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Abstract—Many indoor localization methods are based on the
association of 802.11 wireless RF signals from wireless access
points (WAPs) with location labels. An “organic” RF positioning
system relies on regular users, not dedicated surveyors, to build
the map of RF fingerprints to location labels. However, signal
variation due to device heterogeneity may degrade localization
performance.

We analyze the diversity of those signal characteristics perti-
nent to indoor localization — signal strength and AP detection
— as measured by a variety of 802.11 devices. We first analyze
signal strength diversity, and show that pairwise linear trans-
formation alone does not solve the problem. We propose kernel
estimation with a wide kernel width to reduce the difference
in probability estimates. We also investigate diversity in access
point detection. We demonstrate that localization performance
may degrade significantly when AP detection rate is used as a
feature for localization, and correlate the loss of performance
to a device dissimilarity measure captured by Kullback-Leibler
divergence. Based on this analysis, we show that using only signal
strength, without incorporating negative evidence, achieves good
localization performance when devices are heterogeneous.

I. INTRODUCTION

As more people carry devices that can determine their loca-

tion, numerous applications have emerged that rely on accurate

and continuous location information. Typical examples include

route finding, photo and video geotagging, friend finding,

targeted advertising and coupons, suggesting local points of

interest, and inferring a user’s context. GPS [1] is the primary

source of location estimates for many applications, which

function as expected only when location is available. This

failure typically occurs indoors, but may happen outdoors as

well, in “urban canyons” or in bad weather where the satellite

signals required for GPS are obscured. In order to improve the

availability of these applications, researchers have worked for

two decades on extensions and alternatives to GPS to provide

location information ubiquitously [2]–[5].

Early work on alternatives to GPS typically explored instru-

menting a lab space with beacons and mobile devices with re-

ceivers. For example, ActiveBadge [2] used infra-red beacons;

Cricket [3] used RF/ultrasound beacons. However, as IEEE

802.11 access point coverage has become nearly universal in

most urban environments [6], localization methods that rely on

WiFi beaconing have become the primary alternative to GPS,

particularly in indoor environments. Beginning with work by

Bahl and Padmanabhan [7], these methods achieve accuracy

comparable to that of GPS — typically a few meters [8] —

and, therefore, can often support location-based applications

at no additional infrastructure cost.

The basic survey/use model for WiFi-based localization is

well-understood [4], [7]–[11]. First, an expert surveyor walks

around a building, collecting a set of scans, or a fingerprint, for

each room. In aggregate, the fingerprints for a building make

up its signal map. Second, to estimate its location, a user’s

device observes its own fingerprint and finds the closest match

in the signal map, returning the corresponding coordinate or

semantic name.

While this curated model is practical for highly managed

and popular spaces, such as airports and city streets, it does

not effectively extend positioning applications into schools,

shops, offices, and homes — the long tail of spaces where

people spend most of their time. This is chiefly because expert

surveying is time-consuming, intrusive, requires maintenance

over time, and expensive: a commercial survey of a single

multi-story building can cost more than $10,000.

In order to overcome these shortcomings and extend WiFi-

based localization and its applications into this much broader

range of environments, several recent localization systems

have adopted user-collected fingerprints [12]–[15]. These sys-

tems follow a Wikipedia-style crowdsourcing model with

respect to populating and maintaining the fingerprint database:

a small fraction of local users contribute survey informa-

tion about their locations, while the vast majority of users

simply benefit from the database. Figure 1 illustrates this

process for an office environment. In contrast to survey-

driven WiFi collection and maintenance, these crowd-sourced,

or “organic,” localization systems must determine when to

prompt user/surveyors for input and must exclude invalid

fingerprints automatically [15].

