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Alzheimer’s disease (AD) is characterized pathologically by the deposition of β-amyloid

peptides (Aβ) and the accumulation of neurofibrillary tangles (NFTs) composed of hyper-

phosphorylated tau. Regardless of the pathological hallmarks, synaptic dysfunction is

widely accepted as a causal event in AD. Of the two major types of synapses in the

central nervous system (CNS): glutamatergic and GABAergic, which provide excitatory

and inhibitory outputs respectively, abundant data implicate an impaired glutamatergic

system during disease progression. However, emerging evidence supports the notion

that disrupted default neuronal network underlies impaired memory, and that alterations

of GABAergic circuits, either plays a primary role or as a compensatory response to

excitotoxicity, may also contribute to AD by disrupting the overall network function.

The goal of this review is to provide an overview of the involvement of Aβ, tau and

apolipoprotein E4 (apoE4), the major genetic risk factor in late-onset AD (LOAD), in

GABAergic neurotransmission and the potential of modulating the GABAergic function

as AD therapy.

Keywords: GABAergic neurotransmission, amyloid beta-peptides, tau proteins, apolipoproteins E, neuronal

inhibition

INTRODUCTION OF ALZHEIMER’S DISEASE

Alzheimer’s disease (AD) is the most common age-associated neurodegenerative disorder, which is

characterized by the deterioration of memory and cognition. About 10% of the population over the

age of 65 and 30–50% of the population over the age of 85 suffer from AD (Querfurth and LaFerla,

2010). Despite significant research and drug development effort in the past decades, currently there

are no effective therapies that can prevent, delay or stop the progression of AD, causing a severe

burden for the patients, their families and the society.

A small subset (less than 2%) of AD cases result from dominantly inherited genetic

mutations in genes encoding the β-amyloid precursor protein (APP) and presenilins (PSEN1

and PSEN2, Goate et al., 1991; Levy-Lahad et al., 1995; Sherrington et al., 1995). These AD

cases usually develop disease before the age of 60, referring as early-onset familial AD (FAD).

Sporadic or late-onset AD (LOAD) usually develops the disease later in life, representing

the majority of AD cases (Kanekiyo et al., 2014). The pathological hallmarks of AD include

widespread neuronal degeneration, senile plaques and intracellular neurofibrillary tangles

(NFTs; Glenner and Wong, 1984; Querfurth and LaFerla, 2010; Tapia-Rojas et al., 2015).
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β-Amyloid
The extracellular senile plaques are composed of accumulated

small peptides called β-amyloid (Aβ) derived from the sequential

cleavage of APP. There are three major isoforms of APP

resulting from alternative splicing, named as APP695, APP751

and APP770 according to their number of amino acid residues.

The isoform APP695 is predominantly expressed in neurons and

lacks a 56 amino acid Kunitz Protease Inhibitor (KPI) domain

at extracellular region (Goate et al., 1991; Zhang et al., 2012;

Guzmán et al., 2014; Gautam et al., 2015). Full-length APP is

a type I transmembrane protein and can undergo sequential

proteolytic cleavage by distinct α-, β- or γ-secretase.

Depending on whether there’s toxic Aβ generation, the APP

proteolytic cleavage is divided into two types: amyloidogenic

processing and nonamyloidogenic processing. In amyloidogenic

processing, APP is first cleaved by β-secretase (beta-site APP

cleaving enzyme 1, BACE1), releasing a soluble ectodomain

called sAPPβ. The remaining membrane associated carboxyl

terminal fragment (βCTF) will be further cleaved by γ-secretase

within the cell membrane, releasing neurotoxic Aβ peptides

and amyloid intracellular domain (AICD; Li et al., 2014;

Ohki et al., 2014; Jung et al., 2015; Neumann et al., 2015;

Sadleir et al., 2015; Zhang et al., 2015). The exact cleavage

site of γ-secretase may vary inside membrane, yielding Aβ

peptides with 36–43 amino acids. Among them, Aβ40 is

the major form while Aβ42 is the more amyloidogenic and

toxic form (Querfurth and LaFerla, 2010; Zhang et al., 2012;

Buggia-Prévot et al., 2014). The AICD tail released inside

cytoplasm has been demonstrated to target the nucleus and

regulate gene transcription activity (Querfurth and LaFerla,

2010).

As imbalance between production and clearance occurs,

Aβ peptides could spontaneously self-aggregate into soluble

oligomers, or further grow into insoluble fibers and finally

amyloid plaques. The ‘‘amyloid hypothesis’’ is based on the

idea that the accumulation of Aβ may be the initiating

factor of AD pathogenesis. Multiple lines of evidence have

indicated that accumulation of Aβ lead to a neurodegenerative

cascade, resulting in synaptic dysfunction, NFT formation

and eventually neuronal loss in vulnerable brain regions

including cortex and hippocampus (Selkoe, 1998; Hu et al.,

2014; Stancu et al., 2014). Compared to insoluble fibers,

the soluble Aβ oligomers are more neurotoxic and confer

the most deterious effect of Aβ (Querfurth and LaFerla,

2010; Zhang et al., 2012; Tu et al., 2014; Xu et al.,

2015).

