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Abstract. There is a recent trend towards integrating resting state functional 
magnetic resonance imaging (RS-fMRI) and diffusion MRI (dMRI) for brain 
connectivity estimation, as motivated by how estimates from these modalities are 
presumably two views reflecting the same underlying brain circuitry. In this pa-
per, we show on a cohort of 60 subjects that conventional functional connectivity 
(FC) estimates based on Pearson’s correlation and anatomical connectivity (AC) 
estimates based on fiber counts are actually not that highly correlated for typical 
RS-fMRI (~7 min) and dMRI (~32 gradient directions) data. The FC-AC correla-
tion can be significantly increased by considering sparse partial correlation and 
modeling fiber endpoint uncertainty, but the resulting FC-AC correlation is still 
rather low in absolute terms. We further exemplify the inconsistencies between 
FC and AC estimates by integrating them as priors into activation detection and 
demonstrating significant differences in their detection sensitivity. Importantly, 
we illustrate that these inconsistencies can be useful in fMRI-dMRI integration for 
improving brain connectivity estimation.  
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1 Introduction 

Recently, there is a growing interest in integrating resting state functional magnetic 
resonance imaging (RS-fMRI) and diffusion MRI (dMRI) for brain connectivity esti-
mation [1, 2]. This is motivated by how connectivity inferred from these modalities 
are presumably two views resembling the same underlying wiring structure of the 
brain. To enable meaningful integration, it is important to understand the relationships 
between brain function and structure and the degree to which these relationships are 
reflected by the connectivity estimates derived from RS-fMRI and dMRI data. A 
number of studies suggest a strong positive correlation between RS-fMRI and dMRI 
connectivity estimates [3-5], but it is unclear how much this correlation depends on 
the data acquisition and analysis methods. 

Pearson’s correlation is, by far, the most widely-used estimate of functional con-
nectivity (FC) for RS-fMRI studies. Due to confounds, such as head motions, scanner 
noise, and physiological artefacts, as well as the typically small sample size as limited 
by data acquisition rate of standard pulse sequences, Pearson’s correlation is subject 
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to a high degree of estimation error [6]. Also, Pearson’s correlation cannot distinguish 
direct from indirect connections, which complicates connection structure identifica-
tion [6]. As for inferring anatomical connectivity (AC) from dMRI data, fiber count 
and the average fractional anisotropy (FA) along fiber tracts between pairs of brain 
areas are typically used as estimates [7]. Approaches for estimating the probability of 
diffusion between brain area pairs have been put forth [7], but do not scale well com-
putationally to whole-brain analysis. In general, the fundamental limitations of fiber 
tractography pose great challenges to accurate AC estimation [7], especially when 
applied to typical dMRI data with limited number of gradient directions due to acqui-
sition time restrictions. Besides the problem of crossing fibers, which harms the accu-
racy of the fiber tracts’ trajectories, the location of the fiber endpoints holds high  
uncertainty, since the diffusion orientation is ambiguous near white-gray matter inter-
face and tractography often terminates before reaching gray matter tissues [7].  

In this paper, we assess the impact of the aforementioned limitations in data acqui-
sition and analysis techniques on the consistency of FC and AC estimates. On typical 
RS-fMRI (~7 min) and dMRI (32 gradient directions) data collected from a cohort of 
60 subjects, we take the correlation between conventional FC and AC estimates based 
on Pearson’s correlation and fiber count as baseline, and examine the effects of using 
sparse partial correlation [8] as the FC estimate, which controls for estimation errors 
and reduces indirect influences. We also propose a simple post-processing scheme for 
modeling fiber endpoint uncertainty and examine its influence on the FC-AC correla-
tion. These comparisons are performed to determine whether and to what extent 
methodological improvements can compensate for limitations in data acquisition. In 
addition, we describe how these FC and AC estimates can be meaningfully incorpo-
rated as priors for task activation detection to further evaluate their consistency. The 
implications of combining the FC and AC estimates are also explored. 

2 Methods 

In this work, we are interested in contrasting Pearson’s correlation against sparse 
partial correlation as FC estimates (Section 2.1) and examining the effects of model-
ing the uncertainty in fiber endpoint location when estimating AC (Section 2.2). Con-
sistency between various FC and AC estimates is evaluated based on their correlation 
and their impact as priors on task activation detection (Section 2.3). 

