of course, it is
important to stress that the credibility intervals represent the most probable regions
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assuming the model that we consider is correct. In other words, the credibility re-
gions show relative probability densities within the model. Values outside the regions
can be disfavored because they have worse likelihoods and/or because they require
a large tuning to reproduce the experimental data (less volume in parameter space).
Concerning the prior dependence of our Bayesian analysis, the stability of the results
has been checked by using the two different priors (I-log and S-log priors) introduced
before: the results are basically unchanged (they are prior independent). Further de-
tails on those two regions are addressed in connection with the implications for direct
detection in Section 4.5.1.

4.4.2 Profile likelihood maps

The most probable neutralino mass regions are those around 1 TeV and 3 TeV. As
already stressed, this does not imply that there are no valid points in other regions like,
for example, for neutralinos in the intermediate region between 1 TeV and 3 TeV. One
can have points with good likelihood but outside the 95% probability regions showed
in Figure 4.3 because (larger) fine-tunings are required to reproduce the experimental
data and the correct EWSB.

In this subsection we study scenarios that reproduce all the observables within 2σ
confidence level. To this end, a new exploration is performed by requiring a non-
negligible Bino component for the lightest neutralino. In this way, we complete the
previous exploration on Higgsino-like and Wino-like neutralinos, including all the dif-
ferent neutralino natures. Bounds on sparticle masses based on simplified models, as
detailed in Table 4.3, are included. To apply these simplified model limits, produc-
tion cross sections published by the LHC SUSY Cross Section Working Group [226],
are used, including interpolation routines for gluino, squark and neutralino-chargino
production. The slepton production cross section has been computed using PYTHIA
8 [227, 228]. Constraints from the signal strengths of the Higgs measurements by
ATLAS [229] are also included11. For the computation of the branching ratios, we
used SUSY-HIT [231].

Figure 4.4 shows points that reproduce the experimental data within 2σ confidence
level. We show the lightest neutralino mass as a function of the kinetic decoupling
temperature, Tkd (top), and the protohalo mass, Mph (bottom). Let us describe the
mass spectrum. The characteristics of the electroweakino sector12 are set mainly by
the fact that an efficient neutralino annihilation is needed to reproduce the correct

11More recent and detailed results, in particular [230], have appeared since the analysis was done.
12The Bino and Wino masses, together with both the Higgsino mass term, µ, and the ratio of up

and down Higgs’s vacum expectation values, tan β, are referred to as electroweakino sector of the

MSSM.
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Topology
Refs.

Production Decay Comment

t̃1t̃1 t̃1 → bW (∗)χ̃0
1 mt̃1 ≪ mχ±

1
[232]

t̃1t̃1 t̃1 → tχ̃0
1 all hadronic [233]

b̃1b̃1 b̃1 → bχ̃0
1 [234]

g̃g̃ g̃ → bb̄χ0
1 mq̃ ≫ mg̃ [235]

g̃g̃ g̃ → tt̄χ0
1 mq̃ ≫ mg̃, 0 leptons + 3 b-jets channel [235]

g̃g̃ g̃ → qq̄χ0
1 mq̃ ≫ mg̃ [169]

g̃g̃ g̃ → bt̄χ±
1 mq̃ ≫ mg̃, mχ±

1
−mχ0

1
= 2 GeV [235]

q̃q̃ q̃ → qχ0
1 mg̃ ≫ mq̃ [169]

χ±
1 χ

0
2 W (∗)χ0

1Z
(∗)χ0

1 mχ±
1

= mχ0
2

[236]

l̃±L l̃
∓
L l̃±L → l±χ0

1 [236]
l̃±R l̃

∓
R l̃±R → l±χ0

1 [236]
l̃±LR l̃

∓
LR l̃∓LR → l±χ0

1 [236]

Table 4.3: Exclusion limits in simplified models included in the analysis. The luminosity

for each process is ∼ 20.3 fb−1.

relic density. To identify regions where the lightest neutralino co-annihilates with
sfermions in the early Universe, in both left panels we highlight points that satisfy a
criterion based on the mass difference between the lightest neutralino and the lightest
stau (green points), and between the lightest neutralino and the lightest stops (blue
points). To select those points we have required a maximal relative mass difference,
∆(mf̃ − mχ0

1
), of 5% and a maximal absolute mass difference of 5 GeV which are

imposed for neutralino masses above and below 100 GeV, respectively. The gray
band of the top-left panel shows the range of temperatures where the QCD phase
transition occurs, from one to four times the critical temperature, where the value
of Tkd represents an upper bound. Those points with Tkd around the QCD phase
transition are represented with lighter colors in the mχ0

1
–Mph plane in the bottom-

left panel, where in this case the value of Mph represents a lower bound.

Most of the points in Fig. 4.4 have a neutralino quasi-degenerate with another spar-
ticle. Higgsino-like and Wino-like lightest neutralinos are quasi-degenerate with the
lightest chargino, guaranteeing both a very efficient annihilation of neutralinos and
co-annihilation with charginos, and selecting rather heavy neutralino masses. Neu-
tralinos with a dominant Higgsino or Wino component cover the mass region of13

mχ0
1
& 1 TeV. As commented above for the most probable regions, for pure-Higgsino

and pure-Wino neutralino, the relic density constraint fixes the mass to ∼ 1 TeV and

13Assuming DM is made of several species, the relic density constraint becomes an upper bound,

allowing to have lighter Higgsino-like and Wino-like neutralinos.
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Figure 4.4: Lightest neutralino mass versus Tkd (top panel) and Mph for points that repro-

duce all the experimental observables within 2σ confidence level.

∼ 3 TeV, respectively. As a result of this scan, we have identified different mixed states
lying between these regions: Higgsino-Wino neutralinos, Higgsino-like and Wino-like
neutralinos that co-annihilate with staus or stops, and Wino-Bino neutralinos and
Higgsino-like neutralinos with a mass equal to half of the mass of the pseudoscalar.
Some of the points with mχ0

1
slightly below 1 TeV are Higgsino-Bino neutralinos.

This region is strongly constrained by direct detection experiments like Xenon100
and LUX.

Points with mχ0
1
. 1 TeV have a lightest Bino-like neutralino. For 100 GeV . mχ0

1
.

600 GeV, it is possible to distinguish two groups of points in the bottom-left panel
of Fig. 4.4. The first group has smaller Tkd, ranging from ∼ 10 MeV to ∼ 100
MeV and is basically aligned to the stau co-annihilation region. For these points
sleptons are light, and the correct neutralino abundance was reached by slepton-
neutralino co-annihilation in the early Universe. Charginos and heavier neutralinos
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are typically much heavier. For the second group of points with larger Tkd varying
from ∼ 100 MeV to ∼ 3 GeV, we checked that the lightest (Bino-like) neutralino is
quasi-degenerate with both the lightest Wino-like chargino and the second lightest
neutralino, guaranteeing the neutralino annihilation. Top-right panel of Fig. 4.4
shows that these two regions are not completely disconnected. For example, for
ml̃ − mχ0

1
∼ 0.5(ml̃ + mχ0

1
), sleptons also play a role in the annihilation processes.

The region 600 GeV . mχ0
1
. 1 TeV has similar characteristics, but in this case the

two regions, the one with light sfermions and the one with light charginos, have a
large overlap for 30 MeV . Tkd . 500 MeV.

Last but not least, we find that there are very few points for the Higgs and Z resonance
regions. These two regions require a very large tuning, and therefore, they are very
difficult to explore when requiring boundary conditions at the GUT scale.

To understand the dominant process of neutralino-SM scattering in the regions de-
scribed above, in the top-right panel of Fig. 4.4 we show the relative mass difference
between the lightest first and second generation of sleptons and the lightest neutralino,
∆(ml̃ −mχ0

1
), while in the bottom-right panel we show the gaugino fraction14. These

plots show, for all gaugino-like neutralinos (Bino-like or Wino-like), a clear correla-
tion between the lightest neutralino mass and the kinetic decoupling temperature for
a fixed value of ∆(ml̃ − mχ0

1
). Higgsino-like neutralinos around 1 TeV do not show

a correlation for specific sleptons masses; their interaction with sfermions is propor-
tional to the Yukawa coupling, and it is therefore negligible for the first and the second
generations of sleptons. In the Higgsino-like case the dominant interaction is the one
mediated by the Z-boson, as in the case of Bino-like and Wino-like neutralinos when
sfermions are decoupled.

As discussed in Section 4.2.1, we assume universality and unification of the squarks
and slepton masses. These conditions imply that t̃1 and τ̃1 are the lightest squark
and slepton, respectively, which is the reason why we only find neutralino-stop and
neutralino-stau co-annihilation regions in our analysis. In more general scenarios
where sfermions masses do not unify, the possibility of having co-annihilation with
any sfermion is open, since any of them could be the next-to-LSP. If the lightest
neutralino is Bino-like and the first or second generation sfermions are close enough
in mass to the lightest neutralino to guarantee a large enough effective annihilation
in the early Universe, then the dominant interaction in the scattering between the
lightest neutralino and the SM particles will be the same interaction (neutralino-
fermion-sfermion), producing a strong correlation between the mass of the lightest
neutralino and Mph.

14We remind that the lightest neutralino is a linear combination of the superpartners of the gauge

and Higgs field: χ0
1 = N11B̃ + N12W̃ 3 + N13H̃0

1 + N14H̃0
2 . The gaugino fraction is defined by

Zg ≡ |N11|2 + |N12|2 (see [237] for details).
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Another consequence of universality and unification is that the first and second gen-
erations of squarks are in general very heavy (due to the Higgs mass constraint on the
stop sector), having, in most of the cases, a negligible contribution to the neutralino
annihilation and neutralino scattering with the SM particles in the early Universe.