The nonamyloidogenic processing of APP initiates from the

proteolytic cleavage by α-secretase, releasing a soluble sAPPα

(Postina, 2012; Jiang et al., 2014;Wang et al., 2014). It is 16 amino

acids bigger than sAPPβ because the cleavage site of α-secretase

is within the Aβ domain, therefore excluding the possibility of

Aβ generation. The membrane remaining αCTF could be further

cleaved by γ-secretase, releasing the shorter P83 peptide and

AICD. In contrast to Aβ, sAPPα showed important protective

roles in neuronal survival and synaptic plasticity against Aβ

(Mattson et al., 1993; Goodman and Mattson, 1994; Yamamoto

et al., 1994; Furukawa and Mattson, 1998).

Tau
The major component of AD hallmark NFTs was revealed to

be abnormally hyperphosphorylated microtubule-associated

protein tau (MAPT), which is essential for assembly

and stabilization of microtubules (Spillantini and Goedert,

1998; Querfurth and LaFerla, 2010). The encoding gene of

MAPT is located on chromosome 17 in human and expresses six

isoforms by alternative splicing in central nervous system (CNS).

As a result, the six tau isoforms possess variable N-terminal

repeats (0, 1 or 2N) and C-terminal microtubule-binding

domains (3 or 4R; Kolarova et al., 2012; Caillet-Boudin et al.,

2015; Song et al., 2015).

In physiological conditions, tau is very soluble and mainly

located in neuronal axons, where it binds microtubules

and regulates the axonal transportation for vesicles and

organelles. Since many amino acid residues of the tau

protein are potential phosphorylation sites (Ser, Thr,

or Tyr), tau is highly phosphorylation-labile (Hasegawa

et al., 1992; Hanger et al., 2009). It dynamically switches

between phosphorylated and dephosphorylated state during

each cell cycle (Pedersen and Sigurdsson, 2015; Wang

et al., 2015). It has been demonstrated that increasing

tau phosphorylation reduces its affinity for microtubules

(Iqbal et al., 2005). The imbalance between tau kinase and

phosphatase activities under phathological conditions could

lead to tau hyperphosphorylation, which makes tau insoluble

and self-aggregate into paired helical filament structure of

NFTs. In NFTs, at least 7–8 residues were phosphorylated

(Hasegawa et al., 1992; Hanger et al., 2009; Mandelkow and

Mandelkow, 2012; Marttinen et al., 2015). Hyperphosporylated

tau lacks the affinity for microtubules, therefore making

microtubules unstable and impairing their critical function

in axonal transportation, eventually resulting in synaptic

dysfunction.

The specific tau pathology was reported to correlate well

with cognitive abilities. In the cerebrospinal fluid (CSF) of AD

patients, the levels of both total tau and phosphorylated tau were

found increased (Jack et al., 2013). Besides AD, NFTs composed

of hyperphosphorylated tau was found to be a common

pathological feature in a number of neurodegenerative disorders

including Parkinson’s disease, frontotemporal dementia and

progressive supranuclear palsy (PSP), referring as a class of

neurodegenerative diseases called tauopathies (Spillantini and

Goedert, 1998; Lonskaya et al., 2014; Golovyashkina et al., 2015;

Yamada et al., 2015). Considering the critical contribution of tau

to the pathological progression of AD, a tau based hypothesis for

AD has received wide notice. It emphasizes that the intracellular

aggregation of hyperphosphorylated tau leads to the disassembly

of microtubules, collapse of synapses, and eventually the cell

death in AD (Pedersen and Sigurdsson, 2015).

INTRODUCTION OF GABAergic
NEUROTRANSMITTER SYSTEM

γ-aminobutyric acid (GABA) is the principle inhibitory

neurotransmitter in mammalian CNS. The inhibitory

effect of GABA can be conferred through three distinct
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receptor subfamilies named GABAA, GABAB and GABAC

receptors. Both GABAA and GABAC receptors are ligand-

gated chloride (Cl−) channels, whereas GABAB receptors

are G-protein coupled metabotropic receptors (Chebib and

Johnston, 1999; Bormann, 2000). In the vertebrate brain,

GABAA receptors mediate the majority of fast inhibition

in the brain. They are composed of five distinct subunits

pentamerically assembled, forming a ligand-gated Cl− ion

channel. According to their gene identity, the identified

GABAA receptor subunits are classified as α1–6, β1–3, γ1–3,

ρ1–3, θ, δ, π and ǫ. In the mammalian brain, the most

common combination of GABAA receptor contains two α,

two β and one γ subunits. GABAC receptors are composed

of ρ1–3 subunits, form homomeric or heteromeric channels,

making them distinct from GABAA receptors in pharmacology

and function (Johnston, 1994; Lüscher and Keller, 2004).