A key problem for organic indoor localization is that de-

vice diversity introduces a new, complicating variable. Where

expert surveys may use an expensive RF-scanner whose prop-

erties, e.g. dynamic range, have been rigorously calibrated,

this level of standardization and equipment cannot be expected

in organic surveying with typical consumer-grade laptops and

cellphones. The “device heterogeneity” problem occurs when

a user/surveyor’s and a standard user’s devices are different,

which is the common case in organic location systems. This

paper addresses device heterogeneity, significantly expanding
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Fig. 1. In an “organic” indoor location system, a small fraction of users
contribute RF signatures for each space, while most user’s devices simply use
the resulting database for positioning. For example, users A and B could be
contributors to the office environment shown, whereas C and D are non-
contributing users. The bars next to A and C represent the set of signal
strengths (the fingerprint) seen by their devices when they are in room 235.
If A and C have different devices, the fingerprints observed may differ, even
if they are in the same room at the same time. This paper examines how to
achieve accurate indoor localization in this situation, which is becoming more
common as more location applications rely on RF signatures in GPS-denied
environments.

the potential of organic localization systems for real-world

deployment.

Previous work has acknowledged the problem of sharing

fingerprints between heterogeneous devices and suggested

it could be solved by a simple linear transformation be-

tween received signal strength indicator (RSSI) values [8].

We demonstrate that linear transformation of signal strengths

is insufficient for cross-device localization. Instead, we find

that a wide kernel applied to the signal strength distribution

provides significantly better end-to-end accuracy than linear

transformation, because the former captures the primary dif-

ference across devices: signal strength dispersion. A second

complication afflicts fingerprint sharing: the set of access

points detected by each device can be different. We show

experimentally that the number and the identity of APs de-

tected by each device can vary widely. As a consequence,

a common alternative to RSSI-based localization — relying

on access point presence or absence — fails when this type

of fingerprint is shared across heterogeneous device types. We

show through an information-theory argument that augmenting

RSSI-based localization methods with presence/absence will

actually degrade performance.

This paper makes the following contributions:

• We analyze the problem of localizing with RF fingerprints

surveyed from and shared by different types of devices:

i.e. , the use of heterogeneous devices for organic indoor

localization.

• We show that using kernel estimation with wide kernel

widths to transform the received signal strengths from

one device to another is beneficial for cross-device local-

ization.

• We show why using AP presence/absence information

yields poor performance for cross-device localization, and

relate it to the device dissimilarity captured by Kullback-

Leibler divergence.

• We contribute a public RF-scan dataset, collected from

six heterogeneous devices, for other researchers to ana-

lyze.

II. BACKGROUND

We describe our client-server model for collecting and

sharing organic fingerprints (§II-A), review Bayesian local-

ization (§II-B), then cover the three features most commonly

used for Bayesian localization (§II-B1,§II-B2,§II-B3).

A. Model

Our model for signature collection, validation, sharing, and

use is based on our previous work deploying an Organic

Indoor Location (OIL) system [15]. OIL follows a client-server

design: devices collect scans, users associate scans with a

location label to form a fingerprint, and devices then send this

fingerprint to a server; fingerprints are shared across devices

via the server; localization itself is performed on each mobile

device. This design is similar to other organic localization

systems, such as RedPin [13] and ActiveCampus [12], all of

which must grapple with device heterogeneity.

B. Bayesian Localization

For localization, we use the naı̈ve Bayes classifier, which

has a number of properties that make it suitable for user-

contribution-based localization systems for mobile devices:

low overhead of model update, simple computation on the

client, and good performance despite its simplicity.
Given a set of fingerprinted locations (training data) and

a WiFi scan observation (test data), the Bayesian localization

method infers the most likely location l̂ of the mobile device

using Bayes’ rule. Let L and O denote the random variables

for location and observation respectively. Given a WiFi scan

observation o ∈ O, the posterior probability of being in

location l ∈ L is given by the Bayes’ rule:

pL|O(l|o) =
pO|L(o|l) pL(l)

pO(o)
. (1)

Note that the observation likelihood pO(o) is fixed and can

be ignored in what follows. If we assume that the prior prob-

ability, pL(l), is uniform, the maximum a posteriori (MAP)

estimate, with which posterior probability is maximized, is

given as follows:

l̂ = lMAP = argmax
l∈L

[

pO|L(o|l)
]

. (2)

The MAP estimate depends on the class-conditional prob-

ability pO|L(o|l), which is described by features from WiFi

measurement characteristics. The common features used for

WiFi localization are signal strength and AP presence/absence.

