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Abstract

Understanding the tradeoff between the information of high-resolution water

use data and the costs of smart meters to collect data with sub-minute res-

olution is crucial to inform smart meter networks. To explore this tradeoff,

we first present STREaM, a STochastic Residential water End-use Model

that generates synthetic water end-use time series with 10-second and pro-

gressively coarser sampling resolutions. Second, we apply a comparative

framework to STREaM output and assess the impact of data sampling res-

olution on end-use disaggregation, leak detection, peak demand estimation,

data storage, and availability. Our findings show that increased sampling res-

olution allows more accurate end-use disaggregation, prompt water leakage

detection, and accurate and timely estimates of peak demand. Simultane-

ously, data storage requirements and limited product availability mean most
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large-scale, commercial smart metering deployments sense data with hourly,

daily, or coarser sampling frequencies. Overall, this work provides insights

for further research and commercial deployment of smart water meters.

Keywords: smart meter, sampling resolution, water demand management,

STREaM, synthetic end-use model
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1. Introduction9

Over the last two decades, technological advances in the field of urban10

water demand metering have fostered the development of smart metering11

technologies that can sense water use with fine sub-daily sampling resolu-12

tions, down to a few seconds (Mayer and DeOreo, 1999). Scientific literature13

on water demand modelling and management reports an increasing num-14

ber of successful studies and use cases (for a review, see Cominola et al.,15

2015, and references therein) demonstrating the benefits of smart metering16
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technologies to support demand-side management strategies that can com-17

plement traditional water supply development (Gleick et al., 2003). Recent18

applications showed that effective demand management strategies are a result19

of understanding users’ typical behaviours and the associated consumption20

patterns at different spatial and temporal resolutions (Jorgensen et al., 2009,21

2013). Yet, the adoption of smart metering technologies is still limited in22

utility and commercial applications because utilities are conservative, reluc-23

tant to change (Stewart et al., 2010), and the costs, benefits, and tradeoffs24

for investing in smart meters are unclear.25

At coarse temporal resolutions, water use data are usually collected on a26

quarterly or monthly basis focusing on the urban or suburban scale to inform27

strategic regional planning with predictions of the aggregated water demand28

at the municipal or district level (House-Peters and Chang, 2011). Mov-29

ing towards higher temporal resolutions, the advent of smart meters in the30

late 1990s opened up a new potential to better characterize water demand31

patterns on the basis of water consumption data at very high spatial and32

temporal resolution, for instance enabling end-use disaggregation (Nguyen33

et al., 2013) and better estimates of demand peaks (Beal et al., 2016). De-34

pending on the technology exploited in the meter, we can distinguish four35

types of sensors: (i) Accelerometers (e.g., Evans et al., 2004), which ana-36

lyze vibrations in a pipe induced by the turbulence of the water flow; (ii)37

Ultrasonic sensors (e.g., Mori et al., 2004), which estimate the flow veloc-38

ity by measuring the difference in time between ultrasonic beams generated39

by piezoelectric devices and transmitted within the water flow; (iii) Pres-40

sure sensors (e.g., Froehlich et al., 2011), which estimate the flow rate as a41
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function of the pressure change generated by the opening/close of the water42

devices valves via Poiseuille’s Law; (iv) Mechanical or magnetic flow meters43

(e.g., Mayer and DeOreo, 1999; Kowalski and Marshallsay, 2003), which cor-44

relate the number of revolutions or nutations of a piston, magnet, or disk45

to the water volume passing through the meter. These sensors offer theo-46

retical resolutions finer than 0.02 liters, but cost, staff time, privacy, and47

regulations strongly constrain the actual resolutions that can be guaranteed48

by large scale Advanced Metering Infrastructure (AMI) (Boyle et al., 2013).49

Understanding the tradeoff between the value of the information provided by50

high-resolution data and metering economic and operational costs is crucial51

to inform the design of smart metering networks as well as to discover and52

guard against unintended consequences of deployment options.53

At one extreme of this tradeoff curve, the availability of high-resolution54

smart metered data generates several opportunities for advancing water de-55

mand management. Sub-minute sampling resolution is needed to run most56

water end-use disaggregation algorithms and provide a reliable breakdown57

household level water use into different categories (e.g., shower, toilet, clothes58

washing machine) (Nguyen et al., 2013b, 2015). The knowledge of timings,59

peak-hours, and frequencies of use of the different consumption devices is key60

to understand consumer behaviours, identify consumption anomalies, and,61

ultimately, design targeted personalized demand management strategies, in-62

cluding economic incentives to upgrade inefficient appliances (e.g., Mayer63

et al., 2004; Suero et al., 2012) or awareness campaigns targeting specific end64

uses (e.g., Willis et al., 2010; Abdallah and Rosenberg, 2014).65

Yet, this metering strategy inevitably increases the amount of data the66
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water utility must collect and handle. Sampling at one-minute resolution,67

for instance, implies replacing the four annual readings per user with 525,60068

data readings. This increase may challenge business hardware and software69

performance due to existing issues with respect to power source, battery life,70

telemetry network capacity, and black spots, i.e., data gaps, and billing soft-71

ware (Stewart et al., 2010). In addition, there is still no consensus about the72

best architecture to store consumption data. A centralized system facilitates73

checking the accuracy of the collected data, while a distributed one would74

significantly reduce transmission costs (Oracle, 2009).75

Intermediate metering strategies attempt to balance these competing in-76

terests by sampling at resolutions of a few minutes to 1 hour. Although this77

choice prevents an accurate characterization of end-use consumption profiles78

from aggregate signals with time spacing larger than a minute (e.g., toilet79

flushing or tap usage usually last a few seconds, showering a few minutes, thus80

it is hard to unpack end-use information from aggregate signals at coarser81

resolutions), these data still provide valuable information to water utilities82

and agencies for designing and managing the water supply system. In fact,83

sub-daily sampling resolutions allow extracting consumption patterns and84

accurately estimating the total water demand that the water supply system85

should be able to deliver to a group of users (e.g., Cardell-Oliver, 2013). This86

can be seen by looking at the sample water use data reported in Figure 1,87

which shows how the variability of water use patterns is gradually masked as88

data are sampled at progressively longer time intervals. Moreover, medium-89

resolution data can also support the identification of anomalous events oc-90

curring on the network or downstream the household meter (e.g., leakage,91

5



empty houses, or frauds). This is a major interest for water utilities because92

post meter leakages account for up to 10% of total residential water use.93

Reducing the amount of water wasted through leakages also generates sec-94

ondary benefits in terms of reduced water-related energy consumption and95

treatment costs (see, for instance, Britton et al. (2013) study in Australia).96

This tradeoff between metering cost and accuracy can influence the type97

of demand management operations and strategies available to utility man-98

agers, program costs, and corresponding benefits for water consumers and99

utilities. In this paper we quantitatively assess how different temporal res-100

olutions to read residential water meters impact information retrieval and101

demand management by answering the following research questions: which102

aspects of water demand modelling and management can be accurately, fea-103

sibly, and cost-effectively informed by different data resolutions? Are there104

resolution thresholds discriminating on these aspects?105

To answer these questions, we contribute a comparative framework to106

explore the tradeoffs between data sampling resolution and accuracy in end107

use disaggregation, time to detect leaks, errors in estimating the volume and108

timing of peak flows, data storage requirements, and commercial availability.109

Given the low availability of residential water use data at different resolutions,110