GABAA receptors are widely expressed in all the CNS,

while GABAC receptors are highly enriched in retina. Since

both GABAA and GABAC receptors are ligand-gated Cl−

channels, sometimes we also consider GABAC receptors as a

minor subgroup in GABAA receptors (Barnard et al., 1998).

GABAB receptor is a metabotropic receptor coupling with Gi/o

protein. It regulates neuronal activity by either opening the

K+ channel or inhibiting Ca2+ channel via the Gi/o protein-

dependent signaling cascade (Bowery, 1989; Marshall et al.,

1999).

In CNS, the inhibitory action of GABA can be broadly

divided into two classes: phasic inhibition and tonic inhibition

(Farrant and Nusser, 2005; McQuail et al., 2015). In GABAergic

interneurons, neurotransmitter GABA is synthesized from

glutamate by the enzyme glutamic acid decarboxylase (GAD).

Synthesized GABA is transported along the axon to presynaptic

terminals and recruited into vesicles by the vesicular GABA

transporter (vGAT; Glykys and Mody, 2007; Gonzalez-Burgos

et al., 2009). Upon membrane depolarization induced by

action potential, neurotransmitter GABA can be released

from presynaptic vesicles into the synaptic cleft, resulting in

the burst increase of GABA concentration in the cleft. Most

of the released neurotransmitter GABA transiently activates

specific GABA receptors on postsynaptic membrane and results

in the phasic inhibition of postsynaptic neurons. The phasic

inhibition has been demonstrated to be mainly mediated

by GABAA receptors contains γ2 subunits postsynaptically

(Schweizer et al., 2003; Farrant and Nusser, 2005). Tonic

inhibition refers to the sustained form of inhibition upon

neuronal cells. Beyond binding to postsynaptic receptors,

released neurotransmitter GABA also spills over from synaptic

cleft and activates GABA receptors at extrasynaptic area. Tonic

inhibition has been demonstrated to be mainly mediated

by extrasynaptic GABAA receptors containing π subunit

in most brain regions, and GABAA receptors containing

α5 subunit especially in hippocampus (Glykys et al., 2008).

Recently evidence also indicates the participation of astrocytes

and GABAB receptors in tonic inhibition. Especially under

pathological conditions, reactive astrocytes release GABA

through Bestrophin 1 (Best1) channel. The released GABA

could activate both GABAA and GABAB receptors at

extrasynaptic area and confer inhibitory effect (Wu et al.,

2014).

GABAergic NEUROTRANSMISSION IN THE
PATHOGENESIS OF AD

Alteration of GABAergic
Neurotransmission in AD
In the past, considerable research has focused on themechanisms

of calcium permeable excitatory acetylcholine receptor or

glutamate receptors including NMDA and AMPA receptors

in AD. Compared to the marked deficits seen in excitatory

cholinergic and glutamatergic systems, much less consistent

results were revealed for GABAergic system, the main inhibitory

neurotransmission in brain. Early studies in postmortem human

brains or using animal models concluded that GABAergic

neurons and receptors appear more resistant to AD pathology,

with only modest loss in AD (Rossor et al., 1982). However,

during recent years this statement has been challenged

with accumulating evidence, indicating that GABAergic

neurotransmission also undergoes profound pathological

changes in AD and may be a promising therapeutic target for

this neurodegenerative disorder (Figure 1).

By using HPLC, the concentrations of different

neurotransmitters were measured in the brain of AD patient

samples and age-matched control subjects. In the temporal

cortex of AD patients, significantly lower levels of GABA

and glutamate neurotransmitters were observed, indicating

deficient synaptic function and neuronal transmission in AD

(Gueli and Taibi, 2013). The decreased GABA neurotransmitter

levels were also observed in the CSF of AD patients and

normal humans with aging (Bareggi et al., 1982; Zimmer

et al., 1984; Grouselle et al., 1998). An immunocytochemistry

study showed diminished perisomatic GABAergic terminals in

brain sections from both AD patients and APP/PS1 transgenic

mice, especially on cortical neurons adjacent to amyloid

plaques, implicating the loss of GABAergic neuronal function

in AD (Garcia-Marin et al., 2009; Ramos-Miguel et al., 2015).

However, the alteration of synaptic function in AD appears more

complicated during the disease progression. By using 4-month

old tgCRND8 and 18-month old APP/PS1 transgenic mice

respectively, both glutamatergic and GABAergic presynaptic

terminals were found elevated at early stage, but declined at

late time point in the distinct AD mice models (Bell et al.,

2003, 2006; Bell and Claudio Cuello, 2006; Marttinen et al.,

2015).

In the nervous system, maintaining a proper dynamic

balance between the excitatory glutamate and inhibitory GABA

neurotransmitters is critical for neuronal function. Altered

synaptic balance was found to be one of the pathological

factors that contribute to neuronal disorders including AD,

Huntington’s disease and schizophrenia (Kehrer et al., 2008;

Cummings et al., 2009; Sun et al., 2009). Aβ themost well-studied

neurotoxic factor in AD pathogenesis, has been demonstrated

to be a pore-forming molecule. Similar to other pore-

forming neurotoxins, Aβ treatment induced perforation in cell
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FIGURE 1 | Proposed model of GABAergic signaling in AD pathogenesis. Calcium enters the presynaptic terminal via Aβ formed pores on cell membrane.