For all models, we assume that each feature is conditionally

independent of every other feature given a location, yielding

the naı̈ve Bayes classifier.
In the following sections, we describe how to model the

class-conditional probability for each feature, along with a

hybrid model that uses both features.
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1) Signal Strength: In signal-strength-based localization,

each observation consists of a vector of signal strengths

O = (S1, S2, . . . , Sk) for k access points. Suppose, at the

positioning phase, only m ≤ k access points are observed

with a signal strength value. Let M denote the index of the

observed access points. Then, the decision rule (Equation 2)

becomes:

l̂ = argmax
l∈L

[

∏

i∈M

pSi|L(si|l)

]

. (3)

The class-conditional probability pSi|L(·|·) can be estimated

from training data in different ways, by modeling it as a cate-

gorical distribution (histogram), a Gaussian distribution (with

maximum-likelihood parameter estimates), or a kernel density

estimator (Parzen window estimator). The latter accounts for

the variance of each sample.

The kernel density estimator p̂kX(·) [16] estimates the prob-

ability density function pX(·) as follows:

p̂kX(x) =
1

nh

n
∑

i=1

K

(

x− xi

h

)

(4)

where xi is an observed sample of random variable X , h is

a kernel width, and K(·) is a kernel function. A Gaussian

kernel is often used for the kernel function. The kernel width

determines the degree of sample “smoothing” effected by the

kernel.

The estimated probability density function is discretized and

m-estimate smoothing is applied to avoid the zero-probability

problem in Bayesian classification as well as to provide a

regularization effect [17]. Given a discretized probability mass

function p̂X(x) computed from either histogram, Gaussian, or

kernel estimator, our final probability estimate pX(x) using

the m-estimator is:

pX(x) =
Np̂X(x) + Φp̄X(x)

N +Φ
(5)

where N is the weight of the observed histogram, p̄X(x) is

a “prior” probability, and Φ determines how much weight we

attribute to the prior p̄X(x). We use the uniform prior, and

Φ = N/10 for the experiments.

2) AP Detection: Another feature vector can be constructed

to reflect the presence or absence of access points. If we

model the presence/absence of the signal from a certain AP

as a Bernoulli process, the observation follows a multivariate

Bernoulli model in which O = (J1, J2, . . . , Jk) for k APs,

where Ji is a binary variable with 1 indicating presence of

signal from AP i and 0 indicating absence. In this framework,

the decision rule (Equation 2) becomes:

l̂ = argmax
l∈L

[

∏

1≤i≤k

{

pJi|L(1|l)
}Ji

{

1− pJi|L(1|l)
}1−Ji

]

(6)

where pJi|L(1|l) is the probability that AP i is detected in a

WiFi measurement at location l.
This localization algorithm requires only presence/absence

information of access points, which can be easily obtained

from any WiFi device, and from which constructed finger-

prints are compact compared to those of signal-strength-

based localization. Because of these merits, presence/absence

information is particularly well-suited to large-scale, coarse-

grained localization.

However, this formulation explicitly considers negative ev-

idence — absence — of a signal from a certain access point;

we show later that this becomes problematic when different

devices detect partially disjoint sets of APs.

3) Hybrid: Signal Strength and AP Detection: The detec-

tion probability pJi|L(1|l) can be used together with the signal

strength as feature variables. In this formulation, the observa-

tion variable becomes O = ((J1, S1), (J2, S2), . . . , (Jk, Sk)).
The signal strength variable Si is conditioned on the detection

variable Ji, and must be marginalized if it is not observed

(Ji = 0). Based on this, we derive the following classification

rule from Equation 2 as follows:

l̂ = argmax
l∈L

[

∏

1≤i≤k

{

pJi|L(1|l) pSi|Ji,L(si|1, l)
}Ji

{

1− pJi|L(1|l)
}α(1−Ji)

]

(7)

where α, 0 ≤ α ≤ 1, is a discounting factor which determines

how much to discount negative evidence. This prevents local-

ization from being dominated by negative evidence if many

access points are present but each WiFi scan captures only a

small fraction of them. When α = 1, the formula is identical

to the one used in [9]; when α = 0, it is equivalent to [18].