Without this assumption, the most important constraint on squark masses will come
from the LHC bounds and direct detection experiments, allowing smaller masses. Due
to the strong lower bounds on the first and second generation squarks masses coming
from the LHC [238], one would expect that sleptons will still give the dominant
contribution to the neutralino annihilation and neutralino scattering with the SM
particles in the early Universe for neutralinos lighter than 300 GeV. However, for
neutralino masses larger than 300 GeV, contributions from first and second generation
squarks could be sizeable. Interestingly, the cases that set the smaller value of Mph,
when sleptons are very close in mass to the mass of the lightest neutralino, and larger
values of Mph, when sleptons are decoupled and the scattering is mediated by Z-boson,
are covered in our analysis. On the other hand, the implications on direct detection,
indirect detection and on LHC prospects, could be different, as discussed in the next
Section.

The understanding of the interactions that play a relevant role in the annihilation
and scattering of neutralinos with SM particles helps us to identify correlations be-
tween Mph and the SUSY spectrum. These correlations could be very helpful for
constraining Tkd indirectly from current DM experiments. In particular, the region
of mχ0

1
. 600 GeV could be potentially tested by the LHC, as discussed in Section

4.5.3.

4.5 Implications

4.5.1 Direct detection

As discussed in Section 2.6.1, direct detection experiments of DM look for energy
deposition in detectors (typically underground to suppress backgrounds) caused by
scattering interactions between target nuclei and DM WIMPs around us. The mea-
surement or the bound on this cross section has direct consequences on the value of
the kinetic decoupling temperature Tkd, assuming that the processes involved in the
last scattering are the same as the ones producing the scattering of the DM with the
material in the detector. Before addressing the implications in terms of correlations
arising in the analyses, let us first comment some relevant features associated to the
most probable regions.
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The region around 1 TeV corresponds to a Higgsino-like neutralino. Its annihilation
cross section is driven by its Higgsino component (the main annihilation processes
are those of a pure Higgsino-neutralino). On the other hand, for the scattering cross
section, the small components of Wino and Bino play a crucial role. The reason is the
following. Assuming that sfermions are heavy enough to be considered decoupled, the
tree level SD scattering of Higgsino-like neutralino with fermions is mediated by the Z
boson. In the limit of pure Higgsino-neutralino, H̃u and H̃d are degenerate, and since
they have opposite quantum numbers, their contributions cancel. But then, when
the gaugino masses are not decoupled, the H̃u and H̃d composition of the lightest
neutralino is not the same, and the cancellation does not occur. Regarding the tree
level SI scattering15, the interaction is mediated by the Higgs boson, and as it interacts
with the neutralinos via a Higgsino-Bino(Wino)-Higgs coupling, a nonzero gaugino
component is necessary in order to have a nonzero tree level contribution. In this
region sfermions are not necessarily decoupled. However, since the Higgsino-sfermion-
fermion interaction is proportional to the Yukawa coupling16, these contributions are
negligible.

The region around 3 TeV corresponds to a Wino-like neutralino, where the most
important annihilation interactions are those of the pure Wino neutralino. The part
of the region closer to ∼ 2.5 TeV has also important contributions from the neutralino-
stau co-annihilation17, reducing the effective annihilation rate of neutralinos in the
early Universe and, therefore, decreasing the value of the neutralino mass to obtain the
correct relic density, that for the case of pure Wino is ∼ 3 TeV. As in the Higgsino-like
neutralino case, the tree level SD neutralino-fermion scattering cross section receives
an important contribution from the Z boson, which is the mediator of this interaction,
while the tree level SI neutralino-fermion scattering cross section receives it from a
Higgs. In both cases, a non-negligible component of Bino or Higgsino is needed to
have a tree-level contribution to these processes, since W̃ 0–W̃ 0–Z and W̃ 0–W̃ 0–h
interactions do not exist. In addition, sfermions give an important contribution to
the neutralino-fermions scattering cross sections, in particular for Wino-neutralinos
with mass ∼ 2.5 TeV. As we commented above, in this region staus are close in mass to
the lightest neutralino, and selectrons and smuons are light enough to give a sizeable

15We still assume that sfermions are decoupled.
16We remind that at temperatures of the order of MeV, when the kinetic decoupling occurs, the

population of third generation of fermions is very small.
17Sometimes, solving the Boltzmann equation for the evolution of the neutralino number density

to obtain the correct relic abundance of DM requires additional considerations; degeneracies in

mass between the lightest neutralino and the next to lightest one, or the presence of thresholds

and resonances in the annihilation cross section may be relevant (see, e.g., the review [239]). In

particular, when the lightest neutralino is close in mass to a heavier neutralino, the relic abundance

is determined both by its annihilation cross section and by co-annihilation with this heavier partner

which, then, decays into the lightest one. Co-annihilations may also occur with squarks, when they

happen to be very close in mass to the lightest neutralino.
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contribution to the scattering cross section.

Reference [87] analyzed correlations between the mass of protohalos Mph, the tem-
perature of kinetic decoupling Tkd and the spin dependent and spin independent
scattering cross sections. Such correlations appear when the masses of the squarks
are assumed to be large, mq̃ ≃ 5 − 10 TeV18, and the dominant process for the
scattering is the exchange of a Z boson. In Fig. 4.5, we show the most probable
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Figure 4.5: Most probable regions on the scattering cross section–protohalo mass plane.

The left and right panels show the correlation with the spin-dependent and spin-independent

cross sections, σSD
n and σSI

p , respectively.

region on the plane of the protohalo mass, Mph, and the SD and the SI cross sections
computed at tree level. Contrary to Fig. 4.3, the probability regions do not have dis-
connected parts, but they include both Higgsino-like (at ∼ 1 TeV) and Wino-like (at
∼ 3 TeV) neutralinos. In both cases the dominant scattering process is mediated by
the Z-boson. We see how the expected improvement on the SI sensitivity by, e.g., the
Xenon1T [240] and the LUX-Zeppelin experiments (LZ) [241], will reduce the most
probable range of the minimal subhalo mass down to below ∼ 10−9 M⊙, while the
expected SD sensitivity provides weaker constraints. Since in the analysis we have
included the XENON100 limits as constraints on the WIMP-nucleon scattering cross
section, we see in the right panel of Fig. 4.5 that the region around σSIp ≈ 2 × 10−44

cm2 is strongly penalized. The current LUX bound is more stringent on the spin-
independent sensitivity, giving an upper bound of σSIp ≈ 10−44 for a 1 TeV neutralino
[242], although we did not include it in our analysis19. Including the LUX bound,

18The authors of ref. [87] used the squark mass to show the effect of light sfermions in the

correlation, but clarify that when the correlation is broken, the relative contribution from sleptons,

especially the slepton exchange in the kinetic decoupling process, increases.
19Since this work was published, the LUX experiment has released updated results [243], and
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therefore, would affect the very right part of the right panel of Fig. 4.5 (and also
Fig. 4.7 shown below). However, since the regions affected are tiny, it will not affect
our conclusions. Figure 4.6 shows points that reproduce the experimental constraints

Figure 4.6: Points that reproduce all the experimental observables at 2σ confidence level in

the SD cross section σSD
p versus protohalo mass Mph plane. The neutralino mass is indicated

with colors, as shown in the color bar. The three panels separate the points in three groups:

light squarks and sleptons (left panel), light sleptons and decoupled squarks (central panel),

and decoupled squarks and sleptons (right panel).

at the 2σ confidence level for the minimal protohalo mass versus the tree level SD
cross section plane. The right panel shows the case where the lightest first or second
generation of sfermions is at least nine times heavier than the lightest neutralino,
∆(ml̃ q̃ − mχ0

1
) > 0.8. The thin yellow line corresponds to a ∼ 1 TeV Higgsino-like

neutralino, while the thin red line to a ∼ 3 TeV Wino-like neutralino. In these two
cases the Z-boson mediates both scattering processes. The rest of the points corre-
spond to the Bino-like neutralino where, instead of a line, we obtain scattered points
with 100 GeV . mχ0

1
. 1 TeV. We remind that for the Bino-like case, the annihilation

cross section and, therefore, the relic density, can be adjusted varying the neutralino
mass and its mass splitting with respect to the lightest (Wino-like) chargino. On the
other hand, even if they are ten times heavier than the lightest neutralino, sleptons
mediate the dominant scattering processes that set Tkd for most of the points. The
size of the contribution of processes mediated by the Z-boson, depends on how large
the Higgsino component of the neutralino is. However, the Higgsino component of a
Bino-like neutralino is highly constrained by SI cross sections bounds. Nevertheless,

improved XENON100 limits have been presented in Refs. [205, 206].
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as commented previously, there are some blind spots for SI cross sections. For those
points, the Z-boson gives an important contribution to the scattering cross section.

Regarding σSD
p for the Bino-like region, the dominant process is mediated by the Z-

boson20. Despite the dominant scattering processes for Tkd and σSD
p being different,

there is an apparent correlation between the two quantities for a fixed neutralino
mass. We have checked the behavior of the correlation for specific values of mχ0

1
,

finding that Tkd spreads around one order of magnitude for a given value of σSD
p .

The central panel of Fig. 4.6 shows the case where the lightest slepton has a mass
smaller than ∼ 10 times the lightest neutralino mass. As expected, the Wino-like
and Bino-like regions spread to larger protohalo masses21. The left panel of Fig. 4.6
shows the case where the lightest sleptons and squarks are lighter than ∼ 10 times
the lightest neutralino. In that case, squarks are light enough to give important
contributions to the scattering with the nucleus, spreading the points to larger values
of σSDn . Figure 4.7 shows points in the minimal protohalo mass versus tree level

Figure 4.7: Same as Fig. 4.6 for the the SI cross section, σSI .

SI cross section plane. The main contribution to the SI cross section comes from
the Higgs exchange, requiring a non-negligible Higgsino and Wino/Bino coupling

20Squarks are typically heavier than sleptons when parameterizing the model at the gauge coupling

unification scale. Therefore, imposing the condition ∆(ml̃ − mχ0
1
) > 0.8 implies that squarks are

typically much heavier than ten times the mass of the lightest neutralino.
21Winos and Binos have strong SD interactions since diagrams where the incoming and outgoing

fermions have the same helicity are allowed. On the other hand, the diagrams where the incoming

and outgoing fermions have opposite helicities are spin-independent, requiring a qq̃H̃ vertex to yield

the helicity flip, which is Yukawa suppressed. For a review, see Ref [244].
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(since Higgs couplings to neutralinos are HH̃B̃ and HH̃W̃ ). On the other hand,
the total neutralino-SM scattering, and therefore Tkd and Mph, are dominated by SD
interactions. As a consequence, right panel of Fig. 4.7 shows the correlation between
the Zχ0

1χ
0
1 and Hχ0

1χ
0
1, for the Higgsino and Wino case. Central and left panels show

the effect of sleptons and squarks in the scattering processes.