The increased calcium concentration triggers presynaptic glutamate neurotransmitter release and activates postsynaptic receptors. The activated NMDA receptors

further enhance the GABAA receptor activation to dampen the overexcitation. In astrocytes, GABA could be synthesized from putresine or glutamate and released

via GAT3/4 or Best1 channel. The release of GABA from astrocytes may be enhanced under AD conditions to activate the extrasynaptic GABAA and GABAB

receptors, resulting in suppressed long-term potentiation (LTP) and impaired cognition. The activation of GABAA receptors by anesthetics reduces PP2A binding with

tau protein, resulting in tau hyperphosphorylation, which feeds back and enhances the activation of GABAergic interneurons and GABA release. ApoE4 secreted

from GABAergic interneurons results in reduced interneuron number and reduced GABAergic innervation to other neurons, eventually leading to the disruption of

neuronal circuitry and impaired cognition.

membrane, causing a rapid increase of calcium influx in cultured

hippocampal neurons (Parodi et al., 2010; Sepulveda et al., 2010).

The increased intracellular calcium concentration triggered

the presynaptic neurotransmitter release, leading to disrupted

neuronal excitation. In the presence of low concentration of

Aβ, the frequency of electrophysiological recorded miniature

currents increased quickly, but decreased gradually after a couple

of hours, indicating the presynaptic vesicular depletion caused by

Aβ (Parodi et al., 2010).

A subset of AD patients have been reported to suffer from

epilepsy, which is a typical disorder resulting from imbalanced

neuronal excitation. In a study with transgenic human APP

(hAPP) mice, Aβ was demonstrated to cause aberrant neuronal

overexcitation and spontaneous nonconvulsive seizure activity

in cortical and hippocampal networks, the most vulnerable

brain regions in AD. The increased epileptic activities in

turn triggered downstream alterations including GABAergic

sprouting and increased synaptic inhibition in hippocampal

circuits. These alterations are characterized as compensatory

inhibitory mechanisms to ameliorate neuronal overexcitation

and keep the normal neuronal excitation (Palop et al., 2007).

The finding of direct crosstalk between postsynaptic glutamate

NMDA receptors and GABAA receptors further supported

the neuronal circuit remodeling mechanisms. In hypothalamic

neurosecretory neurons, the NMDA receptor activation by

endogenous glutamate was observed to evoke a transient

and reversible enhancement of postsynaptic GABAA receptors

(Potapenko et al., 2013). The inter-receptor crosstalk between

NMDA receptor and GABAA receptor was considered as a

compensatory mechanism for dampening the overexcitation

commonly observed in pathological conditions. While on the

other hand, the increased inhibitory function mediated by

GABAergic synapses may interfere with processes required for

learning and memory, as indicated by long-term potentiation

(LTP) deficits in dentate gyrus (Palop et al., 2007). Consistent

with this result, application of GABAA receptor antagonist

picrotoxin was demonstrated to prevent such LTP deficits

observed in animal model of AD (Kleschevnikov et al., 2004).

Alteration in postsynaptic GABAA receptors was also

observed along with AD pathology. Immunohistochemistry

study indicates that the β2/3 subunit was markedly preserved,

while α1 and γ subunits were upregulated in human AD subjects

(Mizukami et al., 1998; Iwakiri et al., 2009). By microtransplating

cell membrane isolated from temporal cortices of control and AD

patients into Xenopus oocytes, the level of transplanted GABAA

receptors were determined by electrophysiological recording.

The whole-cell currents mediated by transplanted GABAA

receptors were recorded (Limon et al., 2012). A reduction of
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GABA-evoked currents was observed in cells transplanted with

GABAA receptors from AD brains. In particular, the mRNA

and protein levels of α1 and γ2 subunits were found down-

regulated, whereas α2, β1 and γ1 subunits were up-regulated

in AD brains, indicating that GABAergic neurotransmission

undergoes a functional remodeling in the cortex of AD

patients.

Consistent results for the impact of Aβ on GABAA receptors

were obtained in cerebellum. In cultured rat cerebellar granule

neurons (CGNs), treatment of recombinant Aβ40, rather than

Aβ42, significantly increased the expression level of α6 subunit

containing GABAA receptors and their functional recorded

currents. In addition, the expression level of α6 protein in

APP knockout mice was significantly lower than in WT CGNs.

Further investigation demonstrated that Aβ could induce the

phosphorylation of ERK and mTOR, resulting in the increased

translation of GABAA receptor α6 subunit (Zhan et al., 2014).