we first developed a stochastic simulation model named STochastic Residen-111

tial water End-use Model (STREaM). STREaM relies on a large dataset112

including observed and disaggregated water end-uses from over 300 single-113

family households in nine U.S. cities (DeOreo, 2011). STREaM generates114

synthetic time series of water end use with diverse sampling resolutions. Sec-115

ond, we applied the comparative framework on STREaM output. STREaM116
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allows the generation of residential water demand traces at the end-use level117

up to a 10-second resolution. Each water end-use fixture in our model is118

characterized by its signature (i.e., typical consumption pattern), as well119

as its probability distributions of number of uses per day, single use dura-120

tions, water demand contribution and time of use during the day. STREaM121

was used to generate a set of annual consumption traces for 500 heteroge-122

neous households in terms of both number of occupants and efficiency of123

the end-use fixtures. The implications of adopting different data sampling124

resolutions are then explored by aggregating the generated 10-second water125

consumption trajectories up to the 1-day resolution and by evaluating a set126

of performance metrics including end-use disaggregation accuracy, costs due127

to leakage detection delay, precision in reproducing volume and timing of128

water demand peaks, data storage requirements, and commercial availability129

of metering systems. We use the framework to explore which temporal data130

resolutions might enable water demand management actions, utilities oper-131

ations, and communication of customized information to water consumers.132

Findings from our multi-resolution assessment can support further research133

and commercial development in water meters and deployment of AMI, as well134

as assist utilities in trading off benefits from second-to-minute data sampling135

resolution and cost of adopting and maintaining high-resolution metering136

infrastructures.137

The paper is organized as follows: the next section introduces the pro-138

posed comparative framework for multi-resolution assessment and formalises139

the set of performance metrics used in this study. Section 3 illustrates the140

synthetic generation of residential water demand traces via STREaM. Nu-141
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merical results are then reported and discussed in terms of their policy im-142

plications. The last section concludes with final remarks and directions for143

further research.144

2. Comparative framework for multi-resolution assessment145

To assess the implications to record water consumption data at differ-146

ent temporal frequencies on water demand modelling and management, we147

introduce a comparative framework composed of seven performance metrics148

(Table 1). Each metric quantifies the impact of temporal data resolution149

on a specific aspect of water demand modelling and management, i.e., end-150

use disaggregation, leakage detection, peak demand estimation, data storage,151

and commercial availability of water meters. These components and related152

metrics are important because managers and researchers want to know how153

well data can be used to disaggregate end-uses, inform customized feedback,154

detect and respond to fix leaks, avoid related water waste and costs, and155

estimate peak water demands. Managers are also interested in feasibility156

aspects, such as the volume of data generated and commercial availability of157

metering systems for purchase.158

2.1. End-use disaggregation159

The literature inconsistently defines performance metrics to assess the160

suitability of end-use disaggregation methods (Makonin and Popowich, 2015).161

In this work, we select two performance metrics among those available in the162

literature to assess disaggregation at different temporal resolutions both in163

terms of accuracy in assigning water consumption to the contributing fix-164

tures, and capability to properly reproduce water end-use time series (i.e.,165
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their pattern, with time of use and peaks). The first metric is the Appliance166

Contribution Accuracy, formulated as the average of the Water Contribu-167

tion Accuracy (WCA) across all households and fixtures. We derived its168

formulation adapting similar metrics measuring the power contribution ac-169

curacy/error in the electricity field (Cominola et al., 2017):170

Appliance Contribution Accuracy =
1

N
×

N∑

i=1

∑Mi

k=1 WCAk
i

Mi

,

WCAk
i = 1−

∣∣∣
∑H

t=1 y
k
i,t −

∑H
t=1 ŷ

k
i,t

∣∣∣
∑H

t=1 Ȳi,t

(1)

where N is the total number of households metered, Mi the total number171

of water fixtures in each house i, H is the length of the monitoring period,172

Ȳi,t the total observed water use of house i at time t, and yki,t and ŷki,t are,173

respectively, the observed and estimated water consumption for appliance k174

of house i at time t (t is a discrete-time index). The above metric measures175

the accuracy of end-use model in assigning the water contribution share to176

each fixture. Water Contribution Accuracy reflects cases when the disaggre-177

gation algorithm correctly assigns positive water use to an appliance when178

the appliance was actually used plus cases when the algorithm assigns zero179

water use to an appliance that was not used. The closer accuracy is to 1, the180

better the algorithm disaggregates water use by appliance, and vice versa for181

accuracy values close to 0. Accurate estimations of the contribution of each182

end-use to total demand allow water managers to tailor water demand man-183

agement strategies to users and provide customized feedback (Sønderlund184

et al., 2016). As a second metric to assess the performance of end-use dis-185
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aggregation, we selected the Appliance Root-Mean Square Error (Appliance186

RMSE), formulated as:187

Appliance RMSE =
1

N
×

N∑

i=1

∑Mi
k=1 NRMSEk

i

Mi

,

NRMSEk
i =

√
1
H

∑H
t=1 (yki,t − ŷki,t)

2

max (yki,t)−min (yki,t)

(2)

where N , Mi, H, yki,t and ŷki,t are as previously and NRMSE is the nor-188

malized root-mean square error for appliance k in house i. Performance189

metrics based on square error or RMSE have been widely used in the field190

of end-use disaggregation (e.g., Figueiredo et al., 2014; Piga et al., 2016;191

Rahimpour et al., 2017). This second metric is complementary to the first192

because Appliance Contribution Accuracy assesses end-use accuracy at the193

level of aggregate end-use contribution, while Appliance RMSE quantifies194

model over- and under-estimation of water use time series, thus allowing for195

a more detailed evaluation the capabilities of an end-use algorithm to re-196

produce end-use time series patterns. This is key for demand modelling and197

management because low RMSE values allow retrieving accurate information198

on peak water use, end-use frequencies, time of use for the major end-uses,199

and to monitor changes in demand patterns overtime. In the above formu-200

lation, we normalized RMSE to account for the different flow range of each201

appliance. We divide by the flow range rather than the average flow value202

because water datasets are highly unbalanced with numerous zero readings.203

Dividing by a mean close to zero would give high errors independent of the204

appliance type. Dividing by the range balances estimation error with the205

maximum error that can potentially occur at each time step.206
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The main limits to use the Appliance Contribution Accuracy and Appli-207

ance RMSE to assess end-use disaggregation performances are related to the208

formulation of the first metric. Overall, if two or more appliances flow in209

similar ranges (as can happen with indoor household water fixtures) and an210

algorithm incorrectly disaggregates the end uses, terms in the numerator of211

Eq. 1 will be large and cause the WCA to be close to 0. Dividing by the212

total observed water use Ȳi,t in the evaluation of WCA maintains the rela-213

tive importance of appliances but can mask small inaccuracies for individual214

appliances. If an appliance is used only occasionally (i.e., water use is often215