We set α = 1 for our experiments.

III. EXPERIMENTAL SETUP

In order to examine the effect of device diversity on

indoor positioning, we collected WiFi scans from six different

devices at 18 locations in one building. We used two different

commodity laptops, a netbook, a mobile phone, and two tablet

computers. The tablets were the same model, illustrating the

homogeneous organic localization case. Table I summarizes

the devices we compared for the experiment.

The six devices were placed on a rolling cart, enabling

simultaneous data collection, with all logging to local storage

Device WiFi Chipset OS Kernel

Clevo D901C Intel 5300AGN Linux Linux 2.6.32
laptop (802.11a/b/g/n) Ubuntu 10.04

Asus EEE900A Atheros AR5001 Linux Linux 2.6.32
netbook (802.11b/g) Ubuntu 10.04

Lenovo Thinkpad Intel 4965AGN Linux Linux 2.6.32
X61 laptop (802.11a/b/g/n) Ubuntu 10.04

Nokia N810 Conexant CX3110X Maemo Linux 2.6.21
tablet (x2) (802.11b/g) OS2008

Nokia N95 TI OMAP2420 Symbian EKA2
cellphone (802.11b/g) S60 FP1

TABLE I
DEVICES USED FOR DATA COLLECTION.
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to avoid using their radios for data transmission while data

collection was in progress. The device radios performed no

activity other than scanning.

In each location, each device recorded WiFi scans for seven

minutes. Scans were taken near each device’s peak rate, with

a one-second gap between scans. Because of the variation in

the time each device takes to complete a scan, this resulted

in a maximum of 552 and a minimum of 61 scans collected

at any location; the EEE900A laptop, for example, often took

seven seconds to complete a scan request. While this difference

would affect time-to-update performance for moving users,

our analysis ignores this factor because it is not relevant for

instantaneous localization. To remove the effect of this factor

from our results, in each experiment we selected 60 scans

at random per device from each seven-minute period. (See

http://rvsn.csail.mit.edu/location for the raw data,

and the samples used for each experiment.)

IV. HETEROGENEOUS WIFI SIGNAL STRENGTHS

This section shows that signal strength scans from different

devices exhibit not only a linear shift in signal strength but

also a difference in dispersion. This suggests that sharing

fingerprints between different devices would be more effective

with “smoothed” signal strength values, e.g. a wide kernel

function. We then show that using a wide kernel to share

signatures does indeed lead to a significant improvement in

accuracy.

A. Analysis of Pairwise Device Calibration

Previous work suggested that inter-device calibration can be

achieved by applying a linear transformation of signal strength

values from one device to the other [8], [19]. Such a linear

function can be estimated from WiFi scan data taken from

both devices at the same time and place.

We compare signal strength measurements of the six devices

in our dataset, showing pairwise scatter plots in Figure 2.

We observe a strong correlation in the mean value of signal

strength measurements between every pair of devices. There-

fore, as suggested by previous work, we first attempt the

following simple procedure for cross-device localization.

1) Pairwise device calibration. For every pair of devices

A and B, the coefficients for linear transformation from

device A to device B are computed as:

S̄B
i,l = βB

A S̄A
i,l + αB

A , (8)

where S̄A
i,l (S̄B

i,l) denotes the mean signal strength value

of device A (device B) for WAP i at location l, and αB
A

and βB
A denote linear coefficients for the transformation

from device A to B.

2) Positioning. If device A is used for training and B is

used for positioning:

a) Linear transformation from B to A is applied to

test scans of device B.

b) Device B is then localized using device A’s training

data.
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Fig. 2. Each point in each scatter-plot represents a pair of mean RSSI values
from the same access point. The values were observed by pairs of devices
placed in the same location for the same time interval. For example, the
scatter-plot in row 3, column 4, compares the scans of the N810(1) with
the Thinkpad X61. Most pairs show a strong linear correlation, but some
devices, e.g. N810s, show noisy values at low signal strength ranges. The
Pearson correlation coefficient for each dataset is given in the corresponding
scatter-plot.