2.1 Functional Connectivity Estimation 

Pearson’s Correlation. Let Z be a t×d matrix with normalized RS-fMRI time courses 
(i.e. demeaned with unit standard deviation) of d brain areas along the columns. The 
Pearson’s correlations between all brain area pairs are given by: C = ZTZ/(t   1). For 
typical RS-fMRI data, t < d, thus C will contain high estimation errors [6]. Also, ele-
ments in C are assumed independent from each other, which renders separation of 
direct connections from indirect connections impossible [6]. These limitations can be 
alleviated by adopting sparse partial correlation as an FC estimate, as discussed next. 
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Sparse Partial Correlation. Given a d×d empirical covariance matrix, S, computed 
from samples drawn from a centered multivariate Gaussian distribution, we can esti-

mate a well-conditioned sparse invariance covariance matrix, Λ̂ , by minimizing the 
negative log-likelihood over the space of positive definite matrices, Λ > 0, and impos-
ing an l1 penalty on the off diagonal elements of Λ [8]: 
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Sparse partial correlation, Γ̂ , can then be computed by applying a simple normaliza-

tion on Λ̂ : jjiiijij ΛΛΛΓ ˆˆˆˆ −=  for i ≠ j and ijΓ̂ = 1 for i = j. The level of sparsity 

on Λ̂  is governed by λ, which we select using a refined grid search strategy com-
bined with cross-validation as in [1]. (1) can be efficiently solved using e.g. the QUa-
dratic Inverse Covariance (QUIC) algorithm [8]. In the context of FC estimation, S 
corresponds to C of a given subject. We highlight that enforcing sparsity serves the 
dual purpose of controlling for estimation errors and imposing our prior knowledge 
that the connection structure of the brain is sparse [1]. Also, partial correlation pro-
vides a measure of connectivity between two brain areas with the effects from all 
other brain areas partialled out, thus discriminates direct connections from indirect 
connections. 

2.2 Anatomical Connectivity Estimation 

The fiber count between a pair of brain areas is widely-used as an estimate of AC, 
since this measure presumably reflects the anatomical capacity for functional interac-
tions. This AC estimate requires the fiber tracts to terminate in gray matter brain ar-
eas. For terminating a fiber tract, low FA (e.g. 0.15) and large curvature (e.g. 45o) are 
typically used as the criteria [7]. Although gray matter tissues have relatively lower 
FA than white matter tissues, voxels containing crossing fibers or near white-gray 
matter boundaries also have low FA. Thus, fiber tracts might not necessarily termi-
nate in gray matter voxels. One simple way to deal with this limitation is to extrapo-
late along the tangent direction of the fiber endpoints (e.g. < 10 mm from the  
endpoints) until the fiber tracts reach a gray matter voxel (Fig. 1(a), option 2). How-
ever, the location of the resulting endpoints could very well be incorrect, especially if 
the original fiber endpoints are near gyri (Fig. 1(a)) [7]. In fact, the restriction on cur-
vature during tractography would bias fiber tracts towards option 2 in Fig. 1(a) if 
tracking is not prematurely terminated by low FA [7].  

To model the uncertainty in fiber endpoint location, we propose the following 
schem: Let ωp be a 27×1 weight vector associated with an endpoint p of a fiber tract. 
We assign a weight of 1 to the endpoint and a weight of exp(-Δps) to its 26-connected 
neighbors but only if the neighbors are gray matter voxels. If no neighboring gray 
matter voxels are present, the given fiber is discarded. Δps is the distance between the 
endpoint p and the neighbor s in voxel units. We then normalize ωp such that its  
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elements sum to 1. The same procedure is performed for the other endpoint q of the 
given tract in generating ωq. For each pair of elements ωp(k) and ωq(l) in which the 
two corresponding voxels lie in brain area i and j, respectively, we add ωp(k)·ωq(l) to 
Aij, where Aij is the (i,j)th element of the fiber count matrix, A. In effect, we are plac-
ing a Gaussian kernel at each endpoint and partitioning a tract across spatially prox-
imal brain areas to model endpoint uncertainty. If all neighbors of endpoint p lie with-
in the same brain area i and all neighbors of endpoint q lie within the same brain area 
j, the scheme above reduces to simple fiber count. Note that the resulting AC esti-
mates would depend on the choice of neighborhood size and the drop off rate of the 
Gaussian kernel. We defer sensitivity analysis on these parameters to future work.  

2.3 Connectivity Consistency Assessment 

We evaluate the consistency between the various FC and AC estimates described in 
Section 2.1 and 2.2 using two criteria. The first is simply the correlation between the 
FC and AC estimates averaged over subjects. The second is based on the incorpora-
tion of the FC and AC estimates as priors for task activation detection using the model 
that we proposed in [9]. The assumption is that if the FC and AC estimates are consis-
tent, then using them as priors should result in the same brain areas detected as  
activated. To safely base our assessment on activation detection, we employed the 
maximum-t permutation test [10] to enforce strict control on false positive rate. Under 
the model in [9], the maximum a posteriori mean of the activation effects is given by: 
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where Y is a d×n matrix containing task fMRI time courses of d brain areas of a given 
subject. X is a m×n regressor matrix, where m is the number of experimental condi-
tions. V1 and V2 are d×d covariance matrices of Y and the activation effects, respec-
tively. We assume V1 = Id×d as conventionally done and V2 is where we inject  
different connectivity priors. The influence of the prior on M is controlled by α, 
which we optimize based on model evidence [9]. We note that the model in [9] as-

sumes V2
-1 is positive definite, hence theoretically, only FC estimates, Λ̂ , generated 

by (1) can be directly employed for this model. In practice, even if V2
-1 is only posi-

tive semi-definite, with V1 = Id×d, the optimal α derived based on model evidence 
would ensure V1

