
Madhavan Manivannan, Ben Juurlink, Per Stenstrom

Implications of merging phases on
scalability of multi-core architectures

Conference Object, Postprint version
This version is available at http://dx.doi.org/10.14279/depositonce-5736.

Suggested Citation
Manivannan, M.; Juurlink, B.; Stenstrom, P.: Implications of merging phases on scalability of multi-core
architectures. - In: 2011 International Conference on Parallel Processing : ICPP. - New York, NY [u.a.]:
IEEE, 2011. - ISBN: 978-1-4577-1336-1. - pp. 622–631. - DOI: 10.1109/ICPP.2011.74. Postprint version is
cited, page numbers differ.

Terms of Use
© © 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


Implications of Merging Phases on Scalability of

Multi-core Architectures

Madhavan Manivannan⋆ Ben Juurlink† Per Stenstrom⋆

Chalmers University of Technology⋆

Technische Universität Berlin†

{madhavan,per.stenstrom}@chalmers.se

{b.juurlink}@tu-berlin.de

Abstract—Amdahl’s Law dictates that in parallel applica-
tions serial sections establish an upper limit on the scalability.
Asymmetric chip multiprocessors with a large core in addition
to several small cores have been advocated for recently as a
promising design paradigm because the large core can accelerate
the execution of serial sections and hence mitigate the scalability
bottlenecks due to large serial sections.

This paper studies the scalability of a set of data mining
workloads that have negligible serial sections. The formulation
of Amdahl’s Law, that optimistically assumes constant serial
sections, estimates these workloads to scale to hundreds of
cores in a chip multiprocessor (CMP). However the overhead in
carrying out merging (or reduction) operations makes scalability
to peak at lesser number. We establish this by extending the
Amdahl’s speedup model to factor in the impact of reduction
operations on the speedup of applications on symmetric as well
as asymmetric CMP designs. Our analytical model estimates that
asymmetric CMPs with one large and many tiny cores are only
optimal for applications with a low reduction overhead. However,
as the overhead starts to increase, the balance is shifted towards
using fewer but more capable cores. This eventually limits the
performance advantage of asymmetric over symmetric CMPs.

Index Terms—Amdahl’s Law; Redcution operations; Chip
Multiprocessor

I. INTRODUCTION

Although technology roadmaps of CMPs (or multi-cores)

predict a doubling of the number of cores with each new

generation, it is not clear what types of cores should populate

future chips. To aid in an early design exploration phase,

architects use Amdahl’s Law [1]. It states: If a fraction 1− s

of a sequential application can be parallelized, speedup in the

limit will approach 1
s

, i.e. it is limited by the serial section in

the parallel implementation.

In the context of CMPs, Amdahl’s Law paints a dark

future for how to leverage their performance. Even well-

tuned parallel applications with a serial section that comprises

only one percent will face a scalability limit at around one

hundred cores. Hill and Marty [6] predict the scalability limit

of asymmetric CMPs (ACMPs) [12], [11] where one core

is optimized to accelerate serial sections and the rest of the

chip hosts as many cores as possible to accelerate the parallel

section. While they find that such ACMPs outperform CMPs,

serial sections may still limit scalability. More recently, it was

shown that such ACMPs do not yield optimal speedup for

applications with large critical sections because of the inability

of the small cores to execute the serializing critical sections

efficiently [4]. These applications provide better scalability

with fewer, but more capable, cores in place of maximizing

the number of cores that fit on the chip.

Data mining is an emerging application domain [3] that

can benefit from chip multiprocessors owing to its inherent

parallel nature. In this paper, we focus on to what extent serial

sections in these applications limit the scalability and how

their characteristics influence the design of future CMPs. Our

study is based on the clustering applications in the MineBench

[13] suite. Since these applications have small serial sections

(typically less than 0.1%), in accordance to Amdahl’s Law we

would expect them to scale to hundreds of cores. However,

we surprisingly find that scalability is seriously hampered by

reduction operations in the merging phase.