The linear transformation is computed by linear least squares,

with sample pairs differing by more than 20 dB excluded from

fitting.

Figure 3 shows the resulting localization error in meters

when WiFi measurements from each device are tested against

training data from device N810(2). Other combinations of

devices showed similar characteristics. For baseline evalua-

tion, we used the Gaussian distribution for class-conditional

probabilities.

As Figure 3 shows, linear transformation with Gaussian

class-conditional probability improved localization perfor-

mance significantly only for EEE900A, while it did not pro-

vide significant improvement for other devices. Among every

combination of training and test device, linear transformation

improved performance significantly only when EEE900A was

used for either the training or test device. For the 10 de-

vice pairs including EEE900A, the improvements in spot-

on accuracy and error distance were 29.8% and 5.47 meters

respectively, while for the other 20 device pairs, improvements

were 3.29% and 0.418 meters, which are not significant.

This observation led us to investigate the net effect of

linear transformation on actual WiFi measurements of each

device. Table II shows the dynamic range of each device.

Only EEE900A was significantly different from other devices

with respect to the dynamic range of signal strengths. As a

result, the linear transformations shift signal strengths only

3185



−85 −80 −75 −70 −65 −60 −55 −50
0

5

10

15

20

Signal Strength (dBm)

F
re

q
u

e
n

c
y

 

 

EEE900A

N810(1)

N95

(a) Signal strength histograms before linear transformation
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(b) Signal strength histograms after linear transformation

−85 −80 −75 −70 −65 −60 −55 −50
0

0.05

0.1

0.15

Signal Strength (dBm)

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

 

 

EEE900A

N810(1)

N95

(c) Gaussian estimation
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(d) Kernel estimation

Fig. 4. Kernel density estimation vs. Gaussian estimation. In 4(a), the raw data show the histogram of RSSI values from a single AP that three devices
observed in the same room during the same seven-minute window. Only the signal strengths for EEE900A are considerably different, while the difference
between N810(1) and N95 is smaller. In Figure 4(b), the linear transformation is effective for EEE900A, while its effect is minimal for N95. Even after
transformation, the dispersion and shape of signal strength values for each device differ significantly. Therefore, the Gaussian probability estimates (and
histogram) for these devices differ significantly (Figure 4(c)), and this difference adversely affects localization. For example, a signal strength of -64 dBm
is observed often for N95, but has near-zero probability if Gaussian-fitted training data for N810(1) is used. Estimation with a wide kernel significantly
reduces the difference between different devices (Figure 4(d)).
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Fig. 3. Localization accuracy, as measured in mean physical distance away
from the correct room, when the N810(2) acted as the organic surveyor and
the other devices act as users.

slightly for most devices, except for EEE900A. However, the

mean deviation (regression residual) of signal strength values,

excluding outliers, from the linear transformation lines was

3.5 dB. This means that the amount of deviation of each signal

strength value is comparable to the amount of global shift

by linear transformation, except for EEE900A. Thus linear

transformations are ineffective for other devices. Figure 4(a)–

4(c) illustrate the details.

B. Kernel Density Estimation

This observation implies that the major characteristics of

signal strength diversity lie not only in the linear difference

between devices, but also in the different local deviation

and shape of individual signal strength distributions. While

global linear transformation may be able to adjust for large

differences in dynamic range, it fails to adjust for local

differences that are specific for a certain location and an AP. In

order to reduce such differences in signal strength distributions

across devices, we consider kernel density estimation (Eq. 4)

in computing individual class-conditional probabilities.