The elevated inhibition mediated by GABAergic

neurotransmission found in AD mice models do not appear

to be consistent with results obtained from AD patients. Even

though transgenic mice models have been widely used for AD

mechanism investigation, it should be noted that they may not

completely represent the complex pathologic characteristics of

AD. It should also be noticed that the transgenic mice used in

these studies were with various ages, between 4– to 11-month

old, at which age even the amyloid plaques were observed, the

neuronal death was not detectable (Jo et al., 2014). AD is by

far one of the most complicated progressive neurodegenerative

disorders. The differential results indicate that at various stages

of the disease, GABAergic system might undergo dynamic

remodeling and play different roles in AD pathology.

Alteration of GABAergic Gliotransmission
in AD Mice Models
It’s well known that astrocytes are important for uptake and

recycling of specific neurotransmitters including GABA and

glutamate. In CNS, not only neurons, but also astrocytes were

found to be able to produce and release GABA, activating

GABAA and GABAB receptors in nearby neurons (Yoon et al.,

2012; Yoon and Lee, 2014). Recently, several studies indicate that

astrocytes activated by Aβ could release GABA and participate

in AD pathology (Mitew et al., 2013; Jo et al., 2014; Wu et al.,

2014).

In APP/PS1 and 5× FAD mice, significantly more astrocytes

were found activated in hippocampus. Normally astrocytes in

wild type mice showminimal GABA immunoreactivity. While in

AD mice models, reactive astrocytes were found to abundantly

produce and release inhibitory GABA gliotransmitter. As a

consequence, HPLC analysis with collected interstitial fluid

samples from dentate gyrus revealed significantly elevated GABA

level in APP/PS1 mice than wild-type littermates (Jo et al.,

2014). In the hippocampus of 5× FAD, the GABA, glutamate

and GAD immunostaining intensity were dramatically elevated

in astrocytes (Wu et al., 2014). In the synaptosomes isolated

from cortex of aged APP/PS1 mice with high amyloid load, the

protein level of GAD was found significantly higher than in wild

type control and plaque-free region cerebellum. Further study

revealed that the increased GAD activity was localized in isolated

glial synaptosome, rather than neuronal synaptosome, suggesting

that in APP/PS1 transgenic mice, Aβ plaques stimulate the

astrocytic GABA synthesis and release (Mitew et al., 2013).

In astrocytes, there may exist more than one pathways for

the synthesis and release of GABA. In APP/PS1 mice, the

GABA gliotransmitter in astrocytes was demonstrated to be

synthesized from putrescine by enzyme monoamine oxidase-B

(MaoB) and was released from astrocytes via Best1 channel.

The immunoactivity of GABA and MaoB in astrocytes were

abnormally and strongly upregulated in the dentate gyrus of

APP/PS1 mice and the postmortem brain of AD patients,

especially around Aβ plaques (Jo et al., 2014). While in the study

with 5× FAD mice, the increased GABA gliotransmitter was

synthesized from glutamate by enzyme GAD, and released from

astrocytes via the specific GABA transporter GAT3/4 (Wu et al.,

2014). The upregulated GABA release from astrocytes could bind

to extrasynaptic GABAA and GABAB receptors, strongly inhibit

synaptic function and finally leads to the memory and cognitive

deficits in AD (Jo et al., 2014).

Linkage between Tau and GABAA

Receptors
GABAA receptor is the most well-known pharmacological target

for anesthetics including isoflurane, pentobarbital, propofol and

chloral hydrate. In recent years, studies indicate that general

anesthesia may contribute to the development and exacerbation

of AD (Whittington et al., 2013). Besides Aβ plaques, NFTs

composed of hyperphosphorylated tau protein is the most

important pathological hallmark of AD. Both pre-clinical and

clinical studies have found that anesthesia significantly increase

the phosphorylation of tau protein. (Le Freche et al., 2012;

Whittington et al., 2013). Since GABAA receptor is the major

pharmacological target of most anesthetics, the activation

of GABAA receptors was assumed and later confirmed to

participate in the anesthesia-induced tau hyperphosphorylation.

By using a live cell reporter system, the direct protein

interaction between tau and peptidyl-prolyl cis-transisomerase 1

(Pin1) was identified (Nykänen et al., 2012). Pin1 controls the

access of phosphatases to serine-proline or threonine-proline

(SP/TP) sites of tau, and therefore promotes dephosphorylation

of tau via protein phosphatase 2A (PP2A). Interestingly, with

pharmaceutical chemical library screening, several GABAA

receptor modulators including anesthetics benzodiazepines

and barbiturates were found to increase the interaction

between tau and Pin1, but significantly promoted the

phosphorylation of tau. Further study revealed that these

GABAA receptor modulators do not directly inhibit the

activity of PP2A, but recruited more PP2A to cell surface

for GABAA receptor β3 subunit dephosphorylation and

receptor desensitization, therefore reduced the availability of

PP2A for tau dephosphorylation. GABAA receptor activation

significantly increased tau phosphorylation at AT8 epitope

(Ser199/Ser202/Thr205) in cultured cortical neurons (Nykänen

et al., 2012).
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On the other hand, the hyperphosphorylated tau also has

influence on GABAergic synapses. In tau P301L transgenic mice,

in which the extent of tau phosphorylation was remarkably

upregulated, the GABAergic interneurons were observed

hyperactivated, leading to increased GABA neurotransmitter

level in the brain (Nilsen et al., 2013).