The merging phase typically assembles partial results from

a parallel section and has an inherently serial component and

can be found in other applications than the ones we study [5],

[8]. We instrument the studied applications from MineBench

and find that although the serial sections comprise only a

fraction of a percentage to start with, the time spent on serial

sections grows as we increase the number of cores and hence

provides a lower theoretical estimate than Amdahl’s Law. We

extend the analytical model [6] to factor in the overhead of

merging phases and use it to model the scalability of data

mining applications on CMPs as well as ACMPs.

The main contributions of this study are the following: We

extend and validate Amdahl’s model for estimating speedup

limits taking merging phases into account. Our extensions to

the speedup model shows that, contrary to what Amdahl’s Law

predicts, speedup peaks at a much lesser core count. This has

several interesting implications for CMP design. Firstly, we

notice that due to the observed reduction overhead, ACMPs

with a few powerful cores and many tiny cores may not be

warranted; instead our study shows that reduction overhead

pushes for a design with fewer and more capable cores.

Secondly, we also show that reduction overhead limits the

performance potential of ACMPs over CMPs.

Section II introduces Amdahl’s Law and merging phases.

Section III discusses extensions to incorporate the effect of

merging phases. Section IV presents the evaluation method-

ology and our results are presented in Section V. Section VI

puts our work in context to other work before we conclude.
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II. BACKGROUND

A. Amdahl’s Law

The mathematical formulation of Amdahl’s Law can be used

to evaluate the speedup of a parallel application. Assuming

that s represents the fraction of serial execution and f the

fraction of parallel execution, where s+ f = 1, the maximum

achievable speedup with p processors is:

speeduplimit =
1

s+ f
p

(1)

which in the limit will approach 1
s

. Hill and Marty [6] evaluate

the optimal core size to get the highest speedup out of a

CMP: Assuming that a chip at a given time can host 256

base-core equivalent (BCE), they compare several possible

design alternatives; 256 cores each consuming 1 BCE against

64 cores each consuming 4 BCEs, for instance. In general, in

their model, CMPs can be built from n
r

cores where a total of

n BCEs can be hosted on the chip and each core consumes r

BCEs. Assuming that the performance of a core with r BCEs

is perf(r) greater than that of a single BCE, their extended

model for computing speedup on CMPs is as follows:

speedupcmp =
1

1−f
perf(r) +

f.r
perf(r).n

(2)

They find that as the serial fraction increases, it will tend to

favor designs with fewer and more capable cores. For asym-

metric architectures they assume a large core that consumes r

BCEs and n− r small cores, each consuming one BCE. The

expression for speedup assuming an ACMP is as follows:

speedupacmp =
1

1−f
perf(r) +

f
perf(r)+n−r

(3)

The mathematical formulation of Amdahl’s law in Equations

1, 2 and 3 assumes that the serial section remains constant,

independent of scaling. As will be shown in the following sec-

tions, this assumption is optimistic and tends to overestimate

scalability.

B. Reduction Operations

We illustrate reduction operations (Algorithm 1) by exam-

ining the merging phase in the kmeans clustering application

from MineBench. The reduction operations that are part of this

phase grow linearly with the number of cores and the models

presented in Section II-A cannot capture this effect when

predicting speedup. Although the snippet from the application

shown implements reduction serially (linear), this can be

implemented in logarithmic steps also. We will consider this in

our analysis later. We extend the speedup model in Equations

2 and 3 to factor in the effect of reductions in the next section.

III. EXTENSION OF AMDAHL’S MODEL

We use the speedup expression for CMP architectures

according to Equation 2 as baseline and make extensions to

factor in the effect of reduction overhead operations. The serial

Algorithm 1 kmeans merging phase

for i = 1 → nclusters do

for j = 1 → nthreads do

new centers ← + = partial centers

end for

end for
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Fig. 1. Serial section splitup

fraction s in our model assumes that serial fraction is non-

constant and is dependent on scaling as opposed to the assump-

tion made by the formulation of Amdahl’s Law stated in Sec-

tion II-A. s comprises of the constant serial fraction (fcon), and

the reduction fraction (fred) where fcon represents the fraction

of serial section time without considering reduction operations.

The reduction fraction is further split into a constant reduction

(fcred) fraction and a reduction overhead (fored) fraction that

determines the fraction of reduction computations that grows

as we scale. The overhead fraction grows at a certain rate

determined by the function grow() in the expression. We

study the impact of having linear and logarithmic growth

functions. The split up of the serial fraction into its constituent

parts is illustrated in Figure 1.