Figures 4.6 and 4.7 show the expected sensitivity of Xenon1T and LZ assuming that
the neutralino mass is ∼ 1 TeV. For a neutralino of ∼ 100 GeV, the expected sensitivity
is around one order of magnitude stronger.

As we commented in precedence, assuming universality and unification of the squark
and slepton masses, we impose a particular mass hierarchy: t̃1 is the lightest squark
and τ̃1 is the lightest slepton. Without this assumption, the first and second genera-
tions of sfermions can be lighter and change the phenomenology for direct detection
experiments and colliders. When the lightest neutralino is gaugino-like and the first
and second generations of squarks are the lighter sfermions, Tkd will be completely
correlated with the neutralino-nucleon scattering cross section. Still, if they are not
the lightest ones but they are significantly lighter than in our analysis, the neutralino-
nucleon scattering cross section could increase, taking values close to the actual limits.
In addition, if they are lighter or close in mass to the first and second generation slep-
tons, the scattering of the neutralino with SM particles in the early Universe could
also increase. Those points will most likely populate the top-right corner of the left
panel of Figs. 4.6 and 4.7.

Finally, we remind that the scattering cross sections considered in this work were
computed at tree level. In the cases where the neutralino approaches a pure state
(Bino, Wino or Higgsino), this approximation may not give a reliable result. In
particular, in the case of the Wino-neutralino, one loop corrections give the dominant
contributions (see, e.g., Ref. [245, 246]).

4.5.2 Indirect detection

One of the most reliable methods to model the non-linear evolution of DM is nu-
merical simulation, although it is limited by mass resolution. In fact, the minimum
self-bound mass (Mmin) of DM halos is expected to be many orders of magnitude
below the resolution of current simulations. Through numerical simulations such as
Acquarius [72], we can obtain information on the subhalo hierarchy, although its res-
olution mass limit ∼ 104 or ∼ 105M⊙ is far from the predicted protohalo mass shown
in Sections 4.4.1 and 4.4.2.

Here we investigate the impact of different values of Mmin on the gamma-ray luminos-
ity due to DM annihilation, and compute the boost factor of a given halo of mass M
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due to the substructure inside it, by integrating the subhalo annihilation luminosities
from the protohalo mass we have found, Mph, up to the mass of a sizable fraction
of the host halo Mmax. The total luminosity of the DM halo due to annihilation is
proportional to:

L ∝
∫ Mmax

Mph

dM
dn

dM
Lsh(M) , (4.11)

where dn/dM is the subhalo mass function, i.e. the subhalo number density per unit
mass range. Numerical simulations find that the differential subhalo mass function
follows a power law dn/dM ∝ M−β , with β ∼ 1.9 or β ∼ 2 (see, e.g. [70, 247]). We
adopt a M−2 subhalo mass spectrum as our fiducial subhalo model.

We assume that each individual DM subhalo is described by a Navarro-Frenk-White
density profile [248]:

ρsh =
ρs

(r/rs)(1 + r/rs)2
, (4.12)

where ρs and rs are the characteristic density and radius, respectively. Lsh(M) is
defined as the luminosity of each subhalo in the host halo, which depends on the
volume integral of the subhalo density squared, and is given by:

Lsh(M) =

∫

dVsh ρ
2
sh ∝ ρ2

s r
3
s . (4.13)

Following the approach of Ref. [249], we parameterize the scaling relation between
the gamma-ray luminosity and subhalo mass as:

Lsh(M) ∝ L0 ×







(

M
104 M⊙

)0.77

, M > 104 M⊙
(

M
104 M⊙

)γ

, M < 104 M⊙ ,
(4.14)

where above the simulation resolution of ∼104 M⊙, the luminosity versus subhalos
mass scales as L ∝ M0.77, while below the resolution we assume γ < 1. Here, L0

encodes all the particle physics, i.e., L0 ∝ 〈σv〉/m2
χ0

1
, where 〈σv〉 is the velocity-

averaged annihilation cross section times the relative velocity 22. In order to obtain
the scaling behavior of Lsh ∝ M0.77, we adopted scaling relations among several
quantities found in the Aquarius numerical simulation. Since each subhalo is described
by a NFW density profile, we related the maximum rotation velocity of the subhalo,
Vmax, and the radius at which the rotation curve reaches this maximum, rmax, with the
characteristic density and radius, ρs and rs, to obtain them as a function of the subhalo
mass M . These empirical relations between (Vmax, rmax) and (ρs, rs), however, loose
validity in the mass regions below the resolution limit of the simulation. For this
reason we split Eq. (4.14) in two terms, above and below the resolution (104M⊙),

22In the considered MSSM, for almost all the data points, we find that the annihilation cross

section, 〈σv〉, is almost independent of velocity, 〈σv〉 ≈ (σv)0.
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where in the latter we put γ as a phenomenological parameter describing the scaling
behavior. The luminosity in Eq. (4.11) can be then written as:

L ∝ 〈σv〉
m2
χ0

1

[

∫ 104 M⊙

Mph

dM M−2

(

M

104 M⊙

)γ

+

∫ Mmax

104 M⊙

dM M−2

(

M

104 M⊙

)0.77
]

. (4.15)

Assuming that the first term dominates, the luminosity is, thus, a function of the
protohalo mass:

L(Mph) ∼ 〈σv〉
m2
χ0

1

(

Mph

104 M⊙

)γ−1

. (4.16)

For comparison, we define a reference value for such a luminosity, Lref , as:

Lref ∝ 〈σv〉ref

m2
χ0

1

(

Mref

104 M⊙

)γ−1

. (4.17)

For values of these reference parameters, we adopt 〈σv〉ref = 3×10−26 cm3 s−1, Mref =
10−6 M⊙, and γ = 0.8.

The left panel of Fig. 4.8 shows the two-dimensional joint posterior PDF for the
protohalo mass Mph and 〈σv〉 with 68% and 95% probability contours. These most
probable regions fall in a mass range between 10−7 and 10−12M⊙, and 〈σv〉 = 10−26–
10−24 cm3 s−1. The region with higher probability density corresponds again to a
Higgsino DM candidate with the annihilation cross section close to the canonical
value 10−26 cm3 s−1, while the second region corresponds to a DM Wino candidate
with much larger annihilation cross section ∼10−24 cm3 s−1. In the right panel we
show the ratio of the luminosity over the reference one L̃ ≡ L/Lref , versus the DM
mass, mχ0

1
.

We also analyzed the change in the boost by varying the γ-parameter in a range
between 0.5 and 0.9, we only show the case γ = 0.8, and found that L̃ always got
largely boosted by decreasing γ. This behavior depends on the normalization made
on the protohalo mass, Mph, since it has been normalized to the limit of the numerical
simulation (104M⊙). Figure 4.9 shows the boost factor, L̃ ≡ L/Lref , for points that
reproduce all the experimental observables within 2σ confidence level. Right panel
shows points which refer to a Higgsino-like and Wino-like neutralinos, while the left
panel shows points where the neutralino is mostly Bino-like. Bino-like neutralinos
have very small 〈σv〉 in the limit of zero velocity. Co-annihilations, which play a
very important role in the efficient annihilation in the early Universe, are not present
anymore; this is the reason for which we have a very small boost of the luminosity.

Finally we comment that although not included in this work, Fermi and HESS bounds
in the mχ0

1
–〈σv〉 plane strongly constrain the Wino-like region, excluding the region

around 2.4 TeV (see Refs. [250, 251, 252, 253]).
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Figure 4.8: The two dimensonal joint posterior PDF for the protohalo mass, Mph, versus the

velocity-averaged annihilation cross section times the relative velocity, 〈σv〉 (left panel), and

for L̃, obtained by using γ = 0.8, versus the dark matter particle mass, mχ0
1

(right panel).

For both panels, the region with higher probability density corresponds to a Higgsino DM

candidate; in the second region the DM candidate is a Wino. Left panel shows that, in

the Higgsino case, the protohalo mass Mph is lower than the reference one, while 〈σv〉 does

not deviate from 〈σv〉ref ∼ 10−26 cm3 s−1. Right panel shows that, in the Wino case,

the protohalo mass Mph is even lighter and 〈σv〉 is two orders of magnitude larger than

〈σv〉ref ∼ 10−26 cm3 s−1; thus, there is a substantial enhancement of L̃.
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Figure 4.9: The mass of the lightest neutralino versus the boost factor, L̃ ≡ L/Lref , for

points that reproduce all the experimental observables within 2σ confidence level. Left panel

shows points which refer to a Bino-fraction (N11) larger than 0.8. Right panel shows point

with a Bino-fraction smaller than 0.8.

4.5.3 Collider

As commented in subsection 4.4.2, points with mχ0
1

smaller than ∼ 1 TeV are Bino-
like and require a light enough next-to-lightest sparticle, in order to guarantee an
efficient annihilation in the early Universe. Based on the characteristics of the next-
to-lightest sparticle, we now comment some potential LHC signatures. For neutralinos
lighter than 500 GeV there are two regions, in addition to Z/h/A resonances. The
first one has χ±

1 close in mass to χ0
1. A light Wino-like chargino which annihilates

and co-annihilates in the early Universe is required, and is represented by points with
5 GeV . mχ0

2
− mχ0

1
. 40 GeV in the left panel of Fig. 4.10. In this region χ0

1 is
dominantly Bino and χ±

1 and χ0
2 are dominantly Winos. The Bino and Wino mass,

M1 and M2, are close to the values where the tree level decay of χ0
2 to Z(∗)χ0

1 is
suppressed, and the branching ratio to γ χ0

1 acquires a large value, as discussed in
detail in Refs. [254, 255]. Right panel of Fig. 4.10 shows that some of the points
can have a dominant χ0

2 → γχ0
1 decay, giving a characteristic signature at a collider.