0) a disaggregation algorithm might classify all estimated use as zero and216

achieve a WCA close to 1 even though it missed a few infrequent events for217

the appliance. Finally, WCA represents an aggregate performance of end-218

use disaggregation and can provide useful information to utilities that use219

smart meter data to communicate a breakdown of water use by appliance220

to their customers. Considering the above limitations, care should be taken221

to use the Appliance Contribution Accuracy with unbalanced datasets. Yet,222

a coupled analysis of Appliance Contribution Accuracy with other, less ag-223

gregated, performance metrics such as Appliance RMSE can help interpret224

results.225

2.2. Leakage detection226

Leakage detection represents a major challenge for utilities because of227

direct and indirect costs of leakages (Britton et al., 2013). To assess the228

potential to correctly detect leaks, we define the Average Water Loss perfor-229

mance metric that is based on the average water volume lost for all end uses230
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(in liters) before the leakage is detected:231

Average Water Loss =

∑N
i=1

∑LDi

t=LSi
(Ȳi,t −

∑Mi

k=1 yi,t)

N
(3)

where Ȳi,t is the total observed water use of house i at time t,
∑M

k=1 yi,t is232

the legitimate water use of house i at time t over its Mi appliances, LSi the233

starting time of a leakage in house i, LDi the time step when the leakage is234

detected in house i, and N the total number of households metered. Lower235

Average Water Loss indicates faster leak detection. This formulation assumes236

that only one leak episode occurs along the whole time series of water use of237

each house. In this research, we do not consider the subsequent time after238

detection to respond, locate, and fix the leak. Thus, LD = LS + r, where239

r represents the time between the start of the leakage and its detection and240

is equal to r = u− (LS
u
− bLS

u
c) (u is the considered sampling interval, e.g.,241

1 minute, 1 hour). This treatment allows isolating the sole effect of data242

sampling resolution on leak detection without including errors and impacts243

deriving from the application of a given leakage detection algorithm (e.g.,244

Minimum Night Flow (Britton et al., 2008)). This treatment also ignores245

how promptly the utility can respond to fix the leak and time to complete246

the repair. In reality, the time to detect a leak is likely shorter than the247

subsequent time to respond and fix the leak. Thus, here the volume of water248

loss depends only on the sampling time frequency and the size of the leak.249

2.3. Peak demand estimation250

Data sampling resolution affects the estimation of water demand peaks at251

the various scales (i.e., household, district, and utility), which is key to design252
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water distribution systems and support management strategies to reduce or253

shift peak demand (Beal et al., 2016). In order to assess the impact of data254

sampling resolution on the accurate estimation of water demand peaks, we255

formulate the Peak Estimation Error:256

Peak Estimation Error =
1

Hday

Hday∑

d=1

∣∣∣∣∣
Ȳ TOT,PEAK
d,ubenchmark

− Ȳ TOT,PEAK
d,u

Ȳ TOT,PEAK
d,ubenchmark

∣∣∣∣∣ (4)

where Ȳ TOT,PEAK
d,ubenchmark

is the observed peak water use for day d, aggregated257

over all metered households, and metered with the finest available resolution258

ubenchmark; Ȳ
TOT,PEAK
d,u is the observed peak water use for day d, aggregated259

over all metered households, and metered with sampling resolution u; and260

Hday is the number of monitored days. It follows that, at the 1-day sampling261

frequency, the reported flow is the average flow per day. The Peak Estimation262

Error measures the percentage of under- or over-estimation of peak demand,263

against the best available peak observation (i.e., the one observed at the264

finest available resolution).265

Data sampling resolution affects also the ability to identify the times of266

the day when demand peaks occur, and coarse resolutions can mask peaks267

with short duration and high magnitude. Accurate peak time estimates can268

help schedule supply operations and pumping, as well as inform programs to269

shift peak demands. To complement the Peak Estimation Error metric with270

information on time of the peak, we define the Peak Estimation Time Gap:271

Peak Estimation Time Gap =
1

Hday

Hday∑

d=1

∣∣∣tTOT,PEAK
d,ubenchmark

− tTOT,PEAK
d,u

∣∣∣ (5)
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where tTOT,PEAK
d,ubenchmark

is the time step when the observed peak water use for day272

d for all households occurs measured using the finest available resolution273

data ubenchmark; t
TOT,PEAK
d,u is time step when the observed maximum value of274

water use for day d for all households occurs measured with data of sampling275

resolution u; and Hday is, as before, the number of monitored days. The Peak276

Estimation Time Gap measures, in minutes, the average time lag between the277

peak demand measured from a time-series at a specified temporal resolution278

and the finest temporal resolution.279

Metrics for the magnitude and timing of peak demand are readily mod-280

ified to include other metrics of interest to utilties such as minimum and281

average demands. To keep the set of metrics compact, we only consider peak282

demand in this work.283

2.4. Data storage284

While providing more detailed data on water use, high-frequency smart285

metering inevitably increases the size of datasets to transfer, store, and an-286

alyze, plus related costs (Oracle, 2009). Here, we define a Data Size metric287

that quantifies the amount of memory needed to store water use data at a288

given resolution:289

Data Size = 4× 2×Ryear (6)

where Ryear is the number of water use readings collected for a single290

household over a year. Ryear depends on the sampling frequency (e.g., it291

is equal to 365 with daily sampling frequency, 8760 with hourly sampling292

frequency, etc.). In the definition of the Data Size metric, we assume that293
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each monitored water consumption data point can be stored as a record294

of 2 floating-point variables, i.e., date/time stamp and corresponding water295

consumption reading, using 4 bytes of memory each (Zuras et al., 2008), thus296

Data Size is measured in bytes/(household × year). This storage assumption297

is conservative and provides an upper bound reference metric. In practice,298

there are smarter ways to transmit and store data such send one starting299

date/time stamp then follow with the list of regularly-spaced readings (this300

would redue the storage requirement indicated by the metric by roughly301

half). Smarter meters may do more initial processing on the meter itself302

before transmitting more aggregated data.303

2.5. Commercial availability of water meters304

Numerous commercial water metering systems exist and have been used305

both in experimental trials, as well as real-world deployments (Boyle et al.,306

2013). Their cost, storage capability, frequency of data collection and trans-307

mission depend on the meter, the register, associated hardware and acces-308

sories, and available power. In order to assess the actual capabilities of309

commercial meters based on state-of-the art experiences, we define the Avail-310

ability as a binary metric. This metric assumes a value of 1 if a metering311

system is commercially available and can sample water use with a given reso-312

lution. Otherwise, the metric takes a value of 0 (i.e., no commercial metering313

systems exist or water use data can only be sampled at the specific sampling314

frequency with ad hoc, non-commercial systems).315

15



3. STREaM STochastic Residential water End-use Model316

As real world residential water use data with different temporal resolu-317

tions were not available, we synthetically generated them with a stochastic318

water end use generator. STREaM (STochastic Residential water End-use319

Model) synthetically generates time series of residential water use at the320

end-use level with time resolutions spanning from 10 seconds to one day.321

3.1. Model structure322

The structure of STREaM is built upon the prototype synthetic water323

consumption generator presented in Cominola et al. (2016). In short, given324

a user-defined house with specified number of occupants, available water325

consuming fixtures, fixture efficiency, time horizon, and sampling resolution,326