-1 + αV2
-1 is invertible. This observation is particularly important, 

since as we will now show, it enables fiber count, ill-conditioned Pearson’s correla-
tion matrix, and combinations of these connectivity estimates to be integrated into 
activation effect estimation. Specifically, let W be a d×d matrix with non-negative 
elements, Wij, reflecting the connectivity between brain areas i and j, and L = D    
W be the corresponding weighted graph Laplacian, which is always positive semi-
definite. D is a d×d diagonal matrix with Dii = ΣjWij. We claim here that L is a useful 
prior that permits connectivity estimates to be meaningfully integrated into activation 
effect estimation when substituted into V2

-1. For intuition, consider the simplified 
scenario in which m = 1 and the columns of X are orthonormal. One can easily show 
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that the negative log posterior distribution of the activation effects comprises a term 
aTLa, where a corresponds to activation effects. Since aTLa = (Σij(ai     aj)

2Wij)/2, 
minimizing the negative log posterior probability penalizes discrepancies between the 
activation effect estimates of connected brain areas. Given this setup, AC estimates 
can be easily integrated into activation effect estimation by setting W to fiber count. 
For Pearson’s correlation, C, one would normally take the matrix inverse and directly 
assign it to V2

-1. However, since t < d for typical RS-fMRI data, matrix inversion 
would be unstable. We thus propose zeroing the negative elements of C and using the 
resulting matrix as W. The rationale is that negative FC estimates are usually asso-
ciated with less anatomical support, i.e. lower fiber count, hence we hypothesize that 
they are more likely to be false correlations [5]. Building on this intuition, further 
zeroing elements of C with no anatomical support might help remove some of the 
noise-induced correlations. Conversely, spurious fiber tracts induced by tractography 
errors have no functional relevance. Thus, retaining only elements of the fiber count 

matrix with functional support based on the sparsity pattern of Λ̂  might improve 
activation detection. We assess the effectiveness of these simple FC-AC integration 
schemes by setting W to the corresponding connectivity estimates.  

3 Materials 

60 healthy subjects were recruited and scanned at multiple centers. Each subject per-
formed 10 experimental tasks similar to those in [11], as fMRI data were acquired 
over a duration of ~5 min. ~7 min of RS-fMRI data were also collected. Scanning was 
performed using 3T scanners from multiple manufacturers with TR = 2200 ms, TE = 
30 ms, and flip angle = 75o. The task fMRI data were corrected for slice timing and 
head motions, temporally detrended, and spatially normalized using the SPM8 soft-
ware. The RS-fMRI data were similarly preprocessed except a band-pass filter with 
cutoff frequencies at 0.01 to 0.1 Hz was applied. White matter and cerebrospinal fluid 
confounds were regressed out from the gray matter voxel time courses.  

We divided the brain into N = 500 parcels by concatenating RS-fMRI time courses 
across subjects and applying hierarchical Ward clustering. The gray matter voxel time 
courses within each parcel were averaged to generate parcel time courses. The time 
courses were then normalized by subtracting the mean and dividing by the standard 
deviation to account for scanner variability across imaging centers. The choice on N 
was based on a recent brain surface analysis and macaque monkey studies [12]. From 
the perspective of stable FC estimation with limited time samples, setting N to a lower 
value would be more suitable. We defer investigation on how to draw a balance be-
tween functional localization and stable FC estimation for future work. 

dMRI data were collected from the same 60 subjects with TR = 15000 ms, TE = 
104 ms, flip angle = 90o, 32 gradient directions, and b-value = 1300 s/mm2. After 
correcting for eddy currents and head motions using FSL, tensor estimation and fiber 
tractography based on a single-tensor model were performed using MedINRIA. To 
better deal with crossing fibers, we also employed the unscented Kalman filter (UKF) 
tractography algorithm with a two-tensor model [13] for comparison. We warped our 
parcel template onto each subject’s B0 volume for fiber count computation. 



 Implications of Inconsistencies between fMRI and dMRI 657 

 

 

Fig. 1. Connectivity estimate comparisons. (a) Fiber endpoint near gyri has high uncertainty. 
(b) Pearson’s correlation vs. fiber count. (c) Correlation between FC and AC estimates. 