Moreover, the decay channel l̃L → lχ0
2 → lγχ0

1 becomes relevant. Although the
photon produced in the χ0

2 and l̃L decays is very soft, it could give a clear signature
at a collider in the boosted regime. It is important to keep in mind that a potential
measurement of sleptons will directly constrain the prediction for the protohalo mass
for the Bino-like neutralino. The second region corresponds to stau co-annihilation,
where τ̃1 and χ0

1 are very close in mass. In the left panel of Fig. 4.10, the points
outside 5 GeV . mχ0

2
− mχ0

1
. 40 GeV correspond to this region. Notice that, as

a consequence of the universality conditions of slepton masses, the first and second
generation of sleptons are relatively close in mass to the lightest stau and, therefore,
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Figure 4.10: Left panel shows the χ0
1 mass versus χ0

2 mass plane. The colors show the

mass of the lightest slepton (ẽL,R, µ̃L,R). Right panel shows the branching ratio of χ0
2 to

photons as a function of the χ0
2 mass for points with ml̃L

> mχ0
2
. Red, blue and green points

correspond to ml̃L
> 1 TeV, 500 GeV < ml̃L

< 1 TeV and ml̃L
< 500 GeV respectively.

to the lightest neutralino. The authors of Ref. [256] discuss the status of this region
after the first run of the LHC in the framework of the constrained MSSM, and project
the likely sensitivity of the LHC searches in Run 2 at 14 TeV center of mass energy and
300 fb−1 of integrated luminosity, concluding that the entire CMSSM co-annihilation
strip will be tested.

For mχ0
1
& 500 GeV, new regions arise. Stop co-annihilations and neutralino anni-

hilations are mediated by sfermions. In this neutralino mass range, the production
of colored particles is the most promising. In Refs. [257, 258, 259], the stop co-
annihilation region is studied, not only by direct stop production but also by gluino
production, where direct stop productions constrain light stops (mt̃1 . 400 GeV); for
heavier stops, the production seems to be more promising. On the other hand, the
region where neutralino annihilation is mediated by squarks is directly constrained
by limits on squarks masses.

4.6 Summary

In this Chapter, based on [2], we have studied how the kinetic decoupling of dark
matter could improve our knowledge of the properties of the dark matter protohalos
within a well motivated supersymmetric extension of the Standard Model, the Mini-
mal Supersymmetric Standard Model. Although it was at first introduced to solve the
hierarchy problem of SM and space-time supersymmetry at large can be motivated by
string theory, it revealed to have a very interesting characteristic when supplemented
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with R-parity (invoked to ban undesirable interactions mediating for example proton
decay): a dark matter candidate of the WIMP class, the lightest neutralino. If such a
neutralino is the lightest supersymmetric particle (and the quantum number R-parity
is preserved), it is stable, and could yield a thermal relic abundance as that indicated
by the observed dark matter density.

In our analysis, we do a forecast on the mass of the protohalos within a framework
realized with 9 independent parameters. The analysis is performed in the light of
the latest data coming from particle physics experiments, as well as the relic density
constraints: the most relevant observables involved in the analysis, in terms of their
influence on the results, are the mass of the Higgs and the DM relic density. The
most salient results are summarised in the following.

• The kinetic-decoupling temperature and, thus, the minimal protohalo mass re-
sult to be not well constrained for WIMPs, since the interactions involved in
the annihilation of neutralinos, that are constrained by the relic density, are
not necessarily those which participate in the scattering of neutralinos with
first and second generation of fermions. In a supersymmetric framework, the
minimal protohalo mass is typically 10−6M⊙, assuming a Bino-neutralino an-
nihilating through sfermions with a mass of around twice the neutralino mass.
This resulted in a possible option to get a well tempered neutralino. In ad-
dition, this possibility has been well motivated by constrained scenarios like
CMSSM, affirming that when the neutralino is mostly Bino, it efficiently anni-
hilates through sfermions in the early Universe, giving the correct relic density.
Nevertheless, it was in tension with the experimental data within the CMSSM,
especially after the first run of the LHC, where a considerable part of this region
was excluded.

• Using a Bayesian framework, we showed that the most probable neutralino
mass regions satisfying both the Higgs mass and the relic density contraints,
are those with the lightest supersymmetric neutralino mass around 1 TeV and
3 TeV, that correspond to Higgsino-like and Wino-like neutralino, respectively.
We mentioned that, concerning the Higgsino-like neutralino, the annihilation
cross section is driven by its Higgsino component, while for Wino-like neu-
tralino, the annihilation cross section is mainly driven by its Wino component.
We also discussed that the part of the region closer to ∼ 2.4 TeV gets impor-
tant contributions from the neutralino-stau co-annihilation, reducing both the
effective annihilation rate of neutralinos in the early Universe and the value of
the neutralino mass, in order to obtain the correct relic density.

• We commented that in the case of Wino-like or Higgsino-like neutralinos the
annihilation products are gauge bosons, whose interactions involve different cou-
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plings with respect to the ones of the neutralino-fermion scattering. For that
reason kinetic decoupling temperature, Tkd, exhibits a considerable range of
variation, that reflects, in turn, to a protohalo mass range of Mph ∼ 10−12–
10−7M⊙.

• We also discussed the Bino like neutralino with masses smaller than ∼1 TeV,
where a quasi-degenerated sfermion or chargino, or a light sfermion are neces-
sary to get the correct dark matter abundance. Sleptons give the most impor-
tant contribution for the kinetic decoupling temperature and therefore to the
protohalo mass, setting the range Mph ∼ 10−11–10−4M⊙.

• Kinetic decoupling of dark matter, involving elastic scattering of a dark matter
particle with Standard Model particles in the early Universe, reveals a relevant
process for dark matter direct detection searches. In our analysis, we showed
that the regions where the probability is higher the correlation between the
protohalo mass and experimental signatures permits to put constraints on the
protohalo mass. We depicted how improvements on the spin-independent sen-
sitivity might reduce the most probable range of the protohalo mass between
∼10−9 M⊙ and ∼10−7 M⊙, while constraints associated to the expected spin-
dependent sensitivity are weaker. To give this conclusion we computed scatter-
ing cross sections at tree-level. However, specially in the Wino-like neutralino
case, loop corrections should be considered since the tree level coupling vanishes
when approaching the pure Wino case.

• We discussed, as well, how the interplay among both spin-dependent and spin-
independent scattering procesess, strongly depends on the neutralino composi-
tion. For both Higgsino-like and Wino-like cases, the spin-dependent scattering
between Higgsino and fermions is mediated dominantly by the Z boson at tree
level, while for the spin-independent scattering, the interaction is mediated by
the Higgs boson. Regarding the Higgsino neutralino, we commented that the
spin-independent interaction gives a nonzero tree-level contribution as long as
gauginos are not decoupled, a non-negligible Bino or Wino component is nec-
essary to have a non-negligible coupling with the Higgs. On the other hand,
for the Wino-like neutralino the requirement of a non-negligible component of
Higgsino is indispensable to have a tree-level contribution to both scattering
processes if sfermions are decoupled.

• Depending on the nature of neutralino, the value of the annihilation cross sec-
tion, 〈σv〉v→0, changes by different orders of magnitude. We presented that
the annihilation cross section, 〈σv〉, in the Higgsino case does not deviate from
the canonical cross section, 〈σv〉 ∼ 10−26 cm3 s−1. On the other hand, in the
Wino case non-relativistic effect is important, 〈σv〉 increases up to two orders of
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magnitude. And it is much smaller in the Bino-like case, where co-annihilations
with sfermions played a crucial role to fix the correct abundance.

• Another way to look for dark matter is through indirect detection methods,
which consist to detect, indirectly, the lightest supersymmetric particle through
annihilation processes where Standard Model particles, including gamma-ray
photons, are produced. Since the luminosity of each subhalo in the host halo
due to the dark matter annihilation processes depends on the volume integral
of the subhalo density squared, smaller and denser substructures provide an
enhancement of the luminosity. In this work, we showed for both neutralino
Higgsino-like and Wino-like cases how the boost of the luminosity due to dark
matter annihilation increases, depending on the protohalo mass. We discussed
that in the Higgsino case, there is no a significant enhancement of the luminosity:
the protohalo mass is lower than the standard value often used in the literature
of ∼10−6 M⊙, while 〈σv〉 does not deviate from 〈σv〉 ∼ 10−26 cm3 s−1. In the
Wino case, a substantial enhancement of the luminosity is seen: the protohalo
mass reaches lighter values, and 〈σv〉 is two orders of magnitude larger.