Overall, GABAA receptor activation could enhance tau

phosphorylation by reducing the association of PP2A with tau,

consequently increase the intracellular NFTs in neurons

and contribute to the development of AD. Vice versa,

the hyperphosphorylated tau could enhance GABAergic

neurotransmission. There might be a feedback loop between

GABAA receptor activation and tau phosphorylation in nervous

system (Figure 1).

Contribution of GABAergic Interneurons in
apoE4-Induced Deleterious Effect
Apolipoprotein E4 (apoE4), the major genetic risk factor

for AD, accounts for 60–75% of all AD cases, increasing

significantly the risk of AD and lowering the age of onset of

this disorder (Hu et al., 2015; Liu et al., 2015). By using mice

model knockout of endogenous Apoe and knockin with various

human APOE alleles, the neurogenesis was found reduced

in both apoE knockout and human apoE4 knockin mice,

leading to impaired learning and memory. In apoE4 knockin

mice, the GABAergic interneuron number and presynaptic

GABAergic input to newly born neurons both decreased,

which was associated with increased tau phosphorylation

and neurotoxic apoE4 fragments. Treatment with GABAA

receptor agonist pentobarbital restored the neurogenesis

deficit in apoE4 knockin mice. Consistently, treatment

of apoE3 knockin mice with GABAA receptor antagonist

picrotoxin decreased the neurogenesis in hippocampus

(Li et al., 2009). These findings suggest that the activation

of GABAA receptors and GABAergic signaling pathway could

be targeted to mitigate the deleterious effects of apoE4 on

neurogenesis.

ApoE is expressed in various cell types. In the brain, apoE

is mainly released from astrocytes, increasing during aging. It

could also be released from neurons, increasing with stress and

injury (Huang, 2010; Huang and Mucke, 2012; Mahley and

Huang, 2012). Dr. Huang’s group generated specific human

APOE allele knockin mice models, in which the human APOE

gene in knockin mice was conditionally deleted in astrocytes,

neurons or specific GABAergic interneurons. Deleting apoE4

in neurons, but not in astrocytes, rescued the apoE4-induced

deficits including GABAergic interneuron loss and impaired

learning andmemory. In addition and importantly, conditionally

deleting apoE4 in GABAergic interneurons was sufficient to

have similar effect and completely prevented the apoE4-induced

deficits (Knoferle et al., 2014), suggesting that the apoE4 sourced

from GABAergic interneurons is responsible for the deleterious

effect of apoE4 on neuronal loss and cognitive deficit.

In human apoE4-positive AD individuals were found often

associated with elevated Aβ levels, and Aβ has been shown

to impair GABAergic neurotransmission (Huang and Mucke,

2012; Verret et al., 2012). Mice expressing human apoE4

knockin and human APP FAD transgene (apoE4-KI/hAPP-

FAD) exhibited high Aβ level and severe cognitive deficit

(Palop et al., 2007; Verret et al., 2012). Embryonic interneuron

progenitors transplanted into the hilus of apoE4 knockin and

apoE4-KI/hAPP-FAD mice successfully developed into mature

interneurons that release inhibitory neurotransmitter GABA.

In addition, the recovered hippocampal circuitry functionally

restored normal learning and memory (Tong et al., 2014),

highlighting the importance of GABAergic interneuron and

GABAergic neurotransmission in AD pathogenesis.

Interestingly apoE4 also showed sex-dependent

characteristics. The risk of developing AD is significantly

higher in APOE4 carrying females than males. Studies found

that in female apoE4 knockin mice, the GAD67 or somatostatin

positive GABAergic interneuron number decreased in an age-

dependent manner, accompanied by spatial learning deficits. The

ratio of hilar inhibitory GABAergic interneurons to excitatory

mossy cells also decreased. However, in male apoE knockin

mice, such ratio was kept consistent, regardless of various apoE

genotype and age. Furthermore, in aged male apoE knockin

mice, the number of hilar GABAergic interneurons even

increased, independent of APOE genotype (Leung et al., 2012).

These findings suggest that the sex-dependent effect of apoE4 on

AD developing risk is at least partially mediated by its differential

effects on GABAergic function.

All together, the reported data strongly suggest that

GABAergic interneuron plays critical roles in the deleterious

effect of apoE4. ApoE4 expressed in GABAergic interneurons

may result in apoptosis of these interneurons, leading to reduced

GABAergic innervation to other neurons, and disruption of the

inhibitory/excitatory balance and neuronal network (Figure 1).

The expression of apoE4 was found to cause hyperactivity in

human hippocampus (Filippini et al., 2009), which is consistent

with the disrupted inhibitory signaling system.