The modified expression for computing the speedup for

CMPs (speedupsym) according to Equation 2 substitutes this

formulation in place of s = (1− f) and is as follows:

speedupcmp =
1

fcon+fcred+fored.grow(n,r)
perf(r) + f.r

perf(r).n

(4)

Speedup for ACMPs (speedupacmp) is obtained by intro-

ducing a new parameter in the expression that models the

effect of introducing a large (rl BCEs) core in the design.

This expression reflects the impact of executing the serial

section on the large core and the parallel section on n−rl
r

cores with performance perf(r) (and one large core) instead

of homogeneous cores.

1
fcon+fcred+fored.grow(n,r,rl)

perf(rl)
+ f

perf(r).
n−rl

r
+perf(rl)

(5)

IV. EVALUATION METHODOLOGY

We use the SESC [14] simulator to simulate the execution

of the applications on a chip multiprocessor platform in order

to extract the application parameters required for the analytical

model. The architecture we simulate consists of a number

of cores using a private L1 cache and a shared L2 cache.

We limit the number of cores in the simulations to 16 as

more cores leads to unreasonably long simulation times. The
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Fig. 2. Application characterization

baseline architecture parameters are enlisted in Table I. We

use all the multi-threaded clustering benchmarks (kmeans,

fuzzymeans and hop) from Minebench [13] with default data

set, because they have the following characteristics a) They

are all scalable (high parallel fraction) and hence fit the simple

Amdahl speedup model, expect for one specific kernel in hop

b) These applications have low/no synchronization overheads.

Inorder to study theimpact of scaling beyond 16 cores, we

use the analytical model derived in Section III to predict

scalability. We also validate our observation by extracting the

parameters on real hardware using a two-socket machine with

Xeon E5520 CPU (four core CPU) comprising a total of 8

cores with 24GB RAM. The application source code was

slightly modified to use a different threading library due to

compatibility issues with the simulator. These modifications

do not influence the serial section behavior.

TABLE I
BASELINE CONFIGURATION

Fetch, Issue, Commit 4

Instn. Window, LSQ, ROB 32, 16, 64

L1 I/D Cache, L2 Cache, Coher-
ence

16K/64K 2/4 way private, 4M 16
way shared, MESI

Branch Pred., BTBSize 2level GAp 2048 entr., 512

V. RESULTS

A. Impact of Reduction Operations

We first examine the scalability offered by the clustering

applications using simulation data. Figure 2(a) plots the scala-

bility offered by the applications as we scale them to 16 cores.

From the graph we can observe that kmeans and fuzzy scale

linearly up to 16 cores as they exhibit a speedup close to 16

while hop shows moderate speedup of around 13.5. Hop does

not scale well mainly because the parallel tree construction

kernel does not scale up to 16 cores.

The close-to-linear speedup suggests that the serial sections

in the applications are small. The time spent on the serial

section using the simulation infrastructure presented in Section

IV is first obtained by counting the total cycles spent in the

application and subtracting from it the time spent on parallel

sections and initialization. We then divide this by the total

execution time on a single core and obtain the serial fraction.

In doing so, we observe that the serial sections indeed occupy a

small fraction of the application and consume between 0.002%

and 0.1% of the entire application execution time (see Table

II).

Critical sections are potentially another source of serial-

ization [4] and it is therefore important to understand their

impact in the context of serial sections. We measure the

fraction of time spent in critical sections when each application

is run on a single processor (see Table II). Since critical
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TABLE II
APPLICATION PARAMETERS

Application serial
(%)

critical
section
(%)

fored
(%)

fred
(%)

fcon
(%)

f

kmeans 0.015 0.004 72 43 57 0.99985
fuzzy 0.002 0 82 35 65 0.99998
hop 0.100 0.0003 155 12 88 0.99900

sections account for a very small fraction of the sequential

execution time, it is fair to assume that the serialization they

cause will be negligible. Owing to the difficulty associated

with measuring the fraction of time spent on critical sections

accurately without introducing any timing perturbations we

exclude them in our analysis of serial sections.