***
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Our actual knowledge of the Universe is based on the theory of the initial “big ex-
plosion”, the phenomenon known as the Big Bang. It explains the evolution of the
Cosmos from a fraction of a second after its birth until today. According to the Big
Bang theory the Universe was born circa 13,700 millions years ago, and at the begin-
ning it occupied a tiny volume under the form of an extremely dense and hot plasma.
From this point on, it has been expanding and freezing, in a process similar to that
of the dough of the bread with the yeast. This process, along thousand of millions of
years, gave room to the atoms, the stars and the galaxies that make up the current
Universe. Such a model of cosmic evolution is based on General Relativity and on
three empirical and robust facts: the observed recession of distant galaxies; the rela-
tive abundance of light chemical elements (hidrogen, helium and litium, created few
minutes after the Big Bang); and the existence of a Cosmic Microwave Background
radiation, the CMB. This CMB radiation was “emitted” in all directions of space
380,000 years after the big explosion, when the Universe had frozen-out enough for
the electrons and photons to combine among themselves and to form the first neutral
atoms. That is, since the electromagnetic radiation does not interact with neutral
matter, from that point on, the photons freely propagated through space. This CMB
radiation bath still continues to arrive to us and constitutes the most ancient light
that we have managed to detect.
When this radiation was emitted, the conditions of the early Universe were impressed
in the CMB under the form of tiny inhomogeneities of the order of 1 part in 10,000.
Such small differences of density, derived from quantum fluctuations, would have been
the seeds of the formation of the structures at large scale that we observe today in
the sky, full of galaxies and voids. By measuring the CMB, we can obtain valuable
information about the actual Universe. A detailed analysis of the CMB anisotropies
permits to estimate the cosmological parameters as well as to discriminate among the
different models of Universe. The model that better fits the current data is the Stan-
dard Model with a cosmological constant and cold dark matter. This model supposes,
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as well, a flat Universe and an accelerated expansion caused by the cosmological con-
stant, dubbed “dark energy” due to its unknown origin.
According to the CMB observations, the dark energy represents approximately 69%
of the energy density of the Universe. Most of the remaining energy density is in
the form of cold dark matter, a matter of unknown composition, non-relativistic and
non-baryonic, i.e. not composed by protons, neutrons and electrons, that only con-
stitute the 4% of ordinary matter that fills the Universe. Dark matter is a mysterious
ingredient of the Universe, and it is the leading actor in this manuscript. It does not
emit neither absorbs radiation, and it interacts weakly with ordinary matter. Nev-
ertheless, we know about its existence by means of its gravitational effects: if there
exists a large amount of dark matter, its gravitational effects would explain the rota-
tion curves of galaxies. According to the standard cosmological model, the galaxies
are mostly formed by huge concentrations of dark matter, usually dubbed as halos.
In the middle of these enormous accumulations of dark matter – and only there – is
present the observable part of galaxies.
Despite the numerous efforts spent to search dark matter, through different meth-
ods that span from direct and indirect detection to production at particle colliders,
we do not have yet any definite information about its nature, and can only consider
promising hypoteses. For example, we know that the dark matter has a velocity much
smaller than the speed of light; otherwise the fluctuations of the density in the pri-
mordial Universe would not give rise to the galactic structures that we observe today.
This implies that the particles composing the dark matter possess a rather large mass.
On the other hand, we know that the dark matter particles have to be stable over
cosmic time scales. The reason is simple: we do not know any plausible mechanism
which is able to produce the dark matter; therefore, it has to be produced at the
Big Bang. This stability is usually achieved in particle dark matter models through
some quantum number or parity whose conservation forbids the decay of dark matter
candidates.
A paradigmatic dark matter candidate which fulfills the above requirements is the
WIMP, that is, a Weakly Interacting Massive Particle. It is a stable particle which
has rather weak interactions with Standard Model particles, and yields the correct
relic abundance to reproduce the observed dark matter density. As the other particles,
the WIMPs were produced at the Big Bang. At very high energies, these particles
were continuously created and destroyed. Their number then varied as a function of
two effects, related to the expansion of the Universe: the first one is the freeze-out
of the primordial plasma, that decreased both the density and the available energy
controlling the annihilation and creation of WIMPs, that is stopping the processes
of pair-annihilation and pair-creation of WIMPs. Nevertheless, this is not the end of
WIMPs interactions. Indeed, after the freeze-out, WIMPs can still undergo elastic
scattering processes with other particles of the primordial plasma. This second effect
does not change the amount of WIMPs, but can still keep them in equilibrium with
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the plasma: WIMPs are in kinetic equilibrium. When the rates of these processes
drop below the expansion rate of the Universe, WIMPs finally decouple and we have
kinetic decoupling. The idea of kinetic decoupling is relevant for considerations related
to the formation of dark matter structures under the influence of gravity. Coming
back to the nature of dark matter, recently there has been much speculation favouring
mixed dark matter models, models where dark matter consists of an admixture of cold
and non-cold particles, since they are a plausible solution to alleviate the small-scale
crisis of the standard cosmology. The reason is the following: the particle associated
to this second dark matter component has a larger free-streaming length, that causes
a suppression of the matter power spectrum on the smallest scales, improving the
compatibility with the observations of the local Universe, as for example the Milky
Way satellite problem for which the simulated number of dark matter subhalos in a
standard cosmology is much larger than the observed number of satellite galaxies that
orbit close to the Milky Way.

In Chapter 3, we consider mixed dark matter models through the inclusion of a
non-cold dark matter species. We vary both the mass and the fraction of the non-
cold dark matter component in a wide range, in such a way we can explore more
than a single particle physics model. Within this very large range, the possibility
that our second component of dark matter could be either a sterile neutrino or an
axion are included. Sterile neutrinos with keV masses may act as warm matter, and
therefore their propagation may suppress the power spectrum at scales smaller than
the characteristic free-streaming length. On the other hand, if axions were thermally-
produced in the early Universe, they can contribute to the radiation density and then
to the fraction of hot dark matter. Within a mixed dark matter framework, in the
light of the most recent Planck data (CMB) and Baryonic Acoustic Oscillations (BAO)
measurements, and adding as well the number of dwarf spheroidal satellite galaxies
in the Milky Way, we have derived limits on the fraction of the non-cold dark matter
component with respect to the total dark matter, as a function of its mass. We find
that for small masses of this second species of dark matter, the limit on its fraction is
approximately close to what one would expect from present constraints on the extra
relativistic species. On the other hand, for values of the non-cold dark matter mass
above fractions of keV, the CMB is unable to distinguish among the non-cold and
the cold dark matter components, since the CMB physics is basically unaffected by
the free-streaming nature of a particle with large mass. After including the matter
power spectrum, that we include through the measurements of the BAO scale and
the number of dwarf spheroidal satellite galaxies, yielding a suppression of the growth
of matter perturbations induced by the non-zero velocity dispersions of the non-cold
dark matter component, we obtain slightly tighter bounds on the fraction of warm
dark matter (with respect to the total dark matter) with respect to those existing in
the literature.
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Then, in Chapter 4, we have studied how the kinetic decoupling of dark matter could
improve our knowledge on the properties of the first gravitationally bound dark matter
structures, often dubbed with the name of protohalos, within a well motivated super-
symmetric extension of the Standard Model, the Minimal Supersymmetric Standard
Model. Supersymmetry, initially introduced to solve problems within the Standard
Model, proposed the existence of a new collection of particles, the lightest of which
could constitute a dark matter candidate. In addition, the lightest supersymmet-
ric particle, the lightest neutralino, belongs to the WIMP class. Within a chosen
supersymmetric model, one with 9 independent parameters, we studied correlations
among the temperature of the kinetic decoupling and direct detection signatures of
dark matter, as the spin-dependent and the spin-independent cross-sections. Kinetic
decoupling of dark matter, involving elastic scattering of a dark matter particle with
Standard Model particles in the early Universe, reveals a relevant process for dark
matter direct detection searches. We use electroweak precision measurements, some
B-physics observables, the Higgs boson mass, and constraints on the WIMP-nucleon
scattering cross-section by XENON-100. In addition, we include the measured relic
density according to the Planck collaboration results, since we assumed a scenario
with a single dark matter component which is thermally produced in the early Uni-
verse. We find that the most relevant observables involved in the analysis, in terms of
their influence on the results, are the mass of the Higgs and the dark matter relic den-
sity. The kinetic decoupling and protohalos are addressed; within this supersymmetric
context, we show how improvements on the spin-independent sensitivity might reduce
the most probable range of the protohalo mass. Complementarily, we have done a
study from the dark matter indirect detection point of view. Depending on the na-
ture of the neutralino, the value of both the annihilation cross section and the mass
of the protohalo change significantly. We show how the boost of the luminosity due
to dark matter annihilation increases, depending on the protohalo mass, and thus on
the type of neutralino. The understanding of the interactions that play a relevant role
in the annihilation and scattering of neutralinos with Standard Model particles has
helped us to identify correlations between protohalo masses and the supersymmetric
spectrum. These correlations could be very helpful for constraining the kinetic de-
coupling temperature indirectly from current dark matter experiments. In particular,
we have analyzed regions where neutralinos co-annihilate with other supersymmetric
particles, that could be potentially tested by the largest operating collider, the Large
Hadron Collider (LHC) at CERN.