Kernel density estimation takes the noisiness of individual

(dBm)

% D901C EEE900A X61 N810(1) N810(2) N95

0 -92 -106 -93 -92 -110 -90
25 -86 -98 -87 -81 -83 -81
50 -81 -90 -81 -76 -77 -75
75 -72 -79 -69 -69 -70 -68
100 -25 -41 -29 -35 -39 -35

TABLE II
DYNAMIC RANGE OF THE TEST DEVICES (IN PERCENTILES)
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Fig. 5. Use of kernels significantly improves cross-device localization.
Localization performance with varying kernel widths for the same type of
devices (N810) and for the heterogeneous pairs of devices (all excluding
N810 pairs) are shown. The results with Gaussian density estimation are
also provided for comparison. As the kernel compensates for the difference
between signal strength distributions across devices, localization accuracy
improves significantly. Improvement is greater for different device types
than for homogeneous devices. However, if too wide of a kernel is used,
localization performance starts to degrade as RSS differences arising from
true changes in location are masked.

samples into account. Here, we use kernel density estimation

to compensate for the difference between signal strength

distributions across different devices. We evaluated a Gaussian

kernel with widths varying from 1 dBm to 10 dBm. An

example of kernel estimate with width 4 dBm is shown

in Figure 4(d). Figure 3 also shows enhanced localization

accuracy when kernel estimation with the same width is used,

if N810(2) acts as a training device.

Figure 5 shows the effect of kernel width on cross-device

localization, and compares kernel estimation to the histogram

method and Gaussian density estimation. We show localization

error between the same type of device (i.e. between N810(1)

and N810(2)) and the error between different types of

devices separately. A kernel width of 3 dBm provided the best

localization performance with our dataset. Not surprisingly,

the effect of kernel estimation is more significant for different

device types, as their deviation was greater. Neither raw

histogram estimation (kernel width → 0 dBm) nor Gaussian

density estimation perform well, particularly for localization

between different device types.

The standard deviation computed from the signal strength

samples taken from one device for two minutes was approxi-

mately 2 dBm. Compared to this value, the best kernel width

of 3 – 4 dBm for cross-device localization is somewhat higher

than the smaller-scale variation of a specific device type. The

reason is that, as each device shows a different dispersion

and shape of its signal strength distribution, a strategy of

doing more “smoothing” than that required for single device

localization is more effective.

V. FEATURE DESIGN OF LOCALIZATION ALGORITHMS

FOR ORGANIC INDOOR LOCALIZATION

This section first analyzes another characteristic of the

wireless scan signal — visibility, or detection of access points

by diverse devices. The detection feature has been used
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Fig. 6. Number of distinct AP MAC addresses observed per WiFi scan for
each device. The number of APs differs by more than a factor of two. In
general, devices with larger form factors (laptops) observe more APs than
smaller devices (tablets and cellphones).

exclusively, or augmented with the signal strength feature in

various contexts of RF-based localization [9], [18], [20], [21].

We compare its use to the signal strength feature, and discuss

feature design of localization algorithms for heterogeneous

devices.

A. Analysis of Detection Rate for Diverse Devices

In any practical, large-scale localization system based on

wireless networks, a mobile device captures only a subset of

all access points “visible” at a given location because some

access points are only intermittently detected by the mobile

device. Factors may be both environmental, such as multipath

fading, and transient, such as occlusion by humans or other

objects. In addition, the OS or driver may allow only a limited

time for collecting scan information, so APs may be missed

if the beacon and driver are off-cycle.

A localization algorithm can use the probability of observ-

ing an individual access point, or detection rate, to give a

different weight for the features it uses, i.e. signal strength

likelihood. The rationale behind using AP presence/absence

is that more frequently observed access points may be more

informative for distinguishing locations. Alternatively, pres-

ence/absence can be used as the exclusive factor, providing

coarser precision at a lower information cost, as no RSSI

values are used; this may be beneficial when the (binary) signal

maps for physically large areas are stored on low-memory

mobile devices.

However, different devices not only detect WiFi signal

strengths differently, as we saw in Section IV, but also differ

in the sets of APs that they observe. One device may detect

a nearby AP consistently, while another may not detect it

at all (Figures 6 and 7). This occurs because of differences

in frequency band (2.4 GHz and/or 5 GHz), radio/antenna

sensitivity, firmware/driver implementations, and other factors.