Since the formulation of Amdahl’s Law optimistically as-

sumes constant serial sections, it predicts that these appli-

cations would scale to large number of cores. However, we

observe that the actual amount of time spent on serial sections

grows as we increase the number of cores. Figure 2(b) shows

the time spent in executing serial sections s on multiple cores

normalized to the time spent executing the serial section on a

single core. For all these applications, the serial section time

(constituted by constant serial section and reduction section)

grows significantly with the number of cores as opposed to

remaining constant owing to reduction overhead.

We now consider what implications this has on scalability

using the analytical model presented in the paper. The values

for the different parameters that are required for the analytical

model presented in Section III are obtained through simulation

by timing the individual sections of the application. fcon is

obtained by measuring the time spent in the serial section

without taking into account the reduction operations, fcred
is obtained by measuring the time spent on reduction when

the application only uses a single core and fored is obtained

by measuring the relative increase in reduction operation

time over fcred when using multiple cores. The parameters

for kmeans, fuzzy and hop are presented in Table II and

are obtained using the simulation infrastructure discussed in

the previous section. fcon, fcred and fored are expressed as

fractions of serial time in the table. For instance, in kmeans

the reduction value presented in the table indicates that 43%

of the time spent on executing serial section is actually spent

on reduction operations. The applications presented in Table II

follows a linear growth function. In case of hop, we notice that

the overhead grows superlinearly with core count and believe

that this is due to large number of memory accesses in the

merging phase that adds to the assumed linear growth of the

merging phase.

B. Model Validation

We first validate the observation about growing serial sec-

tions by running these applications on real hardware. We

use the hardware infrastructure described in Section IV using

large data sets and time the serial section. Figure2(c) plots

the serial section time obtained as we scale the application

normalized to serial section time on a single core. From the

graph we can observe that all applications indeed exhibit

a serial section growth characteristic similar with what is

obtained from simulations, when run on real hardware.

We next validate the model presented in Section III to see if

it matches with the simulation results that we obtain. In Figure

2(d), we normalize the serial section time predicted by the

model with the time obtained through simulation to establish

the accuracy by which our extended model can predict the

growth in the serial section.

From the graph we can observe that in the case of kmeans

our model mostly underestimates the impact due to the growth

of the serial section and in the case of hop it mostly overes-

timates the impact and for fuzzy the estimation varies. The

maximum overestimation margin is observed for fuzzy with

14% and the maximum underestimation margin is observed

for kmeans with 18%. This demonstrates that the simple

extensions proposed in Section III closely track the growing

serial section behavior.

C. Impact on Scalability

We now compare the speedup predicted using the proposed

model taking the impact of reduction operations into account

against a model which does not and compare the predicted

speedups as we scale to 256 cores. Both models assume that

the parallel sections scale linearly with the number of cores.

Figure 3 plots the scalability predictions for kmeans, fuzzy

and hop using the parameters presented in Table II, with

and without considering reduction overhead operations. For

this analysis we assume the core presented in Table I as the

baseline with a performance of unity and that the architecture

consists of 256 such cores.

The graphs indicate that if the serial section is optimistically

assumed to remain constant independent of scaling it would

result in overestimation of scalability for such applications.

Under the assumption that serial sections are constant, as

the curve corresponding to Amdahl’s model assume, speedup

linearly scales to at least 256 cores. However, by factoring

in growth of overhead of serial sections, speedup tapers off

at much lesser core count. This observation is important as it

shows that applications that have very high parallel fraction

values can have serial sections which if properly factored

in can prevent applications from scaling. This also goes to

show that naively using Amdahl’s Law can lead to speedup

overestimation.