STREaM simulates time series of water use for individual appliances and327

their sum as total household water demand. STREaM relies on the assump-328

tion that the water use time series of the j-th water end-use fixture (e.g.,329

toilet, faucet, shower, etc.) in the d-th day of the simulation horizon can be330

characterized by the following elements: (i) number of times the j-th fixture331

is used during the day (we will refer to each usage as consumption event here-332

after); (ii) starting time of use during the day for each consumption event;333

and (iii) duration and volume of water used for each consumption event. In334

addition, we assume that the pattern of each end-use consumption event is335

characterized by a specific signature, i.e., the characteristic water use flow336

pattern over time of a single consumption event for a specific end-use.337

According to the model structure illustrated in Figure 2, the inputs re-338

quired by STREaM are (i) sample size N , i.e., number of households for339
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which STREaM will simulate end-use time series of water use; (ii) house340

demography, i.e., number of occupants for each house in the sample O =341

{o1, o2, ..., oN}, oi > 0 ∀i ∈ [1, N ]; (iii) fixture presence P = {p1, p2, ..., pM}, pk ∈342

{0, 1} ∀k ∈ [1,M ], i.e., a binary index specifying the presence (absence)343

of the k-th fixture in the i-th household; (iv) fixture efficiency level E =344

{e1, e2, ..., eM}, ek ∈ {0, 1} ∀k ∈ [1,M ], i.e., a binary index specifying the ef-345

ficiency level (standard or high) of each fixture in each household; (v) length346

of the simulation horizon H; (vi) time sampling resolution u, u > 0 for347

the output water use time series. The finest temporal resolution allowed by348

STREaM is 10 seconds. As output, STREaM returns the end-use time series349

of water use yki for each house i and its fixtures k, as well as each household’s350

total water use time series Ȳi =
∑M

k=1 y
k
i .351

The core of STREaM is the generation of end-use water use time series.352

Let’ s consider the i-th house, characterized by oi occupants, fixture presence353

Pi and fixture efficiencies Ei. STREaM generates the end-use time series yki354

according to the following procedure:355

• Sample Daily Consumption Events. The number of consump-356

tion events for each fixture k and each day d of the simulation hori-357

zon H is Monte-Carlo sampled from its probability distribution as358

NCEi,d,k ∼ P(NCEk|oi, ei,k), where P(NCEk|oi, ei,k) is the probabil-359

ity distribution of the number of usages per day for appliance k, con-360

ditioned to the number of house occupants (oi) and fixture efficiencies361

(ei,k).362

• Sample Event Characteristics. For each consumption event l ∈363

[0, NCEi,d,k], duration (D) and water volume (V ) are Monte-Carlo sam-364
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pled from the joint duration-volume probability distribution of the k-th365

fixture, conditioned to oi and appliance efficiency ei,k as (Di,d,k,l, Vi,d,k,l) ∼366

P(DkVk|oi, ei,k). The joint probability is considered, as volume of water367

used and event durations are generally correlated. Also, the time of use368

of each consumption event l is sampled from its conditioned probability369

distribution Ti,d,k,l ∼ P(Tk|oi, ei,k) .370

• Scale Event Signatures and Generate Event Time Series. The371

time series of water use of each water consumption event is generated by372

uniformly selecting one of the specific signatures of the considered fix-373

ture k and scaling it in duration and magnitude to match the sampled374

values of duration and water volume (Di,d,k,l, Vi,d,k,l). As the number375

of signatures available for each water end-use can vary in the input376

dataset, STREaM randomly selects one, among the available signa-377

tures, and then scales it in duration and magnitude. In order to do so,378

first randomly chosen points of the selected signature are iteratively re-379

moved/replicated, in order to match the desired event duration Di,d,k,l.380

Then, the magnitude of each point of the signature is scaled propor-381

tionally to its original value, so that the integral under the signature382

matches the desired water volume Vi,d,k,l. Finally, the scaled signature383

is positioned over the end-use time series yki according to its time of384

use Ti,d,k,l.385

The above procedure is iterated from step 1 to step 3 until the simulation386

is completed, for all the M fixtures and the days of the simulation period H.387

Finally, end-use time series of water use yki for each house i and its fixtures388

k, as well as its total water use time series Ȳi =
∑M

k=1 y
k
i are returned, scaled389
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to the chosen sampling resolution u. It is worth noticing that the procedure390

adopted in STREaM allows generating multiple simultaneous end-use events,391

in order to reproduce potentially overlapping water uses as they occur in any392

home in reality. Thus, as STREAM allows potentially concurrent events,393

end-use disaggregation should aim at decomposing the aggregate signal into394

its components, rather than classifying purely isolated end-use events.395

Optionally, STREaM can include the superimposition of a randomly sam-396

pled end-use leakage on the total household water use time series wk
i , sim-397

ulating the partial break or total burst of one end use. We synthetically398

generated each leak by uniform sampling of four parameters, i.e., the leaking399

end-use k (uniformly sampled among the available end uses), starting time400

tstart (uniformly sampled over the length of the time series), rise length rlength401

(uniformly sampled between the leakage starting time and the length of the402

time series), rate of rise rrate (uniformly sampled as one of four categories403

defined in Britton et al. (2009), i.e., constant leak, linear, polynomial, and404

exponential rate of rise). We assumed that the maximum flow reached by405

the leakage only depends on the leak end-use, and is equal to the maximum406

value assumed by that end-use over the whole time series.407

3.2. Data source and STREaM calibration408

We use a large dataset for single-family households observed and disag-409

gregated water end-uses in nine U.S. cities between 2007-2009 collected by410

Aquacraft Inc. (DeOreo, 2011). Water use was measured over two weeks at411

10 seconds resolution for 288 houses. The houses were built after 2001 and412

have appliances and fixtures that comply with the standards set forth by the413

Energy Policy Act of 1992 (United States, 1992) (Standard-efficiency houses,414
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hereafter). The study also measured water use for 25 houses that were built415

after 2007 and comply with the WaterSense high efficiency standards (High-416

efficiency houses, hereafter).417

The number of occupants was reported for each house in the Standard418

Houses dataset. 11% of the households have 1 occupant, 45% have 2 occu-419

pants, 15% have 3, 18.4% have 4, 7.6% have 5, and 3% have more than 5420

occupants. Aquacraft Inc. disaggregated water use events for each end use421

using their FlowTrace Wizard software (DeOreo et al., 1996), reporting the422

start time, duration, and volume of each event for all the major indoor water423

end uses, namely shower, toilet, faucet, bathtub, clothes washer, and dish-424

washer. This version of STREaM focuses on and includes indoor use because425

available appliances and their operation are consistent across households in426

the nine cities. We exclude outdoor uses because they differ across households427

and cities in seasonality use, types of outdoor irrigation systems, landscape428

type, and area. Future work could expand STREaM to include outdoor use.429

In total, Aquacraft disaggregated 240,443 separate water use events for 313430

houses over 3,731 days (Table 2). Dishwasher and clothes washer events cover431

the entire appliance cycle and include intermediary wash, rinse, etc. cycles.432

We used event volume, duration, time of use, and number of occupants433

statistics from the above dataset to estimate corresponding probability dis-434

tributions required by STREaM. After fitting multiple distributions to the435

data, we found that the number of events per day is best modelled with a436

negative binomial distribution in 70% of the cases, and Poisson distribution437

in the remaining cases. Event start time is always modelled with a Kernel438

distribution. Finally, we jointly modelled event durations and volumes with439
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two-component Gaussian Mixtures.440