Throught the joint analysis of particle physics and astrophysics aspects, we have
studied how the implications of the dark matter nature could help us to unveal the
puzzle of its existence.
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Onze kennis van het heelal is gebaseerd op de theorie van de eerste “grote explosie”,
het fenomeen dat bekend staat als de oerknal. Het verklaart de evolutie van de kos-
mos vanaf een fractie van een seconde na haar ontstaan tot aan vandaag. Volgens de
oerknal-theorie ontstond het heelal ongeveer 13,7 miljard jaar geleden, en in het begin
besloeg het slechts een heel klein volume in de vorm van een extreem dicht en heet
plasma. Vanaf dit moment begon het uit te zetten en af te koelen, een proces dat je kan
vergelijken met het rijzen van brooddeeg. Over een periode van miljarden jaren heeft
dit proces ruimte gegeven aan atomen, sterren en sterrenstelsels waaruit het huidige
heelal nu bestaat. Een dergelijk model van kosmische evolutie is gebaseerd op de al-
gemene relativiteitstheorie en op drie empirische en robuuste feiten: de observatie dat
ver van ons gelegen sterrenstelsels zich van ons verwijderen, de relatieve overvloed van
lichte chemische elementen (waterstof, helium en lithium, die al een paar minuten na
de oerknal zijn ontstaan), en het bestaan van de kosmische achtergrond straling (Cos-
mic Microwave Background, afgekort CMB). Deze kosmische achtergrond straling is
ongeveer 380 duizend jaar na de oerknal in alle richtingen van het heelal uitgezonden.
Het heelal was toen zodanig afgekoeld dat electronen en protonen samen de eerste
neutrale atomen konden vormen. Omdat electromagnetische straling geen interacties
aangaat met neutrale materie, konden fotonen vanaf dat moment vrij door de ruimte
propageren. Het licht van dit CMB stralingsbad bereikt ons nog altijd en is het oudste
licht dat we kunnen observeren. Toen deze straling werd uitgezonden is de toestand
van het vroege heelal ingeprent in de CMB, in de vorm van minuscule inhomogen-
iteiten. Zulke kleine verschillen in de dichtheid, voortgekomen uit quantumfluctuaties,
zouden de zaadjes zijn geweest van de structuurformatie op grote schaal die we van-
daag de dag aan de hemel observeren, vol met sterrenstelsels en de zich daartussen
bevindende leegtes. Een gedetailleerde analyse van de CMB anisotropieën staat ons
toe de kosmologische parameters te schatten en onderscheid te kunnen maken tussen
de verschillende modellen van het heelal. Het model dat het best aansluit bij de
huidige data is het standaard model van de kosmologie, met een kosmologische con-
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stante en koude donkere materie. Dit model veronderstelt een vlak heelal en versnelde
uitdijing veroorzaakt door de kosmologische constante, ook wel donkere energie ge-
noemd. Uit de observaties van de CMB volgt dat donkere energie verantwoordelijk is
voor ongeveer 69 procent van de energiedichtheid van het heelal. Het grootste gedeelte
van de overige energiedichtheid wordt bepaald door koude donkere materie, een vorm
van materie van onbekende samenstelling, dat niet-relativistisch en niet-baryonish
is. Dit laatste wil zeggen dat het niet is opgebouwd uit protonen en neutronen etc.,
deeltjes die vallen onder de gewone materie, dat maar 4 procent van ons heelal vult.
Donkere materie is een mysterieus ingrediënt van het heelal, en het speelt de hoofdrol
in dit proefschrift. Het zendt geen straling uit en absorbeert het ook niet, en het gaat
zeer zwak interacties aan met normale materie. Toch weten we van het bestaan er-
van af door effecten veroorzaakt door de zwaartekracht: als er een grote hoeveelheid
donkere materie bestaat, zouden de zwaartekrachtseffecten die erdoor veroorzaakt
worden de rotatiecurve van sterrenstelsels kunnen verklaren. Volgens het standaard
kosmologische model bestaan de sterrenstelsels voornamelijk uit gigantische concen-
traties donkere materie, ook wel donkere materie halos genoemd. Alleen in het mid-
den van deze enorme samenklontering van donkere materie bevindt zich het door ons
zichtbare gedeelte van het sterrenstelsel. Ondanks de talrijke pogingen om donkere
materie te ontdekken, variërend van directe detectie en indirecte detectie tot productie
in deeltjesversneller, hebben we nog steeds geen definitieve informatie over haar aard,
en kunnen we alleen veelbelovende hypotheses overwegen. We weten bijvoorbeeld
dat de snelheid van de donkere materiedeeltjes veel kleiner is dan de lichtsnelheid,
anders zouden de dichtheid-fluctuaties in het zeer vroege heelal niet hebben geleid
tot de galactische structuren die we vandaag de dag observeren. Dit impliceert dat
de deeltjes waaruit donkere materie bestaat een relatief grote massa moeten hebben.
We weten ook dat de donkere materiedeeltjes stabiel moeten zijn gedurende kosmis-
che tijdschalen. De reden is simpel: we kennen geen aannemelijk mechanisme dat
in staat is donkere materie te produceren, daarom moet het zijn ontstaan tijdens de
oerknal. Deze stabiliteit wordt in donkere materie-modellen gewoonlijk bereikt door
een bepaald quantum nummer of pariteit waarvan de conservatie het verval van de
donkere materie-kandidaat verbiedt. Een donkere materie-kandidaat die aan al deze
bovenstaande eisen voldoet is de WIMP, de “Weakly Interacting Massive Particle”.
Het is een stabiel deeltje dat tamelijk zwak interacties aan gaat met deeltjes uit het
standaard model, en levert het juiste overschot aan donkere materie uit het vroege
heelal op om de geobserveerde donkere materie-dichtheid te reproduceren. Net zoals
de andere deeltjes zijn de WIMPs ontstaan tijdens de oerknal. Deze deeltjes werden
continu met zeer hoge energieën gecreëerd en weer vernietigd. Hun aantal varieerde
op dat moment als een functie van twee effecten gerelateerd aan de uitzetting van
het heelal: het eerste effect is de “freeze-out”, het heel erg sterk afkoelen van het
oerplasma, wat zowel zorgde voor een afname van de dichtheid als de beschikbare
energie voor het in paren creëren van WIMPs, waardoor dit proces stopte. Dit is des-
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ondanks niet het einde van WIMP-interacties. Na deze “freeze-out” konden WIMPs
nog steeds elastische verstrooiing ondergaan met andere deeltjes in het oerplasma.
Het tweede effect heeft geen invloed op de hoeveelheid WIMPs, maar zorgt ervoor
dat deze deeltjes nog steeds in evenwicht zijn met het plasma: de WIMPs zijn in
kinetisch evenwicht. Wanneer de mate van deze verstrooiing-processen lager wordt
dan de mate van de uitdijing van het heelal, ontkoppelen de WIMPs en spreken we van
kinetische ontkoppeling. Het idee van kinetische ontkoppeling speelt een rol bij over-
wegingen gerelateerd aan de formatie van donkere materie-structuren onder de invloed
van zwaartekracht. Om terug te komen op de aard van donkere materie: recentelijk
is er veel gespeculeerd in het voordeel van gemengde donkere materie-modellen, mod-
ellen waar donkere materie uit een mengsel van koude en niet-koude deeltjes bestaat.
Dit zou namelijk een aannemelijke oplossing zijn om het probleem dat de standaard
kosmologie op kleine schaal heeft, te verlichten. De reden hiervoor is dat het laatstge-
noemde deeltje een grotere afstand kan afleggen in het vroege heelal, de zogenaamde
”vrije-propagatie lengte”. Dit onderdrukt de “materie power spectrum” op de kleinste
schaal en verbetert hierdoor de verenigbaarheid met de observaties van het lokale hee-
lal. Zoals bijvoorbeeld het probleem met de satelliet-sterrenstelsels van onze Melkweg,
waarvoor het aantal subhalos berekend doormiddel van simulaties veel groter is dan
het aantal satelliet-sterrenstelsels dat dicht om onze Melkweg draait. In hoofdstuk 3
overwegen we gemengde donkere materie-modellen, met zowel koude als niet-koude
donkere materie soorten. We variëren zowel de massa en de fractie van de niet-koude
component van de donkere materie over een grote schaal, op een dusdanige manier dat
we meerdere deeltjes modellen kunnen verkennen. Op deze zeer grote schaal is ook
meegenomen dat de tweede donkere materie-component een steriele neutrino of een
axion zou kunnen zijn. Steriele neutrinos met massa’s rond de keV kunnen zich gedra-
gen als warme materie, waardoor hun voortbeweging het power spectrum zou kunnen
onderdrukken op schalen kleiner dan de karakteristieke vrij-propagatie lengte van het
deeltje. Anderzijds, als axionen in het vroege heelal in thermisch evenwicht zijn ge-
produceerd, kunnen ze bijdragen aan de stralingsdichtheid en de fractie hete donkere
materie. Binnen een gemengd donkere materie-kader, in het licht van de meest re-
cente Planck data (CMB) en Baryonische Akoestische Oscillaties (BAO) metingen,
waarin we ook het aantal bolvormige dwerg satelliet-sterrenstelsels in de Melkweg
hebben meegenomen, hebben we limieten afgeleid op de fractie van de niet-koude
donkere materie component ten opzichte van de totale donkere materie, als functie
van haar massa. We vinden dat voor donkere materie van deze tweede soort met kleine
massa’s, de limiet op de fractie van deze soort in het totaal ongeveer gelijk is aan wat
we verwachten aan de hand van huidige afbakeningen van de extra relativistische
soorten. Aan de andere kant is de CMB niet in staat onderscheid te maken tussen de
niet-koude en koude donkere materie-componenten voor massa’s in de orde van grote
van een keV en hoger, omdat de natuurkunde van de CMB in feite onaangetast blijft
door de vrije propagatie van een zwaar deeltje. Gebruikmakend van de metingen van
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de BAO-schaal en het aantal bolvormige dwerg satelliet-sterrenstelsels hebben we het
“materie power spectrum” toegevoegd, wat resulteert in een onderdrukking van de
groei van dichtheid verstoringen gëınduceerd door de snelheidsspreiding van de niet-
koude donkere materie-component. Hierna verkregen we iets strakkere begrenzingen
op de fractie warme donkere materie (ten opzichte van de totale donkere materie) ten
opzichte van de begrenzingen in de literatuur. Dan, in hoofdstuk 4, bestuderen we hoe
de kinetische ontkoppeling van donkere materie onze kennis over de eigenschappen van
de eerste zwaartekrachtsgebonden donkere materie-structuren kan verbeteren, vaak
protohalos genoemd, binnen een goed onderbouwde supersymmetrische extensie van
het Standaard Model, de Minimal Supersymmetric Standard Model. Supersymme-
trie, aanvankelijk gëıntroduceerd om problemen binnen het Standaard Model op te
lossen, stelt het bestaan van een nieuwe collectie deeltjes voor, waarvan de lichtste
deeltjes een donkere materie-kandidaat zouden kunnen zijn. Daarnaast behoort het
lichtste supersymmetrische deeltje, de lichtste neutralino, tot de WIMP-klasse. Bin-
nen een gekozen supersymmetrisch model, met 9 onafhankelijke parameters, hebben
we de correlaties bestudeerd tussen de temperatuur van de kinetische ontkoppeling
van donkere materie, en de signalen afkomstig van directe detectie van donkere ma-
terie in de vorm van spin-afhankelijke en spin-onafhankelijke werkzame doorsnedes.
Kinetische ontkoppeling van donkere materie, waar de elastische verstrooiing van
donkere materiedeeltjes met deeltjes uit het Standaard Model in het vroege heelal bij
betrokken is, onthult een relevant proces voor het direct detecteren van donkere ma-
terie. We gebruiken precisiemetingen aan de elektrozwakke wisselwerking, een aantal
waarnemingsgrootheden uit de B-fysica, de massa van het Higgs-deeltje, en de af-
bakening van de werkzame doorsnede van WIMP-nucleon verstrooiing bepaald door
XENON-100. Daarnaast nemen we de gemeten “relic” dichtheid uit de resultaten van
de Planck collaboratie mee, gezien we een scenario aannemen met een enkele donkere
materie-component die in het vroege heelal in thermisch evenwicht is geproduceerd.
We vinden dat de massa van het Higgs-deeltje en de relic dichtheid van de donkere
materie de meest relevante waarnemingsgrootheden zijn die bij de analyse betrokken
zijn, gezien hun invloed op de resultaten. De kinetische ontkoppeling en protohalos
komen aan bod; binnen deze supersymmetrische context laten we zien hoe verbe-
teringen aan de spin-onafhankelijke gevoeligheid mogelijk het meest waarschijnlijke
gebied van de protohalo-massa kan verkleinen. Complementair hieraan hebben we
ook een studie gedaan vanuit de invalshoek van de indirecte detectie van donkere
materie. Afhankelijk van de aard van het neutralino verandert zowel de waarde van
de annihilatie-werkzame doorsnede als de massa van de protohalo significant. We
laten zien dat de oppepper van de helderheid veroorzaakt door de annihilatie van
donkere materie toeneemt, afhankelijk van de massa van de protohalo, en dus van
het type neutralino. Het begrip van de interacties die een relevante rol spelen bij de
annihilatie en verstrooiing van neutralinos met deeltjes uit het Standaard Model heeft
ons geholpen om correlaties te identificeren tussen de massa van protohalos en het
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supersymmetrische spectrum. Deze correlaties kunnen behulpzaam zijn bij het indi-
rect afbakenen van de temperatuur van de kinetische ontkoppeling doormiddel van
huidige donkere materie-experimenten. In het bijzonder hebben we regionen geanal-
yseerd waar neutralinos co-annihileren met andere supersymmetrische deeltjes. Dit
kan mogelijk getest worden met de grootste opererende deeltjesversneller, the Large
Hadron Collider (LHC) in CERN.