D. Implications for CMP Design

We categorize applications along three dimensions: Size

of parallel section, how big fraction of serial section that is

constant, and the impact of reduction overhead and consider

their impact on speedup. For each dimension, we consider two

cases. For the first dimension, we distinguish between embar-

rassingly parallel (f = 0.999) or non-embarrassingly parallel

(f = 0.99) applications. As for the second dimension, we

distinguish between a high constant fraction (fcon(%) = 90)

and a moderate constant fraction (fcon(%) = 60). Finally,
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Fig. 3. Scalability prediction using different models

TABLE III
APPLICATION CLASSES AND PARAMETERS

parallelism constant reduction f fcon
(%)

fored
(%)

Emb. high low 0.999 90 10
Non-emb. high low 0.99 90 10
Emb. moderate low 0.999 60 10
Non-emb. moderate low 0.99 60 10
Emb. high high 0.999 90 80
Non-emb. high high 0.99 90 80
Emb. moderate high 0.999 60 80
Non-emb. moderate high 0.99 60 80

considering the third dimension we distinguish between low

(fored(%) = 10) and high reduction overhead (fored(%) =
80). Since we emphasize on scalability bottlenecks that can

influence application performance we only consider cases with

high parallel fraction to start with. As for the other parameters

we believe that we have used conservative numbers covering

interesting parts of the design space rather than in entirety.

The parameters are summarized in Table III.

For the rest of the analysis we assume that the performance

of a core is proportional to the square root of the area [2],

i.e., a core made up of four BCEs performs twice as high as

a single BCE. We further assume a hardware budget of 256

BCEs and a linear reduction overhead growth function unless

specified otherwise.

1) Symmetric Chip Multiprocessors: We first analyze the

impact of reduction operations on CMPs which comprise of

homogeneous cores. Through this analysis, we try to determine

a suitable architecture (many tiny cores or few large cores) that

would yield maximum speedup for applications with reduction

overhead operations. Figure 4 plots the speedup computed

using Equation 4 in Section III and the parameters listed in

Table III. The x-axis in the graph represents the amount of area

allocated to a single core in a CMP: a value of 1 implies a

design with 256 cores of 1 BCE each and a value of 4 implies

64 cores of 4 BCEs each. The y-axis in the graph plots the

speedup of each configuration with respect to a single BCE.

First we discuss results computed assuming a linear growth

function (marked Linear). From the graphs we can observe

that the highest speedups for the curves marked Linear never

occur if we scale to large number of cores, i.e., a design

with 256 cores (r = 1 in the x-axis) never yields the highest

speedup as shown in Figure 4(a) to 4(d). This is because the

reduction overhead fraction grows as we scale up and this

dwarfs the benefit of accelerating the parallel section. There

is loss in scalability as the overhead fraction grows and fewer

but larger cores are required to achieve the maximum speedup.

This can be seen by taking note of where speedup peaks

when moving from graphs 4(a) and 4(c), which correspond to

low reduction overhead, to 4(b) and 4(d), which correspond

to high reduction overhead. This trend can be observed for

embarrassingly parallel as well as non-embarrassingly parallel

applications, irrespective of the amount of constant fraction.

Moreover there is also a drop in maximum speedup. For

instance (0.999, Linear) in graph 4(c) attains a maximum

speedup of 104.5 for r = 4 whereas in graph 4(d) maximum

speedup of 67.1 is attained for r = 8.

For reduction overhead operations with logarithmic growth

(marked Log in the graphs) we observe that the scalability

trend discussed previously still applies for non-embarrassingly

parallel applications. For embarrassingly parallel applications,

however, small cores manage to yield the highest speedup.

Applications with a high reduction overhead, however, still

experience drop in scalability. These observations collectively

suggest that CMPs with large cores are generally required to

execute applications with high reduction overhead fractions

efficiently. For such applications we will have to accommodate

fewer but larger cores and thereby trade off performance for

applications that have potential for effectively using large

number of cores.

2) Asymmetric Chip Multiprocessors: We now focus on

the impact of reduction overhead on ACMPs which consist

of one large core that executes the serial sections and several

homogeneous cores for executing the parallel sections. The in-

teresting question is whether such ACMPs have a performance

advantage over CMPs in presence of reduction operations.

Figure 5 plots the speedup computed using Equation 5 in

Section III for ACMPs for varying rl and r. The x-axis in

the graph represents the area allocated to the large core in

an ACMP and the y-axis in the graph plots the speedup of

each configuration with respect to a single BCE. The different
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Fig. 4. Scalability on symmetric CMPs

lines (r = 1, 4, 16) in each graph represent the amount of

resources allocated to each of the homogeneous cores that

are responsible for the parallel sections. We assume that the

reduction operations only happen on the large core in the

design (linear complexity).