We noted that the dataset of High-efficiency houses only included dura-441

tion and volume data for end-use events. Thus, we assumed distributions442

of start time and number of uses per day identical to those of Standard-443

efficiency households. The rationale behind this hypothesis is that techno-444

logical efficiency mostly influences flows (thus volume) rather than user’s be-445

haviours such as starting time, duration, or frequency (Abdallah and Rosen-446

berg, 2014). Moreover, given the reduced data for High-efficiency houses,447

we were unable to estimate duration and volume statistics as a function of448

number of house occupants. As a last step, we built the dataset of water fix-449

ture signatures by using GetData Graph Digitizer software (GetData Graph450

Digitizer [Computer software], 2017) to visually extract signature patterns451

from Acquacraft reports (DeOreo, 2011). The number of signatures available452

for each end-use in STREaM varies between 1 and 15.453

3.3. STREaM validation454

To validate the STREaM output, we evaluated the observed total average455

household daily water use by summing the volume of observed water use for456

all end-uses across the reported day. We validated STREaM according to457

the following procedure. First, we generated a 1-year long water use time458

series at 10-second resolution for a sample of 250 standard efficiency house-459

holds. We included all available end uses, i.e., toilet, shower, faucet, clothes460

washer, dishwasher, and bathtub, and set the household demography coher-461

ently with the occurrences we found in the data used for STREaM calibration462

(Section 3.2). Second, we summed the generated end-use time series for each463

household into time series of total household water consumption, and aggre-464
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gated these to the daily scale (see Section 3.1). Finally, we cross-compared465

the distribution of simulated and observed total daily water use (Figure 3),466

which a non-parametric Mann-Whitney U test (McKnight and Najab, 2010)467

showed were similar (significance = 1%, p-value = 0.012) if values above468

20.5 liters/(household*day) were considered for both samples. While the fig-469

ure shows that the distribution of STREaM output well fits observations,470

STREaM slightly overestes low daily water use. This overestimation is likely471

due to the cumulative error resulting from STREaM calibration, when fit-472

ting the lower tails of end-use distributions, and specifically those regarding473

statistics on the number of events per day. As a further test, we computed474

the average household daily water use and obtained values of 454 and 464475

liters/(household*day) for the synthetic and actual datasets.476

As further validation, we also performed independent non-parametric477

Mann-Whitney U test for each end use. These tests compare simulated478

and observed distributions of number of usages per day, event volumes, du-479

rations, and times of use at 10-second sampling resolution for the same 250480

standard efficiency households. The outcomes of the Mann-Whitney U tests481

performed with 1% significance level suggest to accept the null hypothesis of482

similar distributions for most cases Table 3. Two exceptions were for toilet483

and faucet end-uses, which are often characterized by short and small-volume484

water consumption events. Thus, small estimation errors can highly impact485

on the outcome of statistical tests. Since the time-of-use data were fitted486

with non-parametric Kernel distributions, we do not report the results of487

the Mann-Whitney U tests as the sampled timings from them are unlikely488

to line up with observed times at 10-second sampling resolution. Rather,489
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we visually compare (Figure 4) the time of use of STREaM end uses against490

observations. The visual comparison shows that the distribution of STREaM491

output satisfactorily match observations, with small overall timing underes-492

timations.493

Overall, the validation demonstrates that STREaM statistically well re-494

produces the variability of observed data.495

4. Application496

4.1. Experimental settings497

To assess the value of data sampling resolution, we use the performance498

metrics detailed in Section 2 to evaluate water use time series generated via499

STREaM for a sample of 500 heterogeneous households. These 500 house-500

holds differ in terms of demography and efficiency of end-use fixtures. We501

set the number of occupants to the same proportions adopted for model502

validation (see Section 3.3), and equipped all houses in the model with toi-503

let, shower, faucet, clothes washer, dishwasher, and bathtub end-uses. We504

set 50% of appliances as Standard-efficiency households and 50% as High-505

efficiency households.506

Given the above settings, we generated 1-year long water end-use time507

series for each household, with 10 second sampling frequency. We then ag-508

gregated the time series to resolutions of 1 min, 5 min, 15 min, 1 hour, and 1509

day to perform multi-resolution assessment. The 1-min resolution has been510

recognized to be a critical threshold for certain end-use data analytics also in511

the electricity sector (Armel et al., 2013). We chose 5 min because more than512

95% of consumption events in the original dataset used by STREaM has a513
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duration shorter than 5 minutes. Also, 5 min resolution has been adopted in514

utility metering programs (Mohassel et al., 2014). Finally, 15 min, 1 hour,515

and 1 day are commonly adopted resolutions in most real-world smart meter-516

ing deployments (Cardell-Oliver, 2013; Cominola et al., 2015; Thames Water517

Utilities Limited, 2017).518

Additional experimental settings were required to evaluate the perfor-519

mances metrics on end-use disaggregation. We adopted the supervised ver-520

sion of HSID (Hybrid Signature-based Iterative Disaggregation) algorithm521

for end-use disaggregation (Cominola et al., 2017) and finely tuned it (i.e.,522

calibrated by trial and error the parameters of its Factorial Hidden Markov523

Models and Iterative Dynamic Time Warping components) to perform end-524

use disaggregation of water consumption data on a set of 6 generated house-525

holds with 1 to more-than-5 occupants to account for different frequencies526

of use due to increasing number of occupants. For each selected household,527

we calibrated HSID using 2-months data and evaluated the Appliance Con-528

tribution Accuracy and Appliance RMSE metrics (Section 2.1) by averaging529

the outcomes of 1-month end-use disaggregation per household.530

4.2. Multi-Resolution Assessment: Numerical Results531

A summery of results of metric performance (Figure 5, rows) of each532

sampling frequency (Figure 5, columns) shows a tradeoff between the top533

four performance metrics and the bottom two. The value of information for534

demand modelling and management increases with data sampling resolution535

(Figure 5, darker colors to left and higher sampling frequency). Accuracy536

of leakage detection, end-use disaggregation, and peak demand estimation,537

increase when using data at resolutions of 1 minute or a few seconds. At538
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coarser resolutions, leakage volume dramatically increases, water demand539

peaks are underestimated by at least 20%, and average RMSE in end-use540

disaggregation exceeds 5%. At the same time finer resolution data imply541

larger data size and limited or no commercial products available for utilities542

to deploy. Most smart metering trials and experiments from the state-of-543

the-art literature (Cominola et al., 2015) exploit custom metering systems544

developed with ad hoc settings to collect data with minute or finer time545

intervals. Conversely, due to technical issues related, for instance, to pre-546

serving meter battery, most water utilities currently adopting smart meters547

are collecting water consumption data with hourly, or at most 15-minute,548

data sampling resolution.549

4.2.1. End-use disaggregation550

Appliance Contribution Accuracy exhibits a u-shaped pattern where ac-551

curacy is high for 1-day resolution data, lowers for intermediary frequencies,552