Door de gezamenlijke analyse van aspecten uit de deeltjesfysica en de astrofysica
hebben we bestudeerd hoe implicaties van de aard van donkere materie kunnen helpen
om de puzzel van haar bestaan te ontrafelen.

Vertaald door Niki Klop en Richard Bartels.
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A Appendix: Jeans Theory

A.1 Jeans Theory

In an attempt to understand the formation of stars and planets, Jeans (1902) demon-
strated the existence of an important instability in evolving clouds of gas. This
instability, known as the gravitational Jeans instability, is now the cornerstone of the
standard model for the origin of galaxies and large-scale structures. Jeans demon-
strated that, starting from a homogeneous and isotropic fluid, small fluctuations in
the density, δρ, and velocity, δv, could evolve with time. In particular, he showed
that density fluctuations can grow in time if the stabilising effect of pressure is much
smaller than the tendency of the self-gravity of a density fluctuation to induce col-
lapse.
Gravity is an attractive force so, as long as pressure forces are negligible, an over-
dense region is expected to accrete material from its surroundings, thus becoming
even denser. The denser it becomes, the more it will accrete, resulting in an insta-
bility which can ultimately cause the collapse of a fluctuation into a gravitationally
bound object. The simple criterion needed to decide whether a fluctuation will grow
with time is that the typical lengthscale of a fluctuation should be larger than the
Jeans length, λJ , for the fluid.
Let us work out the details of the previous summary. The Newtonian motion of a
perfect fluid is described by the following set of equations:
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∂ρ

∂t
+ ~∇ · (ρ~v) = 0 (Continuity), (A.1)

∂~v

∂t
+ (~v · ~∇)~v +

1

ρ
~∇ p+ ~∇Ψ = 0 (Euler), (A.2)

~∇2Ψ − 4πGρ = 0 (Poisson), (A.3)
∂s

∂t
+ ~v · ~∇s = 0 (Conservation of Entropy), (A.4)

where ρ is the matter density, p the pressure, ~v the local fluid velocity, s the entropy
density and Ψ the gravitational potential. We can consider a static solution with
matter at rest and uniformly distributed:

ρ = ρ0 , (A.5)

~v = ~0 , (A.6)

p = p0 , (A.7)

~∇Ψ = ~0 , (A.8)

s = s0 . (A.9)

Notice, however, that assuming a vanishing gravitational force, ~∇Ψ = ~0 contradicts
Poisson’s equation1; as Jeans did, “the Jeans swindle”, we will proceed anyway. This
problem will disappear when we analyse the case of an expanding Universe. Our next
step is to consider perturbations of the static case,

ρ = ρ0 + δρ , (A.10)

~v = δ~v , (A.11)

p = p0 + δp , (A.12)

Ψ = Ψ0 + δΨ , (A.13)

s = s0 + δs . (A.14)

Substitution of eqs.(A.10)-(A.14) in (A.1)-(A.4) gives a set of equations that is non-
linear: we linearize neglecting the terms beyond the first order in the perturbations,
to obtain:

1This ultimately means that there is no homogeneous static configuration for a self gravitating

perfect fluid in a static Newtonian Universe.
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∂δρ

∂t
+ ρ0

~∇ · δ~v = 0 , (A.15)

∂δ~v

∂t
+

1

ρ0

(

∂p

∂ρ

)

s

~∇ δρ+

(

∂p

∂s

)

ρ

~∇δs+ ~∇ δΨ = 0 (A.16)

~∇2δΨ − 4πGδρ = 0 , (A.17)
∂δs

∂t
= 0 . (A.18)

In Eq. (A.17),
(

∂p
∂ρ

)

s
≡ c2

s, with c2
s the speed of sound.

We now look for solutions in the form of plane waves

δui = δ0,i exp(iωt) exp(i~k · ~r) , (A.19)

where δui, i = 1 to 4 stands for δρ, δ~v, δΨ and δs, respectively. ~r is the position
vector, ~k is a wave vector, and ω an angular frequency; we also introduce δ0 = δρ/ρ0.

We can now substitute (A.19) into equations (A.15)-(A.18) to obtain:

ω δ0 + ~k · δ~v = 0 , (A.20)

ω δ~v + ~k c2
s δ0 +

~k

ρ0

(

∂p

∂s

)

ρ

δs+ ~k δΨ = 0 (A.21)

k2 δΨ + 4πGδ0 ρ0 = 0 , (A.22)

ω δs = 0 . (A.23)

First we consider the solutions that do not depend on time, i.e. those with ω = 0.

• With δs = constant 6= 0, that is, the perturbation in s is conserved, such a
solution is called isoentropic solution.

• Additional solutions with ω = 0 are obtained with δs = 0 and ~k · δ~v = 0. They
have ~k perpendicular to δ~v, and do not imply a perturbation of the density:
they just correspond to vortex motions.

Time dependent solutions are much more interesting. They have δs = 0 and are
thus called adiabatic. From equation (A.20), ~k · δ~v 6= 0; since we can separate ~k in
components parallel and perpendicular to δ~v, and the latter has already appeared in
the time independent case, we now assume that ~k is parallel to δ~v, i.e. longitudinal.
Thus, equations (A.20)-(A.23) become (|δ~v| = δv and |~k| = k):
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ω δ0 + k δv = 0 , (A.24)

ω δv + k c2
s δ0 + k δΨ = 0 , (A.25)

k2 δΨ + 4πGδ0 ρ0 = 0 . (A.26)

The system admits a non-vanishing solution if and only if the following condition, a
dispersion relation, is satisfied:

ω2 − c2
s k

2 + 4πGρ0 = 0 . (A.27)

We will then have two types of solutions, depending on the wavelength λ = 2π/k,
being larger or smaller than

λJ = cs

(

π

Gρ0

)1/2

, (A.28)

called the Jeans length.

• λ < λJ : in this case the pulsation ω in equation (A.27) is real:

ω = ±c2
s k

[

1 −
(

λ

λJ

)2
]1/2

. (A.29)

Therefore, the density perturbation evolves according to:

δρ = ρ0 δ0 exp[i(~k · ~r ± |ω|t)] , (A.30)

which represents two progressive sound waves propagating in the directions ±~k,
with a phase velocity:

vph = cs

[

1 −
(

λ

λJ

)2
]1/2

. (A.31)

Such a velocity goes to zero when λ → λJ .

• λ > λJ : in this case ω is imaginary:

ω = ±(4πGρ0)1/2

[

1 −
(

λ

λJ

)2
]1/2

. (A.32)
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Now, the density perturbation reads:

δρ = ρ0 δ0 exp(i~k · ~r) exp(±|ω|t) , (A.33)

which describes stationary waves whose amplitudes increase or decrease ex-
ponentially with time. The characteristic timescale for the evolution of the
amplitude is:

τ = |ω|−1 = (4πGρ0)−1/2

[

1 −
(

λJ
λ

)2
]−1/2

. (A.34)

Only this previous solution identifies the phenomenon of gravitational instabil-
ity. For scales λ ≫ λJ , τ coincides with the free fall time, τff ≃ (4πGρ0)−1/2,
but for λ → λJ the characteristic time diverges, τ → ∞.