For applications with low reduction overhead, such as in

graph 5(a), 5(b), 5(e) and 5(f), maximizing the number of

cores for the parallel section in addition to the size of the

large core always yields maximum speedup. We can observe

this for embarrassingly parallel as well as non-embarrassingly

parallel applications irrespective of the amount of constant

fraction. In all these graphs the maximum speedup is achieved

for the plot r = 1 BCE and this indicates that having many

small cores for parallel sections in addition to one large core

for the serial section would yield maximum speedup for such

applications. Embarrassingly parallel applications with high

reduction overhead show a similar trend irrespective of their

group as seen in graphs 5(c) and 5(g).

For non-embarrassingly parallel applications that exhibit a

high reduction overhead and with a high constant fraction,

as in Figure 5(d), using more capable cores for executing

parallel sections yields maximum speedup (r = 4 BCEs yields

higher speedup than r = 1 BCE). ACMPs still manage to

provide good improvement in speedup over CMPs for such

applications. For applications in this category CMPs (Figure

5(b)) yield a maximum speedup of 47.6 whereas ACMPs yield

a speedup of 64.2.

For non-embarrassingly applications that have a high reduc-

tion overhead and a moderate constant fraction, ACMPs that

use many small cores apart from the large core for handling

parallel sections, as in Figure 5(h) for the case r = 1, perform

worse (speedup = 22.6) than symmetric designs as in Figure

4(d) (speedup = 36.2 for Linear under f = 0.99), contrary

to the predictions using Amdahl’s Law (speedup = 162.3 vs.

79.7 for the asymmetric and symmetric case, respectively) .

This is because the reduction overhead tends to dwarf the

benefit of having many small cores to scale the parallel

section. Designs with fewer more capable cores also do not

yield significant performance improvement over CMPs. For

instance, in considering the same application case, ACMPs

yield a maximum speedup (Figure 5(h)) of 43.3 (r = 4) and

symmetric architectures yield a maximum speedup (Figure

5(d)) of 36.2 (r = 32). In general, a large reduction overhead

limits the performance benefit of asymmetric designs over
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Fig. 6. Reduction fraction splitup

symmetric designs.

These results suggest that applications with low reduction

overhead require a large core to efficiently execute serial

sections. In such a scenario, ACMPs can provide performance

benefits over CMPs. As the overhead increases there is a

shift towards fewer and more capable cores. Additionally, the

results obtained by our extended analytical model suggest that

the benefit of ACMPs over CMPs is indeed quite limited for

applications with large overhead.

E. Impact of Commmunication

In the previous section it is assumed that work performed

in the reduction phase always grows linearly with the number

of cores. The model however does not consider the impact of

communication although it is a critical factor in the merging

phase. In a typical merging phase where results computed

across different threads are accumulated, the computations

have little overhead when compared to the communication

operations that need to be performed. In this section we extend

the model to cover this. In addition to the linear and loga-

rithmic reduction costs discussed previously we now consider

the impact of having a parallel implementation of merging

phase. In a parallel reduction scenario that involves x reduction

elements from n cores, each thread is assigned a part of the

reduction ( x
n

) elements. The computation costs associated with

parallel implementation does not scale ( x
n
.n = x) with the

number of cores unlike the other approaches. The commu-

nication cost associated with transferring the partial cluster

information computed by the other threads to the master core

however grows by (n−1).x and this is because each core needs

to send (receive) a subset of privatized reduction elements to

(from) all the other cores. Assuming a common case it grows

by 2.(n − 1).x because the reduction results also need to be

broadcasted back to other cores.