and increases again at 1-second resolution. Overall, ACA ranges between553

89% and 95% and follows prior studies that demonstrated to achieve dis-554

aggregation accuracies in the order of 80-90% with an intrusive calibration555

process and data sampled at sub-minute resolution (e.g., Nguyen et al., 2013;556

Froehlich et al., 2011). The large ACA value of 95% for 1 day sampling res-557

olution is counterintuitive. However, we can explain this finding because the558

water use contribution of major end-uses can also be approximated by their559

average proportion of total use. An average proportion coupled with a long560

simulation horizon (1 month) relative to the 1-day sample frequency means561

the model estimated ACA will closely approximate the actual appliance con-562

tribution. Yet, ACA does not quantify model over- and underestimation in563
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reproducing the patterns of water use time series. For this reason we as-564

sess end-use disaggregation performance via a coupled analysis of ACA and565

NRMSE.566

The average 25% and 75% confidence limit on appliance RMSE grows567

substantially with coarser sampling resolutions (Figure 6). Taken together568

with ACA, three findings emerge. First, the aggregate contribution of each569

end-use is well estimated even at medium-low resolutions. Second, time se-570

ries patterns are well estimated only for finer resolutions. And third, water571

use by each major end-use can be fairly well approximated by their aver-572

age value. An in-depth analysis breaking down these aggregate results for573

each appliance (Figure 7) confirms the above comments. In the figure, Wa-574

ter Contribution Accuracy does not present a well-defined pattern across575

resolutions. Moreover, it can achieve high performance values even at low576

sampling resolutions, and it generally high for the frequently used appliances577

such as the toilet. Conversely, Normalized RMSE monotonically decreases578

with coarse data sampling resolutions, suggesting that fine sampling resolu-579

tions are needed to achieve high disaggregation accuracy.580

These findings can only be identified by controlled experiments like the581

one carried out in this work, where data are synthetically generated. How-582

ever, experiments can miss changing trends of real-world data over time due583

to user behavioural changes between weekdays and weekends, attitudes, and584

climatic factors, e.g., seasonality and drought conditions that would emerge if585

outdoor uses were included (Kenney et al., 2008). Our results show large Ap-586

pliance RMSE for course data sampling resolutions (RMSE gets up to above587

30% for daily data sampling resolutions, meaning end-use estimates are not588
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reliable at this resolution for management applications). Appliance RMSE589

values would very likely be worse if disaggregating real-world data collected590

at minute to hourly frequency, as (i) demand patterns would be affected591

by heterogeneous, irregular, water use behaviours, (ii) water use signatures592

would be much more diverse than the signatures embedded in STREaM,593

and (iii) there would be limited calibration data. Considering these several594

factors, we find that only resolutions of few seconds or, at most, 1 minute595

can be used to perform accurate end-use disaggregation, provide customized596

information about consumption of each end-use, peak magnitude, and time597

of use when multiple and potentially overlapping fixtures are active. These598

results are also consistent with the analysis by Armel et al. (2013) in the599

electricity field. Rather than an a priori expectation, it is worth mention-600

ing about this consistency between water and electricity to inform potential601

integrated water-energy approaches and solutions.602

Finally, the results may also depend on the HSID algorithm chosen for603

disaggregation (Cominola et al., 2017), thus the application of different dis-604

aggregation algorithms might change the numerical values obtained for the605

two performance metrics.606

4.2.2. Leakage detection607

Results for Average Water Loss demonstrate that data resolution strongly608

impacts the volume of water that can be saved by more prompt leak detec-609

tion. Fine resolutions of 10 seconds to 1 minute allow prompt detection610

of small leaks that otherwise would easily blend with signal noise. Also,611

the amount of water lost significantly increases at a 5-15 minute resolution.612

These results do not include leakage after a leak is detected and before it613
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is fixed. Current leakage detection systems typically act on longer detec-614

tion time intervals, which depend on the leak flow rate (Puust et al., 2010).615

Moreover, methods based on Minimum Night Flow (Britton et al., 2008)616

usually detect leakages with above daily delays and their accuracy and rate617

of false alarms can be affected by signal noise on consumption time series.618

Thus, there is need for research to improve leakage detection systems (use619

high frequency data, reduce false alarms) in real case studies. For example,620

even with a medium resolution of 5 minutes, more than 20 liters are wasted621

on average, i.e., approximately the amount of water used for a 2.5-minute622

shower with a flow of 9.5 liters/minute (equal to approximately 2.5 gallons623

per minute) (DeOreo et al., 2016). At a daily resolution the water loss in-624

creases to more than 6 cubic meters, i.e., about the same amount of water an625

average Italian consumer would use in more than 1 month (approximately626

35 days) — the average per-capita daily water use in Italy is approximately627

175 liters/(person × day) (Italian National Institute of Statistics, 2013). At628

an average price of 2.03 $/m3 (Intelligence, Global Water, 2011), the leakage629

would cost the customer 25$/day. There are also indirect costs for water-630

related energy use and waste water treatment. Thus, both public and private631

water suppliers should be interested to use high frequency data collection to632

improve leak detection.633

4.2.3. Peak demand estimation634

Peak demand estimation error increases dramatically as the resolution635

becomes coarser, growing to 60% error with a daily sampling resolution.636

This increasing estimation error derives from aggregation and averaging of637

data as the sampling resolution decreases. Consequently, peaks (minimums638
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and maximums) associated with high frequency measurements are dampened639

and flattened at the measurement resolution becomes coarser Figure 8. At640

the extreme, the single daily reading is a flat line that shows no variability.641

Similarly, the Peak Estimation Time Gap grows steadily from 24 min at 1-642

minute sampling frequency to more than 15 hours (9.4e+02 minutes) at daily643

sampling frequency. This values can be acceptable for scheduling hourly644

supply operations, and still allow discriminating between time windows in645

the day (e.g., morning, afternoon, evening, night) to design time-dependent646

demand management strategies (e.g., pricing schemes). Yet in real cases with647

more noisy data, higher number of users, and more asynchronous behaviours,648

such performance might degrade and hamper the capabilities of utilities to649

optimize hourly operations and design effective hourly pricing schemes.650

These results suggest the benefit to undertake demand management pro-651

grams using high-resolution data. Indeed, Peak Estimation Error is above652

20% when the data resolution is coarser than 5 minutes. For water utilities,653

underestimation of aggregate water demands across the whole community654

of consumers would limit knowledge about the actual usage of the network.655

Further, underestimation of peak demands of single-users would hide the vari-656

ability of demand patterns across different segments of users, thus limiting the657

proper design and customization of demand management strategies based on658

pursuing peak shifting or penalizing high peaks of water demand and intense659

water consumption levels, e.g., block tariffs and dynamic pricing schemes660

based on time of use (Cole and Stewart, 2013). In this regard, relevant un-661

derestimation or incorrect time estimation of demand peaks would also likely662

limit the capabilities of detecting anomalous behaviours and leakage events663
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based on water use threshold criteria. Finally, inaccurate estimation of de-664