Consequently, localization performance can degrade if the

detection probability for each access point is used as a feature

for localization. To illustrate this problem, we consider three
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Fig. 8. Comparison of localization error using three feature types: AP
Detection, Signal Strength, and Both. Because different devices observe
partially disjoint sets of APs, it is better not to include AP presence/absence
in cross-device localization. Degradation in localization error due to use of
the detection rate feature is most prominent between different device types.

different types of Bayesian localization algorithms according

to the degree of detection information used in the localization

process (Section II-B): the localization rule in Equation 3 is

least dependent on the presence/absence information, while

Equation 6 uses the detection rate exclusively.

We compare the performance of each Bayesian localization

feature choice in Figure 8. The algorithm that is exclusively

detection-based exhibits the worst performance; the gap be-

tween the same type of device (N810) and the different

types of devices is also the largest. The signal-strength-based

algorithm performs best among the three, as it does not rely

explicitly on presence/absence information. The localization

algorithm that uses both signal strength and presence/absence

information shows comparable localization accuracy for same-

type-of-device localization, but accuracy is significantly de-

graded for cross-device localization.

B. Effect of Dissimilarity in AP Detection on Localization

In order to better understand the effect of AP detection

on the performance of each localization algorithm, we con-

sider Kullback-Leibler divergence (KLD) [22], an information-

theoretic measure that captures the asymmetric dissimilarity

between two probability distributions. As in Section II-B2,

we model the presence/absence of each access point as a

Bernoulli process. For access point i, 1 ≤ i ≤ k, let JS
i

and JT
i denote the binary random variables associated with
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Fig. 9. Relation between KLD and localization error for three localization
algorithms. Each point represents detection dissimilarity captured by KLD and
localization error between a pair of devices. When two devices differ more in
WAP detection, localization based on detection degrades more significantly.
Cross-device localization using devices of the same type (N810 pair) does
not show such degradation.

the Bernoulli processes for test device S and training device

T respectively. Then, given location l, the Kullback-Leibler

divergence of JS
i over JT

i for access point i is given by:

DKL(J
S
i ||J

T
i ; l) =

∑

x∈{0,1}

pSJi|L
(x|l) log

pS
Ji|L

(x|l)

pT
Ji|L

(x|l)
. (9)

where pS
Ji|L

(x|l) (or pT
Ji|L

(x|l)) is the probability that access

point i is detected by device S (or T ) in location l for each

WiFi measurement.

To compute the overall divergence of device S over device

T , Equation 9 is summed over all k access points and all

locations in the data:

DKL(S||T ) =
∑

l∈L

∑

1≤i≤k

∑

x∈{0,1}

pSJi|L
(x|l) log

pS
Ji|L

(x|l)

pT
Ji|L

(x|l)
.

(10)

The Kullback-Leibler divergence of S over T can be con-

sidered a measure of how much extra information is required

to encode the detection process for device S when using the

detection process for device T . Thus, it naturally captures

the “divergence” of testing device S when training data from

device T is used.

We compared KLD from each training-test pair of devices

with the location error between them. Figure 9 shows the

correlation between KLD and the localization error for each

localization algorithm. The effect of device difference captured

by KLD is more correlated with detection-based and hybrid

localization errors, than with errors observed using a signal-

strength-based localization algorithm.

C. Feature Design of Localization Algorithms for Heteroge-

neous Devices

The previous two sections (§V-A,§V-B)) showed that AP

visibility varies considerably across heterogeneous devices,

and that dissimilarity in AP detection adversely affects cross-

localization. In general, we found that using only the sig-

nal strength feature, without incorporating negative evidence,
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showed the best localization performance for heterogeneous

devices.