We use the speedup expressions presented in Section III as

baseline and make extensions to factor in the effect of commu-

nication on reduction operations. Instead of simply assuming

that the reduction fraction is constituted by a constant reduc-

tion (fcred) fraction and an overhead reduction (fored) fraction

as discussed before we consider that it is constituted by a

computation fraction (fcomp) and a communication fraction

(fcomm). We assume an ideal case for communication where

merging phase is equally represented by the communication

and computation fraction. This is based on the premise that

for reductions to happen the number of communication and

computation operations remains the same assuming a single

thread (fcomp == fcomm and fcomp+fcomm = fred). We also

do not consider overheads due to memory accesses because

it favors fcomm. The term fcomm specifically represents the

fraction spent on communicating x reduction elements and

fcomp the fraction spent on computing reduction across x

elements. The reduction fraction split-up is illustrated in Figure

6. The overheads associated with both fractions are represented

as growcomp() and growcomm(). The serial part in the speedup

expression considering CMP is

fcon + fcomp.(1 + growcomp(n, x, r)

perf(r)
+

+ fcomm.(1 + growcomm(n, x, r)) (6)

and considering ACMP is

fcon + fcomp.(1 + growcomp(n, x, r, rl)

perf(rl)
+

+ fcomm.(1 + growcomm(n, x, r, rl)) (7)

It is evident that a linear reduction technique would have

a linear computational cost function, a logarithmic technique

would have a logarithmic computational cost function and

a parallel technique would have no additional computational

costs. However for communication operations, this depends on

the number of operations that need to be performed and the

number of operations that a given interconnection network can

achieve in any given instance. For this we assume 2D mesh

topology as it is the most commonly used topology in many

core CMP studies. In case of a 2D mesh topology with nc

cores (n
r

for symmetric case and n−rl
r+l

for asymmetric case)

there exist 2.
√
nc.(

√
nc − 1) links. Assuming bi-directional

links we can establish 4.
√
nc.(

√
nc − 1) operations at any

given instance. A communication operation implemented over

2D incurs additional overhead due to latencies for each hop

on the network. Since the packets take (
√
nc − 1) hops on

an average over the network before it reaches its destination,

the total overhead due to communication is the product of the

total number of communication operations and the average

number of hops each operation travels over the network

(assuming each hop takes unit time) 2.(nc − 1).x.(
√
nc − 1).

The expression for growcomm() for a 2D mesh topology is

hence as follows.

2.(nc − 1).x.(
√
nc − 1)

4.
√
nc.(

√
nc − 1)

≈
√
nc

2
(8)

In Equations 6 and 7 the expression that incorporates the

influence of communicating reduction elements (Equation 8)

is considered in addition to computation cost to estimate

speedup for CMPs (Figure 7(a)) and ACMPs (Figure 7(b)).

These graphs have axis similar to Figure 4 and Figure 5 and

are plotted for non-embarassingly parallel application with a

moderate constant fraction as shown in Table III.

From CMPs we notice that (r = 8 in the x-axis) yields

the highest speedup which implies preference towards designs

with fewer larger cores. Compared to the speedup suggested

by Amdahl’s model as shown in Figure 4(a) the estimated

speedup is less (79.7 against 46.6). In case of asymmetric
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CMPs we can observe the following. Firstly the maximum

speedup estimate is 51.6 which is considerably lower than the

speedup estimate provided by Amdahl’s model (162.3 shown

in Figure 5(b)). Secondly a design with fewer larger cores

provides a slightly better estimate than having one large core

and several small cores, although the margin is not significant

(r = 4 provides greater estimate than r = 1). Finally we

can observe from the graphs that the speedup improvement of

ACMP over CMP is diminished. The grow function for this

model remains to be validated and we will consider that for our

future work. We however believe that since this model is based

on ideal assumptions, it still provides an optimistic estimate

of the trends when incorporating communication overhead.

F. Variational Analysis on Datasets

The application parameters presented in Table II have been

derived from data sets whose size yield execution times

that are reasonable for architecture-level simulations. This

section aims at validating these parameters for larger data sets.

For this, we consider multiple scaled data sets used by the

clustering algorithms kmeans and fuzzy For hop, on the other

hand, we just simulate the default and the medium data sets

because the overhead associated with simulation is significant.

The attributes that we are specifically focusing on for kmeans

and fuzzy data sets are the Number of Points (N), Number

of Dimensions (D), and Number of Cluster Centers (C) and

the values are discussed in Table IV. The default data sets

to derive application parameters in the previous section are

labeled as kmeans−base, fuzzy−base, and hop−default.