mand peaks prohibits advanced data analysis aimed at cross-correlating peak665

demand with candidate demand drivers (e.g., presence of swimming pools or666

outdoor end-uses).667

4.2.4. Data storage668

Data size depends on the sampling resolution. For example, only 3 kbytes669

are needed to store the 365 daily data points for a single household in a 1-670

year time series. The storage needed would increase to over 25 Mbytes if671

the same data were collected at 10-second sampling resolution. Even though672

storing 25 Mbytes of data per year is low cost for a single household (for in-673

stance, the price of Amazon S3 Standard Storage cloud system in the United674

States is 0.023 $/GB), the cost increases when projected to the utility scale,675

with increasing costs for cloud infrastructures, as well as database design676

and maintenance. Data can become a burdensome asset, especially for those677

utilities that provide water, electricity, and gas. There is also the need to678

develop techniques to extract relevant information for decision making. We679

acknowledge that utilities often analyze aggregate water use data, rather680

than the raw data. In principle, this can relieve them from data storage681

costs. Yet, data storage is a proxy measure for the computational burden682

of big data in terms of data analytics and database design. Therefore, utili-683

ties should balance the marginal information value given by high-resolution684

data to their operations and demand management programs, against costs685

to acquire and maintain hardware, cloud storage, analyze data, maintain686

databases, and transmit data (e.g., duration of meter battery). Such costs687

should also consider the frequency of data transmission: systems can use688
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different frequencies to collect and transmit data.689

4.2.5. Commercial availability690

The results discussed so far rely on the end-use trajectories generated691

via STREaM under the assumption that we could potentially meter 500692

households at sampling resolutions ranging from seconds to one day. In this693

section, we provide a few examples to describe the ranges of capabilities of694

existing commercial and customized metering systems to support the sam-695

pling resolutions shown in Figure 5. Metering products are numerous, rapidly696

changing, and there are many ways to combine meters, registers, and data697

transmission services into a metering system. Meter system accuracy de-698

pends on the meter type, service line size, flow rate, water meter age, and699

whether the meter complies with accuracy recommendations put forward by700

the American Water Works Association (Barfuss et al., 2011). Below, we701

discuss similarities and differences between commercially available systems702

that can provide sampling resolutions down to about 5 minutes. We also703

review customized systems deployed in recent end use studies that recorded704

water use at 1 minute or more frequent intervals (Table 4).705

A commercial water meter with a commercial analogue register continu-706

ously reads total water use, has no power requirements, but has no ability707

to store readings. Total water use can only be read when a person visits708

the meter. The same meter configured with a register and radio transmitter709

allows a person to read the total water use from near the vicinity of the me-710

ter (e.g., from a passing vehicle). Many U.S. water providers use this type711

of system to pass by the meter once per month to record customers water712

use and bill customers. More advanced registers, such as the Neptune E-713
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CODER R©)R900i (Neptune Technology Group, 2017) can record total water714

use every 15 minutes for up to 96 days and use Advanced Meter Reading715

(AMR) technology to transmit readings via a mobile phone network, fixed716

radio network, or optical sensor to a person standing in the vicinity of the717

meter. The MetronFarnier Innov8-VN register offers similar capabilities but718

can record water use every 5 minutes and transmit data once per day via719

a mobile phone network to a website where a user can view data (Metron-720

Farnier, 2017).721

Water utilities read commercial registers every five minutes to daily to722

help monitor or detect leaks or reduce non-revenue water. Similarly, AMI723

systems connect meters and registers to a line-of-sight, fixed radio frequency724

network that generally operates at 30 MHz or higher (Hawkins and Berthold,725

2015). With AMI, a water utility can automatically read meters over the726

network at daily, hourly, or even 15 minute intervals.727

Currently, reading more frequently than about every 5 minutes requires728

adding customized hardware and software to the meter or register. For ex-729

ample, Mayer and DeOreo (1999); Beal and Stewart (2013); DeOreo et al.730

(2016) installed a Halls effect magnetic sensor between the meter and register731

and data logger to record water use every 10 seconds for up to 2 weeks. Hors-732

burgh et al. (2017) improved the system to collect data every 5 seconds, use733

low-cost, off-the-shelf hardware components, make the software open source,734

and transmit data via WiFi. And where the commercial meter or register has735

pulse (2-wire) or AMR (3-wire) outputs — such as the Innov8-VNadditional736

devices — pulse counters or data loggers can be connected to outputs and737

programmed to read as frequently as desired for as long as storage memory738
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allows (e.g., every 5 seconds for ∼1 month or every 1 second for ∼10 days739

with MadgeTech (2017)).740

5. Conclusions741

In this research, we assess the tradeoffs between the value of information742

provided by water use data sampled at different temporal resolutions and743

economic, operational, and feasibility issues. We answer the questions: (i)744

which aspects of water demand modelling and management can be accurately,745

feasibly, and cost-effectively informed with different data resolutions? and746

(ii) are there resolution thresholds discriminating on these aspects?747

We developed the STREaM tool, to synthetically generate residential wa-748

ter demands for individual end-uses of water, estimate total water use, and749

develop demand scenarios that consider the number of households and het-750

erogeneity/homogeneity in household demographic characteristics and water751

use appliances. The tool also generates time-series of water demands at vary-752

ing temporal intervals ranging from days to seconds. We used these features753

to identify the effects of increasing the temporal frequency at which water use754

data are generated and sampled on end-use disaggregation, leak detection,755

peak demand estimation, data storage, and product availability.756

We found that increasing sampling frequency to minutes or seconds in-757

creases the average accuracy of end-use disaggregation and decreases disag-758

gregation errors. Increased sampling frequency also decreases the volume759

of leaked water that goes undetected and decreases the error on estimates760

of instantaneous peak demand. At the same time, more frequent sampling761

increases required data storage and the need to develop and deploy custom762
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systems. Currently, commercially available water metering systems sample763

water use down to about 5 minute intervals.764

Several benefits of increased sampling frequency will likely spur further765

commercial development in water meters, registers, and AMR systems that766

can sample more frequently than every 5 minutes. Increased frequency will767

permit more accurate estimation of peak demand which is a key parameter768

to design and size water distribution systems. Increased frequency will also769

reduce the time it takes to detect leaks, decrease the corresponding volume770

of leaked water, and reduce non-revenue water. Non-revenue water is an im-771

portant metric by with water utilities are evaluated. Additionally, sampling772

at higher temporal frequency will also allow managers to more accurately773

estimate the water volumes of individual customer end uses (toilets, faucets,774

showers, etc.) and reduce error. More accurately resolving water end uses775

can help managers better understand customer water use and component776

end-uses. It can also help identify appliances, water use behaviours, and777

customized conservation programs (e.g., rebates for retrofits, technical assis-778

tance, and other incentives) that allow customers to save more water with779

minimal effort and cost. Resolving water end uses can also help utilities de-780

termine which customers to target with conservation programs and efforts.781

Despite these benefits, smart meters are not fully exploited by water utilities782

because of costs, concerns related to meter battery life, amount of data to783

transfer and store, and product availability.784

The STREaM tool also opens important opportunities for research. STREaM785

extends the state-of-the-art literature of stochastic models to simulate resi-786

dential water use (e.g., Blokker et al., 2009; Aksela and Aksela, 2010; Makropou-787
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los and Rozos, 2011; Koutiva and Makropoulos, 2016). First, STREaM can788