As shown in Figure 8, the detection rate feature augmented

in Equation 7 does not give much extra information for

distinguishing locations over signal strength, even between

same-type devices (the N810s). Similarly, the localization

algorithm based solely on the signal strength feature is also

affected by dissimilarity of AP detection (§ V-B). This is

because the use of m-estimate smoothing applied to the class-

conditional probability (§II-B1) for each AP implicitly encodes

the detection information of that AP. For example, if there

is no observation in the training data for a certain AP in a

certain location, but the AP is detected during localization,

the corresponding class-conditional probability is initialized

as a uniform distribution, which encodes the least amount of

information possible from that new observation. Consequently,

the signal-strength-based localization algorithm will assign a

minimal score to that location according to Equation 5, in

which N = 0. However, as more readings are observed,

the probability distribution will converge to the empirical

maximum-likelihood estimate.

Therefore, the localization algorithm using only signal

strengths as features is also weakly affected by dissimilarity

in AP detection. Given location l, if the test device observes

a new access point i which was not observed by the training

device in the same location, Equation 3 assigns a minimal

score determined from the m-estimator for class-conditional

probability to location l for feature i. If the same access point

i is present in another location l′ instead, this may bias the

localization decision to l′ over l.
However, the effect of dissimilarity in AP detection is less

significant than with algorithms that explicitly use detection

rate, because negative evidence — failure to observe access

point i — will not be directly incorporated into the localization

score in Equation 3. In this sense, incorporation of evidence

is asymmetric, and the effect of a mismatch in AP detection is

less severe than in the algorithms that incorporate AP absence

information directly (Equation 6 and 7).

Even for algorithms that do not explicitly use detection rate,

we expect that the presence or absence of a certain access point

will implicitly affect localization results. For example, many

instance-based classification algorithms, such as k-nearest-

neighbor or support vector machines, require choosing a value

for each missing entry in each instance. A typical value used

for WiFi localization is -100 dBm, encoding prior information

that non-detected APs are expected to be far away, and that

if they were detected it would be with low signal strength.

However, this effect is symmetric in contrast to the signal-

strength-based Bayesian algorithm presented in this paper.

VI. RELATED WORK

Relatively few researchers have addressed the problem

of using heterogeneous devices for localization. For GSM

localization, Chen et al. tested cross-device localization using

three different devices, showing that the heterogeneity of

training and test devices considerably degrades the accuracy

of their fingerprinting method [23]. Kaemarungsi compared

RSSI values from different devices, but did not evaluate their

effect on localization [24].

Researchers have proposed several methods for compensat-

ing for differences in signal strengths or RSSI values. Linear

transformation from one device to another has been computed

either manually or on-line using an expectation-maximization

algorithm [8], [19], [25]. Dong et al. suggested using the

difference between signal strengths across access points, rather

than the absolute signal strength vector, as a localization

feature [26]. While the difference between signal strength

values is a major factor in localization using heterogeneous

devices, we showed that the algorithm must be designed to

compensate for the different shape and dispersion of signal

strength values among devices.

Detection rate, or response rate, of access points has also

been used for RF localization. Bargh and Groote used the

inquiry response rate of Bluetooth devices for indoor local-

ization, as signal strength for Bluetooth devices is not readily

available without connection establishment [20]. In contrast,

802.11 devices can scan access points without establishing

connections. For WiFi localization, Cheng et al. considered

response rate as an alternative set of features for localization

and showed that its performance is comparable to that of signal

strength based localization [21]. Our results show that while

it is possible to use response rate as a feature, doing so will

not increase the accuracy of cross-device localization.

VII. CONCLUSION

This paper analyzed device diversity and its effect on

localization. We reported simultaneous collection of data from

six 802.11 devices in 18 indoor locations. While there is a clear

linear correlation of signal strengths across devices, linear

transformation alone is not enough for cross-localization: we

find that local variations are on the same order of magnitude

as the compensation provided by linear transformation. In-

stead, wide smoothing can accommodate the different shapes

of signal strength distributions across devices, and proves

effective for cross-localization. We also found that access

point detection rates vary widely across client devices. As

a result, incorporating access point presence and absence —

in particular, relying solely on this factor to reduce storage

costs and simplify positioning — provides poor localization

performance when fingerprints are shared across different

devices. To better understand this issue, we used Kullback-

Leibler divergence to capture device differences with respect

to AP detection, and showed that a correlation exists between

detection similarity and localization accuracy.
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