The impact of data set size on the measured parallel fraction

(f ), constant serial fraction (fcon), and the reduction fraction

(fred) are listed.

From the table we can observe that for kmeans and fuzzy

even after scaling the number of dimensions and the number

of centers the parallel fraction either remains more or less

same. Scaling the number of points, on the other hand, slightly

increases the parallel fraction and this is because the number

TABLE IV
DATASET SENSITIVITY

Data Label Attributes f fred
(%)

fcon
(%)

kmeans-base N:17695 D:9 C:8 0.99985 43 57
kmeans-dim N:17695 D:18 C:8 0.99984 41 59
kmeans-point N:35390 D:18 C:8 0.99992 49 51
kmeans-center N:17695 D:18 C:32 0.99984 41 59
fuzzy-base N:17695 D:9 C:8 0.99998 65 35
fuzzy-dim N:17695 D:18 C:8 0.99997 61 39
fuzzy-point N:35390 D:18 C:8 0.99999 59 41
fuzzy-dim N:17695 D:18 C:32 0.99998 61 39
hop-default default 64p 61440 0.9990 12 88
hop-med med 128p 491520 0.9980 15 85

of operations performed in the merging phase is independent

of the number of points and is only dependent on the number

of dimensions and the number of clusters. Scaling the number

of points in the data set only causes the work in the parallel

section to increase with no change in the number of operations

performed in the merging phase. For hop as we scale from the

default data set to the medium data set the parallel fraction

decreases. These results imply that even with larger datasets,

we would expect to observe similar fraction values in most

cases.

VI. RELATED WORK

There has been a considerable body of work focusing on

asymmetric architectures and their ability to provide higher

performance than symmetric architectures [6], [15], [12], [11].

Stijn and Eeckhout address the limitations of asymmetric

CMPs by focusing on the impact of critical sections by

incorporating the overheads associated with synchronization

in Amdahl’s Law [4]. In their analysis they assume that the

effect of merging the data produced by multiple threads as a

part of serial sections and they consider it to be a constant. We

clearly demonstrate that this is not a constant but rather grows

and limits scalability severely. Our model is mainly applicable

to parallel applications that involve little or no synchronization

9



overhead. Such applications may also involve a merging phase

where data worked upon by the different threads are assembled

to make a final result. The work here is orthogonal to what they

propose and these can combined along to improve accuracy

of scalability prediction and the design insights.

Work has also targeted optimizing reduction operation exe-

cution for improving performance. Although there are several

classes of reduction operations, we specifically focus our

attention on partial write reductions [9]. Gagan et al. [9]

establish that such classes of reduction operations are common

across many categories of data mining applications in addition

to the ones that we use in our analysis. They also provide de-

tailed analytical models to determine the performance of each

technique on a shared memory machine [8]. They however do

not analyze the impact of reduction operations on CMP design

choices. Garzaran et al. [5] propose architectural support

for effectively carrying out such reduction operations. We

however are not aware of any commercial microprocessor with

specialized support for carrying out reductions and through

this work want to highlight its importance. Holzle [7] briefly

mentions embarrassingly parallel applications and the influ-

ence of computing stop criteria based on global information.

He uses this to argue for symmetric architectures with few

large cores instead of many small cores but does not provide

any quantitative analysis and also does not discuss asymmetric

architectures. Loh [10] models the cost of uncore resources in

addition to core resources but does not consider the serializing

nature of merging phases and its impact on scalability.

VII. CONCLUSIONS

Amdahl’s Law estimates that applications with significant

parallel fractions potentially scale to large number of cores.

Surprisingly, we find that because of the reduction operations

the serial sections in these applications do not remain constant

anymore. We then extend Amdahl’s Law to incorporate the

effect of reduction operations and validate how accurately the

model predicts the overhead of reduction operations against

simulation on a CMP. Our most important findings using the

proposed model are a) Amdahl’s Law can overestimate the

scalability offered by symmetric and asymmetric architectures

for applications with merging phase and b) There is a shift

towards using the chip area for fewer and hence more capable

cores rather than simply increasing the number of cores for

symmetric as well as asymmetric architectures and c) The

performance potential of asymmetric over symmetric CMPs

is limited for such applications.
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