generate end-use data both at the fine spatial scale (household) and time789

scale (seconds), while other state-of-the-art models either only reproduce the790

aggregate water use time series of single household (e.g., Aksela and Aksela,791

2010), or generate end-use water use data with daily or coarser resolution792

(e.g., Makropoulos and Rozos, 2011; Koutiva and Makropoulos, 2016). Sec-793

ond, STREaM is built on a uniquely big and consistent dataset of end-use794

data metered at sub-minute sampling frequency. In contrast, other models795

from the literature (e.g., Blokker et al., 2009) are usually calibrated using796

census data and statistic information on fixture and fixture use from het-797

erogeneous sources. Moreover, STREaM allows to generate water use under798

different demographic and water efficiency conditions, and its output end-use799

time series represent an actual trajectory with event signatures, rather than800

simplified pulses. Finally, STREaM is an open-source project, so that the it801

can collaboratively grow as new data become available.802

STREaM can be used to reproduce and benchmark water demand and803

disaggregation algorithms. For example, other researchers can use generated804

water demand traces to test and compare new disaggregation algorithms to805

existing algorithms. Scenario features (number of households and hetero-806

geneity/homogeneity in household demographic and water use appliances)807

allow researchers to test and compare disaggregation algorithms under a va-808

riety of conditions that are typically difficult to measure or observe or may809

not occur yet in existing water systems. Further, end-use disaggregation ex-810

periments can include (i) randomized combinations of types of considered811

appliances and (ii) randomized number of appliances per type. Outdoor ir-812
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rigation would enhance the comparative analysis of end-use disaggregation813

performance for different appliances. At the same time, managers can com-814

pare observations from their existing water system to benchmarks or estimate815

fluctuations in water system demands at higher temporal frequencies than816

what they can currently measure. Features of the STREaM tool help show817

implications of measuring water use at higher temporal frequencies. Simi-818

larly, managers can use higher frequency estimates to better manage their819

water systems. Finally, STREaM is provided as an open source software820

(available at https://github.com/acominola/STREaM/), therefore we wish821

more end uses and data from different locations will be made available in the822

future to make it more usable and represent better consumptions of different823

communities worldwide.824
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Table 1: Summary of performance metrics for multi-resolution comparative assessment.

Metric ID Framework component Metric Unit

1 End-use disaggregation Appliance Contribution Accuracy %

2 End-use disaggregation Appliance Root-Mean Square Error -

3 Leakage detection Average Water Loss Liters/(household × year)

4 Peak demand estimation Peak Estimation Error %

5 Peak demand estimation Peak Estimation Time Gap Minutes

6 Data storage Data Size Mbytes/(household × year)

7 Commercial product(s) Availability Yes/No

available for purchase
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Table 2: Summary of total water use events extracted from a training dataset of 313

households over 3,731 days.

Standard-efficiency High-efficiency

houses houses

End-use/summary item Total count of events

Shower 6,571 688

Toilet 45,167 3,641

Faucet 168,612 10,568

Bathtub 585 65

Clothes washer 3,067 258

Dishwasher 1,111 110

Number of days monitored (measuring water) 3,413 318
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Table 3: P-value statistics obtained via Mann-Whitney U testing comparing the distri-

bution of water end-use statistics for STREaM simulated use data at 10-second sampling

resolution against the distribution of statistics for observed water use data. Test dataset in-

cludes water end-use events for 250 STREaM simulated households over one year (91,250

household-days) and observed data (3,413 household-days). Significance level: 1%. P-

value is not reported when the test rejects the null hypothesis of similar distributions.

Mann-Whitney U test p-value

Appliance name Number of Consumption Consumption

usages/day event volumes event durations

Shower 0.796 0.740 0.526

Toilet 0.499 - -

Faucet - - -

Bathtub 0.596 0.474 0.685

Clothes washer 0.775 0.368 0.996

Dishwasher 0.569 0.869 0.849
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Table 4: Comparison of commercially available systems that can provide sampling resolutions down to about 5 minutes and

customized systems deployed in recent end use studies that recorded water use at 1 minute or more frequent intervals.

Measuring frequency Example Technology Cost ($) Availability At-meter Data Stor-

age

Data trasmission Reference

1 month Analogue register ∼ 100 Commercial None Manual -

15 min Neptune E-

CODER R©)R900i

208 Commercial 96 days AMR/AMI, Cell net-

work, fixed radio net-

work, optical sensor

Neptune Technology

Group (2017); Me-

terWorks (2017)

1 day, 1 hour, 15 min Advanced Meter In-

frastructure

Site specific Commercial Hours to day Fixed radio network Hawkins and

Berthold (2015)

5 min MetronFannier

Innov8-VN

∼ 300 Commercial Days Cell network MetronFarnier

(2017)

10 sec Aquacraft Halls ef-

fect sensor; data log-

ger

∼ 2400 Custom 2 weeks Manual Mayer and DeOreo

(1999); Beal and

Stewart (2013);

DeOreo et al. (2016)

5 sec Halls effect sensor;

RasberryPi

< 200 Custom Month Wifi Horsburgh et al.

(2017)
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Figure 1: Sample time series of total community water use of 500 households for one day

sampled at temporal resolutions of 10 seconds, 60 minutes, and 1 day.
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Sample Daily Consumption Events
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Figure 2: STREaM conceptual model flowchart.
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Figure 3: Comparison of Empirical Cumulative Distributions of daily household water use

for 250 STREAM simulated households over one year (solid blue line; 91,250 household-

days) and observed data (dashed red line; 3,413 household-days).
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Figure 4: Comparison of Empirical Cumulative Distributions of time of use of water con-

sumption events for six different water end uses across 250 STREAM simulated households

over one year (solid blue line; 91,250 household-days) and observed data (dashed red line;

3,413 household-days).
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Figure 5: Multi-resolution assessment on STREaM generated water use data. Each row of

the matrix refers to a performance metric (see Section 2), each column to a different data

sampling resolution (see Section 4.1). Numerical labels in each matrix cell report values

for each combination of performance metric and resolution. Color pattern in the figure

highlights a tradeoff between the top four performance metrics and the two on the bottom

(dark color refer to good performances, and vice versa).
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Figure 6: Boxplot showing appliance RMSE when disaggregating end-uses for decreasing

data sampling resolution. We used the supervised version of HSID algorithm (Cominola

et al., 2017) for end-use disaggregation of water consumption data from a set of 6 generated

households with 1 to more-than-5 occupants. HSID was calibrated over 2-months data

and Appliance RMSE evaluated over 1-month validation data.
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Figure 7: Water Contribution Accuracy (top) and Normalized Root-Mean Square Error

(bottom) of end-use disaggregation at different data sampling resolutions. Each row of

the matrices refers to a different data sampling resolution, each column to a different

appliance. Color bar is proportional to the two performance metrics (dark color refer

to good performances, and vice versa). For each appliance and sampling resolution per-

formance metrics are averaged across those obtained from the end-use disaggregation of

water consumption data of 6 generated households with diverse demography.
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Figure 8: Time series of total community water use (500 households) for one day sampled

at temporal resolutions ranging from 10 seconds to a day. Daily pattern is characterized

by two peaks, at approximately 8 am and 7pm.
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