4 Results and Discussion 

The correlation between various FC and AC estimates are summarized in Fig. 1(c). 
Fiber count based on tracts generated by MedINRIA with endpoint extrapolation is 
taken as the baseline AC estimate. Conventional Pearson’s correlation and fiber count 
are not very consistent (Fig. 1(b)) with an average correlation of only 0.1223 across 
subjects, which is much lower than that reported in [4]. In fact, for the same estimated 
AC, the estimated FC vary substantially. This finding suggests a high variability in 
the degree of functional interactions for the same anatomical capacity, but could also 
be attributed to limitations of the conventional connectivity estimates and data acqui-
sition. Using sparse partial correlation as an FC estimate to control for estimation 
errors and indirect effects significantly increased the FC-AC correlation based on a 
Wilcoxon signed rank test (p-value < 0.01). Modeling fiber endpoint uncertainty fur-
ther increased the FC-AC correlation (p-value < 0.01), but the overall correlation is 
still low compared to [4], in which RS-fMRI data of 35 min and dMRI data with 128 
gradient directions were acquired from 5 subjects. Our results thus indicate that meth-
odological improvements might not be adequate to compensate for the fundamental 
limitations in data acquisition. Further examining this point, we employed UKF trac-
tography, which exploits tracking history to improve fiber estimation [13], but the 
resulting FC-AC correlation was lower than MedINRIA. We suspect that the number 
of gradient directions in our data was insufficient to benefit from UKF tractography. 

FC-AC consistency results with activation detection as the assessment criterion are 
shown in Fig. 2. We used maximum-t permutation [10] to strictly control false posi-
tive rate, so that more detections would imply higher sensitivity. The average percent-
age of parcels detected over 10 experimental conditions and 21 contrasts between 
these conditions using ordinary least square (OLS) is taken as the baseline. Integrating 
FC estimated using Pearson’s correlation significantly increased sensitivity (Fig. 2(a)) 
based on a permutation test described in [1]. Minor improvement over Pearson’s cor-
relation was observed at lower p-value thresholds by incorporating AC priors with 
tracts extracted using UKF tractography. A greater increase in sensitivity was found 
using AC priors with tracts generated by MedINRIA, which was slightly improved by 
modeling endpoint uncertainty. Overall, highest sensitivity was achieved with sparse 
inverse covariance as an FC prior. These differences in detection sensitivity again  
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Fig. 2. Activation detection results. (a) % of parcels found activated vs. p-values with FC and 
AC estimates separately incorporated as priors. GK = Gaussian kernel, EE = endpoint extrapo-
lation. (b) Activation map for an auditory task, p-value < 0.01. SPC = sparse partial correlation. 
(c) FC and AC estimates combined. AS = anatomical support, FS = functional support. 

indicate that the FC and AC estimates are not very consistent. In fact, using AC priors 
generally detected less distant bilateral activation (Fig. 2(b)), which is likely due to 
difficulties in tracking fibers across the two hemispheres [7]. Removing Pearson’s 
correlation with no anatomical support significantly increased sensitivity compared to 
directly using Pearson’s correlation as an FC prior (Fig. 2(c)). We speculate that this 
increase arises from more false correlations and indirect effects being eliminated 
compared to true correlations on average. Retaining only fiber count with functional 
support also significantly enhanced sensitivity, which is likely due to spurious tracts 

being removed. However, when we zeroed out ijΛ̂  that has no anatomical support, 

detection sensitivity actually reduced. This suggests that the sparse inverse covariance 
estimates have false correlations and indirect effects reasonably controlled, thus nul-

ling ijΛ̂  with no anatomical support actually removed important connections missed 

by the AC estimates. Hence, determining the presence of a functional connection 
completely based on AC estimates could be detrimental. Instead, penalizing FC esti-
mates with no anatomical support [1] or probabilistically modeling the absence of 
anatomical connections [2] are likely better strategies for FC-AC integration. 

5 Conclusions 

We showed on a cohort of 60 subjects that FC and AC estimates are not very consis-
tent for typical RS-fMRI and dMRI data. Integrating them as priors for task activation 
detection further demonstrated their inconsistencies. Importantly, we illustrated that 
isolating fibers with functional support as well as removing Pearson’s correlation with 
no anatomical support enhanced activation detection compared to directly using fiber 
count and Pearson’s correlation as priors. This suggests that the inconsistencies actu-
ally make integration of FC and AC estimates all the more valuable for connectivity 

estimation. However, when ijΛ̂  with no anatomical support was nulled, activation 

detection worsened. Thus, FC and AC estimates should be combined with caution. 
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