A.1.1 Instabilities in an expanding Universe

We have analysed the evolution of perturbations of a static homogeneous fluid: let us
now consider the evolution of perturbations associated to an expanding Universe. To
do so we now consider an expanding background solution to eqs.(A.1)-(A.4),

ρ(t) = ρ(t0) a−3(t) , ~v =
ȧ

a
~r , ~∇Ψ =

4πG

3
ρ~r , (A.35)

where a(t) is the expansion factor. The linearized equations describing the evolution
of adiabatic perturbations become

∂δρ

∂t
+ 3

ȧ

a
δρ+

ȧ

a
(~r · ~∇)δρ+ ρ0

~∇ · δ~v = 0 , (A.36)

∂δ~v

∂t
+
ȧ

a
δ~v +

ȧ

a
(~r · ~∇)δ~v +

c2
s

ρ0

~∇ δρ+ ~∇ δΨ = 0 (A.37)

~∇2δΨ − 4πGδρ = 0 . (A.38)

Notice that “the Jeans swindle” is not necessary anymore2. Defining again δ0 and
decomposing the perturbations in Fourier modes according to

f(~r, t) ∝
∫

d3r f~k(t) exp
(

i~k · ~r
)

, (A.39)

2Notice in addition that for |~r| >
(

ȧ
a

)

−1
, |~v| > 1, a relativistic treatment would then be necessary;

furthermore the background potential Ψ diverges with |~r| → ∞.
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for f = δ0, δ~v and δΨ, equations (A.36)-(A.38) lead to

δ̈0~k + 2
ȧ

a
δ0~k +

(

c2
s k

2 − 4πGρ
)

δ0~k = 0 . (A.40)

In eq.(A.40) one can read the same kind of qualitative behaviour that was found in the
non-expanding case in terms of the Jeans wavenumber k2

J = 4πG
c2

s
ρ, which separates

gravitationally stable and unstable modes: short wavelength modes (k ≫ kJ) where
the perturbations oscillate as a sound wave, and long wavelength modes (k ≪ kJ)
where the perturbation may grow. Detailed solutions depend on the expansion factor
a(t). Let us illustrate how things work considering a spatially flat, matter dominated
FRW model where ρ = 1/(6πG t2), a = a0(t/t0)2/3, and ȧ/a = 2/3t. Then, for
k ≪ kJ ,

δ̈0~k +
4

3

δ̇0~k

t
− 2

3t2
δ0~k = 0 . (A.41)

We thus find

• a growing solution

δ+ ∝ t2/3(∝ a) ; (A.42)

• a decaying solution

δ− ∝ t−1(∝ a−2/3) . (A.43)

The solutions above are quite different from the static case: instead of exponential
growth or decay, the effect of expansion, resulting in a power law behaviour, slows
the evolution of perturbations.

In order to extend the analysis for a radiation dominated Universe, since we have not
started with a fully relativistic treatment, one can modify the evolution equations to
incorporate the effect of radiation pressure. Skipping details (for which we refer the
reader to [260]), the set of equations describing the fluid becomes

∂ρ

∂t
+ ~∇ ·

(

ρ+
p

c2

)

~v = 0 , (A.44)

(

ρ+
p

c2

)

(

∂~v

∂t
+ ~v · ~∇~v

)

+ ~∇p+
(

ρ+
p

c2

)

~∇Ψ = 0 (A.45)

~∇2Ψ − 4πG
(

ρ+ 3
p

c2

)

= 0 . (A.46)

The resulting equation for the evolution of the Fourier mode δ0~k of the density per-
turbation is then

δ̈0~k + 2
ȧ

a
δ̇0~k +

(

c2
sk

2 − 32

3
πGρ

)

δ0~k = 0 , (A.47)
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in which the speed of sound is cs = c/
√

3. For a flat, radiation dominated, FRW
model: ρ = 3/(32πGt2), a = a0(t/t0)1/2, and ȧ/a = 1/2t and thus

δ̈0~k +
1

t
δ̇0~k − 1

t2

(

1 − 3c2
sk

2

32πGρ

)

δ0~k = 0 , (A.48)

Then, for k ≪ kJ , there will be two solutions:

• a growing one
δ+(t) ∝ t ∝ a2 ; (A.49)

• a decaying one

δ−(t) ∝ t−1 ∝ a−2/3 . (A.50)

***
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BAppendix: The Boltzmann

Equations

In this appendix, we briefly present aspects of the Boltzmann equations for photons,
neutrinos and cold dark matter, following [261]. The evolution of the phase space
distribution function f of a particle species is governed by the Boltzmann equation.
The unintegrated form of the Boltzmann equation for a given species relates the time
evolution in space-time of its distribution function f to possible collisional terms; and
it is given by:

df

dt
= C[f ] , (B.1)

where C denotes the collision terms. In the absence of collisions, the distribution
function follows the law df/dt = 0, which means that the number of particles in
a given element of phase space does not change with time. When different species
interact, the Boltzmann equations which govern the evolution of the different phase
space distributions are coupled. The full time derivative in Eq.(B.1) can be written
as

df

dt
=
∂f

∂t
+
∂f

∂xi
dxi

dt
+
∂f

∂E

dE

dt
+
∂f

∂p̂i
dp̂i

dt
, (B.2)

that is, the distribution function of these particles depends on the space-time coor-
dinates, xµ, on the energy E (E =

√

m2 + p2, with m the mass of the particle) and
on the direction of the momentum vector, p̂. Even in the absence of interactions,
the evolution might not be simple, since the equations that govern the evolution of
the potentials and the overdensities are connected with the Boltzmann equations for
photons, neutrinos, ordinary and cold dark matter. The smooth, expanding, FRW
Universe is described by a single function: the scale factor a(t). On the other hand, in
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order to describe the perturbed, not-that-smooth Universe, it is necessary to introduce
two further functions which depend on both space and time: Ψ and Φ. The former
corresponds to the pertubations to the metric (the Newtonian potential), while the
latter corresponds to the perturbations to the spatial curvature. Without entering
into details (we refer the interested reader to [261]), one can rewrite dxi/dt and dE/dt
as

dxi

dt
=

p̂i

a

p
√

m2 + p2
=
p̂i

a

p

E
(B.3)

dE

dt
=

p

E

dp

dt
=
p2

E

[

−H − dΦ

dt
− p̂i

a

dΨ

dxi

]

. (B.4)

In order to obtain the Boltzmann equation for photons and neutrinos we set E = p
1. Using (B.3) and (B.4), the expression (B.2) reads

df

dt
=
∂f

∂t
+
p̂i

a

∂f

∂xi
− p

∂f

∂p

[

H +
dΦ

dt
− p̂i

a

dΨ

dxi

]

. (B.5)

Notice that the last term in Eq. (B.2) has been neglected. The reason for that is the
following. Following a perturbative analysis, the 0th-order, unperturbed distribution
function, is the usual Bose-Einstein or Fermi-Dirac function:

f0(E) =
gs
h3

1

eE/kBT0 ± 1
, (B.6)

where the sign + is for fermions and the sign − is for bosons. T0 = aT is the present
temperature, the factor gs is the number of spin degrees of freedom, and kB and h3

are the Boltzmann and the Planck constants, respectively. Equation (B.6) does not
depend on the momentum vector p̂i and thus ∂f/∂p̂i is a first order term. In addition,

since the term dp̂i

dt changes only in presence of the potential, it is also a first order
term and, therefore, the last term in Eq. (B.2) being the product of two first order
terms, it can be neglected at first order.

In the case of cold dark matter we plug Eqs. (B.3) and (B.4) in Eq. (B.2); the total
derivative of the distribution function reads

df

dt
=
∂f

∂t
+
p̂i

a

p

E

∂f

∂xi
− ∂f

∂p

[

p2

E
H +

dΦ

dt

p2

E
− p̂i

a

p2

E

dΨ

dxi

]

. (B.7)

Since cold dark matter does not have interactions, C[f ] = 0. The Boltzmann equation
for cold dark matter is then

∂f

∂t
+
p̂i

a

p

E

∂f

∂xi
− ∂f

∂p

[

p2

E
H +

dΦ

dt

p2

E
− p̂i

a

p2

E

dΨ

dxi

]

= 0 . (B.8)

1That is neutrinos are considered massless particles, see [261].
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Integrating (B.8) over the phase space volume, we obtain:

∂

dt

∫

d3p

(2π)2
f +

1

a

∂

∂xi

∫

d3p

(2π)2
f
pp̂i

E
+

−
[

H +
dΦ

dt

]
∫

d3p

(2π)2

∂f

∂E

p2

E
− 1

a

d∂Ψ

∂xi

∫

d3p

(2π)2

∂f

∂E
p̂ip = 0 . (B.9)

We can neglect the last term of Eq. (B.9) since we only consider first order terms.
We define the velocity as

vi =
1

ρdm

∫

d3p

(2π)2
f
pp̂i

E
, (B.10)

where ρdm is the dark matter density defined as

ρdm =

∫

d3p

(2π)2
f . (B.11)

We write Eq. (B.9) in terms of (B.10) and (B.11), to obtain

∂ρdm
dt

+
1

a

∂ρdmv
i

dxi
+ 3

[

H +
dΦ

dt

]

= 0 . (B.12)

We now expand ρdm:

ρdm = ρ0
dm[1 + δ(~x, t)] , (B.13)

where ρ0
dm is the zero-order term of the density and δ is the overdensity δρ/ρ of cold

dark matter. The first-order equation for dark matter finally reads

∂δ

∂t
+

1

a

∂vi

dxi
+ 3

dΦ

dt
= 0 . (B.14)

We need a second equation (or a second set of equations) since we want to describe
the evolution of both δ and vi: this we can achieve by integrating Eq. (B.8) times
(p/E)p̂j over phase space. Skipping intermediate manipulations, one arrives to the
following first-order equation

∂vj

∂t
+Hvj +

1

a

∂Ψ

∂xj
= 0 . (B.15)

At this point it useful to introduce the conformal time η, which is the maximum co-
moving distance traveled by a photon during the whole life of the expanding Universe,
defined as

η =

∫ t

0

dt′

a(t′)
=

∫ a

0

da′

a′

1

a′H(a′)
. (B.16)

We can finally rewrite (B.14) and (B.15) in terms of the conformal time and the
scale factor to obtain the equations which govern the evolution of the density and
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the velocity of the cold dark matter. We also Fourier transform them, i.e. we rewrite
them in terms of the wavenumber k. They read

δ̇ + ikv + 3Φ = 0 (B.17)

v̇ +
ȧ

a
v + ikΦ = 0 , (B.18)

where overdots represent derivatives with respect to conformal time η.

***
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Sergio che ho conosciuto Nicolás Bernal, che ringrazio tantissimo per tutte le sue
spiegazioni e bei momenti trascorsi in quel di Lisbona, e poi Ángeles, allora sua dot-
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