POTENTIAL GABAergic THERAPIES
FOR AD

Intense therapeutic effort has been taken in the AD field, but

the outcomes have been disappointing. As outlined in this

review, multiple lines of evidence have strongly suggested that

GABAergic neurotransmission plays very important roles in

AD pathogenesis. There’s close linkage between GABAergic

signaling system and various aspect of AD pathology including

Aβ toxicity, tau hyperphosphorylation and apoE4 effect.

Accordingly GABAA andGABAB receptormodulators have been

investigated in preclinical or clinical tests (Table 1).

GABAA Receptor Agonists
Hyperexcitation of neuronal activity has been observed in AD

brain and was considered one of the toxic factors leading

to neuronal death. GABAergic neurotransmission was found

upregulated in the hippocampus of AD mice models before

general cell death (Jo et al., 2014; Wu et al., 2014), which

is possibly a neuronal mechanism to neutralize the abnormal
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TABLE 1 | Effect of GABAergic chemicals in AD models.

Name Type Effect Reference

Etazolate (EHT-0202) GABAA receptor agonist Protected neurons again Aβ-induced toxicity,

increased the protein level of sAPPα, displayed

anti-inflammation effect after traumatic brain

injury and improved cognition in mice models.

Marcade et al. (2008), Drott

et al. (2010), Vellas et al.

(2011) and Siopi et al.

(2013)

Muscimol GABAA receptor agonist Inhibited Aβ25–35-induced apoptotic death in

neurons.

Lee et al. (2005)

Propofol GABAA receptor agonist Decreased Aβ generation and accelerated Aβ

degradation, reduced the levels of Aβ40 and

Aβ42 in aged mice brain. Improved cognitive

function and attenuated caspase-3, caspase-9

activation in AD mice model.

Shao et al. (2014) and

Zhang et al. (2014)

MRK-016, α5IA, α5IA-II Inverse agonists of GABAA

receptor α5 subunit

Improved cognition in animal models. Dawson et al. (2006), Atack

et al. (2009), Atack (2010)

and Guerrini et al. (2013)

CGS9896 Inverse agonists of GABAA

receptor α5 subunit

Enhanced the murine memory task. Guerrini et al. (2009)

Ro-4938581, Ro-4882224 Inverse agonists of GABAA

receptor α5 subunit

Reversed the scopolamine-induced impairment

in working memory.

Knust et al. (2009)

SGS742 (CGP36742) GABAB receptor antagonist Improved attention and working memory in

animal models and patients with mild cognitive

impairment, increased the levels of NGF and

BDNF in rats.

Getova and Bowery (2001),

Froestl et al. (2004) and

Helm et al. (2005)

CGP55845 GABAB receptor antagonist Improved cognition in rat model. Cryan and Kaupmann

(2005) and Lasarge et al.

(2009)

hyperexcitation. Some GABAA receptor agonists have been

tested and displayed promising effect.

Etazolate, the GABAA receptor modulator, has been shown

to exert neuroprotective effect against Aβ toxicity, anti-

inflammation after traumatic brain injury and improvement of

cognition (Marcade et al., 2008; Drott et al., 2010). Further

investigation revealed that etazolate exerted its neuroprotective

effect by activating GABAA receptor and stimulating α-

secretase cleavage of APP. The neuroprotective effect of

etazolate could be fully blocked by GABAA receptor antagonist.

Both in rat cortical neurons in vitro and in guinea pigs

in vivo, treatment with etazolate significantly increased the

protein level of sAPPα, whose neuroprotective effect has been

well demonstrated (Marcade et al., 2008). There might be

a relationship between GABAA receptor signaling and the

α-secretase cleavage pathway of APP. Etazolate (EHT-0202) has

entered Phase II clinical trial for the treatment of AD, with an

encouraging result on safety and patient tolerance (Vellas et al.,

2011).

Beneficial results have also been obtained with two GABAA

receptor agonists, muscimol and propofol (Shao et al., 2014;

Zhang et al., 2014). In cultured rat cortical neurons, pretreatment

of muscimol significantly inhibited Aβ25–35-induced neuronal

apoptotic death. GABAA receptor antagonist bicuculine

completely blocked the neuroprotective effect of muscimol

(Lee et al., 2005). Chronic treatment of aged mice (18-month

old) with propofol reduced the levels of Aβ40 and Aβ42 in

brain tissue. In addition, decreased expression of BACE1,

the critical enzyme for Aβ generation, and increased level of

neprilysin, the primary enzyme for Aβ degradation, were both

observed after propofol treatment (Zhang et al., 2014), indicating

that chronic activation of GABAA receptor by propofol plays

neuroprotective role against Aβ by decreasing Aβ generation

and accelerating Aβ degradation. Further investigation showed

that propofol treatment also improved cognitive function and

attenuated caspase-3, -9 activation in both WT and APP/PS1

mice (Shao et al., 2014). All these results support the notion

that GABAA receptor activation might have neuroprotective

function against Aβ and could effectively improve cognitive

function.

Inverse Agonists of GABAA Receptor α5
Subunit
GABAA receptor is a pentamer containing various allosteric

binding sites. It has been suggested that different subunits of

GABAA receptor may exert relatively distinct function. For

example, α1 subunit is mainly responsible for the sedative action

of diazepam, α2 subunit mediates the anxiolytic-like action,

whereas α5 subunit may be associated with cognition and

memory (Gabriella and Giovanna, 2010). It’s reported that α5

subunit deficiency enhanced hippocampus-dependent memory

and spatial learning ability in mice (Collinson et al., 2002;

Crestani et al., 2002). In addition, GABAA receptors containing

α5 subunit was found upregulated in the dentate gyrus of 5×

FADmice, and has been suggested tomediate the tonic inhibition

in CNS. A series of compounds have been developed, serving as

inverse agonists of GABAA receptor α5 subunit, which bind to

α5 subunit with much higher affinity than other subunits, but

negatively regulate receptor activity.
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In the early 2000s, the Merck Sharp and Dohme identified

a series of benzothiophene derivatives with a notable binding

selectivity for GABAA receptor α5 subunit. Among them the

ligands MRK-016, α5IA and α5IA-II, all of which displayed

encouraging effect on cognition in animal models. The

compound α5IA has further advanced to preclinical and clinical

studies (Dawson et al., 2006; Atack et al., 2009; Atack, 2010;

Guerrini et al., 2013).

Another series of pyrazolo [5, 1-c] [1, 2, 4] benzotriazine

5-oxide (CGS9896) derivatives that are closely correlated to

α5IA-II also showed important activity in enhancing the

murine memory task (Guerrini et al., 2009). Other two

compounds Ro-4938581 and Ro-4882224 from Hoffmann-

La Roche Company were shown to significantly reverse the

scopolamine-induced working memory impairment. Supported

by this result, these two compounds Ro-4938581 and Ro-4882224

have been selected as candidates for further clinical studies

(Knust et al., 2009).

GABAB Receptor Antagonists
In AD mice models and human AD patients, GABA released

from activated astrocytes was significantly increased. The

released GABA could bind to neuronal GABAB receptors at

extrasynaptic area, and in turn participate in the inhibition of

synaptic release in APP/PS1 mice (Jo et al., 2014). To alleviate the

inhibition of synaptic function and improve the cognition deficit

in AD, several compounds served as GABAB receptor antagonists

have been tested.

SGS742 (CGP36742) is the first GABAB receptor antagonist

tested in clinical trials for AD treatment. In rodents and Rhesus

monkeys, SGS742 displayed pronounced cognition enhancing

effects in various cognitive and learning tasks. It blocked

the inhibitory postsynaptic potential (IPSP) and paired-pulse

inhibition (PPI) in hippocampus both in vitro and in vivo. It

also increased the mRNA and protein levels of NGF (nerve

growth factor) and BDNF (brain derived neurotrophic factor)

in cortex and hippocampus of rats (Froestl et al., 2004). In

addition, SGS742was well tolerated in both experimental animals

and human volunteers. In a Phase II study, oral administration

of SGS742 for 8 weeks significantly improved attention and

working memory in patients with mild cognitive impairment

(Getova and Bowery, 2001; Froestl et al., 2004; Helm et al.,

2005). These encouraging findings make SGS742 a promising

candidate for dementia treatment and pushed it for further

clinical test.

CGP55845 is another GABAB receptor antagonist undergoing

preclinical study. In an aged rat model with impaired

cognition, treatment with CGP55845 completely reversed its

olfactory discrimination learning deficits and restored its

performance (Cryan and Kaupmann, 2005; Lasarge et al., 2009).

These results supported the potential importance of GABAB

receptor as the pharmaceutical target in cognition enhancing

activities.

OUTLOOK AND CONCLUSIONS

Although tremendous understanding of AD pathogenesis has

been achieved since last decade, there is still no effective

therapy to prevent, delay or stop the disease progression.

For a long time, inhibitory GABAergic interneurons and

GABA receptors were considered generally preserved in

AD, compared to the more vulnerable excitatory glutamate

and acetylcholine neurotransmission systems. However, in

recent years, abundant evidence has emerged to support the

notion that GABAergic signaling system undergoes pathological

alterations and contribute to AD pathogenesis. Accordingly,

targeting GABAergic neurotransmission is being explored as a

potential therapy for AD treatment. However, inconsistent and

controversial results have been reported, and these are likely

attributed by the complex pathological processes, limitations

of the animal models, and differences in the timing and

duration of the experimental design. Overall, we hope that

this review provides an overall of the current understanding

of the role of GABAergic inhibitory neurons in AD and calls

for the need of further investigating the GABAergic system

in AD pathogenesis using more sophisticated models, rigorous

methods and advanced technology. In this review, we present

multiple lines of evidence that there is significant GABAergic

derangement in AD and that Aβ, tau and apoE4 all mediate

GABAergic dysfunction.
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